Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
39
40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
41
42 #define NVME_RDMA_MAX_SEGMENTS 256
43
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
45
46 #define NVME_RDMA_MAX_PAGES_PER_MR 512
47
48 #define NVME_RDMA_DEF_RECONNECT_DELAY 20
49
50 /*
51 * We handle AEN commands ourselves and don't even let the
52 * block layer know about them.
53 */
54 #define NVME_RDMA_NR_AEN_COMMANDS 1
55 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
56 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
57
58 struct nvme_rdma_device {
59 struct ib_device *dev;
60 struct ib_pd *pd;
61 struct ib_mr *mr;
62 struct kref ref;
63 struct list_head entry;
64 };
65
66 struct nvme_rdma_qe {
67 struct ib_cqe cqe;
68 void *data;
69 u64 dma;
70 };
71
72 struct nvme_rdma_queue;
73 struct nvme_rdma_request {
74 struct ib_mr *mr;
75 struct nvme_rdma_qe sqe;
76 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
77 u32 num_sge;
78 int nents;
79 bool inline_data;
80 bool need_inval;
81 struct ib_reg_wr reg_wr;
82 struct ib_cqe reg_cqe;
83 struct nvme_rdma_queue *queue;
84 struct sg_table sg_table;
85 struct scatterlist first_sgl[];
86 };
87
88 enum nvme_rdma_queue_flags {
89 NVME_RDMA_Q_CONNECTED = (1 << 0),
90 };
91
92 struct nvme_rdma_queue {
93 struct nvme_rdma_qe *rsp_ring;
94 u8 sig_count;
95 int queue_size;
96 size_t cmnd_capsule_len;
97 struct nvme_rdma_ctrl *ctrl;
98 struct nvme_rdma_device *device;
99 struct ib_cq *ib_cq;
100 struct ib_qp *qp;
101
102 unsigned long flags;
103 struct rdma_cm_id *cm_id;
104 int cm_error;
105 struct completion cm_done;
106 };
107
108 struct nvme_rdma_ctrl {
109 /* read and written in the hot path */
110 spinlock_t lock;
111
112 /* read only in the hot path */
113 struct nvme_rdma_queue *queues;
114 u32 queue_count;
115
116 /* other member variables */
117 struct blk_mq_tag_set tag_set;
118 struct work_struct delete_work;
119 struct work_struct reset_work;
120 struct work_struct err_work;
121
122 struct nvme_rdma_qe async_event_sqe;
123
124 int reconnect_delay;
125 struct delayed_work reconnect_work;
126
127 struct list_head list;
128
129 struct blk_mq_tag_set admin_tag_set;
130 struct nvme_rdma_device *device;
131
132 u64 cap;
133 u32 max_fr_pages;
134
135 union {
136 struct sockaddr addr;
137 struct sockaddr_in addr_in;
138 };
139
140 struct nvme_ctrl ctrl;
141 };
142
143 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
144 {
145 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
146 }
147
148 static LIST_HEAD(device_list);
149 static DEFINE_MUTEX(device_list_mutex);
150
151 static LIST_HEAD(nvme_rdma_ctrl_list);
152 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
153
154 static struct workqueue_struct *nvme_rdma_wq;
155
156 /*
157 * Disabling this option makes small I/O goes faster, but is fundamentally
158 * unsafe. With it turned off we will have to register a global rkey that
159 * allows read and write access to all physical memory.
160 */
161 static bool register_always = true;
162 module_param(register_always, bool, 0444);
163 MODULE_PARM_DESC(register_always,
164 "Use memory registration even for contiguous memory regions");
165
166 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
167 struct rdma_cm_event *event);
168 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169
170 /* XXX: really should move to a generic header sooner or later.. */
171 static inline void put_unaligned_le24(u32 val, u8 *p)
172 {
173 *p++ = val;
174 *p++ = val >> 8;
175 *p++ = val >> 16;
176 }
177
178 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
179 {
180 return queue - queue->ctrl->queues;
181 }
182
183 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
184 {
185 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
186 }
187
188 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
189 size_t capsule_size, enum dma_data_direction dir)
190 {
191 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
192 kfree(qe->data);
193 }
194
195 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
196 size_t capsule_size, enum dma_data_direction dir)
197 {
198 qe->data = kzalloc(capsule_size, GFP_KERNEL);
199 if (!qe->data)
200 return -ENOMEM;
201
202 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
203 if (ib_dma_mapping_error(ibdev, qe->dma)) {
204 kfree(qe->data);
205 return -ENOMEM;
206 }
207
208 return 0;
209 }
210
211 static void nvme_rdma_free_ring(struct ib_device *ibdev,
212 struct nvme_rdma_qe *ring, size_t ib_queue_size,
213 size_t capsule_size, enum dma_data_direction dir)
214 {
215 int i;
216
217 for (i = 0; i < ib_queue_size; i++)
218 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
219 kfree(ring);
220 }
221
222 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
223 size_t ib_queue_size, size_t capsule_size,
224 enum dma_data_direction dir)
225 {
226 struct nvme_rdma_qe *ring;
227 int i;
228
229 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
230 if (!ring)
231 return NULL;
232
233 for (i = 0; i < ib_queue_size; i++) {
234 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
235 goto out_free_ring;
236 }
237
238 return ring;
239
240 out_free_ring:
241 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
242 return NULL;
243 }
244
245 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
246 {
247 pr_debug("QP event %d\n", event->event);
248 }
249
250 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
251 {
252 wait_for_completion_interruptible_timeout(&queue->cm_done,
253 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
254 return queue->cm_error;
255 }
256
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 struct nvme_rdma_device *dev = queue->device;
260 struct ib_qp_init_attr init_attr;
261 int ret;
262
263 memset(&init_attr, 0, sizeof(init_attr));
264 init_attr.event_handler = nvme_rdma_qp_event;
265 /* +1 for drain */
266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 /* +1 for drain */
268 init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 init_attr.cap.max_recv_sge = 1;
270 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 init_attr.qp_type = IB_QPT_RC;
273 init_attr.send_cq = queue->ib_cq;
274 init_attr.recv_cq = queue->ib_cq;
275
276 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
277
278 queue->qp = queue->cm_id->qp;
279 return ret;
280 }
281
282 static int nvme_rdma_reinit_request(void *data, struct request *rq)
283 {
284 struct nvme_rdma_ctrl *ctrl = data;
285 struct nvme_rdma_device *dev = ctrl->device;
286 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
287 int ret = 0;
288
289 if (!req->need_inval)
290 goto out;
291
292 ib_dereg_mr(req->mr);
293
294 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
295 ctrl->max_fr_pages);
296 if (IS_ERR(req->mr)) {
297 ret = PTR_ERR(req->mr);
298 req->mr = NULL;
299 }
300
301 req->need_inval = false;
302
303 out:
304 return ret;
305 }
306
307 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
308 struct request *rq, unsigned int queue_idx)
309 {
310 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
311 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
312 struct nvme_rdma_device *dev = queue->device;
313
314 if (req->mr)
315 ib_dereg_mr(req->mr);
316
317 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
318 DMA_TO_DEVICE);
319 }
320
321 static void nvme_rdma_exit_request(void *data, struct request *rq,
322 unsigned int hctx_idx, unsigned int rq_idx)
323 {
324 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
325 }
326
327 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
328 unsigned int hctx_idx, unsigned int rq_idx)
329 {
330 return __nvme_rdma_exit_request(data, rq, 0);
331 }
332
333 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
334 struct request *rq, unsigned int queue_idx)
335 {
336 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
337 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
338 struct nvme_rdma_device *dev = queue->device;
339 struct ib_device *ibdev = dev->dev;
340 int ret;
341
342 BUG_ON(queue_idx >= ctrl->queue_count);
343
344 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
345 DMA_TO_DEVICE);
346 if (ret)
347 return ret;
348
349 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
350 ctrl->max_fr_pages);
351 if (IS_ERR(req->mr)) {
352 ret = PTR_ERR(req->mr);
353 goto out_free_qe;
354 }
355
356 req->queue = queue;
357
358 return 0;
359
360 out_free_qe:
361 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
362 DMA_TO_DEVICE);
363 return -ENOMEM;
364 }
365
366 static int nvme_rdma_init_request(void *data, struct request *rq,
367 unsigned int hctx_idx, unsigned int rq_idx,
368 unsigned int numa_node)
369 {
370 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
371 }
372
373 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
374 unsigned int hctx_idx, unsigned int rq_idx,
375 unsigned int numa_node)
376 {
377 return __nvme_rdma_init_request(data, rq, 0);
378 }
379
380 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
381 unsigned int hctx_idx)
382 {
383 struct nvme_rdma_ctrl *ctrl = data;
384 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
385
386 BUG_ON(hctx_idx >= ctrl->queue_count);
387
388 hctx->driver_data = queue;
389 return 0;
390 }
391
392 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393 unsigned int hctx_idx)
394 {
395 struct nvme_rdma_ctrl *ctrl = data;
396 struct nvme_rdma_queue *queue = &ctrl->queues[0];
397
398 BUG_ON(hctx_idx != 0);
399
400 hctx->driver_data = queue;
401 return 0;
402 }
403
404 static void nvme_rdma_free_dev(struct kref *ref)
405 {
406 struct nvme_rdma_device *ndev =
407 container_of(ref, struct nvme_rdma_device, ref);
408
409 mutex_lock(&device_list_mutex);
410 list_del(&ndev->entry);
411 mutex_unlock(&device_list_mutex);
412
413 if (!register_always)
414 ib_dereg_mr(ndev->mr);
415 ib_dealloc_pd(ndev->pd);
416
417 kfree(ndev);
418 }
419
420 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
421 {
422 kref_put(&dev->ref, nvme_rdma_free_dev);
423 }
424
425 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
426 {
427 return kref_get_unless_zero(&dev->ref);
428 }
429
430 static struct nvme_rdma_device *
431 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
432 {
433 struct nvme_rdma_device *ndev;
434
435 mutex_lock(&device_list_mutex);
436 list_for_each_entry(ndev, &device_list, entry) {
437 if (ndev->dev->node_guid == cm_id->device->node_guid &&
438 nvme_rdma_dev_get(ndev))
439 goto out_unlock;
440 }
441
442 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
443 if (!ndev)
444 goto out_err;
445
446 ndev->dev = cm_id->device;
447 kref_init(&ndev->ref);
448
449 ndev->pd = ib_alloc_pd(ndev->dev);
450 if (IS_ERR(ndev->pd))
451 goto out_free_dev;
452
453 if (!register_always) {
454 ndev->mr = ib_get_dma_mr(ndev->pd,
455 IB_ACCESS_LOCAL_WRITE |
456 IB_ACCESS_REMOTE_READ |
457 IB_ACCESS_REMOTE_WRITE);
458 if (IS_ERR(ndev->mr))
459 goto out_free_pd;
460 }
461
462 if (!(ndev->dev->attrs.device_cap_flags &
463 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
464 dev_err(&ndev->dev->dev,
465 "Memory registrations not supported.\n");
466 goto out_free_mr;
467 }
468
469 list_add(&ndev->entry, &device_list);
470 out_unlock:
471 mutex_unlock(&device_list_mutex);
472 return ndev;
473
474 out_free_mr:
475 if (!register_always)
476 ib_dereg_mr(ndev->mr);
477 out_free_pd:
478 ib_dealloc_pd(ndev->pd);
479 out_free_dev:
480 kfree(ndev);
481 out_err:
482 mutex_unlock(&device_list_mutex);
483 return NULL;
484 }
485
486 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
487 {
488 struct nvme_rdma_device *dev = queue->device;
489 struct ib_device *ibdev = dev->dev;
490
491 rdma_destroy_qp(queue->cm_id);
492 ib_free_cq(queue->ib_cq);
493
494 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
495 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
496
497 nvme_rdma_dev_put(dev);
498 }
499
500 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
501 struct nvme_rdma_device *dev)
502 {
503 struct ib_device *ibdev = dev->dev;
504 const int send_wr_factor = 3; /* MR, SEND, INV */
505 const int cq_factor = send_wr_factor + 1; /* + RECV */
506 int comp_vector, idx = nvme_rdma_queue_idx(queue);
507
508 int ret;
509
510 queue->device = dev;
511
512 /*
513 * The admin queue is barely used once the controller is live, so don't
514 * bother to spread it out.
515 */
516 if (idx == 0)
517 comp_vector = 0;
518 else
519 comp_vector = idx % ibdev->num_comp_vectors;
520
521
522 /* +1 for ib_stop_cq */
523 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
524 cq_factor * queue->queue_size + 1, comp_vector,
525 IB_POLL_SOFTIRQ);
526 if (IS_ERR(queue->ib_cq)) {
527 ret = PTR_ERR(queue->ib_cq);
528 goto out;
529 }
530
531 ret = nvme_rdma_create_qp(queue, send_wr_factor);
532 if (ret)
533 goto out_destroy_ib_cq;
534
535 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
536 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
537 if (!queue->rsp_ring) {
538 ret = -ENOMEM;
539 goto out_destroy_qp;
540 }
541
542 return 0;
543
544 out_destroy_qp:
545 ib_destroy_qp(queue->qp);
546 out_destroy_ib_cq:
547 ib_free_cq(queue->ib_cq);
548 out:
549 return ret;
550 }
551
552 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
553 int idx, size_t queue_size)
554 {
555 struct nvme_rdma_queue *queue;
556 int ret;
557
558 queue = &ctrl->queues[idx];
559 queue->ctrl = ctrl;
560 init_completion(&queue->cm_done);
561
562 if (idx > 0)
563 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
564 else
565 queue->cmnd_capsule_len = sizeof(struct nvme_command);
566
567 queue->queue_size = queue_size;
568
569 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
570 RDMA_PS_TCP, IB_QPT_RC);
571 if (IS_ERR(queue->cm_id)) {
572 dev_info(ctrl->ctrl.device,
573 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
574 return PTR_ERR(queue->cm_id);
575 }
576
577 queue->cm_error = -ETIMEDOUT;
578 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
579 NVME_RDMA_CONNECT_TIMEOUT_MS);
580 if (ret) {
581 dev_info(ctrl->ctrl.device,
582 "rdma_resolve_addr failed (%d).\n", ret);
583 goto out_destroy_cm_id;
584 }
585
586 ret = nvme_rdma_wait_for_cm(queue);
587 if (ret) {
588 dev_info(ctrl->ctrl.device,
589 "rdma_resolve_addr wait failed (%d).\n", ret);
590 goto out_destroy_cm_id;
591 }
592
593 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
594
595 return 0;
596
597 out_destroy_cm_id:
598 rdma_destroy_id(queue->cm_id);
599 return ret;
600 }
601
602 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
603 {
604 rdma_disconnect(queue->cm_id);
605 ib_drain_qp(queue->qp);
606 }
607
608 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
609 {
610 nvme_rdma_destroy_queue_ib(queue);
611 rdma_destroy_id(queue->cm_id);
612 }
613
614 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
615 {
616 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
617 return;
618 nvme_rdma_stop_queue(queue);
619 nvme_rdma_free_queue(queue);
620 }
621
622 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624 int i;
625
626 for (i = 1; i < ctrl->queue_count; i++)
627 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
628 }
629
630 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632 int i, ret = 0;
633
634 for (i = 1; i < ctrl->queue_count; i++) {
635 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
636 if (ret)
637 break;
638 }
639
640 return ret;
641 }
642
643 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
644 {
645 int i, ret;
646
647 for (i = 1; i < ctrl->queue_count; i++) {
648 ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
649 if (ret) {
650 dev_info(ctrl->ctrl.device,
651 "failed to initialize i/o queue: %d\n", ret);
652 goto out_free_queues;
653 }
654 }
655
656 return 0;
657
658 out_free_queues:
659 for (; i >= 1; i--)
660 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
661
662 return ret;
663 }
664
665 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
666 {
667 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
668 sizeof(struct nvme_command), DMA_TO_DEVICE);
669 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
670 blk_cleanup_queue(ctrl->ctrl.admin_q);
671 blk_mq_free_tag_set(&ctrl->admin_tag_set);
672 nvme_rdma_dev_put(ctrl->device);
673 }
674
675 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
676 {
677 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
678
679 if (list_empty(&ctrl->list))
680 goto free_ctrl;
681
682 mutex_lock(&nvme_rdma_ctrl_mutex);
683 list_del(&ctrl->list);
684 mutex_unlock(&nvme_rdma_ctrl_mutex);
685
686 kfree(ctrl->queues);
687 nvmf_free_options(nctrl->opts);
688 free_ctrl:
689 kfree(ctrl);
690 }
691
692 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
693 {
694 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
695 struct nvme_rdma_ctrl, reconnect_work);
696 bool changed;
697 int ret;
698
699 if (ctrl->queue_count > 1) {
700 nvme_rdma_free_io_queues(ctrl);
701
702 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
703 if (ret)
704 goto requeue;
705 }
706
707 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
708
709 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
710 if (ret)
711 goto requeue;
712
713 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
714 if (ret)
715 goto requeue;
716
717 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
718
719 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
720 if (ret)
721 goto stop_admin_q;
722
723 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
724 if (ret)
725 goto stop_admin_q;
726
727 nvme_start_keep_alive(&ctrl->ctrl);
728
729 if (ctrl->queue_count > 1) {
730 ret = nvme_rdma_init_io_queues(ctrl);
731 if (ret)
732 goto stop_admin_q;
733
734 ret = nvme_rdma_connect_io_queues(ctrl);
735 if (ret)
736 goto stop_admin_q;
737 }
738
739 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
740 WARN_ON_ONCE(!changed);
741
742 if (ctrl->queue_count > 1) {
743 nvme_start_queues(&ctrl->ctrl);
744 nvme_queue_scan(&ctrl->ctrl);
745 nvme_queue_async_events(&ctrl->ctrl);
746 }
747
748 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
749
750 return;
751
752 stop_admin_q:
753 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
754 requeue:
755 /* Make sure we are not resetting/deleting */
756 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
757 dev_info(ctrl->ctrl.device,
758 "Failed reconnect attempt, requeueing...\n");
759 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
760 ctrl->reconnect_delay * HZ);
761 }
762 }
763
764 static void nvme_rdma_error_recovery_work(struct work_struct *work)
765 {
766 struct nvme_rdma_ctrl *ctrl = container_of(work,
767 struct nvme_rdma_ctrl, err_work);
768
769 nvme_stop_keep_alive(&ctrl->ctrl);
770 if (ctrl->queue_count > 1)
771 nvme_stop_queues(&ctrl->ctrl);
772 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
773
774 /* We must take care of fastfail/requeue all our inflight requests */
775 if (ctrl->queue_count > 1)
776 blk_mq_tagset_busy_iter(&ctrl->tag_set,
777 nvme_cancel_request, &ctrl->ctrl);
778 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
779 nvme_cancel_request, &ctrl->ctrl);
780
781 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
782 ctrl->reconnect_delay);
783
784 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
785 ctrl->reconnect_delay * HZ);
786 }
787
788 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
789 {
790 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
791 return;
792
793 queue_work(nvme_rdma_wq, &ctrl->err_work);
794 }
795
796 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
797 const char *op)
798 {
799 struct nvme_rdma_queue *queue = cq->cq_context;
800 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
801
802 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
803 dev_info(ctrl->ctrl.device,
804 "%s for CQE 0x%p failed with status %s (%d)\n",
805 op, wc->wr_cqe,
806 ib_wc_status_msg(wc->status), wc->status);
807 nvme_rdma_error_recovery(ctrl);
808 }
809
810 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
811 {
812 if (unlikely(wc->status != IB_WC_SUCCESS))
813 nvme_rdma_wr_error(cq, wc, "MEMREG");
814 }
815
816 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
817 {
818 if (unlikely(wc->status != IB_WC_SUCCESS))
819 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
820 }
821
822 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
823 struct nvme_rdma_request *req)
824 {
825 struct ib_send_wr *bad_wr;
826 struct ib_send_wr wr = {
827 .opcode = IB_WR_LOCAL_INV,
828 .next = NULL,
829 .num_sge = 0,
830 .send_flags = 0,
831 .ex.invalidate_rkey = req->mr->rkey,
832 };
833
834 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
835 wr.wr_cqe = &req->reg_cqe;
836
837 return ib_post_send(queue->qp, &wr, &bad_wr);
838 }
839
840 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
841 struct request *rq)
842 {
843 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
844 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
845 struct nvme_rdma_device *dev = queue->device;
846 struct ib_device *ibdev = dev->dev;
847 int res;
848
849 if (!blk_rq_bytes(rq))
850 return;
851
852 if (req->need_inval) {
853 res = nvme_rdma_inv_rkey(queue, req);
854 if (res < 0) {
855 dev_err(ctrl->ctrl.device,
856 "Queueing INV WR for rkey %#x failed (%d)\n",
857 req->mr->rkey, res);
858 nvme_rdma_error_recovery(queue->ctrl);
859 }
860 }
861
862 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
863 req->nents, rq_data_dir(rq) ==
864 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
865
866 nvme_cleanup_cmd(rq);
867 sg_free_table_chained(&req->sg_table, true);
868 }
869
870 static int nvme_rdma_set_sg_null(struct nvme_command *c)
871 {
872 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
873
874 sg->addr = 0;
875 put_unaligned_le24(0, sg->length);
876 put_unaligned_le32(0, sg->key);
877 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
878 return 0;
879 }
880
881 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
882 struct nvme_rdma_request *req, struct nvme_command *c)
883 {
884 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
885
886 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
887 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
888 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
889
890 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
891 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
892 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
893
894 req->inline_data = true;
895 req->num_sge++;
896 return 0;
897 }
898
899 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
900 struct nvme_rdma_request *req, struct nvme_command *c)
901 {
902 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
903
904 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
905 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
906 put_unaligned_le32(queue->device->mr->rkey, sg->key);
907 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
908 return 0;
909 }
910
911 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
912 struct nvme_rdma_request *req, struct nvme_command *c,
913 int count)
914 {
915 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
916 int nr;
917
918 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
919 if (nr < count) {
920 if (nr < 0)
921 return nr;
922 return -EINVAL;
923 }
924
925 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
926
927 req->reg_cqe.done = nvme_rdma_memreg_done;
928 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
929 req->reg_wr.wr.opcode = IB_WR_REG_MR;
930 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
931 req->reg_wr.wr.num_sge = 0;
932 req->reg_wr.mr = req->mr;
933 req->reg_wr.key = req->mr->rkey;
934 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
935 IB_ACCESS_REMOTE_READ |
936 IB_ACCESS_REMOTE_WRITE;
937
938 req->need_inval = true;
939
940 sg->addr = cpu_to_le64(req->mr->iova);
941 put_unaligned_le24(req->mr->length, sg->length);
942 put_unaligned_le32(req->mr->rkey, sg->key);
943 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
944 NVME_SGL_FMT_INVALIDATE;
945
946 return 0;
947 }
948
949 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
950 struct request *rq, unsigned int map_len,
951 struct nvme_command *c)
952 {
953 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
954 struct nvme_rdma_device *dev = queue->device;
955 struct ib_device *ibdev = dev->dev;
956 int nents, count;
957 int ret;
958
959 req->num_sge = 1;
960 req->inline_data = false;
961 req->need_inval = false;
962
963 c->common.flags |= NVME_CMD_SGL_METABUF;
964
965 if (!blk_rq_bytes(rq))
966 return nvme_rdma_set_sg_null(c);
967
968 req->sg_table.sgl = req->first_sgl;
969 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
970 req->sg_table.sgl);
971 if (ret)
972 return -ENOMEM;
973
974 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
975 BUG_ON(nents > rq->nr_phys_segments);
976 req->nents = nents;
977
978 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
979 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
980 if (unlikely(count <= 0)) {
981 sg_free_table_chained(&req->sg_table, true);
982 return -EIO;
983 }
984
985 if (count == 1) {
986 if (rq_data_dir(rq) == WRITE &&
987 map_len <= nvme_rdma_inline_data_size(queue) &&
988 nvme_rdma_queue_idx(queue))
989 return nvme_rdma_map_sg_inline(queue, req, c);
990
991 if (!register_always)
992 return nvme_rdma_map_sg_single(queue, req, c);
993 }
994
995 return nvme_rdma_map_sg_fr(queue, req, c, count);
996 }
997
998 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
999 {
1000 if (unlikely(wc->status != IB_WC_SUCCESS))
1001 nvme_rdma_wr_error(cq, wc, "SEND");
1002 }
1003
1004 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1005 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1006 struct ib_send_wr *first, bool flush)
1007 {
1008 struct ib_send_wr wr, *bad_wr;
1009 int ret;
1010
1011 sge->addr = qe->dma;
1012 sge->length = sizeof(struct nvme_command),
1013 sge->lkey = queue->device->pd->local_dma_lkey;
1014
1015 qe->cqe.done = nvme_rdma_send_done;
1016
1017 wr.next = NULL;
1018 wr.wr_cqe = &qe->cqe;
1019 wr.sg_list = sge;
1020 wr.num_sge = num_sge;
1021 wr.opcode = IB_WR_SEND;
1022 wr.send_flags = 0;
1023
1024 /*
1025 * Unsignalled send completions are another giant desaster in the
1026 * IB Verbs spec: If we don't regularly post signalled sends
1027 * the send queue will fill up and only a QP reset will rescue us.
1028 * Would have been way to obvious to handle this in hardware or
1029 * at least the RDMA stack..
1030 *
1031 * This messy and racy code sniplet is copy and pasted from the iSER
1032 * initiator, and the magic '32' comes from there as well.
1033 *
1034 * Always signal the flushes. The magic request used for the flush
1035 * sequencer is not allocated in our driver's tagset and it's
1036 * triggered to be freed by blk_cleanup_queue(). So we need to
1037 * always mark it as signaled to ensure that the "wr_cqe", which is
1038 * embeded in request's payload, is not freed when __ib_process_cq()
1039 * calls wr_cqe->done().
1040 */
1041 if ((++queue->sig_count % 32) == 0 || flush)
1042 wr.send_flags |= IB_SEND_SIGNALED;
1043
1044 if (first)
1045 first->next = &wr;
1046 else
1047 first = &wr;
1048
1049 ret = ib_post_send(queue->qp, first, &bad_wr);
1050 if (ret) {
1051 dev_err(queue->ctrl->ctrl.device,
1052 "%s failed with error code %d\n", __func__, ret);
1053 }
1054 return ret;
1055 }
1056
1057 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1058 struct nvme_rdma_qe *qe)
1059 {
1060 struct ib_recv_wr wr, *bad_wr;
1061 struct ib_sge list;
1062 int ret;
1063
1064 list.addr = qe->dma;
1065 list.length = sizeof(struct nvme_completion);
1066 list.lkey = queue->device->pd->local_dma_lkey;
1067
1068 qe->cqe.done = nvme_rdma_recv_done;
1069
1070 wr.next = NULL;
1071 wr.wr_cqe = &qe->cqe;
1072 wr.sg_list = &list;
1073 wr.num_sge = 1;
1074
1075 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1076 if (ret) {
1077 dev_err(queue->ctrl->ctrl.device,
1078 "%s failed with error code %d\n", __func__, ret);
1079 }
1080 return ret;
1081 }
1082
1083 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1084 {
1085 u32 queue_idx = nvme_rdma_queue_idx(queue);
1086
1087 if (queue_idx == 0)
1088 return queue->ctrl->admin_tag_set.tags[queue_idx];
1089 return queue->ctrl->tag_set.tags[queue_idx - 1];
1090 }
1091
1092 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1093 {
1094 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1095 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1096 struct ib_device *dev = queue->device->dev;
1097 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1098 struct nvme_command *cmd = sqe->data;
1099 struct ib_sge sge;
1100 int ret;
1101
1102 if (WARN_ON_ONCE(aer_idx != 0))
1103 return;
1104
1105 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1106
1107 memset(cmd, 0, sizeof(*cmd));
1108 cmd->common.opcode = nvme_admin_async_event;
1109 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1110 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1111 nvme_rdma_set_sg_null(cmd);
1112
1113 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1114 DMA_TO_DEVICE);
1115
1116 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1117 WARN_ON_ONCE(ret);
1118 }
1119
1120 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1121 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1122 {
1123 u16 status = le16_to_cpu(cqe->status);
1124 struct request *rq;
1125 struct nvme_rdma_request *req;
1126 int ret = 0;
1127
1128 status >>= 1;
1129
1130 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1131 if (!rq) {
1132 dev_err(queue->ctrl->ctrl.device,
1133 "tag 0x%x on QP %#x not found\n",
1134 cqe->command_id, queue->qp->qp_num);
1135 nvme_rdma_error_recovery(queue->ctrl);
1136 return ret;
1137 }
1138 req = blk_mq_rq_to_pdu(rq);
1139
1140 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1141 memcpy(rq->special, cqe, sizeof(*cqe));
1142
1143 if (rq->tag == tag)
1144 ret = 1;
1145
1146 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1147 wc->ex.invalidate_rkey == req->mr->rkey)
1148 req->need_inval = false;
1149
1150 blk_mq_complete_request(rq, status);
1151
1152 return ret;
1153 }
1154
1155 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1156 {
1157 struct nvme_rdma_qe *qe =
1158 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1159 struct nvme_rdma_queue *queue = cq->cq_context;
1160 struct ib_device *ibdev = queue->device->dev;
1161 struct nvme_completion *cqe = qe->data;
1162 const size_t len = sizeof(struct nvme_completion);
1163 int ret = 0;
1164
1165 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1166 nvme_rdma_wr_error(cq, wc, "RECV");
1167 return 0;
1168 }
1169
1170 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1171 /*
1172 * AEN requests are special as they don't time out and can
1173 * survive any kind of queue freeze and often don't respond to
1174 * aborts. We don't even bother to allocate a struct request
1175 * for them but rather special case them here.
1176 */
1177 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1178 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1179 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1180 else
1181 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1182 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1183
1184 nvme_rdma_post_recv(queue, qe);
1185 return ret;
1186 }
1187
1188 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1189 {
1190 __nvme_rdma_recv_done(cq, wc, -1);
1191 }
1192
1193 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1194 {
1195 int ret, i;
1196
1197 for (i = 0; i < queue->queue_size; i++) {
1198 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1199 if (ret)
1200 goto out_destroy_queue_ib;
1201 }
1202
1203 return 0;
1204
1205 out_destroy_queue_ib:
1206 nvme_rdma_destroy_queue_ib(queue);
1207 return ret;
1208 }
1209
1210 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1211 struct rdma_cm_event *ev)
1212 {
1213 if (ev->param.conn.private_data_len) {
1214 struct nvme_rdma_cm_rej *rej =
1215 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1216
1217 dev_err(queue->ctrl->ctrl.device,
1218 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1219 /* XXX: Think of something clever to do here... */
1220 } else {
1221 dev_err(queue->ctrl->ctrl.device,
1222 "Connect rejected, no private data.\n");
1223 }
1224
1225 return -ECONNRESET;
1226 }
1227
1228 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1229 {
1230 struct nvme_rdma_device *dev;
1231 int ret;
1232
1233 dev = nvme_rdma_find_get_device(queue->cm_id);
1234 if (!dev) {
1235 dev_err(queue->cm_id->device->dma_device,
1236 "no client data found!\n");
1237 return -ECONNREFUSED;
1238 }
1239
1240 ret = nvme_rdma_create_queue_ib(queue, dev);
1241 if (ret) {
1242 nvme_rdma_dev_put(dev);
1243 goto out;
1244 }
1245
1246 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1247 if (ret) {
1248 dev_err(queue->ctrl->ctrl.device,
1249 "rdma_resolve_route failed (%d).\n",
1250 queue->cm_error);
1251 goto out_destroy_queue;
1252 }
1253
1254 return 0;
1255
1256 out_destroy_queue:
1257 nvme_rdma_destroy_queue_ib(queue);
1258 out:
1259 return ret;
1260 }
1261
1262 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1263 {
1264 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1265 struct rdma_conn_param param = { };
1266 struct nvme_rdma_cm_req priv = { };
1267 int ret;
1268
1269 param.qp_num = queue->qp->qp_num;
1270 param.flow_control = 1;
1271
1272 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1273 /* maximum retry count */
1274 param.retry_count = 7;
1275 param.rnr_retry_count = 7;
1276 param.private_data = &priv;
1277 param.private_data_len = sizeof(priv);
1278
1279 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1280 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1281 priv.hrqsize = cpu_to_le16(queue->queue_size);
1282 priv.hsqsize = cpu_to_le16(queue->queue_size);
1283
1284 ret = rdma_connect(queue->cm_id, &param);
1285 if (ret) {
1286 dev_err(ctrl->ctrl.device,
1287 "rdma_connect failed (%d).\n", ret);
1288 goto out_destroy_queue_ib;
1289 }
1290
1291 return 0;
1292
1293 out_destroy_queue_ib:
1294 nvme_rdma_destroy_queue_ib(queue);
1295 return ret;
1296 }
1297
1298 /**
1299 * nvme_rdma_device_unplug() - Handle RDMA device unplug
1300 * @queue: Queue that owns the cm_id that caught the event
1301 *
1302 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1303 * to unplug so we should take care of destroying our RDMA resources.
1304 * This event will be generated for each allocated cm_id.
1305 *
1306 * In our case, the RDMA resources are managed per controller and not
1307 * only per queue. So the way we handle this is we trigger an implicit
1308 * controller deletion upon the first DEVICE_REMOVAL event we see, and
1309 * hold the event inflight until the controller deletion is completed.
1310 *
1311 * One exception that we need to handle is the destruction of the cm_id
1312 * that caught the event. Since we hold the callout until the controller
1313 * deletion is completed, we'll deadlock if the controller deletion will
1314 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1315 * of destroying this queue before-hand, destroy the queue resources,
1316 * then queue the controller deletion which won't destroy this queue and
1317 * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
1318 */
1319 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1320 {
1321 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1322 int ret;
1323
1324 /* Own the controller deletion */
1325 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1326 return 0;
1327
1328 dev_warn(ctrl->ctrl.device,
1329 "Got rdma device removal event, deleting ctrl\n");
1330
1331 /* Get rid of reconnect work if its running */
1332 cancel_delayed_work_sync(&ctrl->reconnect_work);
1333
1334 /* Disable the queue so ctrl delete won't free it */
1335 if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1336 /* Free this queue ourselves */
1337 nvme_rdma_stop_queue(queue);
1338 nvme_rdma_destroy_queue_ib(queue);
1339
1340 /* Return non-zero so the cm_id will destroy implicitly */
1341 ret = 1;
1342 }
1343
1344 /* Queue controller deletion */
1345 queue_work(nvme_rdma_wq, &ctrl->delete_work);
1346 flush_work(&ctrl->delete_work);
1347 return ret;
1348 }
1349
1350 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1351 struct rdma_cm_event *ev)
1352 {
1353 struct nvme_rdma_queue *queue = cm_id->context;
1354 int cm_error = 0;
1355
1356 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1357 rdma_event_msg(ev->event), ev->event,
1358 ev->status, cm_id);
1359
1360 switch (ev->event) {
1361 case RDMA_CM_EVENT_ADDR_RESOLVED:
1362 cm_error = nvme_rdma_addr_resolved(queue);
1363 break;
1364 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1365 cm_error = nvme_rdma_route_resolved(queue);
1366 break;
1367 case RDMA_CM_EVENT_ESTABLISHED:
1368 queue->cm_error = nvme_rdma_conn_established(queue);
1369 /* complete cm_done regardless of success/failure */
1370 complete(&queue->cm_done);
1371 return 0;
1372 case RDMA_CM_EVENT_REJECTED:
1373 cm_error = nvme_rdma_conn_rejected(queue, ev);
1374 break;
1375 case RDMA_CM_EVENT_ADDR_ERROR:
1376 case RDMA_CM_EVENT_ROUTE_ERROR:
1377 case RDMA_CM_EVENT_CONNECT_ERROR:
1378 case RDMA_CM_EVENT_UNREACHABLE:
1379 dev_dbg(queue->ctrl->ctrl.device,
1380 "CM error event %d\n", ev->event);
1381 cm_error = -ECONNRESET;
1382 break;
1383 case RDMA_CM_EVENT_DISCONNECTED:
1384 case RDMA_CM_EVENT_ADDR_CHANGE:
1385 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1386 dev_dbg(queue->ctrl->ctrl.device,
1387 "disconnect received - connection closed\n");
1388 nvme_rdma_error_recovery(queue->ctrl);
1389 break;
1390 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1391 /* return 1 means impliciy CM ID destroy */
1392 return nvme_rdma_device_unplug(queue);
1393 default:
1394 dev_err(queue->ctrl->ctrl.device,
1395 "Unexpected RDMA CM event (%d)\n", ev->event);
1396 nvme_rdma_error_recovery(queue->ctrl);
1397 break;
1398 }
1399
1400 if (cm_error) {
1401 queue->cm_error = cm_error;
1402 complete(&queue->cm_done);
1403 }
1404
1405 return 0;
1406 }
1407
1408 static enum blk_eh_timer_return
1409 nvme_rdma_timeout(struct request *rq, bool reserved)
1410 {
1411 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1412
1413 /* queue error recovery */
1414 nvme_rdma_error_recovery(req->queue->ctrl);
1415
1416 /* fail with DNR on cmd timeout */
1417 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1418
1419 return BLK_EH_HANDLED;
1420 }
1421
1422 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1423 const struct blk_mq_queue_data *bd)
1424 {
1425 struct nvme_ns *ns = hctx->queue->queuedata;
1426 struct nvme_rdma_queue *queue = hctx->driver_data;
1427 struct request *rq = bd->rq;
1428 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1429 struct nvme_rdma_qe *sqe = &req->sqe;
1430 struct nvme_command *c = sqe->data;
1431 bool flush = false;
1432 struct ib_device *dev;
1433 unsigned int map_len;
1434 int ret;
1435
1436 WARN_ON_ONCE(rq->tag < 0);
1437
1438 dev = queue->device->dev;
1439 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1440 sizeof(struct nvme_command), DMA_TO_DEVICE);
1441
1442 ret = nvme_setup_cmd(ns, rq, c);
1443 if (ret)
1444 return ret;
1445
1446 c->common.command_id = rq->tag;
1447 blk_mq_start_request(rq);
1448
1449 map_len = nvme_map_len(rq);
1450 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1451 if (ret < 0) {
1452 dev_err(queue->ctrl->ctrl.device,
1453 "Failed to map data (%d)\n", ret);
1454 nvme_cleanup_cmd(rq);
1455 goto err;
1456 }
1457
1458 ib_dma_sync_single_for_device(dev, sqe->dma,
1459 sizeof(struct nvme_command), DMA_TO_DEVICE);
1460
1461 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1462 flush = true;
1463 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1464 req->need_inval ? &req->reg_wr.wr : NULL, flush);
1465 if (ret) {
1466 nvme_rdma_unmap_data(queue, rq);
1467 goto err;
1468 }
1469
1470 return BLK_MQ_RQ_QUEUE_OK;
1471 err:
1472 return (ret == -ENOMEM || ret == -EAGAIN) ?
1473 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1474 }
1475
1476 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1477 {
1478 struct nvme_rdma_queue *queue = hctx->driver_data;
1479 struct ib_cq *cq = queue->ib_cq;
1480 struct ib_wc wc;
1481 int found = 0;
1482
1483 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1484 while (ib_poll_cq(cq, 1, &wc) > 0) {
1485 struct ib_cqe *cqe = wc.wr_cqe;
1486
1487 if (cqe) {
1488 if (cqe->done == nvme_rdma_recv_done)
1489 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1490 else
1491 cqe->done(cq, &wc);
1492 }
1493 }
1494
1495 return found;
1496 }
1497
1498 static void nvme_rdma_complete_rq(struct request *rq)
1499 {
1500 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1501 struct nvme_rdma_queue *queue = req->queue;
1502 int error = 0;
1503
1504 nvme_rdma_unmap_data(queue, rq);
1505
1506 if (unlikely(rq->errors)) {
1507 if (nvme_req_needs_retry(rq, rq->errors)) {
1508 nvme_requeue_req(rq);
1509 return;
1510 }
1511
1512 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1513 error = rq->errors;
1514 else
1515 error = nvme_error_status(rq->errors);
1516 }
1517
1518 blk_mq_end_request(rq, error);
1519 }
1520
1521 static struct blk_mq_ops nvme_rdma_mq_ops = {
1522 .queue_rq = nvme_rdma_queue_rq,
1523 .complete = nvme_rdma_complete_rq,
1524 .map_queue = blk_mq_map_queue,
1525 .init_request = nvme_rdma_init_request,
1526 .exit_request = nvme_rdma_exit_request,
1527 .reinit_request = nvme_rdma_reinit_request,
1528 .init_hctx = nvme_rdma_init_hctx,
1529 .poll = nvme_rdma_poll,
1530 .timeout = nvme_rdma_timeout,
1531 };
1532
1533 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1534 .queue_rq = nvme_rdma_queue_rq,
1535 .complete = nvme_rdma_complete_rq,
1536 .map_queue = blk_mq_map_queue,
1537 .init_request = nvme_rdma_init_admin_request,
1538 .exit_request = nvme_rdma_exit_admin_request,
1539 .reinit_request = nvme_rdma_reinit_request,
1540 .init_hctx = nvme_rdma_init_admin_hctx,
1541 .timeout = nvme_rdma_timeout,
1542 };
1543
1544 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1545 {
1546 int error;
1547
1548 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1549 if (error)
1550 return error;
1551
1552 ctrl->device = ctrl->queues[0].device;
1553
1554 /*
1555 * We need a reference on the device as long as the tag_set is alive,
1556 * as the MRs in the request structures need a valid ib_device.
1557 */
1558 error = -EINVAL;
1559 if (!nvme_rdma_dev_get(ctrl->device))
1560 goto out_free_queue;
1561
1562 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1563 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1564
1565 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1566 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1567 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1568 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1569 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1570 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1571 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1572 ctrl->admin_tag_set.driver_data = ctrl;
1573 ctrl->admin_tag_set.nr_hw_queues = 1;
1574 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1575
1576 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1577 if (error)
1578 goto out_put_dev;
1579
1580 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1581 if (IS_ERR(ctrl->ctrl.admin_q)) {
1582 error = PTR_ERR(ctrl->ctrl.admin_q);
1583 goto out_free_tagset;
1584 }
1585
1586 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1587 if (error)
1588 goto out_cleanup_queue;
1589
1590 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1591 if (error) {
1592 dev_err(ctrl->ctrl.device,
1593 "prop_get NVME_REG_CAP failed\n");
1594 goto out_cleanup_queue;
1595 }
1596
1597 ctrl->ctrl.sqsize =
1598 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1599
1600 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1601 if (error)
1602 goto out_cleanup_queue;
1603
1604 ctrl->ctrl.max_hw_sectors =
1605 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1606
1607 error = nvme_init_identify(&ctrl->ctrl);
1608 if (error)
1609 goto out_cleanup_queue;
1610
1611 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1612 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1613 DMA_TO_DEVICE);
1614 if (error)
1615 goto out_cleanup_queue;
1616
1617 nvme_start_keep_alive(&ctrl->ctrl);
1618
1619 return 0;
1620
1621 out_cleanup_queue:
1622 blk_cleanup_queue(ctrl->ctrl.admin_q);
1623 out_free_tagset:
1624 /* disconnect and drain the queue before freeing the tagset */
1625 nvme_rdma_stop_queue(&ctrl->queues[0]);
1626 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1627 out_put_dev:
1628 nvme_rdma_dev_put(ctrl->device);
1629 out_free_queue:
1630 nvme_rdma_free_queue(&ctrl->queues[0]);
1631 return error;
1632 }
1633
1634 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1635 {
1636 nvme_stop_keep_alive(&ctrl->ctrl);
1637 cancel_work_sync(&ctrl->err_work);
1638 cancel_delayed_work_sync(&ctrl->reconnect_work);
1639
1640 if (ctrl->queue_count > 1) {
1641 nvme_stop_queues(&ctrl->ctrl);
1642 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1643 nvme_cancel_request, &ctrl->ctrl);
1644 nvme_rdma_free_io_queues(ctrl);
1645 }
1646
1647 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1648 nvme_shutdown_ctrl(&ctrl->ctrl);
1649
1650 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1651 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1652 nvme_cancel_request, &ctrl->ctrl);
1653 nvme_rdma_destroy_admin_queue(ctrl);
1654 }
1655
1656 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1657 {
1658 nvme_uninit_ctrl(&ctrl->ctrl);
1659 if (shutdown)
1660 nvme_rdma_shutdown_ctrl(ctrl);
1661
1662 if (ctrl->ctrl.tagset) {
1663 blk_cleanup_queue(ctrl->ctrl.connect_q);
1664 blk_mq_free_tag_set(&ctrl->tag_set);
1665 nvme_rdma_dev_put(ctrl->device);
1666 }
1667
1668 nvme_put_ctrl(&ctrl->ctrl);
1669 }
1670
1671 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1672 {
1673 struct nvme_rdma_ctrl *ctrl = container_of(work,
1674 struct nvme_rdma_ctrl, delete_work);
1675
1676 __nvme_rdma_remove_ctrl(ctrl, true);
1677 }
1678
1679 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1680 {
1681 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1682 return -EBUSY;
1683
1684 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1685 return -EBUSY;
1686
1687 return 0;
1688 }
1689
1690 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1691 {
1692 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1693 int ret;
1694
1695 ret = __nvme_rdma_del_ctrl(ctrl);
1696 if (ret)
1697 return ret;
1698
1699 flush_work(&ctrl->delete_work);
1700
1701 return 0;
1702 }
1703
1704 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1705 {
1706 struct nvme_rdma_ctrl *ctrl = container_of(work,
1707 struct nvme_rdma_ctrl, delete_work);
1708
1709 __nvme_rdma_remove_ctrl(ctrl, false);
1710 }
1711
1712 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1713 {
1714 struct nvme_rdma_ctrl *ctrl = container_of(work,
1715 struct nvme_rdma_ctrl, reset_work);
1716 int ret;
1717 bool changed;
1718
1719 nvme_rdma_shutdown_ctrl(ctrl);
1720
1721 ret = nvme_rdma_configure_admin_queue(ctrl);
1722 if (ret) {
1723 /* ctrl is already shutdown, just remove the ctrl */
1724 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1725 goto del_dead_ctrl;
1726 }
1727
1728 if (ctrl->queue_count > 1) {
1729 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1730 if (ret)
1731 goto del_dead_ctrl;
1732
1733 ret = nvme_rdma_init_io_queues(ctrl);
1734 if (ret)
1735 goto del_dead_ctrl;
1736
1737 ret = nvme_rdma_connect_io_queues(ctrl);
1738 if (ret)
1739 goto del_dead_ctrl;
1740 }
1741
1742 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1743 WARN_ON_ONCE(!changed);
1744
1745 if (ctrl->queue_count > 1) {
1746 nvme_start_queues(&ctrl->ctrl);
1747 nvme_queue_scan(&ctrl->ctrl);
1748 nvme_queue_async_events(&ctrl->ctrl);
1749 }
1750
1751 return;
1752
1753 del_dead_ctrl:
1754 /* Deleting this dead controller... */
1755 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1756 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1757 }
1758
1759 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1760 {
1761 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1762
1763 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1764 return -EBUSY;
1765
1766 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1767 return -EBUSY;
1768
1769 flush_work(&ctrl->reset_work);
1770
1771 return 0;
1772 }
1773
1774 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1775 .name = "rdma",
1776 .module = THIS_MODULE,
1777 .is_fabrics = true,
1778 .reg_read32 = nvmf_reg_read32,
1779 .reg_read64 = nvmf_reg_read64,
1780 .reg_write32 = nvmf_reg_write32,
1781 .reset_ctrl = nvme_rdma_reset_ctrl,
1782 .free_ctrl = nvme_rdma_free_ctrl,
1783 .submit_async_event = nvme_rdma_submit_async_event,
1784 .delete_ctrl = nvme_rdma_del_ctrl,
1785 .get_subsysnqn = nvmf_get_subsysnqn,
1786 .get_address = nvmf_get_address,
1787 };
1788
1789 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1790 {
1791 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1792 int ret;
1793
1794 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1795 if (ret)
1796 return ret;
1797
1798 ctrl->queue_count = opts->nr_io_queues + 1;
1799 if (ctrl->queue_count < 2)
1800 return 0;
1801
1802 dev_info(ctrl->ctrl.device,
1803 "creating %d I/O queues.\n", opts->nr_io_queues);
1804
1805 ret = nvme_rdma_init_io_queues(ctrl);
1806 if (ret)
1807 return ret;
1808
1809 /*
1810 * We need a reference on the device as long as the tag_set is alive,
1811 * as the MRs in the request structures need a valid ib_device.
1812 */
1813 ret = -EINVAL;
1814 if (!nvme_rdma_dev_get(ctrl->device))
1815 goto out_free_io_queues;
1816
1817 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1818 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1819 ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
1820 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1821 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1822 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1823 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1824 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1825 ctrl->tag_set.driver_data = ctrl;
1826 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1827 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1828
1829 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1830 if (ret)
1831 goto out_put_dev;
1832 ctrl->ctrl.tagset = &ctrl->tag_set;
1833
1834 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1835 if (IS_ERR(ctrl->ctrl.connect_q)) {
1836 ret = PTR_ERR(ctrl->ctrl.connect_q);
1837 goto out_free_tag_set;
1838 }
1839
1840 ret = nvme_rdma_connect_io_queues(ctrl);
1841 if (ret)
1842 goto out_cleanup_connect_q;
1843
1844 return 0;
1845
1846 out_cleanup_connect_q:
1847 blk_cleanup_queue(ctrl->ctrl.connect_q);
1848 out_free_tag_set:
1849 blk_mq_free_tag_set(&ctrl->tag_set);
1850 out_put_dev:
1851 nvme_rdma_dev_put(ctrl->device);
1852 out_free_io_queues:
1853 nvme_rdma_free_io_queues(ctrl);
1854 return ret;
1855 }
1856
1857 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1858 {
1859 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1860 size_t buflen = strlen(p);
1861
1862 /* XXX: handle IPv6 addresses */
1863
1864 if (buflen > INET_ADDRSTRLEN)
1865 return -EINVAL;
1866 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1867 return -EINVAL;
1868 in_addr->sin_family = AF_INET;
1869 return 0;
1870 }
1871
1872 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1873 struct nvmf_ctrl_options *opts)
1874 {
1875 struct nvme_rdma_ctrl *ctrl;
1876 int ret;
1877 bool changed;
1878
1879 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1880 if (!ctrl)
1881 return ERR_PTR(-ENOMEM);
1882 ctrl->ctrl.opts = opts;
1883 INIT_LIST_HEAD(&ctrl->list);
1884
1885 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1886 if (ret) {
1887 pr_err("malformed IP address passed: %s\n", opts->traddr);
1888 goto out_free_ctrl;
1889 }
1890
1891 if (opts->mask & NVMF_OPT_TRSVCID) {
1892 u16 port;
1893
1894 ret = kstrtou16(opts->trsvcid, 0, &port);
1895 if (ret)
1896 goto out_free_ctrl;
1897
1898 ctrl->addr_in.sin_port = cpu_to_be16(port);
1899 } else {
1900 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1901 }
1902
1903 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1904 0 /* no quirks, we're perfect! */);
1905 if (ret)
1906 goto out_free_ctrl;
1907
1908 ctrl->reconnect_delay = opts->reconnect_delay;
1909 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1910 nvme_rdma_reconnect_ctrl_work);
1911 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1912 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1913 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1914 spin_lock_init(&ctrl->lock);
1915
1916 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1917 ctrl->ctrl.sqsize = opts->queue_size;
1918 ctrl->ctrl.kato = opts->kato;
1919
1920 ret = -ENOMEM;
1921 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1922 GFP_KERNEL);
1923 if (!ctrl->queues)
1924 goto out_uninit_ctrl;
1925
1926 ret = nvme_rdma_configure_admin_queue(ctrl);
1927 if (ret)
1928 goto out_kfree_queues;
1929
1930 /* sanity check icdoff */
1931 if (ctrl->ctrl.icdoff) {
1932 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1933 goto out_remove_admin_queue;
1934 }
1935
1936 /* sanity check keyed sgls */
1937 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1938 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1939 goto out_remove_admin_queue;
1940 }
1941
1942 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1943 /* warn if maxcmd is lower than queue_size */
1944 dev_warn(ctrl->ctrl.device,
1945 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1946 opts->queue_size, ctrl->ctrl.maxcmd);
1947 opts->queue_size = ctrl->ctrl.maxcmd;
1948 }
1949
1950 if (opts->nr_io_queues) {
1951 ret = nvme_rdma_create_io_queues(ctrl);
1952 if (ret)
1953 goto out_remove_admin_queue;
1954 }
1955
1956 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1957 WARN_ON_ONCE(!changed);
1958
1959 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1960 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1961
1962 kref_get(&ctrl->ctrl.kref);
1963
1964 mutex_lock(&nvme_rdma_ctrl_mutex);
1965 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1966 mutex_unlock(&nvme_rdma_ctrl_mutex);
1967
1968 if (opts->nr_io_queues) {
1969 nvme_queue_scan(&ctrl->ctrl);
1970 nvme_queue_async_events(&ctrl->ctrl);
1971 }
1972
1973 return &ctrl->ctrl;
1974
1975 out_remove_admin_queue:
1976 nvme_stop_keep_alive(&ctrl->ctrl);
1977 nvme_rdma_destroy_admin_queue(ctrl);
1978 out_kfree_queues:
1979 kfree(ctrl->queues);
1980 out_uninit_ctrl:
1981 nvme_uninit_ctrl(&ctrl->ctrl);
1982 nvme_put_ctrl(&ctrl->ctrl);
1983 if (ret > 0)
1984 ret = -EIO;
1985 return ERR_PTR(ret);
1986 out_free_ctrl:
1987 kfree(ctrl);
1988 return ERR_PTR(ret);
1989 }
1990
1991 static struct nvmf_transport_ops nvme_rdma_transport = {
1992 .name = "rdma",
1993 .required_opts = NVMF_OPT_TRADDR,
1994 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1995 .create_ctrl = nvme_rdma_create_ctrl,
1996 };
1997
1998 static int __init nvme_rdma_init_module(void)
1999 {
2000 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2001 if (!nvme_rdma_wq)
2002 return -ENOMEM;
2003
2004 nvmf_register_transport(&nvme_rdma_transport);
2005 return 0;
2006 }
2007
2008 static void __exit nvme_rdma_cleanup_module(void)
2009 {
2010 struct nvme_rdma_ctrl *ctrl;
2011
2012 nvmf_unregister_transport(&nvme_rdma_transport);
2013
2014 mutex_lock(&nvme_rdma_ctrl_mutex);
2015 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2016 __nvme_rdma_del_ctrl(ctrl);
2017 mutex_unlock(&nvme_rdma_ctrl_mutex);
2018
2019 destroy_workqueue(nvme_rdma_wq);
2020 }
2021
2022 module_init(nvme_rdma_init_module);
2023 module_exit(nvme_rdma_cleanup_module);
2024
2025 MODULE_LICENSE("GPL v2");
This page took 0.073616 seconds and 5 git commands to generate.