uapi: update install list after nvme.h rename
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83
84 struct nvme_dev;
85 struct nvme_queue;
86
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
91
92 /*
93 * Represents an NVM Express device. Each nvme_dev is a PCI function.
94 */
95 struct nvme_dev {
96 struct list_head node;
97 struct nvme_queue **queues;
98 struct blk_mq_tag_set tagset;
99 struct blk_mq_tag_set admin_tagset;
100 u32 __iomem *dbs;
101 struct device *dev;
102 struct dma_pool *prp_page_pool;
103 struct dma_pool *prp_small_pool;
104 unsigned queue_count;
105 unsigned online_queues;
106 unsigned max_qid;
107 int q_depth;
108 u32 db_stride;
109 struct msix_entry *entry;
110 void __iomem *bar;
111 struct work_struct reset_work;
112 struct work_struct scan_work;
113 struct work_struct remove_work;
114 struct mutex shutdown_lock;
115 bool subsystem;
116 void __iomem *cmb;
117 dma_addr_t cmb_dma_addr;
118 u64 cmb_size;
119 u32 cmbsz;
120 unsigned long flags;
121
122 #define NVME_CTRL_RESETTING 0
123
124 struct nvme_ctrl ctrl;
125 struct completion ioq_wait;
126 };
127
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130 return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132
133 /*
134 * An NVM Express queue. Each device has at least two (one for admin
135 * commands and one for I/O commands).
136 */
137 struct nvme_queue {
138 struct device *q_dmadev;
139 struct nvme_dev *dev;
140 char irqname[24]; /* nvme4294967295-65535\0 */
141 spinlock_t q_lock;
142 struct nvme_command *sq_cmds;
143 struct nvme_command __iomem *sq_cmds_io;
144 volatile struct nvme_completion *cqes;
145 struct blk_mq_tags **tags;
146 dma_addr_t sq_dma_addr;
147 dma_addr_t cq_dma_addr;
148 u32 __iomem *q_db;
149 u16 q_depth;
150 s16 cq_vector;
151 u16 sq_head;
152 u16 sq_tail;
153 u16 cq_head;
154 u16 qid;
155 u8 cq_phase;
156 u8 cqe_seen;
157 };
158
159 /*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
162 * me express that. Use nvme_init_iod to ensure there's enough space
163 * allocated to store the PRP list.
164 */
165 struct nvme_iod {
166 struct nvme_queue *nvmeq;
167 int aborted;
168 int npages; /* In the PRP list. 0 means small pool in use */
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173 struct scatterlist *sg;
174 struct scatterlist inline_sg[0];
175 };
176
177 /*
178 * Check we didin't inadvertently grow the command struct
179 */
180 static inline void _nvme_check_size(void)
181 {
182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195
196 /*
197 * Max size of iod being embedded in the request payload
198 */
199 #define NVME_INT_PAGES 2
200 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
201
202 /*
203 * Will slightly overestimate the number of pages needed. This is OK
204 * as it only leads to a small amount of wasted memory for the lifetime of
205 * the I/O.
206 */
207 static int nvme_npages(unsigned size, struct nvme_dev *dev)
208 {
209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 dev->ctrl.page_size);
211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212 }
213
214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 unsigned int size, unsigned int nseg)
216 {
217 return sizeof(__le64 *) * nvme_npages(size, dev) +
218 sizeof(struct scatterlist) * nseg;
219 }
220
221 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222 {
223 return sizeof(struct nvme_iod) +
224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225 }
226
227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 unsigned int hctx_idx)
229 {
230 struct nvme_dev *dev = data;
231 struct nvme_queue *nvmeq = dev->queues[0];
232
233 WARN_ON(hctx_idx != 0);
234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 WARN_ON(nvmeq->tags);
236
237 hctx->driver_data = nvmeq;
238 nvmeq->tags = &dev->admin_tagset.tags[0];
239 return 0;
240 }
241
242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243 {
244 struct nvme_queue *nvmeq = hctx->driver_data;
245
246 nvmeq->tags = NULL;
247 }
248
249 static int nvme_admin_init_request(void *data, struct request *req,
250 unsigned int hctx_idx, unsigned int rq_idx,
251 unsigned int numa_node)
252 {
253 struct nvme_dev *dev = data;
254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255 struct nvme_queue *nvmeq = dev->queues[0];
256
257 BUG_ON(!nvmeq);
258 iod->nvmeq = nvmeq;
259 return 0;
260 }
261
262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 unsigned int hctx_idx)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 if (!nvmeq->tags)
269 nvmeq->tags = &dev->tagset.tags[hctx_idx];
270
271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272 hctx->driver_data = nvmeq;
273 return 0;
274 }
275
276 static int nvme_init_request(void *data, struct request *req,
277 unsigned int hctx_idx, unsigned int rq_idx,
278 unsigned int numa_node)
279 {
280 struct nvme_dev *dev = data;
281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284 BUG_ON(!nvmeq);
285 iod->nvmeq = nvmeq;
286 return 0;
287 }
288
289 static void nvme_complete_async_event(struct nvme_dev *dev,
290 struct nvme_completion *cqe)
291 {
292 u16 status = le16_to_cpu(cqe->status) >> 1;
293 u32 result = le32_to_cpu(cqe->result);
294
295 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
296 ++dev->ctrl.event_limit;
297 if (status != NVME_SC_SUCCESS)
298 return;
299
300 switch (result & 0xff07) {
301 case NVME_AER_NOTICE_NS_CHANGED:
302 dev_info(dev->dev, "rescanning\n");
303 queue_work(nvme_workq, &dev->scan_work);
304 default:
305 dev_warn(dev->dev, "async event result %08x\n", result);
306 }
307 }
308
309 /**
310 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
311 * @nvmeq: The queue to use
312 * @cmd: The command to send
313 *
314 * Safe to use from interrupt context
315 */
316 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
317 struct nvme_command *cmd)
318 {
319 u16 tail = nvmeq->sq_tail;
320
321 if (nvmeq->sq_cmds_io)
322 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
323 else
324 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325
326 if (++tail == nvmeq->q_depth)
327 tail = 0;
328 writel(tail, nvmeq->q_db);
329 nvmeq->sq_tail = tail;
330 }
331
332 static __le64 **iod_list(struct request *req)
333 {
334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335 return (__le64 **)(iod->sg + req->nr_phys_segments);
336 }
337
338 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
339 {
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 int nseg = rq->nr_phys_segments;
342 unsigned size;
343
344 if (rq->cmd_flags & REQ_DISCARD)
345 size = sizeof(struct nvme_dsm_range);
346 else
347 size = blk_rq_bytes(rq);
348
349 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
350 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
351 if (!iod->sg)
352 return BLK_MQ_RQ_QUEUE_BUSY;
353 } else {
354 iod->sg = iod->inline_sg;
355 }
356
357 iod->aborted = 0;
358 iod->npages = -1;
359 iod->nents = 0;
360 iod->length = size;
361 return 0;
362 }
363
364 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
365 {
366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367 const int last_prp = dev->ctrl.page_size / 8 - 1;
368 int i;
369 __le64 **list = iod_list(req);
370 dma_addr_t prp_dma = iod->first_dma;
371
372 if (iod->npages == 0)
373 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
374 for (i = 0; i < iod->npages; i++) {
375 __le64 *prp_list = list[i];
376 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
377 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
378 prp_dma = next_prp_dma;
379 }
380
381 if (iod->sg != iod->inline_sg)
382 kfree(iod->sg);
383 }
384
385 #ifdef CONFIG_BLK_DEV_INTEGRITY
386 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
387 {
388 if (be32_to_cpu(pi->ref_tag) == v)
389 pi->ref_tag = cpu_to_be32(p);
390 }
391
392 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
393 {
394 if (be32_to_cpu(pi->ref_tag) == p)
395 pi->ref_tag = cpu_to_be32(v);
396 }
397
398 /**
399 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
400 *
401 * The virtual start sector is the one that was originally submitted by the
402 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
403 * start sector may be different. Remap protection information to match the
404 * physical LBA on writes, and back to the original seed on reads.
405 *
406 * Type 0 and 3 do not have a ref tag, so no remapping required.
407 */
408 static void nvme_dif_remap(struct request *req,
409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410 {
411 struct nvme_ns *ns = req->rq_disk->private_data;
412 struct bio_integrity_payload *bip;
413 struct t10_pi_tuple *pi;
414 void *p, *pmap;
415 u32 i, nlb, ts, phys, virt;
416
417 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
418 return;
419
420 bip = bio_integrity(req->bio);
421 if (!bip)
422 return;
423
424 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
425
426 p = pmap;
427 virt = bip_get_seed(bip);
428 phys = nvme_block_nr(ns, blk_rq_pos(req));
429 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
430 ts = ns->disk->queue->integrity.tuple_size;
431
432 for (i = 0; i < nlb; i++, virt++, phys++) {
433 pi = (struct t10_pi_tuple *)p;
434 dif_swap(phys, virt, pi);
435 p += ts;
436 }
437 kunmap_atomic(pmap);
438 }
439 #else /* CONFIG_BLK_DEV_INTEGRITY */
440 static void nvme_dif_remap(struct request *req,
441 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
442 {
443 }
444 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
445 {
446 }
447 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
448 {
449 }
450 #endif
451
452 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
453 int total_len)
454 {
455 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456 struct dma_pool *pool;
457 int length = total_len;
458 struct scatterlist *sg = iod->sg;
459 int dma_len = sg_dma_len(sg);
460 u64 dma_addr = sg_dma_address(sg);
461 u32 page_size = dev->ctrl.page_size;
462 int offset = dma_addr & (page_size - 1);
463 __le64 *prp_list;
464 __le64 **list = iod_list(req);
465 dma_addr_t prp_dma;
466 int nprps, i;
467
468 length -= (page_size - offset);
469 if (length <= 0)
470 return true;
471
472 dma_len -= (page_size - offset);
473 if (dma_len) {
474 dma_addr += (page_size - offset);
475 } else {
476 sg = sg_next(sg);
477 dma_addr = sg_dma_address(sg);
478 dma_len = sg_dma_len(sg);
479 }
480
481 if (length <= page_size) {
482 iod->first_dma = dma_addr;
483 return true;
484 }
485
486 nprps = DIV_ROUND_UP(length, page_size);
487 if (nprps <= (256 / 8)) {
488 pool = dev->prp_small_pool;
489 iod->npages = 0;
490 } else {
491 pool = dev->prp_page_pool;
492 iod->npages = 1;
493 }
494
495 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496 if (!prp_list) {
497 iod->first_dma = dma_addr;
498 iod->npages = -1;
499 return false;
500 }
501 list[0] = prp_list;
502 iod->first_dma = prp_dma;
503 i = 0;
504 for (;;) {
505 if (i == page_size >> 3) {
506 __le64 *old_prp_list = prp_list;
507 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
508 if (!prp_list)
509 return false;
510 list[iod->npages++] = prp_list;
511 prp_list[0] = old_prp_list[i - 1];
512 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
513 i = 1;
514 }
515 prp_list[i++] = cpu_to_le64(dma_addr);
516 dma_len -= page_size;
517 dma_addr += page_size;
518 length -= page_size;
519 if (length <= 0)
520 break;
521 if (dma_len > 0)
522 continue;
523 BUG_ON(dma_len < 0);
524 sg = sg_next(sg);
525 dma_addr = sg_dma_address(sg);
526 dma_len = sg_dma_len(sg);
527 }
528
529 return true;
530 }
531
532 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
533 struct nvme_command *cmnd)
534 {
535 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
536 struct request_queue *q = req->q;
537 enum dma_data_direction dma_dir = rq_data_dir(req) ?
538 DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 int ret = BLK_MQ_RQ_QUEUE_ERROR;
540
541 sg_init_table(iod->sg, req->nr_phys_segments);
542 iod->nents = blk_rq_map_sg(q, req, iod->sg);
543 if (!iod->nents)
544 goto out;
545
546 ret = BLK_MQ_RQ_QUEUE_BUSY;
547 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
548 goto out;
549
550 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
551 goto out_unmap;
552
553 ret = BLK_MQ_RQ_QUEUE_ERROR;
554 if (blk_integrity_rq(req)) {
555 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
556 goto out_unmap;
557
558 sg_init_table(&iod->meta_sg, 1);
559 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
560 goto out_unmap;
561
562 if (rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_prep);
564
565 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
566 goto out_unmap;
567 }
568
569 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
570 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
571 if (blk_integrity_rq(req))
572 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
573 return BLK_MQ_RQ_QUEUE_OK;
574
575 out_unmap:
576 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577 out:
578 return ret;
579 }
580
581 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
582 {
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 enum dma_data_direction dma_dir = rq_data_dir(req) ?
585 DMA_TO_DEVICE : DMA_FROM_DEVICE;
586
587 if (iod->nents) {
588 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
589 if (blk_integrity_rq(req)) {
590 if (!rq_data_dir(req))
591 nvme_dif_remap(req, nvme_dif_complete);
592 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
593 }
594 }
595
596 nvme_free_iod(dev, req);
597 }
598
599 /*
600 * We reuse the small pool to allocate the 16-byte range here as it is not
601 * worth having a special pool for these or additional cases to handle freeing
602 * the iod.
603 */
604 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
605 struct request *req, struct nvme_command *cmnd)
606 {
607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 struct nvme_dsm_range *range;
609
610 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
611 &iod->first_dma);
612 if (!range)
613 return BLK_MQ_RQ_QUEUE_BUSY;
614 iod_list(req)[0] = (__le64 *)range;
615 iod->npages = 0;
616
617 range->cattr = cpu_to_le32(0);
618 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
619 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620
621 memset(cmnd, 0, sizeof(*cmnd));
622 cmnd->dsm.opcode = nvme_cmd_dsm;
623 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625 cmnd->dsm.nr = 0;
626 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627 return BLK_MQ_RQ_QUEUE_OK;
628 }
629
630 /*
631 * NOTE: ns is NULL when called on the admin queue.
632 */
633 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
634 const struct blk_mq_queue_data *bd)
635 {
636 struct nvme_ns *ns = hctx->queue->queuedata;
637 struct nvme_queue *nvmeq = hctx->driver_data;
638 struct nvme_dev *dev = nvmeq->dev;
639 struct request *req = bd->rq;
640 struct nvme_command cmnd;
641 int ret = BLK_MQ_RQ_QUEUE_OK;
642
643 /*
644 * If formated with metadata, require the block layer provide a buffer
645 * unless this namespace is formated such that the metadata can be
646 * stripped/generated by the controller with PRACT=1.
647 */
648 if (ns && ns->ms && !blk_integrity_rq(req)) {
649 if (!(ns->pi_type && ns->ms == 8) &&
650 req->cmd_type != REQ_TYPE_DRV_PRIV) {
651 blk_mq_end_request(req, -EFAULT);
652 return BLK_MQ_RQ_QUEUE_OK;
653 }
654 }
655
656 ret = nvme_init_iod(req, dev);
657 if (ret)
658 return ret;
659
660 if (req->cmd_flags & REQ_DISCARD) {
661 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
662 } else {
663 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
664 memcpy(&cmnd, req->cmd, sizeof(cmnd));
665 else if (req->cmd_flags & REQ_FLUSH)
666 nvme_setup_flush(ns, &cmnd);
667 else
668 nvme_setup_rw(ns, req, &cmnd);
669
670 if (req->nr_phys_segments)
671 ret = nvme_map_data(dev, req, &cmnd);
672 }
673
674 if (ret)
675 goto out;
676
677 cmnd.common.command_id = req->tag;
678 blk_mq_start_request(req);
679
680 spin_lock_irq(&nvmeq->q_lock);
681 __nvme_submit_cmd(nvmeq, &cmnd);
682 nvme_process_cq(nvmeq);
683 spin_unlock_irq(&nvmeq->q_lock);
684 return BLK_MQ_RQ_QUEUE_OK;
685 out:
686 nvme_free_iod(dev, req);
687 return ret;
688 }
689
690 static void nvme_complete_rq(struct request *req)
691 {
692 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
693 struct nvme_dev *dev = iod->nvmeq->dev;
694 int error = 0;
695
696 nvme_unmap_data(dev, req);
697
698 if (unlikely(req->errors)) {
699 if (nvme_req_needs_retry(req, req->errors)) {
700 nvme_requeue_req(req);
701 return;
702 }
703
704 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
705 error = req->errors;
706 else
707 error = nvme_error_status(req->errors);
708 }
709
710 if (unlikely(iod->aborted)) {
711 dev_warn(dev->dev,
712 "completing aborted command with status: %04x\n",
713 req->errors);
714 }
715
716 blk_mq_end_request(req, error);
717 }
718
719 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
720 {
721 u16 head, phase;
722
723 head = nvmeq->cq_head;
724 phase = nvmeq->cq_phase;
725
726 for (;;) {
727 struct nvme_completion cqe = nvmeq->cqes[head];
728 u16 status = le16_to_cpu(cqe.status);
729 struct request *req;
730
731 if ((status & 1) != phase)
732 break;
733 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
734 if (++head == nvmeq->q_depth) {
735 head = 0;
736 phase = !phase;
737 }
738
739 if (tag && *tag == cqe.command_id)
740 *tag = -1;
741
742 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
743 dev_warn(nvmeq->q_dmadev,
744 "invalid id %d completed on queue %d\n",
745 cqe.command_id, le16_to_cpu(cqe.sq_id));
746 continue;
747 }
748
749 /*
750 * AEN requests are special as they don't time out and can
751 * survive any kind of queue freeze and often don't respond to
752 * aborts. We don't even bother to allocate a struct request
753 * for them but rather special case them here.
754 */
755 if (unlikely(nvmeq->qid == 0 &&
756 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
757 nvme_complete_async_event(nvmeq->dev, &cqe);
758 continue;
759 }
760
761 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
762 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
763 u32 result = le32_to_cpu(cqe.result);
764 req->special = (void *)(uintptr_t)result;
765 }
766 blk_mq_complete_request(req, status >> 1);
767
768 }
769
770 /* If the controller ignores the cq head doorbell and continuously
771 * writes to the queue, it is theoretically possible to wrap around
772 * the queue twice and mistakenly return IRQ_NONE. Linux only
773 * requires that 0.1% of your interrupts are handled, so this isn't
774 * a big problem.
775 */
776 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
777 return;
778
779 if (likely(nvmeq->cq_vector >= 0))
780 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
781 nvmeq->cq_head = head;
782 nvmeq->cq_phase = phase;
783
784 nvmeq->cqe_seen = 1;
785 }
786
787 static void nvme_process_cq(struct nvme_queue *nvmeq)
788 {
789 __nvme_process_cq(nvmeq, NULL);
790 }
791
792 static irqreturn_t nvme_irq(int irq, void *data)
793 {
794 irqreturn_t result;
795 struct nvme_queue *nvmeq = data;
796 spin_lock(&nvmeq->q_lock);
797 nvme_process_cq(nvmeq);
798 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
799 nvmeq->cqe_seen = 0;
800 spin_unlock(&nvmeq->q_lock);
801 return result;
802 }
803
804 static irqreturn_t nvme_irq_check(int irq, void *data)
805 {
806 struct nvme_queue *nvmeq = data;
807 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
808 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
809 return IRQ_NONE;
810 return IRQ_WAKE_THREAD;
811 }
812
813 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
814 {
815 struct nvme_queue *nvmeq = hctx->driver_data;
816
817 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
818 nvmeq->cq_phase) {
819 spin_lock_irq(&nvmeq->q_lock);
820 __nvme_process_cq(nvmeq, &tag);
821 spin_unlock_irq(&nvmeq->q_lock);
822
823 if (tag == -1)
824 return 1;
825 }
826
827 return 0;
828 }
829
830 static void nvme_submit_async_event(struct nvme_dev *dev)
831 {
832 struct nvme_command c;
833
834 memset(&c, 0, sizeof(c));
835 c.common.opcode = nvme_admin_async_event;
836 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
837
838 __nvme_submit_cmd(dev->queues[0], &c);
839 }
840
841 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
842 {
843 struct nvme_command c;
844
845 memset(&c, 0, sizeof(c));
846 c.delete_queue.opcode = opcode;
847 c.delete_queue.qid = cpu_to_le16(id);
848
849 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
850 }
851
852 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
853 struct nvme_queue *nvmeq)
854 {
855 struct nvme_command c;
856 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
857
858 /*
859 * Note: we (ab)use the fact the the prp fields survive if no data
860 * is attached to the request.
861 */
862 memset(&c, 0, sizeof(c));
863 c.create_cq.opcode = nvme_admin_create_cq;
864 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
865 c.create_cq.cqid = cpu_to_le16(qid);
866 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
867 c.create_cq.cq_flags = cpu_to_le16(flags);
868 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
869
870 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
871 }
872
873 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
874 struct nvme_queue *nvmeq)
875 {
876 struct nvme_command c;
877 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
878
879 /*
880 * Note: we (ab)use the fact the the prp fields survive if no data
881 * is attached to the request.
882 */
883 memset(&c, 0, sizeof(c));
884 c.create_sq.opcode = nvme_admin_create_sq;
885 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
886 c.create_sq.sqid = cpu_to_le16(qid);
887 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
888 c.create_sq.sq_flags = cpu_to_le16(flags);
889 c.create_sq.cqid = cpu_to_le16(qid);
890
891 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
892 }
893
894 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
895 {
896 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
897 }
898
899 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
900 {
901 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
902 }
903
904 static void abort_endio(struct request *req, int error)
905 {
906 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
907 struct nvme_queue *nvmeq = iod->nvmeq;
908 u32 result = (u32)(uintptr_t)req->special;
909 u16 status = req->errors;
910
911 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
912 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
913
914 blk_mq_free_request(req);
915 }
916
917 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
918 {
919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920 struct nvme_queue *nvmeq = iod->nvmeq;
921 struct nvme_dev *dev = nvmeq->dev;
922 struct request *abort_req;
923 struct nvme_command cmd;
924
925 /*
926 * Shutdown immediately if controller times out while starting. The
927 * reset work will see the pci device disabled when it gets the forced
928 * cancellation error. All outstanding requests are completed on
929 * shutdown, so we return BLK_EH_HANDLED.
930 */
931 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
932 dev_warn(dev->dev,
933 "I/O %d QID %d timeout, disable controller\n",
934 req->tag, nvmeq->qid);
935 nvme_dev_disable(dev, false);
936 req->errors = NVME_SC_CANCELLED;
937 return BLK_EH_HANDLED;
938 }
939
940 /*
941 * Shutdown the controller immediately and schedule a reset if the
942 * command was already aborted once before and still hasn't been
943 * returned to the driver, or if this is the admin queue.
944 */
945 if (!nvmeq->qid || iod->aborted) {
946 dev_warn(dev->dev,
947 "I/O %d QID %d timeout, reset controller\n",
948 req->tag, nvmeq->qid);
949 nvme_dev_disable(dev, false);
950 queue_work(nvme_workq, &dev->reset_work);
951
952 /*
953 * Mark the request as handled, since the inline shutdown
954 * forces all outstanding requests to complete.
955 */
956 req->errors = NVME_SC_CANCELLED;
957 return BLK_EH_HANDLED;
958 }
959
960 iod->aborted = 1;
961
962 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
963 atomic_inc(&dev->ctrl.abort_limit);
964 return BLK_EH_RESET_TIMER;
965 }
966
967 memset(&cmd, 0, sizeof(cmd));
968 cmd.abort.opcode = nvme_admin_abort_cmd;
969 cmd.abort.cid = req->tag;
970 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
971
972 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
973 req->tag, nvmeq->qid);
974
975 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
976 BLK_MQ_REQ_NOWAIT);
977 if (IS_ERR(abort_req)) {
978 atomic_inc(&dev->ctrl.abort_limit);
979 return BLK_EH_RESET_TIMER;
980 }
981
982 abort_req->timeout = ADMIN_TIMEOUT;
983 abort_req->end_io_data = NULL;
984 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
985
986 /*
987 * The aborted req will be completed on receiving the abort req.
988 * We enable the timer again. If hit twice, it'll cause a device reset,
989 * as the device then is in a faulty state.
990 */
991 return BLK_EH_RESET_TIMER;
992 }
993
994 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
995 {
996 struct nvme_queue *nvmeq = data;
997 int status;
998
999 if (!blk_mq_request_started(req))
1000 return;
1001
1002 dev_warn(nvmeq->q_dmadev,
1003 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1004
1005 status = NVME_SC_ABORT_REQ;
1006 if (blk_queue_dying(req->q))
1007 status |= NVME_SC_DNR;
1008 blk_mq_complete_request(req, status);
1009 }
1010
1011 static void nvme_free_queue(struct nvme_queue *nvmeq)
1012 {
1013 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1014 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1015 if (nvmeq->sq_cmds)
1016 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1017 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1018 kfree(nvmeq);
1019 }
1020
1021 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1022 {
1023 int i;
1024
1025 for (i = dev->queue_count - 1; i >= lowest; i--) {
1026 struct nvme_queue *nvmeq = dev->queues[i];
1027 dev->queue_count--;
1028 dev->queues[i] = NULL;
1029 nvme_free_queue(nvmeq);
1030 }
1031 }
1032
1033 /**
1034 * nvme_suspend_queue - put queue into suspended state
1035 * @nvmeq - queue to suspend
1036 */
1037 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1038 {
1039 int vector;
1040
1041 spin_lock_irq(&nvmeq->q_lock);
1042 if (nvmeq->cq_vector == -1) {
1043 spin_unlock_irq(&nvmeq->q_lock);
1044 return 1;
1045 }
1046 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1047 nvmeq->dev->online_queues--;
1048 nvmeq->cq_vector = -1;
1049 spin_unlock_irq(&nvmeq->q_lock);
1050
1051 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1052 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1053
1054 irq_set_affinity_hint(vector, NULL);
1055 free_irq(vector, nvmeq);
1056
1057 return 0;
1058 }
1059
1060 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1061 {
1062 spin_lock_irq(&nvmeq->q_lock);
1063 if (nvmeq->tags && *nvmeq->tags)
1064 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1065 spin_unlock_irq(&nvmeq->q_lock);
1066 }
1067
1068 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1069 {
1070 struct nvme_queue *nvmeq = dev->queues[0];
1071
1072 if (!nvmeq)
1073 return;
1074 if (nvme_suspend_queue(nvmeq))
1075 return;
1076
1077 if (shutdown)
1078 nvme_shutdown_ctrl(&dev->ctrl);
1079 else
1080 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1081 dev->bar + NVME_REG_CAP));
1082
1083 spin_lock_irq(&nvmeq->q_lock);
1084 nvme_process_cq(nvmeq);
1085 spin_unlock_irq(&nvmeq->q_lock);
1086 }
1087
1088 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1089 int entry_size)
1090 {
1091 int q_depth = dev->q_depth;
1092 unsigned q_size_aligned = roundup(q_depth * entry_size,
1093 dev->ctrl.page_size);
1094
1095 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1096 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1097 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1098 q_depth = div_u64(mem_per_q, entry_size);
1099
1100 /*
1101 * Ensure the reduced q_depth is above some threshold where it
1102 * would be better to map queues in system memory with the
1103 * original depth
1104 */
1105 if (q_depth < 64)
1106 return -ENOMEM;
1107 }
1108
1109 return q_depth;
1110 }
1111
1112 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1113 int qid, int depth)
1114 {
1115 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1116 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1117 dev->ctrl.page_size);
1118 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1119 nvmeq->sq_cmds_io = dev->cmb + offset;
1120 } else {
1121 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1122 &nvmeq->sq_dma_addr, GFP_KERNEL);
1123 if (!nvmeq->sq_cmds)
1124 return -ENOMEM;
1125 }
1126
1127 return 0;
1128 }
1129
1130 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1131 int depth)
1132 {
1133 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1134 if (!nvmeq)
1135 return NULL;
1136
1137 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1138 &nvmeq->cq_dma_addr, GFP_KERNEL);
1139 if (!nvmeq->cqes)
1140 goto free_nvmeq;
1141
1142 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1143 goto free_cqdma;
1144
1145 nvmeq->q_dmadev = dev->dev;
1146 nvmeq->dev = dev;
1147 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1148 dev->ctrl.instance, qid);
1149 spin_lock_init(&nvmeq->q_lock);
1150 nvmeq->cq_head = 0;
1151 nvmeq->cq_phase = 1;
1152 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1153 nvmeq->q_depth = depth;
1154 nvmeq->qid = qid;
1155 nvmeq->cq_vector = -1;
1156 dev->queues[qid] = nvmeq;
1157
1158 /* make sure queue descriptor is set before queue count, for kthread */
1159 mb();
1160 dev->queue_count++;
1161
1162 return nvmeq;
1163
1164 free_cqdma:
1165 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1166 nvmeq->cq_dma_addr);
1167 free_nvmeq:
1168 kfree(nvmeq);
1169 return NULL;
1170 }
1171
1172 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1173 const char *name)
1174 {
1175 if (use_threaded_interrupts)
1176 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1177 nvme_irq_check, nvme_irq, IRQF_SHARED,
1178 name, nvmeq);
1179 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1180 IRQF_SHARED, name, nvmeq);
1181 }
1182
1183 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1184 {
1185 struct nvme_dev *dev = nvmeq->dev;
1186
1187 spin_lock_irq(&nvmeq->q_lock);
1188 nvmeq->sq_tail = 0;
1189 nvmeq->cq_head = 0;
1190 nvmeq->cq_phase = 1;
1191 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1192 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1193 dev->online_queues++;
1194 spin_unlock_irq(&nvmeq->q_lock);
1195 }
1196
1197 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1198 {
1199 struct nvme_dev *dev = nvmeq->dev;
1200 int result;
1201
1202 nvmeq->cq_vector = qid - 1;
1203 result = adapter_alloc_cq(dev, qid, nvmeq);
1204 if (result < 0)
1205 return result;
1206
1207 result = adapter_alloc_sq(dev, qid, nvmeq);
1208 if (result < 0)
1209 goto release_cq;
1210
1211 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1212 if (result < 0)
1213 goto release_sq;
1214
1215 nvme_init_queue(nvmeq, qid);
1216 return result;
1217
1218 release_sq:
1219 adapter_delete_sq(dev, qid);
1220 release_cq:
1221 adapter_delete_cq(dev, qid);
1222 return result;
1223 }
1224
1225 static struct blk_mq_ops nvme_mq_admin_ops = {
1226 .queue_rq = nvme_queue_rq,
1227 .complete = nvme_complete_rq,
1228 .map_queue = blk_mq_map_queue,
1229 .init_hctx = nvme_admin_init_hctx,
1230 .exit_hctx = nvme_admin_exit_hctx,
1231 .init_request = nvme_admin_init_request,
1232 .timeout = nvme_timeout,
1233 };
1234
1235 static struct blk_mq_ops nvme_mq_ops = {
1236 .queue_rq = nvme_queue_rq,
1237 .complete = nvme_complete_rq,
1238 .map_queue = blk_mq_map_queue,
1239 .init_hctx = nvme_init_hctx,
1240 .init_request = nvme_init_request,
1241 .timeout = nvme_timeout,
1242 .poll = nvme_poll,
1243 };
1244
1245 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1246 {
1247 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1248 blk_cleanup_queue(dev->ctrl.admin_q);
1249 blk_mq_free_tag_set(&dev->admin_tagset);
1250 }
1251 }
1252
1253 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1254 {
1255 if (!dev->ctrl.admin_q) {
1256 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1257 dev->admin_tagset.nr_hw_queues = 1;
1258
1259 /*
1260 * Subtract one to leave an empty queue entry for 'Full Queue'
1261 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1262 */
1263 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1264 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1265 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1266 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1267 dev->admin_tagset.driver_data = dev;
1268
1269 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1270 return -ENOMEM;
1271
1272 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1273 if (IS_ERR(dev->ctrl.admin_q)) {
1274 blk_mq_free_tag_set(&dev->admin_tagset);
1275 return -ENOMEM;
1276 }
1277 if (!blk_get_queue(dev->ctrl.admin_q)) {
1278 nvme_dev_remove_admin(dev);
1279 dev->ctrl.admin_q = NULL;
1280 return -ENODEV;
1281 }
1282 } else
1283 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1284
1285 return 0;
1286 }
1287
1288 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1289 {
1290 int result;
1291 u32 aqa;
1292 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1293 struct nvme_queue *nvmeq;
1294
1295 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1296 NVME_CAP_NSSRC(cap) : 0;
1297
1298 if (dev->subsystem &&
1299 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1300 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1301
1302 result = nvme_disable_ctrl(&dev->ctrl, cap);
1303 if (result < 0)
1304 return result;
1305
1306 nvmeq = dev->queues[0];
1307 if (!nvmeq) {
1308 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1309 if (!nvmeq)
1310 return -ENOMEM;
1311 }
1312
1313 aqa = nvmeq->q_depth - 1;
1314 aqa |= aqa << 16;
1315
1316 writel(aqa, dev->bar + NVME_REG_AQA);
1317 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1318 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1319
1320 result = nvme_enable_ctrl(&dev->ctrl, cap);
1321 if (result)
1322 goto free_nvmeq;
1323
1324 nvmeq->cq_vector = 0;
1325 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1326 if (result) {
1327 nvmeq->cq_vector = -1;
1328 goto free_nvmeq;
1329 }
1330
1331 return result;
1332
1333 free_nvmeq:
1334 nvme_free_queues(dev, 0);
1335 return result;
1336 }
1337
1338 static int nvme_kthread(void *data)
1339 {
1340 struct nvme_dev *dev, *next;
1341
1342 while (!kthread_should_stop()) {
1343 set_current_state(TASK_INTERRUPTIBLE);
1344 spin_lock(&dev_list_lock);
1345 list_for_each_entry_safe(dev, next, &dev_list, node) {
1346 int i;
1347 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1348
1349 /*
1350 * Skip controllers currently under reset.
1351 */
1352 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1353 continue;
1354
1355 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1356 csts & NVME_CSTS_CFS) {
1357 if (queue_work(nvme_workq, &dev->reset_work)) {
1358 dev_warn(dev->dev,
1359 "Failed status: %x, reset controller\n",
1360 readl(dev->bar + NVME_REG_CSTS));
1361 }
1362 continue;
1363 }
1364 for (i = 0; i < dev->queue_count; i++) {
1365 struct nvme_queue *nvmeq = dev->queues[i];
1366 if (!nvmeq)
1367 continue;
1368 spin_lock_irq(&nvmeq->q_lock);
1369 nvme_process_cq(nvmeq);
1370
1371 while (i == 0 && dev->ctrl.event_limit > 0)
1372 nvme_submit_async_event(dev);
1373 spin_unlock_irq(&nvmeq->q_lock);
1374 }
1375 }
1376 spin_unlock(&dev_list_lock);
1377 schedule_timeout(round_jiffies_relative(HZ));
1378 }
1379 return 0;
1380 }
1381
1382 static int nvme_create_io_queues(struct nvme_dev *dev)
1383 {
1384 unsigned i;
1385 int ret = 0;
1386
1387 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1388 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1389 ret = -ENOMEM;
1390 break;
1391 }
1392 }
1393
1394 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1395 ret = nvme_create_queue(dev->queues[i], i);
1396 if (ret) {
1397 nvme_free_queues(dev, i);
1398 break;
1399 }
1400 }
1401
1402 /*
1403 * Ignore failing Create SQ/CQ commands, we can continue with less
1404 * than the desired aount of queues, and even a controller without
1405 * I/O queues an still be used to issue admin commands. This might
1406 * be useful to upgrade a buggy firmware for example.
1407 */
1408 return ret >= 0 ? 0 : ret;
1409 }
1410
1411 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1412 {
1413 u64 szu, size, offset;
1414 u32 cmbloc;
1415 resource_size_t bar_size;
1416 struct pci_dev *pdev = to_pci_dev(dev->dev);
1417 void __iomem *cmb;
1418 dma_addr_t dma_addr;
1419
1420 if (!use_cmb_sqes)
1421 return NULL;
1422
1423 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1424 if (!(NVME_CMB_SZ(dev->cmbsz)))
1425 return NULL;
1426
1427 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1428
1429 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1430 size = szu * NVME_CMB_SZ(dev->cmbsz);
1431 offset = szu * NVME_CMB_OFST(cmbloc);
1432 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1433
1434 if (offset > bar_size)
1435 return NULL;
1436
1437 /*
1438 * Controllers may support a CMB size larger than their BAR,
1439 * for example, due to being behind a bridge. Reduce the CMB to
1440 * the reported size of the BAR
1441 */
1442 if (size > bar_size - offset)
1443 size = bar_size - offset;
1444
1445 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1446 cmb = ioremap_wc(dma_addr, size);
1447 if (!cmb)
1448 return NULL;
1449
1450 dev->cmb_dma_addr = dma_addr;
1451 dev->cmb_size = size;
1452 return cmb;
1453 }
1454
1455 static inline void nvme_release_cmb(struct nvme_dev *dev)
1456 {
1457 if (dev->cmb) {
1458 iounmap(dev->cmb);
1459 dev->cmb = NULL;
1460 }
1461 }
1462
1463 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1464 {
1465 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1466 }
1467
1468 static int nvme_setup_io_queues(struct nvme_dev *dev)
1469 {
1470 struct nvme_queue *adminq = dev->queues[0];
1471 struct pci_dev *pdev = to_pci_dev(dev->dev);
1472 int result, i, vecs, nr_io_queues, size;
1473
1474 nr_io_queues = num_possible_cpus();
1475 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1476 if (result < 0)
1477 return result;
1478
1479 /*
1480 * Degraded controllers might return an error when setting the queue
1481 * count. We still want to be able to bring them online and offer
1482 * access to the admin queue, as that might be only way to fix them up.
1483 */
1484 if (result > 0) {
1485 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1486 nr_io_queues = 0;
1487 result = 0;
1488 }
1489
1490 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1491 result = nvme_cmb_qdepth(dev, nr_io_queues,
1492 sizeof(struct nvme_command));
1493 if (result > 0)
1494 dev->q_depth = result;
1495 else
1496 nvme_release_cmb(dev);
1497 }
1498
1499 size = db_bar_size(dev, nr_io_queues);
1500 if (size > 8192) {
1501 iounmap(dev->bar);
1502 do {
1503 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1504 if (dev->bar)
1505 break;
1506 if (!--nr_io_queues)
1507 return -ENOMEM;
1508 size = db_bar_size(dev, nr_io_queues);
1509 } while (1);
1510 dev->dbs = dev->bar + 4096;
1511 adminq->q_db = dev->dbs;
1512 }
1513
1514 /* Deregister the admin queue's interrupt */
1515 free_irq(dev->entry[0].vector, adminq);
1516
1517 /*
1518 * If we enable msix early due to not intx, disable it again before
1519 * setting up the full range we need.
1520 */
1521 if (!pdev->irq)
1522 pci_disable_msix(pdev);
1523
1524 for (i = 0; i < nr_io_queues; i++)
1525 dev->entry[i].entry = i;
1526 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1527 if (vecs < 0) {
1528 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1529 if (vecs < 0) {
1530 vecs = 1;
1531 } else {
1532 for (i = 0; i < vecs; i++)
1533 dev->entry[i].vector = i + pdev->irq;
1534 }
1535 }
1536
1537 /*
1538 * Should investigate if there's a performance win from allocating
1539 * more queues than interrupt vectors; it might allow the submission
1540 * path to scale better, even if the receive path is limited by the
1541 * number of interrupts.
1542 */
1543 nr_io_queues = vecs;
1544 dev->max_qid = nr_io_queues;
1545
1546 result = queue_request_irq(dev, adminq, adminq->irqname);
1547 if (result) {
1548 adminq->cq_vector = -1;
1549 goto free_queues;
1550 }
1551
1552 /* Free previously allocated queues that are no longer usable */
1553 nvme_free_queues(dev, nr_io_queues + 1);
1554 return nvme_create_io_queues(dev);
1555
1556 free_queues:
1557 nvme_free_queues(dev, 1);
1558 return result;
1559 }
1560
1561 static void nvme_set_irq_hints(struct nvme_dev *dev)
1562 {
1563 struct nvme_queue *nvmeq;
1564 int i;
1565
1566 for (i = 0; i < dev->online_queues; i++) {
1567 nvmeq = dev->queues[i];
1568
1569 if (!nvmeq->tags || !(*nvmeq->tags))
1570 continue;
1571
1572 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1573 blk_mq_tags_cpumask(*nvmeq->tags));
1574 }
1575 }
1576
1577 static void nvme_dev_scan(struct work_struct *work)
1578 {
1579 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1580
1581 if (!dev->tagset.tags)
1582 return;
1583 nvme_scan_namespaces(&dev->ctrl);
1584 nvme_set_irq_hints(dev);
1585 }
1586
1587 static void nvme_del_queue_end(struct request *req, int error)
1588 {
1589 struct nvme_queue *nvmeq = req->end_io_data;
1590
1591 blk_mq_free_request(req);
1592 complete(&nvmeq->dev->ioq_wait);
1593 }
1594
1595 static void nvme_del_cq_end(struct request *req, int error)
1596 {
1597 struct nvme_queue *nvmeq = req->end_io_data;
1598
1599 if (!error) {
1600 unsigned long flags;
1601
1602 spin_lock_irqsave(&nvmeq->q_lock, flags);
1603 nvme_process_cq(nvmeq);
1604 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1605 }
1606
1607 nvme_del_queue_end(req, error);
1608 }
1609
1610 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1611 {
1612 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1613 struct request *req;
1614 struct nvme_command cmd;
1615
1616 memset(&cmd, 0, sizeof(cmd));
1617 cmd.delete_queue.opcode = opcode;
1618 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1619
1620 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1621 if (IS_ERR(req))
1622 return PTR_ERR(req);
1623
1624 req->timeout = ADMIN_TIMEOUT;
1625 req->end_io_data = nvmeq;
1626
1627 blk_execute_rq_nowait(q, NULL, req, false,
1628 opcode == nvme_admin_delete_cq ?
1629 nvme_del_cq_end : nvme_del_queue_end);
1630 return 0;
1631 }
1632
1633 static void nvme_disable_io_queues(struct nvme_dev *dev)
1634 {
1635 int pass;
1636 unsigned long timeout;
1637 u8 opcode = nvme_admin_delete_sq;
1638
1639 for (pass = 0; pass < 2; pass++) {
1640 int sent = 0, i = dev->queue_count - 1;
1641
1642 reinit_completion(&dev->ioq_wait);
1643 retry:
1644 timeout = ADMIN_TIMEOUT;
1645 for (; i > 0; i--) {
1646 struct nvme_queue *nvmeq = dev->queues[i];
1647
1648 if (!pass)
1649 nvme_suspend_queue(nvmeq);
1650 if (nvme_delete_queue(nvmeq, opcode))
1651 break;
1652 ++sent;
1653 }
1654 while (sent--) {
1655 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1656 if (timeout == 0)
1657 return;
1658 if (i)
1659 goto retry;
1660 }
1661 opcode = nvme_admin_delete_cq;
1662 }
1663 }
1664
1665 /*
1666 * Return: error value if an error occurred setting up the queues or calling
1667 * Identify Device. 0 if these succeeded, even if adding some of the
1668 * namespaces failed. At the moment, these failures are silent. TBD which
1669 * failures should be reported.
1670 */
1671 static int nvme_dev_add(struct nvme_dev *dev)
1672 {
1673 if (!dev->ctrl.tagset) {
1674 dev->tagset.ops = &nvme_mq_ops;
1675 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1676 dev->tagset.timeout = NVME_IO_TIMEOUT;
1677 dev->tagset.numa_node = dev_to_node(dev->dev);
1678 dev->tagset.queue_depth =
1679 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1680 dev->tagset.cmd_size = nvme_cmd_size(dev);
1681 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1682 dev->tagset.driver_data = dev;
1683
1684 if (blk_mq_alloc_tag_set(&dev->tagset))
1685 return 0;
1686 dev->ctrl.tagset = &dev->tagset;
1687 }
1688 queue_work(nvme_workq, &dev->scan_work);
1689 return 0;
1690 }
1691
1692 static int nvme_dev_map(struct nvme_dev *dev)
1693 {
1694 u64 cap;
1695 int bars, result = -ENOMEM;
1696 struct pci_dev *pdev = to_pci_dev(dev->dev);
1697
1698 if (pci_enable_device_mem(pdev))
1699 return result;
1700
1701 dev->entry[0].vector = pdev->irq;
1702 pci_set_master(pdev);
1703 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1704 if (!bars)
1705 goto disable_pci;
1706
1707 if (pci_request_selected_regions(pdev, bars, "nvme"))
1708 goto disable_pci;
1709
1710 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1711 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1712 goto disable;
1713
1714 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1715 if (!dev->bar)
1716 goto disable;
1717
1718 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1719 result = -ENODEV;
1720 goto unmap;
1721 }
1722
1723 /*
1724 * Some devices don't advertse INTx interrupts, pre-enable a single
1725 * MSIX vec for setup. We'll adjust this later.
1726 */
1727 if (!pdev->irq) {
1728 result = pci_enable_msix(pdev, dev->entry, 1);
1729 if (result < 0)
1730 goto unmap;
1731 }
1732
1733 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1734
1735 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1736 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1737 dev->dbs = dev->bar + 4096;
1738 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1739 dev->cmb = nvme_map_cmb(dev);
1740
1741 pci_enable_pcie_error_reporting(pdev);
1742 pci_save_state(pdev);
1743 return 0;
1744
1745 unmap:
1746 iounmap(dev->bar);
1747 dev->bar = NULL;
1748 disable:
1749 pci_release_regions(pdev);
1750 disable_pci:
1751 pci_disable_device(pdev);
1752 return result;
1753 }
1754
1755 static void nvme_dev_unmap(struct nvme_dev *dev)
1756 {
1757 struct pci_dev *pdev = to_pci_dev(dev->dev);
1758
1759 if (pdev->msi_enabled)
1760 pci_disable_msi(pdev);
1761 else if (pdev->msix_enabled)
1762 pci_disable_msix(pdev);
1763
1764 if (dev->bar) {
1765 iounmap(dev->bar);
1766 dev->bar = NULL;
1767 pci_release_regions(pdev);
1768 }
1769
1770 if (pci_is_enabled(pdev)) {
1771 pci_disable_pcie_error_reporting(pdev);
1772 pci_disable_device(pdev);
1773 }
1774 }
1775
1776 static int nvme_dev_list_add(struct nvme_dev *dev)
1777 {
1778 bool start_thread = false;
1779
1780 spin_lock(&dev_list_lock);
1781 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1782 start_thread = true;
1783 nvme_thread = NULL;
1784 }
1785 list_add(&dev->node, &dev_list);
1786 spin_unlock(&dev_list_lock);
1787
1788 if (start_thread) {
1789 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1790 wake_up_all(&nvme_kthread_wait);
1791 } else
1792 wait_event_killable(nvme_kthread_wait, nvme_thread);
1793
1794 if (IS_ERR_OR_NULL(nvme_thread))
1795 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1796
1797 return 0;
1798 }
1799
1800 /*
1801 * Remove the node from the device list and check
1802 * for whether or not we need to stop the nvme_thread.
1803 */
1804 static void nvme_dev_list_remove(struct nvme_dev *dev)
1805 {
1806 struct task_struct *tmp = NULL;
1807
1808 spin_lock(&dev_list_lock);
1809 list_del_init(&dev->node);
1810 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1811 tmp = nvme_thread;
1812 nvme_thread = NULL;
1813 }
1814 spin_unlock(&dev_list_lock);
1815
1816 if (tmp)
1817 kthread_stop(tmp);
1818 }
1819
1820 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1821 {
1822 int i;
1823 u32 csts = -1;
1824
1825 nvme_dev_list_remove(dev);
1826
1827 mutex_lock(&dev->shutdown_lock);
1828 if (dev->bar) {
1829 nvme_stop_queues(&dev->ctrl);
1830 csts = readl(dev->bar + NVME_REG_CSTS);
1831 }
1832 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1833 for (i = dev->queue_count - 1; i >= 0; i--) {
1834 struct nvme_queue *nvmeq = dev->queues[i];
1835 nvme_suspend_queue(nvmeq);
1836 }
1837 } else {
1838 nvme_disable_io_queues(dev);
1839 nvme_disable_admin_queue(dev, shutdown);
1840 }
1841 nvme_dev_unmap(dev);
1842
1843 for (i = dev->queue_count - 1; i >= 0; i--)
1844 nvme_clear_queue(dev->queues[i]);
1845 mutex_unlock(&dev->shutdown_lock);
1846 }
1847
1848 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1849 {
1850 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1851 PAGE_SIZE, PAGE_SIZE, 0);
1852 if (!dev->prp_page_pool)
1853 return -ENOMEM;
1854
1855 /* Optimisation for I/Os between 4k and 128k */
1856 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1857 256, 256, 0);
1858 if (!dev->prp_small_pool) {
1859 dma_pool_destroy(dev->prp_page_pool);
1860 return -ENOMEM;
1861 }
1862 return 0;
1863 }
1864
1865 static void nvme_release_prp_pools(struct nvme_dev *dev)
1866 {
1867 dma_pool_destroy(dev->prp_page_pool);
1868 dma_pool_destroy(dev->prp_small_pool);
1869 }
1870
1871 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1872 {
1873 struct nvme_dev *dev = to_nvme_dev(ctrl);
1874
1875 put_device(dev->dev);
1876 if (dev->tagset.tags)
1877 blk_mq_free_tag_set(&dev->tagset);
1878 if (dev->ctrl.admin_q)
1879 blk_put_queue(dev->ctrl.admin_q);
1880 kfree(dev->queues);
1881 kfree(dev->entry);
1882 kfree(dev);
1883 }
1884
1885 static void nvme_reset_work(struct work_struct *work)
1886 {
1887 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1888 int result;
1889
1890 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1891 goto out;
1892
1893 /*
1894 * If we're called to reset a live controller first shut it down before
1895 * moving on.
1896 */
1897 if (dev->bar)
1898 nvme_dev_disable(dev, false);
1899
1900 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1901
1902 result = nvme_dev_map(dev);
1903 if (result)
1904 goto out;
1905
1906 result = nvme_configure_admin_queue(dev);
1907 if (result)
1908 goto unmap;
1909
1910 nvme_init_queue(dev->queues[0], 0);
1911 result = nvme_alloc_admin_tags(dev);
1912 if (result)
1913 goto disable;
1914
1915 result = nvme_init_identify(&dev->ctrl);
1916 if (result)
1917 goto free_tags;
1918
1919 result = nvme_setup_io_queues(dev);
1920 if (result)
1921 goto free_tags;
1922
1923 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1924
1925 result = nvme_dev_list_add(dev);
1926 if (result)
1927 goto remove;
1928
1929 /*
1930 * Keep the controller around but remove all namespaces if we don't have
1931 * any working I/O queue.
1932 */
1933 if (dev->online_queues < 2) {
1934 dev_warn(dev->dev, "IO queues not created\n");
1935 nvme_remove_namespaces(&dev->ctrl);
1936 } else {
1937 nvme_start_queues(&dev->ctrl);
1938 nvme_dev_add(dev);
1939 }
1940
1941 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1942 return;
1943
1944 remove:
1945 nvme_dev_list_remove(dev);
1946 free_tags:
1947 nvme_dev_remove_admin(dev);
1948 blk_put_queue(dev->ctrl.admin_q);
1949 dev->ctrl.admin_q = NULL;
1950 dev->queues[0]->tags = NULL;
1951 disable:
1952 nvme_disable_admin_queue(dev, false);
1953 unmap:
1954 nvme_dev_unmap(dev);
1955 out:
1956 nvme_remove_dead_ctrl(dev);
1957 }
1958
1959 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1960 {
1961 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1962 struct pci_dev *pdev = to_pci_dev(dev->dev);
1963
1964 if (pci_get_drvdata(pdev))
1965 pci_stop_and_remove_bus_device_locked(pdev);
1966 nvme_put_ctrl(&dev->ctrl);
1967 }
1968
1969 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1970 {
1971 dev_warn(dev->dev, "Removing after probe failure\n");
1972 kref_get(&dev->ctrl.kref);
1973 if (!schedule_work(&dev->remove_work))
1974 nvme_put_ctrl(&dev->ctrl);
1975 }
1976
1977 static int nvme_reset(struct nvme_dev *dev)
1978 {
1979 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1980 return -ENODEV;
1981
1982 if (!queue_work(nvme_workq, &dev->reset_work))
1983 return -EBUSY;
1984
1985 flush_work(&dev->reset_work);
1986 return 0;
1987 }
1988
1989 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1990 {
1991 *val = readl(to_nvme_dev(ctrl)->bar + off);
1992 return 0;
1993 }
1994
1995 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1996 {
1997 writel(val, to_nvme_dev(ctrl)->bar + off);
1998 return 0;
1999 }
2000
2001 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2002 {
2003 *val = readq(to_nvme_dev(ctrl)->bar + off);
2004 return 0;
2005 }
2006
2007 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2008 {
2009 struct nvme_dev *dev = to_nvme_dev(ctrl);
2010
2011 return !dev->bar || dev->online_queues < 2;
2012 }
2013
2014 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2015 {
2016 return nvme_reset(to_nvme_dev(ctrl));
2017 }
2018
2019 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2020 .reg_read32 = nvme_pci_reg_read32,
2021 .reg_write32 = nvme_pci_reg_write32,
2022 .reg_read64 = nvme_pci_reg_read64,
2023 .io_incapable = nvme_pci_io_incapable,
2024 .reset_ctrl = nvme_pci_reset_ctrl,
2025 .free_ctrl = nvme_pci_free_ctrl,
2026 };
2027
2028 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2029 {
2030 int node, result = -ENOMEM;
2031 struct nvme_dev *dev;
2032
2033 node = dev_to_node(&pdev->dev);
2034 if (node == NUMA_NO_NODE)
2035 set_dev_node(&pdev->dev, 0);
2036
2037 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2038 if (!dev)
2039 return -ENOMEM;
2040 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2041 GFP_KERNEL, node);
2042 if (!dev->entry)
2043 goto free;
2044 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2045 GFP_KERNEL, node);
2046 if (!dev->queues)
2047 goto free;
2048
2049 dev->dev = get_device(&pdev->dev);
2050 pci_set_drvdata(pdev, dev);
2051
2052 INIT_LIST_HEAD(&dev->node);
2053 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2054 INIT_WORK(&dev->reset_work, nvme_reset_work);
2055 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2056 mutex_init(&dev->shutdown_lock);
2057 init_completion(&dev->ioq_wait);
2058
2059 result = nvme_setup_prp_pools(dev);
2060 if (result)
2061 goto put_pci;
2062
2063 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2064 id->driver_data);
2065 if (result)
2066 goto release_pools;
2067
2068 queue_work(nvme_workq, &dev->reset_work);
2069 return 0;
2070
2071 release_pools:
2072 nvme_release_prp_pools(dev);
2073 put_pci:
2074 put_device(dev->dev);
2075 free:
2076 kfree(dev->queues);
2077 kfree(dev->entry);
2078 kfree(dev);
2079 return result;
2080 }
2081
2082 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2083 {
2084 struct nvme_dev *dev = pci_get_drvdata(pdev);
2085
2086 if (prepare)
2087 nvme_dev_disable(dev, false);
2088 else
2089 queue_work(nvme_workq, &dev->reset_work);
2090 }
2091
2092 static void nvme_shutdown(struct pci_dev *pdev)
2093 {
2094 struct nvme_dev *dev = pci_get_drvdata(pdev);
2095 nvme_dev_disable(dev, true);
2096 }
2097
2098 static void nvme_remove(struct pci_dev *pdev)
2099 {
2100 struct nvme_dev *dev = pci_get_drvdata(pdev);
2101
2102 spin_lock(&dev_list_lock);
2103 list_del_init(&dev->node);
2104 spin_unlock(&dev_list_lock);
2105
2106 pci_set_drvdata(pdev, NULL);
2107 flush_work(&dev->reset_work);
2108 flush_work(&dev->scan_work);
2109 nvme_remove_namespaces(&dev->ctrl);
2110 nvme_uninit_ctrl(&dev->ctrl);
2111 nvme_dev_disable(dev, true);
2112 nvme_dev_remove_admin(dev);
2113 nvme_free_queues(dev, 0);
2114 nvme_release_cmb(dev);
2115 nvme_release_prp_pools(dev);
2116 nvme_put_ctrl(&dev->ctrl);
2117 }
2118
2119 #ifdef CONFIG_PM_SLEEP
2120 static int nvme_suspend(struct device *dev)
2121 {
2122 struct pci_dev *pdev = to_pci_dev(dev);
2123 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2124
2125 nvme_dev_disable(ndev, true);
2126 return 0;
2127 }
2128
2129 static int nvme_resume(struct device *dev)
2130 {
2131 struct pci_dev *pdev = to_pci_dev(dev);
2132 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2133
2134 queue_work(nvme_workq, &ndev->reset_work);
2135 return 0;
2136 }
2137 #endif
2138
2139 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2140
2141 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2142 pci_channel_state_t state)
2143 {
2144 struct nvme_dev *dev = pci_get_drvdata(pdev);
2145
2146 /*
2147 * A frozen channel requires a reset. When detected, this method will
2148 * shutdown the controller to quiesce. The controller will be restarted
2149 * after the slot reset through driver's slot_reset callback.
2150 */
2151 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2152 switch (state) {
2153 case pci_channel_io_normal:
2154 return PCI_ERS_RESULT_CAN_RECOVER;
2155 case pci_channel_io_frozen:
2156 nvme_dev_disable(dev, false);
2157 return PCI_ERS_RESULT_NEED_RESET;
2158 case pci_channel_io_perm_failure:
2159 return PCI_ERS_RESULT_DISCONNECT;
2160 }
2161 return PCI_ERS_RESULT_NEED_RESET;
2162 }
2163
2164 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2165 {
2166 struct nvme_dev *dev = pci_get_drvdata(pdev);
2167
2168 dev_info(&pdev->dev, "restart after slot reset\n");
2169 pci_restore_state(pdev);
2170 queue_work(nvme_workq, &dev->reset_work);
2171 return PCI_ERS_RESULT_RECOVERED;
2172 }
2173
2174 static void nvme_error_resume(struct pci_dev *pdev)
2175 {
2176 pci_cleanup_aer_uncorrect_error_status(pdev);
2177 }
2178
2179 static const struct pci_error_handlers nvme_err_handler = {
2180 .error_detected = nvme_error_detected,
2181 .slot_reset = nvme_slot_reset,
2182 .resume = nvme_error_resume,
2183 .reset_notify = nvme_reset_notify,
2184 };
2185
2186 /* Move to pci_ids.h later */
2187 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2188
2189 static const struct pci_device_id nvme_id_table[] = {
2190 { PCI_VDEVICE(INTEL, 0x0953),
2191 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2192 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2193 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2194 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2195 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2196 { 0, }
2197 };
2198 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2199
2200 static struct pci_driver nvme_driver = {
2201 .name = "nvme",
2202 .id_table = nvme_id_table,
2203 .probe = nvme_probe,
2204 .remove = nvme_remove,
2205 .shutdown = nvme_shutdown,
2206 .driver = {
2207 .pm = &nvme_dev_pm_ops,
2208 },
2209 .err_handler = &nvme_err_handler,
2210 };
2211
2212 static int __init nvme_init(void)
2213 {
2214 int result;
2215
2216 init_waitqueue_head(&nvme_kthread_wait);
2217
2218 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2219 if (!nvme_workq)
2220 return -ENOMEM;
2221
2222 result = nvme_core_init();
2223 if (result < 0)
2224 goto kill_workq;
2225
2226 result = pci_register_driver(&nvme_driver);
2227 if (result)
2228 goto core_exit;
2229 return 0;
2230
2231 core_exit:
2232 nvme_core_exit();
2233 kill_workq:
2234 destroy_workqueue(nvme_workq);
2235 return result;
2236 }
2237
2238 static void __exit nvme_exit(void)
2239 {
2240 pci_unregister_driver(&nvme_driver);
2241 nvme_core_exit();
2242 destroy_workqueue(nvme_workq);
2243 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2244 _nvme_check_size();
2245 }
2246
2247 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2248 MODULE_LICENSE("GPL");
2249 MODULE_VERSION("1.0");
2250 module_init(nvme_init);
2251 module_exit(nvme_exit);
This page took 0.1222 seconds and 5 git commands to generate.