b82bbea909cd594c7bebbf21d46aa552e2b9a000
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83
84 struct nvme_dev;
85 struct nvme_queue;
86
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90 static void nvme_dev_shutdown(struct nvme_dev *dev);
91
92 struct async_cmd_info {
93 struct kthread_work work;
94 struct kthread_worker *worker;
95 int status;
96 void *ctx;
97 };
98
99 /*
100 * Represents an NVM Express device. Each nvme_dev is a PCI function.
101 */
102 struct nvme_dev {
103 struct list_head node;
104 struct nvme_queue **queues;
105 struct blk_mq_tag_set tagset;
106 struct blk_mq_tag_set admin_tagset;
107 u32 __iomem *dbs;
108 struct device *dev;
109 struct dma_pool *prp_page_pool;
110 struct dma_pool *prp_small_pool;
111 unsigned queue_count;
112 unsigned online_queues;
113 unsigned max_qid;
114 int q_depth;
115 u32 db_stride;
116 struct msix_entry *entry;
117 void __iomem *bar;
118 struct work_struct reset_work;
119 struct work_struct scan_work;
120 struct work_struct remove_work;
121 struct mutex shutdown_lock;
122 bool subsystem;
123 void __iomem *cmb;
124 dma_addr_t cmb_dma_addr;
125 u64 cmb_size;
126 u32 cmbsz;
127 unsigned long flags;
128 #define NVME_CTRL_RESETTING 0
129
130 struct nvme_ctrl ctrl;
131 };
132
133 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
134 {
135 return container_of(ctrl, struct nvme_dev, ctrl);
136 }
137
138 /*
139 * An NVM Express queue. Each device has at least two (one for admin
140 * commands and one for I/O commands).
141 */
142 struct nvme_queue {
143 struct device *q_dmadev;
144 struct nvme_dev *dev;
145 char irqname[24]; /* nvme4294967295-65535\0 */
146 spinlock_t q_lock;
147 struct nvme_command *sq_cmds;
148 struct nvme_command __iomem *sq_cmds_io;
149 volatile struct nvme_completion *cqes;
150 struct blk_mq_tags **tags;
151 dma_addr_t sq_dma_addr;
152 dma_addr_t cq_dma_addr;
153 u32 __iomem *q_db;
154 u16 q_depth;
155 s16 cq_vector;
156 u16 sq_head;
157 u16 sq_tail;
158 u16 cq_head;
159 u16 qid;
160 u8 cq_phase;
161 u8 cqe_seen;
162 struct async_cmd_info cmdinfo;
163 };
164
165 /*
166 * The nvme_iod describes the data in an I/O, including the list of PRP
167 * entries. You can't see it in this data structure because C doesn't let
168 * me express that. Use nvme_init_iod to ensure there's enough space
169 * allocated to store the PRP list.
170 */
171 struct nvme_iod {
172 struct nvme_queue *nvmeq;
173 int aborted;
174 int npages; /* In the PRP list. 0 means small pool in use */
175 int nents; /* Used in scatterlist */
176 int length; /* Of data, in bytes */
177 dma_addr_t first_dma;
178 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
179 struct scatterlist *sg;
180 struct scatterlist inline_sg[0];
181 };
182
183 /*
184 * Check we didin't inadvertently grow the command struct
185 */
186 static inline void _nvme_check_size(void)
187 {
188 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
194 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
197 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
198 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
200 }
201
202 /*
203 * Max size of iod being embedded in the request payload
204 */
205 #define NVME_INT_PAGES 2
206 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
207
208 /*
209 * Will slightly overestimate the number of pages needed. This is OK
210 * as it only leads to a small amount of wasted memory for the lifetime of
211 * the I/O.
212 */
213 static int nvme_npages(unsigned size, struct nvme_dev *dev)
214 {
215 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
216 dev->ctrl.page_size);
217 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
218 }
219
220 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
221 unsigned int size, unsigned int nseg)
222 {
223 return sizeof(__le64 *) * nvme_npages(size, dev) +
224 sizeof(struct scatterlist) * nseg;
225 }
226
227 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
228 {
229 return sizeof(struct nvme_iod) +
230 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
231 }
232
233 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
234 unsigned int hctx_idx)
235 {
236 struct nvme_dev *dev = data;
237 struct nvme_queue *nvmeq = dev->queues[0];
238
239 WARN_ON(hctx_idx != 0);
240 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
241 WARN_ON(nvmeq->tags);
242
243 hctx->driver_data = nvmeq;
244 nvmeq->tags = &dev->admin_tagset.tags[0];
245 return 0;
246 }
247
248 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
249 {
250 struct nvme_queue *nvmeq = hctx->driver_data;
251
252 nvmeq->tags = NULL;
253 }
254
255 static int nvme_admin_init_request(void *data, struct request *req,
256 unsigned int hctx_idx, unsigned int rq_idx,
257 unsigned int numa_node)
258 {
259 struct nvme_dev *dev = data;
260 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
261 struct nvme_queue *nvmeq = dev->queues[0];
262
263 BUG_ON(!nvmeq);
264 iod->nvmeq = nvmeq;
265 return 0;
266 }
267
268 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
269 unsigned int hctx_idx)
270 {
271 struct nvme_dev *dev = data;
272 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
273
274 if (!nvmeq->tags)
275 nvmeq->tags = &dev->tagset.tags[hctx_idx];
276
277 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
278 hctx->driver_data = nvmeq;
279 return 0;
280 }
281
282 static int nvme_init_request(void *data, struct request *req,
283 unsigned int hctx_idx, unsigned int rq_idx,
284 unsigned int numa_node)
285 {
286 struct nvme_dev *dev = data;
287 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
288 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
289
290 BUG_ON(!nvmeq);
291 iod->nvmeq = nvmeq;
292 return 0;
293 }
294
295 static void nvme_complete_async_event(struct nvme_dev *dev,
296 struct nvme_completion *cqe)
297 {
298 u16 status = le16_to_cpu(cqe->status) >> 1;
299 u32 result = le32_to_cpu(cqe->result);
300
301 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
302 ++dev->ctrl.event_limit;
303 if (status != NVME_SC_SUCCESS)
304 return;
305
306 switch (result & 0xff07) {
307 case NVME_AER_NOTICE_NS_CHANGED:
308 dev_info(dev->dev, "rescanning\n");
309 queue_work(nvme_workq, &dev->scan_work);
310 default:
311 dev_warn(dev->dev, "async event result %08x\n", result);
312 }
313 }
314
315 /**
316 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
317 * @nvmeq: The queue to use
318 * @cmd: The command to send
319 *
320 * Safe to use from interrupt context
321 */
322 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
323 struct nvme_command *cmd)
324 {
325 u16 tail = nvmeq->sq_tail;
326
327 if (nvmeq->sq_cmds_io)
328 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
329 else
330 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
331
332 if (++tail == nvmeq->q_depth)
333 tail = 0;
334 writel(tail, nvmeq->q_db);
335 nvmeq->sq_tail = tail;
336 }
337
338 static __le64 **iod_list(struct request *req)
339 {
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
341 return (__le64 **)(iod->sg + req->nr_phys_segments);
342 }
343
344 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
345 {
346 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
347 int nseg = rq->nr_phys_segments;
348 unsigned size;
349
350 if (rq->cmd_flags & REQ_DISCARD)
351 size = sizeof(struct nvme_dsm_range);
352 else
353 size = blk_rq_bytes(rq);
354
355 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
356 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
357 if (!iod->sg)
358 return BLK_MQ_RQ_QUEUE_BUSY;
359 } else {
360 iod->sg = iod->inline_sg;
361 }
362
363 iod->aborted = 0;
364 iod->npages = -1;
365 iod->nents = 0;
366 iod->length = size;
367 return 0;
368 }
369
370 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
371 {
372 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
373 const int last_prp = dev->ctrl.page_size / 8 - 1;
374 int i;
375 __le64 **list = iod_list(req);
376 dma_addr_t prp_dma = iod->first_dma;
377
378 if (iod->npages == 0)
379 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
380 for (i = 0; i < iod->npages; i++) {
381 __le64 *prp_list = list[i];
382 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
383 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
384 prp_dma = next_prp_dma;
385 }
386
387 if (iod->sg != iod->inline_sg)
388 kfree(iod->sg);
389 }
390
391 #ifdef CONFIG_BLK_DEV_INTEGRITY
392 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
393 {
394 if (be32_to_cpu(pi->ref_tag) == v)
395 pi->ref_tag = cpu_to_be32(p);
396 }
397
398 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
399 {
400 if (be32_to_cpu(pi->ref_tag) == p)
401 pi->ref_tag = cpu_to_be32(v);
402 }
403
404 /**
405 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
406 *
407 * The virtual start sector is the one that was originally submitted by the
408 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
409 * start sector may be different. Remap protection information to match the
410 * physical LBA on writes, and back to the original seed on reads.
411 *
412 * Type 0 and 3 do not have a ref tag, so no remapping required.
413 */
414 static void nvme_dif_remap(struct request *req,
415 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
416 {
417 struct nvme_ns *ns = req->rq_disk->private_data;
418 struct bio_integrity_payload *bip;
419 struct t10_pi_tuple *pi;
420 void *p, *pmap;
421 u32 i, nlb, ts, phys, virt;
422
423 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
424 return;
425
426 bip = bio_integrity(req->bio);
427 if (!bip)
428 return;
429
430 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
431
432 p = pmap;
433 virt = bip_get_seed(bip);
434 phys = nvme_block_nr(ns, blk_rq_pos(req));
435 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
436 ts = ns->disk->queue->integrity.tuple_size;
437
438 for (i = 0; i < nlb; i++, virt++, phys++) {
439 pi = (struct t10_pi_tuple *)p;
440 dif_swap(phys, virt, pi);
441 p += ts;
442 }
443 kunmap_atomic(pmap);
444 }
445 #else /* CONFIG_BLK_DEV_INTEGRITY */
446 static void nvme_dif_remap(struct request *req,
447 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
448 {
449 }
450 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
451 {
452 }
453 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
454 {
455 }
456 #endif
457
458 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
459 int total_len)
460 {
461 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
462 struct dma_pool *pool;
463 int length = total_len;
464 struct scatterlist *sg = iod->sg;
465 int dma_len = sg_dma_len(sg);
466 u64 dma_addr = sg_dma_address(sg);
467 u32 page_size = dev->ctrl.page_size;
468 int offset = dma_addr & (page_size - 1);
469 __le64 *prp_list;
470 __le64 **list = iod_list(req);
471 dma_addr_t prp_dma;
472 int nprps, i;
473
474 length -= (page_size - offset);
475 if (length <= 0)
476 return true;
477
478 dma_len -= (page_size - offset);
479 if (dma_len) {
480 dma_addr += (page_size - offset);
481 } else {
482 sg = sg_next(sg);
483 dma_addr = sg_dma_address(sg);
484 dma_len = sg_dma_len(sg);
485 }
486
487 if (length <= page_size) {
488 iod->first_dma = dma_addr;
489 return true;
490 }
491
492 nprps = DIV_ROUND_UP(length, page_size);
493 if (nprps <= (256 / 8)) {
494 pool = dev->prp_small_pool;
495 iod->npages = 0;
496 } else {
497 pool = dev->prp_page_pool;
498 iod->npages = 1;
499 }
500
501 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
502 if (!prp_list) {
503 iod->first_dma = dma_addr;
504 iod->npages = -1;
505 return false;
506 }
507 list[0] = prp_list;
508 iod->first_dma = prp_dma;
509 i = 0;
510 for (;;) {
511 if (i == page_size >> 3) {
512 __le64 *old_prp_list = prp_list;
513 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
514 if (!prp_list)
515 return false;
516 list[iod->npages++] = prp_list;
517 prp_list[0] = old_prp_list[i - 1];
518 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
519 i = 1;
520 }
521 prp_list[i++] = cpu_to_le64(dma_addr);
522 dma_len -= page_size;
523 dma_addr += page_size;
524 length -= page_size;
525 if (length <= 0)
526 break;
527 if (dma_len > 0)
528 continue;
529 BUG_ON(dma_len < 0);
530 sg = sg_next(sg);
531 dma_addr = sg_dma_address(sg);
532 dma_len = sg_dma_len(sg);
533 }
534
535 return true;
536 }
537
538 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
539 struct nvme_command *cmnd)
540 {
541 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
542 struct request_queue *q = req->q;
543 enum dma_data_direction dma_dir = rq_data_dir(req) ?
544 DMA_TO_DEVICE : DMA_FROM_DEVICE;
545 int ret = BLK_MQ_RQ_QUEUE_ERROR;
546
547 sg_init_table(iod->sg, req->nr_phys_segments);
548 iod->nents = blk_rq_map_sg(q, req, iod->sg);
549 if (!iod->nents)
550 goto out;
551
552 ret = BLK_MQ_RQ_QUEUE_BUSY;
553 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
554 goto out;
555
556 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
557 goto out_unmap;
558
559 ret = BLK_MQ_RQ_QUEUE_ERROR;
560 if (blk_integrity_rq(req)) {
561 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
562 goto out_unmap;
563
564 sg_init_table(&iod->meta_sg, 1);
565 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
566 goto out_unmap;
567
568 if (rq_data_dir(req))
569 nvme_dif_remap(req, nvme_dif_prep);
570
571 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
572 goto out_unmap;
573 }
574
575 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
576 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
577 if (blk_integrity_rq(req))
578 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
579 return BLK_MQ_RQ_QUEUE_OK;
580
581 out_unmap:
582 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
583 out:
584 return ret;
585 }
586
587 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
588 {
589 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
590 enum dma_data_direction dma_dir = rq_data_dir(req) ?
591 DMA_TO_DEVICE : DMA_FROM_DEVICE;
592
593 if (iod->nents) {
594 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
595 if (blk_integrity_rq(req)) {
596 if (!rq_data_dir(req))
597 nvme_dif_remap(req, nvme_dif_complete);
598 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
599 }
600 }
601
602 nvme_free_iod(dev, req);
603 }
604
605 /*
606 * We reuse the small pool to allocate the 16-byte range here as it is not
607 * worth having a special pool for these or additional cases to handle freeing
608 * the iod.
609 */
610 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
611 struct request *req, struct nvme_command *cmnd)
612 {
613 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
614 struct nvme_dsm_range *range;
615
616 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
617 &iod->first_dma);
618 if (!range)
619 return BLK_MQ_RQ_QUEUE_BUSY;
620 iod_list(req)[0] = (__le64 *)range;
621 iod->npages = 0;
622
623 range->cattr = cpu_to_le32(0);
624 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
625 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
626
627 memset(cmnd, 0, sizeof(*cmnd));
628 cmnd->dsm.opcode = nvme_cmd_dsm;
629 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
630 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
631 cmnd->dsm.nr = 0;
632 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
633 return BLK_MQ_RQ_QUEUE_OK;
634 }
635
636 /*
637 * NOTE: ns is NULL when called on the admin queue.
638 */
639 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
640 const struct blk_mq_queue_data *bd)
641 {
642 struct nvme_ns *ns = hctx->queue->queuedata;
643 struct nvme_queue *nvmeq = hctx->driver_data;
644 struct nvme_dev *dev = nvmeq->dev;
645 struct request *req = bd->rq;
646 struct nvme_command cmnd;
647 int ret = BLK_MQ_RQ_QUEUE_OK;
648
649 /*
650 * If formated with metadata, require the block layer provide a buffer
651 * unless this namespace is formated such that the metadata can be
652 * stripped/generated by the controller with PRACT=1.
653 */
654 if (ns && ns->ms && !blk_integrity_rq(req)) {
655 if (!(ns->pi_type && ns->ms == 8) &&
656 req->cmd_type != REQ_TYPE_DRV_PRIV) {
657 blk_mq_end_request(req, -EFAULT);
658 return BLK_MQ_RQ_QUEUE_OK;
659 }
660 }
661
662 ret = nvme_init_iod(req, dev);
663 if (ret)
664 return ret;
665
666 if (req->cmd_flags & REQ_DISCARD) {
667 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
668 } else {
669 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
670 memcpy(&cmnd, req->cmd, sizeof(cmnd));
671 else if (req->cmd_flags & REQ_FLUSH)
672 nvme_setup_flush(ns, &cmnd);
673 else
674 nvme_setup_rw(ns, req, &cmnd);
675
676 if (req->nr_phys_segments)
677 ret = nvme_map_data(dev, req, &cmnd);
678 }
679
680 if (ret)
681 goto out;
682
683 cmnd.common.command_id = req->tag;
684 blk_mq_start_request(req);
685
686 spin_lock_irq(&nvmeq->q_lock);
687 __nvme_submit_cmd(nvmeq, &cmnd);
688 nvme_process_cq(nvmeq);
689 spin_unlock_irq(&nvmeq->q_lock);
690 return BLK_MQ_RQ_QUEUE_OK;
691 out:
692 nvme_free_iod(dev, req);
693 return ret;
694 }
695
696 static void nvme_complete_rq(struct request *req)
697 {
698 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
699 struct nvme_dev *dev = iod->nvmeq->dev;
700 int error = 0;
701
702 nvme_unmap_data(dev, req);
703
704 if (unlikely(req->errors)) {
705 if (nvme_req_needs_retry(req, req->errors)) {
706 nvme_requeue_req(req);
707 return;
708 }
709
710 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
711 error = req->errors;
712 else
713 error = nvme_error_status(req->errors);
714 }
715
716 if (unlikely(iod->aborted)) {
717 dev_warn(dev->dev,
718 "completing aborted command with status: %04x\n",
719 req->errors);
720 }
721
722 blk_mq_end_request(req, error);
723 }
724
725 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
726 {
727 u16 head, phase;
728
729 head = nvmeq->cq_head;
730 phase = nvmeq->cq_phase;
731
732 for (;;) {
733 struct nvme_completion cqe = nvmeq->cqes[head];
734 u16 status = le16_to_cpu(cqe.status);
735 struct request *req;
736
737 if ((status & 1) != phase)
738 break;
739 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
740 if (++head == nvmeq->q_depth) {
741 head = 0;
742 phase = !phase;
743 }
744
745 if (tag && *tag == cqe.command_id)
746 *tag = -1;
747
748 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
749 dev_warn(nvmeq->q_dmadev,
750 "invalid id %d completed on queue %d\n",
751 cqe.command_id, le16_to_cpu(cqe.sq_id));
752 continue;
753 }
754
755 /*
756 * AEN requests are special as they don't time out and can
757 * survive any kind of queue freeze and often don't respond to
758 * aborts. We don't even bother to allocate a struct request
759 * for them but rather special case them here.
760 */
761 if (unlikely(nvmeq->qid == 0 &&
762 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763 nvme_complete_async_event(nvmeq->dev, &cqe);
764 continue;
765 }
766
767 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
768 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
769 u32 result = le32_to_cpu(cqe.result);
770 req->special = (void *)(uintptr_t)result;
771 }
772 blk_mq_complete_request(req, status >> 1);
773
774 }
775
776 /* If the controller ignores the cq head doorbell and continuously
777 * writes to the queue, it is theoretically possible to wrap around
778 * the queue twice and mistakenly return IRQ_NONE. Linux only
779 * requires that 0.1% of your interrupts are handled, so this isn't
780 * a big problem.
781 */
782 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
783 return;
784
785 if (likely(nvmeq->cq_vector >= 0))
786 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
787 nvmeq->cq_head = head;
788 nvmeq->cq_phase = phase;
789
790 nvmeq->cqe_seen = 1;
791 }
792
793 static void nvme_process_cq(struct nvme_queue *nvmeq)
794 {
795 __nvme_process_cq(nvmeq, NULL);
796 }
797
798 static irqreturn_t nvme_irq(int irq, void *data)
799 {
800 irqreturn_t result;
801 struct nvme_queue *nvmeq = data;
802 spin_lock(&nvmeq->q_lock);
803 nvme_process_cq(nvmeq);
804 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
805 nvmeq->cqe_seen = 0;
806 spin_unlock(&nvmeq->q_lock);
807 return result;
808 }
809
810 static irqreturn_t nvme_irq_check(int irq, void *data)
811 {
812 struct nvme_queue *nvmeq = data;
813 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
814 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
815 return IRQ_NONE;
816 return IRQ_WAKE_THREAD;
817 }
818
819 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
820 {
821 struct nvme_queue *nvmeq = hctx->driver_data;
822
823 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
824 nvmeq->cq_phase) {
825 spin_lock_irq(&nvmeq->q_lock);
826 __nvme_process_cq(nvmeq, &tag);
827 spin_unlock_irq(&nvmeq->q_lock);
828
829 if (tag == -1)
830 return 1;
831 }
832
833 return 0;
834 }
835
836 static void nvme_submit_async_event(struct nvme_dev *dev)
837 {
838 struct nvme_command c;
839
840 memset(&c, 0, sizeof(c));
841 c.common.opcode = nvme_admin_async_event;
842 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
843
844 __nvme_submit_cmd(dev->queues[0], &c);
845 }
846
847 static void async_cmd_info_endio(struct request *req, int error)
848 {
849 struct async_cmd_info *cmdinfo = req->end_io_data;
850
851 cmdinfo->status = req->errors;
852 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
853 blk_mq_free_request(req);
854 }
855
856 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
857 {
858 struct nvme_command c;
859
860 memset(&c, 0, sizeof(c));
861 c.delete_queue.opcode = opcode;
862 c.delete_queue.qid = cpu_to_le16(id);
863
864 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
865 }
866
867 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
868 struct nvme_queue *nvmeq)
869 {
870 struct nvme_command c;
871 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
872
873 /*
874 * Note: we (ab)use the fact the the prp fields survive if no data
875 * is attached to the request.
876 */
877 memset(&c, 0, sizeof(c));
878 c.create_cq.opcode = nvme_admin_create_cq;
879 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
880 c.create_cq.cqid = cpu_to_le16(qid);
881 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
882 c.create_cq.cq_flags = cpu_to_le16(flags);
883 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
884
885 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
886 }
887
888 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
889 struct nvme_queue *nvmeq)
890 {
891 struct nvme_command c;
892 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
893
894 /*
895 * Note: we (ab)use the fact the the prp fields survive if no data
896 * is attached to the request.
897 */
898 memset(&c, 0, sizeof(c));
899 c.create_sq.opcode = nvme_admin_create_sq;
900 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
901 c.create_sq.sqid = cpu_to_le16(qid);
902 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
903 c.create_sq.sq_flags = cpu_to_le16(flags);
904 c.create_sq.cqid = cpu_to_le16(qid);
905
906 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
907 }
908
909 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
910 {
911 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
912 }
913
914 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
915 {
916 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
917 }
918
919 static void abort_endio(struct request *req, int error)
920 {
921 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
922 struct nvme_queue *nvmeq = iod->nvmeq;
923 u32 result = (u32)(uintptr_t)req->special;
924 u16 status = req->errors;
925
926 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
927 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
928
929 blk_mq_free_request(req);
930 }
931
932 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
933 {
934 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
935 struct nvme_queue *nvmeq = iod->nvmeq;
936 struct nvme_dev *dev = nvmeq->dev;
937 struct request *abort_req;
938 struct nvme_command cmd;
939
940 /*
941 * Shutdown immediately if controller times out while starting. The
942 * reset work will see the pci device disabled when it gets the forced
943 * cancellation error. All outstanding requests are completed on
944 * shutdown, so we return BLK_EH_HANDLED.
945 */
946 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
947 dev_warn(dev->dev,
948 "I/O %d QID %d timeout, disable controller\n",
949 req->tag, nvmeq->qid);
950 nvme_dev_shutdown(dev);
951 req->errors = NVME_SC_CANCELLED;
952 return BLK_EH_HANDLED;
953 }
954
955 /*
956 * Shutdown the controller immediately and schedule a reset if the
957 * command was already aborted once before and still hasn't been
958 * returned to the driver, or if this is the admin queue.
959 */
960 if (!nvmeq->qid || iod->aborted) {
961 dev_warn(dev->dev,
962 "I/O %d QID %d timeout, reset controller\n",
963 req->tag, nvmeq->qid);
964 nvme_dev_shutdown(dev);
965 queue_work(nvme_workq, &dev->reset_work);
966
967 /*
968 * Mark the request as handled, since the inline shutdown
969 * forces all outstanding requests to complete.
970 */
971 req->errors = NVME_SC_CANCELLED;
972 return BLK_EH_HANDLED;
973 }
974
975 iod->aborted = 1;
976
977 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
978 atomic_inc(&dev->ctrl.abort_limit);
979 return BLK_EH_RESET_TIMER;
980 }
981
982 memset(&cmd, 0, sizeof(cmd));
983 cmd.abort.opcode = nvme_admin_abort_cmd;
984 cmd.abort.cid = req->tag;
985 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
986
987 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
988 req->tag, nvmeq->qid);
989
990 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
991 BLK_MQ_REQ_NOWAIT);
992 if (IS_ERR(abort_req)) {
993 atomic_inc(&dev->ctrl.abort_limit);
994 return BLK_EH_RESET_TIMER;
995 }
996
997 abort_req->timeout = ADMIN_TIMEOUT;
998 abort_req->end_io_data = NULL;
999 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1000
1001 /*
1002 * The aborted req will be completed on receiving the abort req.
1003 * We enable the timer again. If hit twice, it'll cause a device reset,
1004 * as the device then is in a faulty state.
1005 */
1006 return BLK_EH_RESET_TIMER;
1007 }
1008
1009 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1010 {
1011 struct nvme_queue *nvmeq = data;
1012 int status;
1013
1014 if (!blk_mq_request_started(req))
1015 return;
1016
1017 dev_warn(nvmeq->q_dmadev,
1018 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1019
1020 status = NVME_SC_CANCELLED;
1021 if (blk_queue_dying(req->q))
1022 status |= NVME_SC_DNR;
1023 blk_mq_complete_request(req, status);
1024 }
1025
1026 static void nvme_free_queue(struct nvme_queue *nvmeq)
1027 {
1028 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1029 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1030 if (nvmeq->sq_cmds)
1031 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1032 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1033 kfree(nvmeq);
1034 }
1035
1036 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1037 {
1038 int i;
1039
1040 for (i = dev->queue_count - 1; i >= lowest; i--) {
1041 struct nvme_queue *nvmeq = dev->queues[i];
1042 dev->queue_count--;
1043 dev->queues[i] = NULL;
1044 nvme_free_queue(nvmeq);
1045 }
1046 }
1047
1048 /**
1049 * nvme_suspend_queue - put queue into suspended state
1050 * @nvmeq - queue to suspend
1051 */
1052 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1053 {
1054 int vector;
1055
1056 spin_lock_irq(&nvmeq->q_lock);
1057 if (nvmeq->cq_vector == -1) {
1058 spin_unlock_irq(&nvmeq->q_lock);
1059 return 1;
1060 }
1061 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1062 nvmeq->dev->online_queues--;
1063 nvmeq->cq_vector = -1;
1064 spin_unlock_irq(&nvmeq->q_lock);
1065
1066 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1067 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1068
1069 irq_set_affinity_hint(vector, NULL);
1070 free_irq(vector, nvmeq);
1071
1072 return 0;
1073 }
1074
1075 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1076 {
1077 spin_lock_irq(&nvmeq->q_lock);
1078 if (nvmeq->tags && *nvmeq->tags)
1079 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1080 spin_unlock_irq(&nvmeq->q_lock);
1081 }
1082
1083 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1084 {
1085 struct nvme_queue *nvmeq = dev->queues[qid];
1086
1087 if (!nvmeq)
1088 return;
1089 if (nvme_suspend_queue(nvmeq))
1090 return;
1091
1092 /* Don't tell the adapter to delete the admin queue.
1093 * Don't tell a removed adapter to delete IO queues. */
1094 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1095 adapter_delete_sq(dev, qid);
1096 adapter_delete_cq(dev, qid);
1097 }
1098
1099 spin_lock_irq(&nvmeq->q_lock);
1100 nvme_process_cq(nvmeq);
1101 spin_unlock_irq(&nvmeq->q_lock);
1102 }
1103
1104 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1105 int entry_size)
1106 {
1107 int q_depth = dev->q_depth;
1108 unsigned q_size_aligned = roundup(q_depth * entry_size,
1109 dev->ctrl.page_size);
1110
1111 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1112 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1113 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1114 q_depth = div_u64(mem_per_q, entry_size);
1115
1116 /*
1117 * Ensure the reduced q_depth is above some threshold where it
1118 * would be better to map queues in system memory with the
1119 * original depth
1120 */
1121 if (q_depth < 64)
1122 return -ENOMEM;
1123 }
1124
1125 return q_depth;
1126 }
1127
1128 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1129 int qid, int depth)
1130 {
1131 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1132 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1133 dev->ctrl.page_size);
1134 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1135 nvmeq->sq_cmds_io = dev->cmb + offset;
1136 } else {
1137 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1138 &nvmeq->sq_dma_addr, GFP_KERNEL);
1139 if (!nvmeq->sq_cmds)
1140 return -ENOMEM;
1141 }
1142
1143 return 0;
1144 }
1145
1146 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1147 int depth)
1148 {
1149 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1150 if (!nvmeq)
1151 return NULL;
1152
1153 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1154 &nvmeq->cq_dma_addr, GFP_KERNEL);
1155 if (!nvmeq->cqes)
1156 goto free_nvmeq;
1157
1158 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1159 goto free_cqdma;
1160
1161 nvmeq->q_dmadev = dev->dev;
1162 nvmeq->dev = dev;
1163 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1164 dev->ctrl.instance, qid);
1165 spin_lock_init(&nvmeq->q_lock);
1166 nvmeq->cq_head = 0;
1167 nvmeq->cq_phase = 1;
1168 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1169 nvmeq->q_depth = depth;
1170 nvmeq->qid = qid;
1171 nvmeq->cq_vector = -1;
1172 dev->queues[qid] = nvmeq;
1173
1174 /* make sure queue descriptor is set before queue count, for kthread */
1175 mb();
1176 dev->queue_count++;
1177
1178 return nvmeq;
1179
1180 free_cqdma:
1181 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1182 nvmeq->cq_dma_addr);
1183 free_nvmeq:
1184 kfree(nvmeq);
1185 return NULL;
1186 }
1187
1188 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1189 const char *name)
1190 {
1191 if (use_threaded_interrupts)
1192 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1193 nvme_irq_check, nvme_irq, IRQF_SHARED,
1194 name, nvmeq);
1195 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1196 IRQF_SHARED, name, nvmeq);
1197 }
1198
1199 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1200 {
1201 struct nvme_dev *dev = nvmeq->dev;
1202
1203 spin_lock_irq(&nvmeq->q_lock);
1204 nvmeq->sq_tail = 0;
1205 nvmeq->cq_head = 0;
1206 nvmeq->cq_phase = 1;
1207 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1208 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1209 dev->online_queues++;
1210 spin_unlock_irq(&nvmeq->q_lock);
1211 }
1212
1213 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1214 {
1215 struct nvme_dev *dev = nvmeq->dev;
1216 int result;
1217
1218 nvmeq->cq_vector = qid - 1;
1219 result = adapter_alloc_cq(dev, qid, nvmeq);
1220 if (result < 0)
1221 return result;
1222
1223 result = adapter_alloc_sq(dev, qid, nvmeq);
1224 if (result < 0)
1225 goto release_cq;
1226
1227 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1228 if (result < 0)
1229 goto release_sq;
1230
1231 nvme_init_queue(nvmeq, qid);
1232 return result;
1233
1234 release_sq:
1235 adapter_delete_sq(dev, qid);
1236 release_cq:
1237 adapter_delete_cq(dev, qid);
1238 return result;
1239 }
1240
1241 static struct blk_mq_ops nvme_mq_admin_ops = {
1242 .queue_rq = nvme_queue_rq,
1243 .complete = nvme_complete_rq,
1244 .map_queue = blk_mq_map_queue,
1245 .init_hctx = nvme_admin_init_hctx,
1246 .exit_hctx = nvme_admin_exit_hctx,
1247 .init_request = nvme_admin_init_request,
1248 .timeout = nvme_timeout,
1249 };
1250
1251 static struct blk_mq_ops nvme_mq_ops = {
1252 .queue_rq = nvme_queue_rq,
1253 .complete = nvme_complete_rq,
1254 .map_queue = blk_mq_map_queue,
1255 .init_hctx = nvme_init_hctx,
1256 .init_request = nvme_init_request,
1257 .timeout = nvme_timeout,
1258 .poll = nvme_poll,
1259 };
1260
1261 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1262 {
1263 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1264 blk_cleanup_queue(dev->ctrl.admin_q);
1265 blk_mq_free_tag_set(&dev->admin_tagset);
1266 }
1267 }
1268
1269 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1270 {
1271 if (!dev->ctrl.admin_q) {
1272 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1273 dev->admin_tagset.nr_hw_queues = 1;
1274 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH;
1275 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1276 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1277 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1278 dev->admin_tagset.driver_data = dev;
1279
1280 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1281 return -ENOMEM;
1282
1283 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1284 if (IS_ERR(dev->ctrl.admin_q)) {
1285 blk_mq_free_tag_set(&dev->admin_tagset);
1286 return -ENOMEM;
1287 }
1288 if (!blk_get_queue(dev->ctrl.admin_q)) {
1289 nvme_dev_remove_admin(dev);
1290 dev->ctrl.admin_q = NULL;
1291 return -ENODEV;
1292 }
1293 } else
1294 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1295
1296 return 0;
1297 }
1298
1299 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1300 {
1301 int result;
1302 u32 aqa;
1303 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1304 struct nvme_queue *nvmeq;
1305
1306 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1307 NVME_CAP_NSSRC(cap) : 0;
1308
1309 if (dev->subsystem &&
1310 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1311 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1312
1313 result = nvme_disable_ctrl(&dev->ctrl, cap);
1314 if (result < 0)
1315 return result;
1316
1317 nvmeq = dev->queues[0];
1318 if (!nvmeq) {
1319 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1320 if (!nvmeq)
1321 return -ENOMEM;
1322 }
1323
1324 aqa = nvmeq->q_depth - 1;
1325 aqa |= aqa << 16;
1326
1327 writel(aqa, dev->bar + NVME_REG_AQA);
1328 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1329 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1330
1331 result = nvme_enable_ctrl(&dev->ctrl, cap);
1332 if (result)
1333 goto free_nvmeq;
1334
1335 nvmeq->cq_vector = 0;
1336 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1337 if (result) {
1338 nvmeq->cq_vector = -1;
1339 goto free_nvmeq;
1340 }
1341
1342 return result;
1343
1344 free_nvmeq:
1345 nvme_free_queues(dev, 0);
1346 return result;
1347 }
1348
1349 static int nvme_kthread(void *data)
1350 {
1351 struct nvme_dev *dev, *next;
1352
1353 while (!kthread_should_stop()) {
1354 set_current_state(TASK_INTERRUPTIBLE);
1355 spin_lock(&dev_list_lock);
1356 list_for_each_entry_safe(dev, next, &dev_list, node) {
1357 int i;
1358 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1359
1360 /*
1361 * Skip controllers currently under reset.
1362 */
1363 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1364 continue;
1365
1366 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1367 csts & NVME_CSTS_CFS) {
1368 if (queue_work(nvme_workq, &dev->reset_work)) {
1369 dev_warn(dev->dev,
1370 "Failed status: %x, reset controller\n",
1371 readl(dev->bar + NVME_REG_CSTS));
1372 }
1373 continue;
1374 }
1375 for (i = 0; i < dev->queue_count; i++) {
1376 struct nvme_queue *nvmeq = dev->queues[i];
1377 if (!nvmeq)
1378 continue;
1379 spin_lock_irq(&nvmeq->q_lock);
1380 nvme_process_cq(nvmeq);
1381
1382 while (i == 0 && dev->ctrl.event_limit > 0)
1383 nvme_submit_async_event(dev);
1384 spin_unlock_irq(&nvmeq->q_lock);
1385 }
1386 }
1387 spin_unlock(&dev_list_lock);
1388 schedule_timeout(round_jiffies_relative(HZ));
1389 }
1390 return 0;
1391 }
1392
1393 static int nvme_create_io_queues(struct nvme_dev *dev)
1394 {
1395 unsigned i;
1396 int ret = 0;
1397
1398 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1399 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1400 ret = -ENOMEM;
1401 break;
1402 }
1403 }
1404
1405 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1406 ret = nvme_create_queue(dev->queues[i], i);
1407 if (ret) {
1408 nvme_free_queues(dev, i);
1409 break;
1410 }
1411 }
1412
1413 /*
1414 * Ignore failing Create SQ/CQ commands, we can continue with less
1415 * than the desired aount of queues, and even a controller without
1416 * I/O queues an still be used to issue admin commands. This might
1417 * be useful to upgrade a buggy firmware for example.
1418 */
1419 return ret >= 0 ? 0 : ret;
1420 }
1421
1422 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1423 {
1424 u64 szu, size, offset;
1425 u32 cmbloc;
1426 resource_size_t bar_size;
1427 struct pci_dev *pdev = to_pci_dev(dev->dev);
1428 void __iomem *cmb;
1429 dma_addr_t dma_addr;
1430
1431 if (!use_cmb_sqes)
1432 return NULL;
1433
1434 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1435 if (!(NVME_CMB_SZ(dev->cmbsz)))
1436 return NULL;
1437
1438 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1439
1440 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1441 size = szu * NVME_CMB_SZ(dev->cmbsz);
1442 offset = szu * NVME_CMB_OFST(cmbloc);
1443 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1444
1445 if (offset > bar_size)
1446 return NULL;
1447
1448 /*
1449 * Controllers may support a CMB size larger than their BAR,
1450 * for example, due to being behind a bridge. Reduce the CMB to
1451 * the reported size of the BAR
1452 */
1453 if (size > bar_size - offset)
1454 size = bar_size - offset;
1455
1456 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1457 cmb = ioremap_wc(dma_addr, size);
1458 if (!cmb)
1459 return NULL;
1460
1461 dev->cmb_dma_addr = dma_addr;
1462 dev->cmb_size = size;
1463 return cmb;
1464 }
1465
1466 static inline void nvme_release_cmb(struct nvme_dev *dev)
1467 {
1468 if (dev->cmb) {
1469 iounmap(dev->cmb);
1470 dev->cmb = NULL;
1471 }
1472 }
1473
1474 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1475 {
1476 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1477 }
1478
1479 static int nvme_setup_io_queues(struct nvme_dev *dev)
1480 {
1481 struct nvme_queue *adminq = dev->queues[0];
1482 struct pci_dev *pdev = to_pci_dev(dev->dev);
1483 int result, i, vecs, nr_io_queues, size;
1484
1485 nr_io_queues = num_possible_cpus();
1486 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1487 if (result < 0)
1488 return result;
1489
1490 /*
1491 * Degraded controllers might return an error when setting the queue
1492 * count. We still want to be able to bring them online and offer
1493 * access to the admin queue, as that might be only way to fix them up.
1494 */
1495 if (result > 0) {
1496 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1497 nr_io_queues = 0;
1498 result = 0;
1499 }
1500
1501 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1502 result = nvme_cmb_qdepth(dev, nr_io_queues,
1503 sizeof(struct nvme_command));
1504 if (result > 0)
1505 dev->q_depth = result;
1506 else
1507 nvme_release_cmb(dev);
1508 }
1509
1510 size = db_bar_size(dev, nr_io_queues);
1511 if (size > 8192) {
1512 iounmap(dev->bar);
1513 do {
1514 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1515 if (dev->bar)
1516 break;
1517 if (!--nr_io_queues)
1518 return -ENOMEM;
1519 size = db_bar_size(dev, nr_io_queues);
1520 } while (1);
1521 dev->dbs = dev->bar + 4096;
1522 adminq->q_db = dev->dbs;
1523 }
1524
1525 /* Deregister the admin queue's interrupt */
1526 free_irq(dev->entry[0].vector, adminq);
1527
1528 /*
1529 * If we enable msix early due to not intx, disable it again before
1530 * setting up the full range we need.
1531 */
1532 if (!pdev->irq)
1533 pci_disable_msix(pdev);
1534
1535 for (i = 0; i < nr_io_queues; i++)
1536 dev->entry[i].entry = i;
1537 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1538 if (vecs < 0) {
1539 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1540 if (vecs < 0) {
1541 vecs = 1;
1542 } else {
1543 for (i = 0; i < vecs; i++)
1544 dev->entry[i].vector = i + pdev->irq;
1545 }
1546 }
1547
1548 /*
1549 * Should investigate if there's a performance win from allocating
1550 * more queues than interrupt vectors; it might allow the submission
1551 * path to scale better, even if the receive path is limited by the
1552 * number of interrupts.
1553 */
1554 nr_io_queues = vecs;
1555 dev->max_qid = nr_io_queues;
1556
1557 result = queue_request_irq(dev, adminq, adminq->irqname);
1558 if (result) {
1559 adminq->cq_vector = -1;
1560 goto free_queues;
1561 }
1562
1563 /* Free previously allocated queues that are no longer usable */
1564 nvme_free_queues(dev, nr_io_queues + 1);
1565 return nvme_create_io_queues(dev);
1566
1567 free_queues:
1568 nvme_free_queues(dev, 1);
1569 return result;
1570 }
1571
1572 static void nvme_set_irq_hints(struct nvme_dev *dev)
1573 {
1574 struct nvme_queue *nvmeq;
1575 int i;
1576
1577 for (i = 0; i < dev->online_queues; i++) {
1578 nvmeq = dev->queues[i];
1579
1580 if (!nvmeq->tags || !(*nvmeq->tags))
1581 continue;
1582
1583 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1584 blk_mq_tags_cpumask(*nvmeq->tags));
1585 }
1586 }
1587
1588 static void nvme_dev_scan(struct work_struct *work)
1589 {
1590 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1591
1592 if (!dev->tagset.tags)
1593 return;
1594 nvme_scan_namespaces(&dev->ctrl);
1595 nvme_set_irq_hints(dev);
1596 }
1597
1598 /*
1599 * Return: error value if an error occurred setting up the queues or calling
1600 * Identify Device. 0 if these succeeded, even if adding some of the
1601 * namespaces failed. At the moment, these failures are silent. TBD which
1602 * failures should be reported.
1603 */
1604 static int nvme_dev_add(struct nvme_dev *dev)
1605 {
1606 if (!dev->ctrl.tagset) {
1607 dev->tagset.ops = &nvme_mq_ops;
1608 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1609 dev->tagset.timeout = NVME_IO_TIMEOUT;
1610 dev->tagset.numa_node = dev_to_node(dev->dev);
1611 dev->tagset.queue_depth =
1612 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1613 dev->tagset.cmd_size = nvme_cmd_size(dev);
1614 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1615 dev->tagset.driver_data = dev;
1616
1617 if (blk_mq_alloc_tag_set(&dev->tagset))
1618 return 0;
1619 dev->ctrl.tagset = &dev->tagset;
1620 }
1621 queue_work(nvme_workq, &dev->scan_work);
1622 return 0;
1623 }
1624
1625 static int nvme_dev_map(struct nvme_dev *dev)
1626 {
1627 u64 cap;
1628 int bars, result = -ENOMEM;
1629 struct pci_dev *pdev = to_pci_dev(dev->dev);
1630
1631 if (pci_enable_device_mem(pdev))
1632 return result;
1633
1634 dev->entry[0].vector = pdev->irq;
1635 pci_set_master(pdev);
1636 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1637 if (!bars)
1638 goto disable_pci;
1639
1640 if (pci_request_selected_regions(pdev, bars, "nvme"))
1641 goto disable_pci;
1642
1643 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1644 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1645 goto disable;
1646
1647 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1648 if (!dev->bar)
1649 goto disable;
1650
1651 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1652 result = -ENODEV;
1653 goto unmap;
1654 }
1655
1656 /*
1657 * Some devices don't advertse INTx interrupts, pre-enable a single
1658 * MSIX vec for setup. We'll adjust this later.
1659 */
1660 if (!pdev->irq) {
1661 result = pci_enable_msix(pdev, dev->entry, 1);
1662 if (result < 0)
1663 goto unmap;
1664 }
1665
1666 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1667
1668 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1669 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1670 dev->dbs = dev->bar + 4096;
1671 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1672 dev->cmb = nvme_map_cmb(dev);
1673
1674 pci_enable_pcie_error_reporting(pdev);
1675 pci_save_state(pdev);
1676 return 0;
1677
1678 unmap:
1679 iounmap(dev->bar);
1680 dev->bar = NULL;
1681 disable:
1682 pci_release_regions(pdev);
1683 disable_pci:
1684 pci_disable_device(pdev);
1685 return result;
1686 }
1687
1688 static void nvme_dev_unmap(struct nvme_dev *dev)
1689 {
1690 struct pci_dev *pdev = to_pci_dev(dev->dev);
1691
1692 if (pdev->msi_enabled)
1693 pci_disable_msi(pdev);
1694 else if (pdev->msix_enabled)
1695 pci_disable_msix(pdev);
1696
1697 if (dev->bar) {
1698 iounmap(dev->bar);
1699 dev->bar = NULL;
1700 pci_release_regions(pdev);
1701 }
1702
1703 if (pci_is_enabled(pdev)) {
1704 pci_disable_pcie_error_reporting(pdev);
1705 pci_disable_device(pdev);
1706 }
1707 }
1708
1709 struct nvme_delq_ctx {
1710 struct task_struct *waiter;
1711 struct kthread_worker *worker;
1712 atomic_t refcount;
1713 };
1714
1715 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1716 {
1717 dq->waiter = current;
1718 mb();
1719
1720 for (;;) {
1721 set_current_state(TASK_KILLABLE);
1722 if (!atomic_read(&dq->refcount))
1723 break;
1724 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1725 fatal_signal_pending(current)) {
1726 /*
1727 * Disable the controller first since we can't trust it
1728 * at this point, but leave the admin queue enabled
1729 * until all queue deletion requests are flushed.
1730 * FIXME: This may take a while if there are more h/w
1731 * queues than admin tags.
1732 */
1733 set_current_state(TASK_RUNNING);
1734 nvme_disable_ctrl(&dev->ctrl,
1735 lo_hi_readq(dev->bar + NVME_REG_CAP));
1736 nvme_clear_queue(dev->queues[0]);
1737 flush_kthread_worker(dq->worker);
1738 nvme_disable_queue(dev, 0);
1739 return;
1740 }
1741 }
1742 set_current_state(TASK_RUNNING);
1743 }
1744
1745 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1746 {
1747 atomic_dec(&dq->refcount);
1748 if (dq->waiter)
1749 wake_up_process(dq->waiter);
1750 }
1751
1752 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1753 {
1754 atomic_inc(&dq->refcount);
1755 return dq;
1756 }
1757
1758 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1759 {
1760 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1761 nvme_put_dq(dq);
1762
1763 spin_lock_irq(&nvmeq->q_lock);
1764 nvme_process_cq(nvmeq);
1765 spin_unlock_irq(&nvmeq->q_lock);
1766 }
1767
1768 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1769 kthread_work_func_t fn)
1770 {
1771 struct request *req;
1772 struct nvme_command c;
1773
1774 memset(&c, 0, sizeof(c));
1775 c.delete_queue.opcode = opcode;
1776 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1777
1778 init_kthread_work(&nvmeq->cmdinfo.work, fn);
1779
1780 req = nvme_alloc_request(nvmeq->dev->ctrl.admin_q, &c, 0);
1781 if (IS_ERR(req))
1782 return PTR_ERR(req);
1783
1784 req->timeout = ADMIN_TIMEOUT;
1785 req->end_io_data = &nvmeq->cmdinfo;
1786 blk_execute_rq_nowait(req->q, NULL, req, 0, async_cmd_info_endio);
1787 return 0;
1788 }
1789
1790 static void nvme_del_cq_work_handler(struct kthread_work *work)
1791 {
1792 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1793 cmdinfo.work);
1794 nvme_del_queue_end(nvmeq);
1795 }
1796
1797 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1798 {
1799 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1800 nvme_del_cq_work_handler);
1801 }
1802
1803 static void nvme_del_sq_work_handler(struct kthread_work *work)
1804 {
1805 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1806 cmdinfo.work);
1807 int status = nvmeq->cmdinfo.status;
1808
1809 if (!status)
1810 status = nvme_delete_cq(nvmeq);
1811 if (status)
1812 nvme_del_queue_end(nvmeq);
1813 }
1814
1815 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1816 {
1817 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1818 nvme_del_sq_work_handler);
1819 }
1820
1821 static void nvme_del_queue_start(struct kthread_work *work)
1822 {
1823 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1824 cmdinfo.work);
1825 if (nvme_delete_sq(nvmeq))
1826 nvme_del_queue_end(nvmeq);
1827 }
1828
1829 static void nvme_disable_io_queues(struct nvme_dev *dev)
1830 {
1831 int i;
1832 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1833 struct nvme_delq_ctx dq;
1834 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1835 &worker, "nvme%d", dev->ctrl.instance);
1836
1837 if (IS_ERR(kworker_task)) {
1838 dev_err(dev->dev,
1839 "Failed to create queue del task\n");
1840 for (i = dev->queue_count - 1; i > 0; i--)
1841 nvme_disable_queue(dev, i);
1842 return;
1843 }
1844
1845 dq.waiter = NULL;
1846 atomic_set(&dq.refcount, 0);
1847 dq.worker = &worker;
1848 for (i = dev->queue_count - 1; i > 0; i--) {
1849 struct nvme_queue *nvmeq = dev->queues[i];
1850
1851 if (nvme_suspend_queue(nvmeq))
1852 continue;
1853 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1854 nvmeq->cmdinfo.worker = dq.worker;
1855 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1856 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1857 }
1858 nvme_wait_dq(&dq, dev);
1859 kthread_stop(kworker_task);
1860 }
1861
1862 static int nvme_dev_list_add(struct nvme_dev *dev)
1863 {
1864 bool start_thread = false;
1865
1866 spin_lock(&dev_list_lock);
1867 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1868 start_thread = true;
1869 nvme_thread = NULL;
1870 }
1871 list_add(&dev->node, &dev_list);
1872 spin_unlock(&dev_list_lock);
1873
1874 if (start_thread) {
1875 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1876 wake_up_all(&nvme_kthread_wait);
1877 } else
1878 wait_event_killable(nvme_kthread_wait, nvme_thread);
1879
1880 if (IS_ERR_OR_NULL(nvme_thread))
1881 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1882
1883 return 0;
1884 }
1885
1886 /*
1887 * Remove the node from the device list and check
1888 * for whether or not we need to stop the nvme_thread.
1889 */
1890 static void nvme_dev_list_remove(struct nvme_dev *dev)
1891 {
1892 struct task_struct *tmp = NULL;
1893
1894 spin_lock(&dev_list_lock);
1895 list_del_init(&dev->node);
1896 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1897 tmp = nvme_thread;
1898 nvme_thread = NULL;
1899 }
1900 spin_unlock(&dev_list_lock);
1901
1902 if (tmp)
1903 kthread_stop(tmp);
1904 }
1905
1906 static void nvme_freeze_queues(struct nvme_dev *dev)
1907 {
1908 struct nvme_ns *ns;
1909
1910 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
1911 blk_mq_freeze_queue_start(ns->queue);
1912
1913 spin_lock_irq(ns->queue->queue_lock);
1914 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1915 spin_unlock_irq(ns->queue->queue_lock);
1916
1917 blk_mq_cancel_requeue_work(ns->queue);
1918 blk_mq_stop_hw_queues(ns->queue);
1919 }
1920 }
1921
1922 static void nvme_unfreeze_queues(struct nvme_dev *dev)
1923 {
1924 struct nvme_ns *ns;
1925
1926 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
1927 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1928 blk_mq_unfreeze_queue(ns->queue);
1929 blk_mq_start_stopped_hw_queues(ns->queue, true);
1930 blk_mq_kick_requeue_list(ns->queue);
1931 }
1932 }
1933
1934 static void nvme_dev_shutdown(struct nvme_dev *dev)
1935 {
1936 int i;
1937 u32 csts = -1;
1938
1939 nvme_dev_list_remove(dev);
1940
1941 mutex_lock(&dev->shutdown_lock);
1942 if (dev->bar) {
1943 nvme_freeze_queues(dev);
1944 csts = readl(dev->bar + NVME_REG_CSTS);
1945 }
1946 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1947 for (i = dev->queue_count - 1; i >= 0; i--) {
1948 struct nvme_queue *nvmeq = dev->queues[i];
1949 nvme_suspend_queue(nvmeq);
1950 }
1951 } else {
1952 nvme_disable_io_queues(dev);
1953 nvme_shutdown_ctrl(&dev->ctrl);
1954 nvme_disable_queue(dev, 0);
1955 }
1956 nvme_dev_unmap(dev);
1957
1958 for (i = dev->queue_count - 1; i >= 0; i--)
1959 nvme_clear_queue(dev->queues[i]);
1960 mutex_unlock(&dev->shutdown_lock);
1961 }
1962
1963 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1964 {
1965 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1966 PAGE_SIZE, PAGE_SIZE, 0);
1967 if (!dev->prp_page_pool)
1968 return -ENOMEM;
1969
1970 /* Optimisation for I/Os between 4k and 128k */
1971 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1972 256, 256, 0);
1973 if (!dev->prp_small_pool) {
1974 dma_pool_destroy(dev->prp_page_pool);
1975 return -ENOMEM;
1976 }
1977 return 0;
1978 }
1979
1980 static void nvme_release_prp_pools(struct nvme_dev *dev)
1981 {
1982 dma_pool_destroy(dev->prp_page_pool);
1983 dma_pool_destroy(dev->prp_small_pool);
1984 }
1985
1986 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1987 {
1988 struct nvme_dev *dev = to_nvme_dev(ctrl);
1989
1990 put_device(dev->dev);
1991 if (dev->tagset.tags)
1992 blk_mq_free_tag_set(&dev->tagset);
1993 if (dev->ctrl.admin_q)
1994 blk_put_queue(dev->ctrl.admin_q);
1995 kfree(dev->queues);
1996 kfree(dev->entry);
1997 kfree(dev);
1998 }
1999
2000 static void nvme_reset_work(struct work_struct *work)
2001 {
2002 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2003 int result;
2004
2005 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2006 goto out;
2007
2008 /*
2009 * If we're called to reset a live controller first shut it down before
2010 * moving on.
2011 */
2012 if (dev->bar)
2013 nvme_dev_shutdown(dev);
2014
2015 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2016
2017 result = nvme_dev_map(dev);
2018 if (result)
2019 goto out;
2020
2021 result = nvme_configure_admin_queue(dev);
2022 if (result)
2023 goto unmap;
2024
2025 nvme_init_queue(dev->queues[0], 0);
2026 result = nvme_alloc_admin_tags(dev);
2027 if (result)
2028 goto disable;
2029
2030 result = nvme_init_identify(&dev->ctrl);
2031 if (result)
2032 goto free_tags;
2033
2034 result = nvme_setup_io_queues(dev);
2035 if (result)
2036 goto free_tags;
2037
2038 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
2039
2040 result = nvme_dev_list_add(dev);
2041 if (result)
2042 goto remove;
2043
2044 /*
2045 * Keep the controller around but remove all namespaces if we don't have
2046 * any working I/O queue.
2047 */
2048 if (dev->online_queues < 2) {
2049 dev_warn(dev->dev, "IO queues not created\n");
2050 nvme_remove_namespaces(&dev->ctrl);
2051 } else {
2052 nvme_unfreeze_queues(dev);
2053 nvme_dev_add(dev);
2054 }
2055
2056 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2057 return;
2058
2059 remove:
2060 nvme_dev_list_remove(dev);
2061 free_tags:
2062 nvme_dev_remove_admin(dev);
2063 blk_put_queue(dev->ctrl.admin_q);
2064 dev->ctrl.admin_q = NULL;
2065 dev->queues[0]->tags = NULL;
2066 disable:
2067 nvme_disable_queue(dev, 0);
2068 unmap:
2069 nvme_dev_unmap(dev);
2070 out:
2071 nvme_remove_dead_ctrl(dev);
2072 }
2073
2074 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2075 {
2076 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2077 struct pci_dev *pdev = to_pci_dev(dev->dev);
2078
2079 if (pci_get_drvdata(pdev))
2080 pci_stop_and_remove_bus_device_locked(pdev);
2081 nvme_put_ctrl(&dev->ctrl);
2082 }
2083
2084 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2085 {
2086 dev_warn(dev->dev, "Removing after probe failure\n");
2087 kref_get(&dev->ctrl.kref);
2088 if (!schedule_work(&dev->remove_work))
2089 nvme_put_ctrl(&dev->ctrl);
2090 }
2091
2092 static int nvme_reset(struct nvme_dev *dev)
2093 {
2094 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2095 return -ENODEV;
2096
2097 if (!queue_work(nvme_workq, &dev->reset_work))
2098 return -EBUSY;
2099
2100 flush_work(&dev->reset_work);
2101 return 0;
2102 }
2103
2104 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2105 {
2106 *val = readl(to_nvme_dev(ctrl)->bar + off);
2107 return 0;
2108 }
2109
2110 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2111 {
2112 writel(val, to_nvme_dev(ctrl)->bar + off);
2113 return 0;
2114 }
2115
2116 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2117 {
2118 *val = readq(to_nvme_dev(ctrl)->bar + off);
2119 return 0;
2120 }
2121
2122 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2123 {
2124 struct nvme_dev *dev = to_nvme_dev(ctrl);
2125
2126 return !dev->bar || dev->online_queues < 2;
2127 }
2128
2129 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2130 {
2131 return nvme_reset(to_nvme_dev(ctrl));
2132 }
2133
2134 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2135 .reg_read32 = nvme_pci_reg_read32,
2136 .reg_write32 = nvme_pci_reg_write32,
2137 .reg_read64 = nvme_pci_reg_read64,
2138 .io_incapable = nvme_pci_io_incapable,
2139 .reset_ctrl = nvme_pci_reset_ctrl,
2140 .free_ctrl = nvme_pci_free_ctrl,
2141 };
2142
2143 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2144 {
2145 int node, result = -ENOMEM;
2146 struct nvme_dev *dev;
2147
2148 node = dev_to_node(&pdev->dev);
2149 if (node == NUMA_NO_NODE)
2150 set_dev_node(&pdev->dev, 0);
2151
2152 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2153 if (!dev)
2154 return -ENOMEM;
2155 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2156 GFP_KERNEL, node);
2157 if (!dev->entry)
2158 goto free;
2159 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2160 GFP_KERNEL, node);
2161 if (!dev->queues)
2162 goto free;
2163
2164 dev->dev = get_device(&pdev->dev);
2165 pci_set_drvdata(pdev, dev);
2166
2167 INIT_LIST_HEAD(&dev->node);
2168 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2169 INIT_WORK(&dev->reset_work, nvme_reset_work);
2170 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2171 mutex_init(&dev->shutdown_lock);
2172
2173 result = nvme_setup_prp_pools(dev);
2174 if (result)
2175 goto put_pci;
2176
2177 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2178 id->driver_data);
2179 if (result)
2180 goto release_pools;
2181
2182 queue_work(nvme_workq, &dev->reset_work);
2183 return 0;
2184
2185 release_pools:
2186 nvme_release_prp_pools(dev);
2187 put_pci:
2188 put_device(dev->dev);
2189 free:
2190 kfree(dev->queues);
2191 kfree(dev->entry);
2192 kfree(dev);
2193 return result;
2194 }
2195
2196 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2197 {
2198 struct nvme_dev *dev = pci_get_drvdata(pdev);
2199
2200 if (prepare)
2201 nvme_dev_shutdown(dev);
2202 else
2203 queue_work(nvme_workq, &dev->reset_work);
2204 }
2205
2206 static void nvme_shutdown(struct pci_dev *pdev)
2207 {
2208 struct nvme_dev *dev = pci_get_drvdata(pdev);
2209 nvme_dev_shutdown(dev);
2210 }
2211
2212 static void nvme_remove(struct pci_dev *pdev)
2213 {
2214 struct nvme_dev *dev = pci_get_drvdata(pdev);
2215
2216 spin_lock(&dev_list_lock);
2217 list_del_init(&dev->node);
2218 spin_unlock(&dev_list_lock);
2219
2220 pci_set_drvdata(pdev, NULL);
2221 flush_work(&dev->reset_work);
2222 flush_work(&dev->scan_work);
2223 nvme_remove_namespaces(&dev->ctrl);
2224 nvme_uninit_ctrl(&dev->ctrl);
2225 nvme_dev_shutdown(dev);
2226 nvme_dev_remove_admin(dev);
2227 nvme_free_queues(dev, 0);
2228 nvme_release_cmb(dev);
2229 nvme_release_prp_pools(dev);
2230 nvme_put_ctrl(&dev->ctrl);
2231 }
2232
2233 #ifdef CONFIG_PM_SLEEP
2234 static int nvme_suspend(struct device *dev)
2235 {
2236 struct pci_dev *pdev = to_pci_dev(dev);
2237 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2238
2239 nvme_dev_shutdown(ndev);
2240 return 0;
2241 }
2242
2243 static int nvme_resume(struct device *dev)
2244 {
2245 struct pci_dev *pdev = to_pci_dev(dev);
2246 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2247
2248 queue_work(nvme_workq, &ndev->reset_work);
2249 return 0;
2250 }
2251 #endif
2252
2253 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2254
2255 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2256 pci_channel_state_t state)
2257 {
2258 struct nvme_dev *dev = pci_get_drvdata(pdev);
2259
2260 /*
2261 * A frozen channel requires a reset. When detected, this method will
2262 * shutdown the controller to quiesce. The controller will be restarted
2263 * after the slot reset through driver's slot_reset callback.
2264 */
2265 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2266 switch (state) {
2267 case pci_channel_io_normal:
2268 return PCI_ERS_RESULT_CAN_RECOVER;
2269 case pci_channel_io_frozen:
2270 nvme_dev_shutdown(dev);
2271 return PCI_ERS_RESULT_NEED_RESET;
2272 case pci_channel_io_perm_failure:
2273 return PCI_ERS_RESULT_DISCONNECT;
2274 }
2275 return PCI_ERS_RESULT_NEED_RESET;
2276 }
2277
2278 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2279 {
2280 struct nvme_dev *dev = pci_get_drvdata(pdev);
2281
2282 dev_info(&pdev->dev, "restart after slot reset\n");
2283 pci_restore_state(pdev);
2284 queue_work(nvme_workq, &dev->reset_work);
2285 return PCI_ERS_RESULT_RECOVERED;
2286 }
2287
2288 static void nvme_error_resume(struct pci_dev *pdev)
2289 {
2290 pci_cleanup_aer_uncorrect_error_status(pdev);
2291 }
2292
2293 static const struct pci_error_handlers nvme_err_handler = {
2294 .error_detected = nvme_error_detected,
2295 .slot_reset = nvme_slot_reset,
2296 .resume = nvme_error_resume,
2297 .reset_notify = nvme_reset_notify,
2298 };
2299
2300 /* Move to pci_ids.h later */
2301 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2302
2303 static const struct pci_device_id nvme_id_table[] = {
2304 { PCI_VDEVICE(INTEL, 0x0953),
2305 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2306 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2307 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2308 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2309 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2310 { 0, }
2311 };
2312 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2313
2314 static struct pci_driver nvme_driver = {
2315 .name = "nvme",
2316 .id_table = nvme_id_table,
2317 .probe = nvme_probe,
2318 .remove = nvme_remove,
2319 .shutdown = nvme_shutdown,
2320 .driver = {
2321 .pm = &nvme_dev_pm_ops,
2322 },
2323 .err_handler = &nvme_err_handler,
2324 };
2325
2326 static int __init nvme_init(void)
2327 {
2328 int result;
2329
2330 init_waitqueue_head(&nvme_kthread_wait);
2331
2332 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2333 if (!nvme_workq)
2334 return -ENOMEM;
2335
2336 result = nvme_core_init();
2337 if (result < 0)
2338 goto kill_workq;
2339
2340 result = pci_register_driver(&nvme_driver);
2341 if (result)
2342 goto core_exit;
2343 return 0;
2344
2345 core_exit:
2346 nvme_core_exit();
2347 kill_workq:
2348 destroy_workqueue(nvme_workq);
2349 return result;
2350 }
2351
2352 static void __exit nvme_exit(void)
2353 {
2354 pci_unregister_driver(&nvme_driver);
2355 nvme_core_exit();
2356 destroy_workqueue(nvme_workq);
2357 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2358 _nvme_check_size();
2359 }
2360
2361 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2362 MODULE_LICENSE("GPL");
2363 MODULE_VERSION("1.0");
2364 module_init(nvme_init);
2365 module_exit(nvme_exit);
This page took 0.079488 seconds and 4 git commands to generate.