Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / drivers / nvme / host / rdma.c
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
39
40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
41
42 #define NVME_RDMA_MAX_SEGMENTS 256
43
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
45
46 /*
47 * We handle AEN commands ourselves and don't even let the
48 * block layer know about them.
49 */
50 #define NVME_RDMA_NR_AEN_COMMANDS 1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53
54 struct nvme_rdma_device {
55 struct ib_device *dev;
56 struct ib_pd *pd;
57 struct ib_mr *mr;
58 struct kref ref;
59 struct list_head entry;
60 };
61
62 struct nvme_rdma_qe {
63 struct ib_cqe cqe;
64 void *data;
65 u64 dma;
66 };
67
68 struct nvme_rdma_queue;
69 struct nvme_rdma_request {
70 struct ib_mr *mr;
71 struct nvme_rdma_qe sqe;
72 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73 u32 num_sge;
74 int nents;
75 bool inline_data;
76 struct ib_reg_wr reg_wr;
77 struct ib_cqe reg_cqe;
78 struct nvme_rdma_queue *queue;
79 struct sg_table sg_table;
80 struct scatterlist first_sgl[];
81 };
82
83 enum nvme_rdma_queue_flags {
84 NVME_RDMA_Q_CONNECTED = (1 << 0),
85 };
86
87 struct nvme_rdma_queue {
88 struct nvme_rdma_qe *rsp_ring;
89 u8 sig_count;
90 int queue_size;
91 size_t cmnd_capsule_len;
92 struct nvme_rdma_ctrl *ctrl;
93 struct nvme_rdma_device *device;
94 struct ib_cq *ib_cq;
95 struct ib_qp *qp;
96
97 unsigned long flags;
98 struct rdma_cm_id *cm_id;
99 int cm_error;
100 struct completion cm_done;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read and written in the hot path */
105 spinlock_t lock;
106
107 /* read only in the hot path */
108 struct nvme_rdma_queue *queues;
109 u32 queue_count;
110
111 /* other member variables */
112 struct blk_mq_tag_set tag_set;
113 struct work_struct delete_work;
114 struct work_struct reset_work;
115 struct work_struct err_work;
116
117 struct nvme_rdma_qe async_event_sqe;
118
119 int reconnect_delay;
120 struct delayed_work reconnect_work;
121
122 struct list_head list;
123
124 struct blk_mq_tag_set admin_tag_set;
125 struct nvme_rdma_device *device;
126
127 u64 cap;
128 u32 max_fr_pages;
129
130 union {
131 struct sockaddr addr;
132 struct sockaddr_in addr_in;
133 };
134
135 struct nvme_ctrl ctrl;
136 };
137
138 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
139 {
140 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
141 }
142
143 static LIST_HEAD(device_list);
144 static DEFINE_MUTEX(device_list_mutex);
145
146 static LIST_HEAD(nvme_rdma_ctrl_list);
147 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
148
149 static struct workqueue_struct *nvme_rdma_wq;
150
151 /*
152 * Disabling this option makes small I/O goes faster, but is fundamentally
153 * unsafe. With it turned off we will have to register a global rkey that
154 * allows read and write access to all physical memory.
155 */
156 static bool register_always = true;
157 module_param(register_always, bool, 0444);
158 MODULE_PARM_DESC(register_always,
159 "Use memory registration even for contiguous memory regions");
160
161 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
162 struct rdma_cm_event *event);
163 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
164
165 /* XXX: really should move to a generic header sooner or later.. */
166 static inline void put_unaligned_le24(u32 val, u8 *p)
167 {
168 *p++ = val;
169 *p++ = val >> 8;
170 *p++ = val >> 16;
171 }
172
173 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
174 {
175 return queue - queue->ctrl->queues;
176 }
177
178 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
179 {
180 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
181 }
182
183 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
187 kfree(qe->data);
188 }
189
190 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
191 size_t capsule_size, enum dma_data_direction dir)
192 {
193 qe->data = kzalloc(capsule_size, GFP_KERNEL);
194 if (!qe->data)
195 return -ENOMEM;
196
197 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
198 if (ib_dma_mapping_error(ibdev, qe->dma)) {
199 kfree(qe->data);
200 return -ENOMEM;
201 }
202
203 return 0;
204 }
205
206 static void nvme_rdma_free_ring(struct ib_device *ibdev,
207 struct nvme_rdma_qe *ring, size_t ib_queue_size,
208 size_t capsule_size, enum dma_data_direction dir)
209 {
210 int i;
211
212 for (i = 0; i < ib_queue_size; i++)
213 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
214 kfree(ring);
215 }
216
217 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
218 size_t ib_queue_size, size_t capsule_size,
219 enum dma_data_direction dir)
220 {
221 struct nvme_rdma_qe *ring;
222 int i;
223
224 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
225 if (!ring)
226 return NULL;
227
228 for (i = 0; i < ib_queue_size; i++) {
229 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230 goto out_free_ring;
231 }
232
233 return ring;
234
235 out_free_ring:
236 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237 return NULL;
238 }
239
240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242 pr_debug("QP event %d\n", event->event);
243 }
244
245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
246 {
247 wait_for_completion_interruptible_timeout(&queue->cm_done,
248 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
249 return queue->cm_error;
250 }
251
252 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
253 {
254 struct nvme_rdma_device *dev = queue->device;
255 struct ib_qp_init_attr init_attr;
256 int ret;
257
258 memset(&init_attr, 0, sizeof(init_attr));
259 init_attr.event_handler = nvme_rdma_qp_event;
260 /* +1 for drain */
261 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
262 /* +1 for drain */
263 init_attr.cap.max_recv_wr = queue->queue_size + 1;
264 init_attr.cap.max_recv_sge = 1;
265 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
266 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
267 init_attr.qp_type = IB_QPT_RC;
268 init_attr.send_cq = queue->ib_cq;
269 init_attr.recv_cq = queue->ib_cq;
270
271 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
272
273 queue->qp = queue->cm_id->qp;
274 return ret;
275 }
276
277 static int nvme_rdma_reinit_request(void *data, struct request *rq)
278 {
279 struct nvme_rdma_ctrl *ctrl = data;
280 struct nvme_rdma_device *dev = ctrl->device;
281 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
282 int ret = 0;
283
284 if (!req->mr->need_inval)
285 goto out;
286
287 ib_dereg_mr(req->mr);
288
289 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
290 ctrl->max_fr_pages);
291 if (IS_ERR(req->mr)) {
292 ret = PTR_ERR(req->mr);
293 req->mr = NULL;
294 }
295
296 req->mr->need_inval = false;
297
298 out:
299 return ret;
300 }
301
302 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
303 struct request *rq, unsigned int queue_idx)
304 {
305 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
306 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
307 struct nvme_rdma_device *dev = queue->device;
308
309 if (req->mr)
310 ib_dereg_mr(req->mr);
311
312 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
313 DMA_TO_DEVICE);
314 }
315
316 static void nvme_rdma_exit_request(void *data, struct request *rq,
317 unsigned int hctx_idx, unsigned int rq_idx)
318 {
319 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
320 }
321
322 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
323 unsigned int hctx_idx, unsigned int rq_idx)
324 {
325 return __nvme_rdma_exit_request(data, rq, 0);
326 }
327
328 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
329 struct request *rq, unsigned int queue_idx)
330 {
331 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
332 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
333 struct nvme_rdma_device *dev = queue->device;
334 struct ib_device *ibdev = dev->dev;
335 int ret;
336
337 BUG_ON(queue_idx >= ctrl->queue_count);
338
339 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
340 DMA_TO_DEVICE);
341 if (ret)
342 return ret;
343
344 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
345 ctrl->max_fr_pages);
346 if (IS_ERR(req->mr)) {
347 ret = PTR_ERR(req->mr);
348 goto out_free_qe;
349 }
350
351 req->queue = queue;
352
353 return 0;
354
355 out_free_qe:
356 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
357 DMA_TO_DEVICE);
358 return -ENOMEM;
359 }
360
361 static int nvme_rdma_init_request(void *data, struct request *rq,
362 unsigned int hctx_idx, unsigned int rq_idx,
363 unsigned int numa_node)
364 {
365 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
366 }
367
368 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
369 unsigned int hctx_idx, unsigned int rq_idx,
370 unsigned int numa_node)
371 {
372 return __nvme_rdma_init_request(data, rq, 0);
373 }
374
375 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376 unsigned int hctx_idx)
377 {
378 struct nvme_rdma_ctrl *ctrl = data;
379 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
380
381 BUG_ON(hctx_idx >= ctrl->queue_count);
382
383 hctx->driver_data = queue;
384 return 0;
385 }
386
387 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388 unsigned int hctx_idx)
389 {
390 struct nvme_rdma_ctrl *ctrl = data;
391 struct nvme_rdma_queue *queue = &ctrl->queues[0];
392
393 BUG_ON(hctx_idx != 0);
394
395 hctx->driver_data = queue;
396 return 0;
397 }
398
399 static void nvme_rdma_free_dev(struct kref *ref)
400 {
401 struct nvme_rdma_device *ndev =
402 container_of(ref, struct nvme_rdma_device, ref);
403
404 mutex_lock(&device_list_mutex);
405 list_del(&ndev->entry);
406 mutex_unlock(&device_list_mutex);
407
408 if (!register_always)
409 ib_dereg_mr(ndev->mr);
410 ib_dealloc_pd(ndev->pd);
411
412 kfree(ndev);
413 }
414
415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
416 {
417 kref_put(&dev->ref, nvme_rdma_free_dev);
418 }
419
420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
421 {
422 return kref_get_unless_zero(&dev->ref);
423 }
424
425 static struct nvme_rdma_device *
426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
427 {
428 struct nvme_rdma_device *ndev;
429
430 mutex_lock(&device_list_mutex);
431 list_for_each_entry(ndev, &device_list, entry) {
432 if (ndev->dev->node_guid == cm_id->device->node_guid &&
433 nvme_rdma_dev_get(ndev))
434 goto out_unlock;
435 }
436
437 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
438 if (!ndev)
439 goto out_err;
440
441 ndev->dev = cm_id->device;
442 kref_init(&ndev->ref);
443
444 ndev->pd = ib_alloc_pd(ndev->dev);
445 if (IS_ERR(ndev->pd))
446 goto out_free_dev;
447
448 if (!register_always) {
449 ndev->mr = ib_get_dma_mr(ndev->pd,
450 IB_ACCESS_LOCAL_WRITE |
451 IB_ACCESS_REMOTE_READ |
452 IB_ACCESS_REMOTE_WRITE);
453 if (IS_ERR(ndev->mr))
454 goto out_free_pd;
455 }
456
457 if (!(ndev->dev->attrs.device_cap_flags &
458 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
459 dev_err(&ndev->dev->dev,
460 "Memory registrations not supported.\n");
461 goto out_free_mr;
462 }
463
464 list_add(&ndev->entry, &device_list);
465 out_unlock:
466 mutex_unlock(&device_list_mutex);
467 return ndev;
468
469 out_free_mr:
470 if (!register_always)
471 ib_dereg_mr(ndev->mr);
472 out_free_pd:
473 ib_dealloc_pd(ndev->pd);
474 out_free_dev:
475 kfree(ndev);
476 out_err:
477 mutex_unlock(&device_list_mutex);
478 return NULL;
479 }
480
481 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
482 {
483 struct nvme_rdma_device *dev = queue->device;
484 struct ib_device *ibdev = dev->dev;
485
486 rdma_destroy_qp(queue->cm_id);
487 ib_free_cq(queue->ib_cq);
488
489 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
490 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491
492 nvme_rdma_dev_put(dev);
493 }
494
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
496 struct nvme_rdma_device *dev)
497 {
498 struct ib_device *ibdev = dev->dev;
499 const int send_wr_factor = 3; /* MR, SEND, INV */
500 const int cq_factor = send_wr_factor + 1; /* + RECV */
501 int comp_vector, idx = nvme_rdma_queue_idx(queue);
502
503 int ret;
504
505 queue->device = dev;
506
507 /*
508 * The admin queue is barely used once the controller is live, so don't
509 * bother to spread it out.
510 */
511 if (idx == 0)
512 comp_vector = 0;
513 else
514 comp_vector = idx % ibdev->num_comp_vectors;
515
516
517 /* +1 for ib_stop_cq */
518 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
519 cq_factor * queue->queue_size + 1, comp_vector,
520 IB_POLL_SOFTIRQ);
521 if (IS_ERR(queue->ib_cq)) {
522 ret = PTR_ERR(queue->ib_cq);
523 goto out;
524 }
525
526 ret = nvme_rdma_create_qp(queue, send_wr_factor);
527 if (ret)
528 goto out_destroy_ib_cq;
529
530 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
531 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
532 if (!queue->rsp_ring) {
533 ret = -ENOMEM;
534 goto out_destroy_qp;
535 }
536
537 return 0;
538
539 out_destroy_qp:
540 ib_destroy_qp(queue->qp);
541 out_destroy_ib_cq:
542 ib_free_cq(queue->ib_cq);
543 out:
544 return ret;
545 }
546
547 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
548 int idx, size_t queue_size)
549 {
550 struct nvme_rdma_queue *queue;
551 int ret;
552
553 queue = &ctrl->queues[idx];
554 queue->ctrl = ctrl;
555 init_completion(&queue->cm_done);
556
557 if (idx > 0)
558 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
559 else
560 queue->cmnd_capsule_len = sizeof(struct nvme_command);
561
562 queue->queue_size = queue_size;
563
564 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
565 RDMA_PS_TCP, IB_QPT_RC);
566 if (IS_ERR(queue->cm_id)) {
567 dev_info(ctrl->ctrl.device,
568 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
569 return PTR_ERR(queue->cm_id);
570 }
571
572 queue->cm_error = -ETIMEDOUT;
573 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
574 NVME_RDMA_CONNECT_TIMEOUT_MS);
575 if (ret) {
576 dev_info(ctrl->ctrl.device,
577 "rdma_resolve_addr failed (%d).\n", ret);
578 goto out_destroy_cm_id;
579 }
580
581 ret = nvme_rdma_wait_for_cm(queue);
582 if (ret) {
583 dev_info(ctrl->ctrl.device,
584 "rdma_resolve_addr wait failed (%d).\n", ret);
585 goto out_destroy_cm_id;
586 }
587
588 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
589
590 return 0;
591
592 out_destroy_cm_id:
593 rdma_destroy_id(queue->cm_id);
594 return ret;
595 }
596
597 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
598 {
599 rdma_disconnect(queue->cm_id);
600 ib_drain_qp(queue->qp);
601 }
602
603 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
604 {
605 nvme_rdma_destroy_queue_ib(queue);
606 rdma_destroy_id(queue->cm_id);
607 }
608
609 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
610 {
611 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
612 return;
613 nvme_rdma_stop_queue(queue);
614 nvme_rdma_free_queue(queue);
615 }
616
617 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
618 {
619 int i;
620
621 for (i = 1; i < ctrl->queue_count; i++)
622 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
623 }
624
625 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627 int i, ret = 0;
628
629 for (i = 1; i < ctrl->queue_count; i++) {
630 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
631 if (ret)
632 break;
633 }
634
635 return ret;
636 }
637
638 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
639 {
640 int i, ret;
641
642 for (i = 1; i < ctrl->queue_count; i++) {
643 ret = nvme_rdma_init_queue(ctrl, i,
644 ctrl->ctrl.opts->queue_size);
645 if (ret) {
646 dev_info(ctrl->ctrl.device,
647 "failed to initialize i/o queue: %d\n", ret);
648 goto out_free_queues;
649 }
650 }
651
652 return 0;
653
654 out_free_queues:
655 for (; i >= 1; i--)
656 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
657
658 return ret;
659 }
660
661 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
662 {
663 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
664 sizeof(struct nvme_command), DMA_TO_DEVICE);
665 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
666 blk_cleanup_queue(ctrl->ctrl.admin_q);
667 blk_mq_free_tag_set(&ctrl->admin_tag_set);
668 nvme_rdma_dev_put(ctrl->device);
669 }
670
671 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
672 {
673 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
674
675 if (list_empty(&ctrl->list))
676 goto free_ctrl;
677
678 mutex_lock(&nvme_rdma_ctrl_mutex);
679 list_del(&ctrl->list);
680 mutex_unlock(&nvme_rdma_ctrl_mutex);
681
682 kfree(ctrl->queues);
683 nvmf_free_options(nctrl->opts);
684 free_ctrl:
685 kfree(ctrl);
686 }
687
688 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
689 {
690 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
691 struct nvme_rdma_ctrl, reconnect_work);
692 bool changed;
693 int ret;
694
695 if (ctrl->queue_count > 1) {
696 nvme_rdma_free_io_queues(ctrl);
697
698 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
699 if (ret)
700 goto requeue;
701 }
702
703 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
704
705 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
706 if (ret)
707 goto requeue;
708
709 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
710 if (ret)
711 goto requeue;
712
713 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
714
715 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
716 if (ret)
717 goto stop_admin_q;
718
719 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
720 if (ret)
721 goto stop_admin_q;
722
723 nvme_start_keep_alive(&ctrl->ctrl);
724
725 if (ctrl->queue_count > 1) {
726 ret = nvme_rdma_init_io_queues(ctrl);
727 if (ret)
728 goto stop_admin_q;
729
730 ret = nvme_rdma_connect_io_queues(ctrl);
731 if (ret)
732 goto stop_admin_q;
733 }
734
735 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
736 WARN_ON_ONCE(!changed);
737
738 if (ctrl->queue_count > 1) {
739 nvme_start_queues(&ctrl->ctrl);
740 nvme_queue_scan(&ctrl->ctrl);
741 nvme_queue_async_events(&ctrl->ctrl);
742 }
743
744 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
745
746 return;
747
748 stop_admin_q:
749 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
750 requeue:
751 /* Make sure we are not resetting/deleting */
752 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
753 dev_info(ctrl->ctrl.device,
754 "Failed reconnect attempt, requeueing...\n");
755 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
756 ctrl->reconnect_delay * HZ);
757 }
758 }
759
760 static void nvme_rdma_error_recovery_work(struct work_struct *work)
761 {
762 struct nvme_rdma_ctrl *ctrl = container_of(work,
763 struct nvme_rdma_ctrl, err_work);
764
765 nvme_stop_keep_alive(&ctrl->ctrl);
766 if (ctrl->queue_count > 1)
767 nvme_stop_queues(&ctrl->ctrl);
768 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
769
770 /* We must take care of fastfail/requeue all our inflight requests */
771 if (ctrl->queue_count > 1)
772 blk_mq_tagset_busy_iter(&ctrl->tag_set,
773 nvme_cancel_request, &ctrl->ctrl);
774 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
775 nvme_cancel_request, &ctrl->ctrl);
776
777 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
778 ctrl->reconnect_delay);
779
780 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
781 ctrl->reconnect_delay * HZ);
782 }
783
784 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
785 {
786 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
787 return;
788
789 queue_work(nvme_rdma_wq, &ctrl->err_work);
790 }
791
792 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
793 const char *op)
794 {
795 struct nvme_rdma_queue *queue = cq->cq_context;
796 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
797
798 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
799 dev_info(ctrl->ctrl.device,
800 "%s for CQE 0x%p failed with status %s (%d)\n",
801 op, wc->wr_cqe,
802 ib_wc_status_msg(wc->status), wc->status);
803 nvme_rdma_error_recovery(ctrl);
804 }
805
806 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
807 {
808 if (unlikely(wc->status != IB_WC_SUCCESS))
809 nvme_rdma_wr_error(cq, wc, "MEMREG");
810 }
811
812 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
813 {
814 if (unlikely(wc->status != IB_WC_SUCCESS))
815 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
816 }
817
818 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
819 struct nvme_rdma_request *req)
820 {
821 struct ib_send_wr *bad_wr;
822 struct ib_send_wr wr = {
823 .opcode = IB_WR_LOCAL_INV,
824 .next = NULL,
825 .num_sge = 0,
826 .send_flags = 0,
827 .ex.invalidate_rkey = req->mr->rkey,
828 };
829
830 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
831 wr.wr_cqe = &req->reg_cqe;
832
833 return ib_post_send(queue->qp, &wr, &bad_wr);
834 }
835
836 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
837 struct request *rq)
838 {
839 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
840 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
841 struct nvme_rdma_device *dev = queue->device;
842 struct ib_device *ibdev = dev->dev;
843 int res;
844
845 if (!blk_rq_bytes(rq))
846 return;
847
848 if (req->mr->need_inval) {
849 res = nvme_rdma_inv_rkey(queue, req);
850 if (res < 0) {
851 dev_err(ctrl->ctrl.device,
852 "Queueing INV WR for rkey %#x failed (%d)\n",
853 req->mr->rkey, res);
854 nvme_rdma_error_recovery(queue->ctrl);
855 }
856 }
857
858 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
859 req->nents, rq_data_dir(rq) ==
860 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
861
862 nvme_cleanup_cmd(rq);
863 sg_free_table_chained(&req->sg_table, true);
864 }
865
866 static int nvme_rdma_set_sg_null(struct nvme_command *c)
867 {
868 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
869
870 sg->addr = 0;
871 put_unaligned_le24(0, sg->length);
872 put_unaligned_le32(0, sg->key);
873 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
874 return 0;
875 }
876
877 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
878 struct nvme_rdma_request *req, struct nvme_command *c)
879 {
880 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
881
882 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
883 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
884 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
885
886 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
887 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
888 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
889
890 req->inline_data = true;
891 req->num_sge++;
892 return 0;
893 }
894
895 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
896 struct nvme_rdma_request *req, struct nvme_command *c)
897 {
898 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
899
900 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
901 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
902 put_unaligned_le32(queue->device->mr->rkey, sg->key);
903 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
904 return 0;
905 }
906
907 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
908 struct nvme_rdma_request *req, struct nvme_command *c,
909 int count)
910 {
911 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
912 int nr;
913
914 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
915 if (nr < count) {
916 if (nr < 0)
917 return nr;
918 return -EINVAL;
919 }
920
921 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
922
923 req->reg_cqe.done = nvme_rdma_memreg_done;
924 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
925 req->reg_wr.wr.opcode = IB_WR_REG_MR;
926 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
927 req->reg_wr.wr.num_sge = 0;
928 req->reg_wr.mr = req->mr;
929 req->reg_wr.key = req->mr->rkey;
930 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
931 IB_ACCESS_REMOTE_READ |
932 IB_ACCESS_REMOTE_WRITE;
933
934 req->mr->need_inval = true;
935
936 sg->addr = cpu_to_le64(req->mr->iova);
937 put_unaligned_le24(req->mr->length, sg->length);
938 put_unaligned_le32(req->mr->rkey, sg->key);
939 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
940 NVME_SGL_FMT_INVALIDATE;
941
942 return 0;
943 }
944
945 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
946 struct request *rq, unsigned int map_len,
947 struct nvme_command *c)
948 {
949 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
950 struct nvme_rdma_device *dev = queue->device;
951 struct ib_device *ibdev = dev->dev;
952 int nents, count;
953 int ret;
954
955 req->num_sge = 1;
956 req->inline_data = false;
957 req->mr->need_inval = false;
958
959 c->common.flags |= NVME_CMD_SGL_METABUF;
960
961 if (!blk_rq_bytes(rq))
962 return nvme_rdma_set_sg_null(c);
963
964 req->sg_table.sgl = req->first_sgl;
965 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
966 req->sg_table.sgl);
967 if (ret)
968 return -ENOMEM;
969
970 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
971 BUG_ON(nents > rq->nr_phys_segments);
972 req->nents = nents;
973
974 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
975 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
976 if (unlikely(count <= 0)) {
977 sg_free_table_chained(&req->sg_table, true);
978 return -EIO;
979 }
980
981 if (count == 1) {
982 if (rq_data_dir(rq) == WRITE &&
983 map_len <= nvme_rdma_inline_data_size(queue) &&
984 nvme_rdma_queue_idx(queue))
985 return nvme_rdma_map_sg_inline(queue, req, c);
986
987 if (!register_always)
988 return nvme_rdma_map_sg_single(queue, req, c);
989 }
990
991 return nvme_rdma_map_sg_fr(queue, req, c, count);
992 }
993
994 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
995 {
996 if (unlikely(wc->status != IB_WC_SUCCESS))
997 nvme_rdma_wr_error(cq, wc, "SEND");
998 }
999
1000 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1001 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1002 struct ib_send_wr *first, bool flush)
1003 {
1004 struct ib_send_wr wr, *bad_wr;
1005 int ret;
1006
1007 sge->addr = qe->dma;
1008 sge->length = sizeof(struct nvme_command),
1009 sge->lkey = queue->device->pd->local_dma_lkey;
1010
1011 qe->cqe.done = nvme_rdma_send_done;
1012
1013 wr.next = NULL;
1014 wr.wr_cqe = &qe->cqe;
1015 wr.sg_list = sge;
1016 wr.num_sge = num_sge;
1017 wr.opcode = IB_WR_SEND;
1018 wr.send_flags = 0;
1019
1020 /*
1021 * Unsignalled send completions are another giant desaster in the
1022 * IB Verbs spec: If we don't regularly post signalled sends
1023 * the send queue will fill up and only a QP reset will rescue us.
1024 * Would have been way to obvious to handle this in hardware or
1025 * at least the RDMA stack..
1026 *
1027 * This messy and racy code sniplet is copy and pasted from the iSER
1028 * initiator, and the magic '32' comes from there as well.
1029 *
1030 * Always signal the flushes. The magic request used for the flush
1031 * sequencer is not allocated in our driver's tagset and it's
1032 * triggered to be freed by blk_cleanup_queue(). So we need to
1033 * always mark it as signaled to ensure that the "wr_cqe", which is
1034 * embeded in request's payload, is not freed when __ib_process_cq()
1035 * calls wr_cqe->done().
1036 */
1037 if ((++queue->sig_count % 32) == 0 || flush)
1038 wr.send_flags |= IB_SEND_SIGNALED;
1039
1040 if (first)
1041 first->next = &wr;
1042 else
1043 first = &wr;
1044
1045 ret = ib_post_send(queue->qp, first, &bad_wr);
1046 if (ret) {
1047 dev_err(queue->ctrl->ctrl.device,
1048 "%s failed with error code %d\n", __func__, ret);
1049 }
1050 return ret;
1051 }
1052
1053 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1054 struct nvme_rdma_qe *qe)
1055 {
1056 struct ib_recv_wr wr, *bad_wr;
1057 struct ib_sge list;
1058 int ret;
1059
1060 list.addr = qe->dma;
1061 list.length = sizeof(struct nvme_completion);
1062 list.lkey = queue->device->pd->local_dma_lkey;
1063
1064 qe->cqe.done = nvme_rdma_recv_done;
1065
1066 wr.next = NULL;
1067 wr.wr_cqe = &qe->cqe;
1068 wr.sg_list = &list;
1069 wr.num_sge = 1;
1070
1071 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1072 if (ret) {
1073 dev_err(queue->ctrl->ctrl.device,
1074 "%s failed with error code %d\n", __func__, ret);
1075 }
1076 return ret;
1077 }
1078
1079 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1080 {
1081 u32 queue_idx = nvme_rdma_queue_idx(queue);
1082
1083 if (queue_idx == 0)
1084 return queue->ctrl->admin_tag_set.tags[queue_idx];
1085 return queue->ctrl->tag_set.tags[queue_idx - 1];
1086 }
1087
1088 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1089 {
1090 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1091 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1092 struct ib_device *dev = queue->device->dev;
1093 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1094 struct nvme_command *cmd = sqe->data;
1095 struct ib_sge sge;
1096 int ret;
1097
1098 if (WARN_ON_ONCE(aer_idx != 0))
1099 return;
1100
1101 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1102
1103 memset(cmd, 0, sizeof(*cmd));
1104 cmd->common.opcode = nvme_admin_async_event;
1105 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1106 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1107 nvme_rdma_set_sg_null(cmd);
1108
1109 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1110 DMA_TO_DEVICE);
1111
1112 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1113 WARN_ON_ONCE(ret);
1114 }
1115
1116 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1117 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1118 {
1119 u16 status = le16_to_cpu(cqe->status);
1120 struct request *rq;
1121 struct nvme_rdma_request *req;
1122 int ret = 0;
1123
1124 status >>= 1;
1125
1126 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1127 if (!rq) {
1128 dev_err(queue->ctrl->ctrl.device,
1129 "tag 0x%x on QP %#x not found\n",
1130 cqe->command_id, queue->qp->qp_num);
1131 nvme_rdma_error_recovery(queue->ctrl);
1132 return ret;
1133 }
1134 req = blk_mq_rq_to_pdu(rq);
1135
1136 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1137 memcpy(rq->special, cqe, sizeof(*cqe));
1138
1139 if (rq->tag == tag)
1140 ret = 1;
1141
1142 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1143 wc->ex.invalidate_rkey == req->mr->rkey)
1144 req->mr->need_inval = false;
1145
1146 blk_mq_complete_request(rq, status);
1147
1148 return ret;
1149 }
1150
1151 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1152 {
1153 struct nvme_rdma_qe *qe =
1154 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1155 struct nvme_rdma_queue *queue = cq->cq_context;
1156 struct ib_device *ibdev = queue->device->dev;
1157 struct nvme_completion *cqe = qe->data;
1158 const size_t len = sizeof(struct nvme_completion);
1159 int ret = 0;
1160
1161 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1162 nvme_rdma_wr_error(cq, wc, "RECV");
1163 return 0;
1164 }
1165
1166 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1167 /*
1168 * AEN requests are special as they don't time out and can
1169 * survive any kind of queue freeze and often don't respond to
1170 * aborts. We don't even bother to allocate a struct request
1171 * for them but rather special case them here.
1172 */
1173 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1174 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1175 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1176 else
1177 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1178 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1179
1180 nvme_rdma_post_recv(queue, qe);
1181 return ret;
1182 }
1183
1184 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1185 {
1186 __nvme_rdma_recv_done(cq, wc, -1);
1187 }
1188
1189 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1190 {
1191 int ret, i;
1192
1193 for (i = 0; i < queue->queue_size; i++) {
1194 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1195 if (ret)
1196 goto out_destroy_queue_ib;
1197 }
1198
1199 return 0;
1200
1201 out_destroy_queue_ib:
1202 nvme_rdma_destroy_queue_ib(queue);
1203 return ret;
1204 }
1205
1206 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1207 struct rdma_cm_event *ev)
1208 {
1209 if (ev->param.conn.private_data_len) {
1210 struct nvme_rdma_cm_rej *rej =
1211 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1212
1213 dev_err(queue->ctrl->ctrl.device,
1214 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1215 /* XXX: Think of something clever to do here... */
1216 } else {
1217 dev_err(queue->ctrl->ctrl.device,
1218 "Connect rejected, no private data.\n");
1219 }
1220
1221 return -ECONNRESET;
1222 }
1223
1224 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1225 {
1226 struct nvme_rdma_device *dev;
1227 int ret;
1228
1229 dev = nvme_rdma_find_get_device(queue->cm_id);
1230 if (!dev) {
1231 dev_err(queue->cm_id->device->dma_device,
1232 "no client data found!\n");
1233 return -ECONNREFUSED;
1234 }
1235
1236 ret = nvme_rdma_create_queue_ib(queue, dev);
1237 if (ret) {
1238 nvme_rdma_dev_put(dev);
1239 goto out;
1240 }
1241
1242 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1243 if (ret) {
1244 dev_err(queue->ctrl->ctrl.device,
1245 "rdma_resolve_route failed (%d).\n",
1246 queue->cm_error);
1247 goto out_destroy_queue;
1248 }
1249
1250 return 0;
1251
1252 out_destroy_queue:
1253 nvme_rdma_destroy_queue_ib(queue);
1254 out:
1255 return ret;
1256 }
1257
1258 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1259 {
1260 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1261 struct rdma_conn_param param = { };
1262 struct nvme_rdma_cm_req priv = { };
1263 int ret;
1264
1265 param.qp_num = queue->qp->qp_num;
1266 param.flow_control = 1;
1267
1268 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1269 /* maximum retry count */
1270 param.retry_count = 7;
1271 param.rnr_retry_count = 7;
1272 param.private_data = &priv;
1273 param.private_data_len = sizeof(priv);
1274
1275 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1276 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1277 /*
1278 * set the admin queue depth to the minimum size
1279 * specified by the Fabrics standard.
1280 */
1281 if (priv.qid == 0) {
1282 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1283 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1284 } else {
1285 /*
1286 * current interpretation of the fabrics spec
1287 * is at minimum you make hrqsize sqsize+1, or a
1288 * 1's based representation of sqsize.
1289 */
1290 priv.hrqsize = cpu_to_le16(queue->queue_size);
1291 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1292 }
1293
1294 ret = rdma_connect(queue->cm_id, &param);
1295 if (ret) {
1296 dev_err(ctrl->ctrl.device,
1297 "rdma_connect failed (%d).\n", ret);
1298 goto out_destroy_queue_ib;
1299 }
1300
1301 return 0;
1302
1303 out_destroy_queue_ib:
1304 nvme_rdma_destroy_queue_ib(queue);
1305 return ret;
1306 }
1307
1308 /**
1309 * nvme_rdma_device_unplug() - Handle RDMA device unplug
1310 * @queue: Queue that owns the cm_id that caught the event
1311 *
1312 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1313 * to unplug so we should take care of destroying our RDMA resources.
1314 * This event will be generated for each allocated cm_id.
1315 *
1316 * In our case, the RDMA resources are managed per controller and not
1317 * only per queue. So the way we handle this is we trigger an implicit
1318 * controller deletion upon the first DEVICE_REMOVAL event we see, and
1319 * hold the event inflight until the controller deletion is completed.
1320 *
1321 * One exception that we need to handle is the destruction of the cm_id
1322 * that caught the event. Since we hold the callout until the controller
1323 * deletion is completed, we'll deadlock if the controller deletion will
1324 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1325 * of destroying this queue before-hand, destroy the queue resources,
1326 * then queue the controller deletion which won't destroy this queue and
1327 * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
1328 */
1329 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1330 {
1331 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1332 int ret = 0;
1333
1334 /* Own the controller deletion */
1335 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1336 return 0;
1337
1338 dev_warn(ctrl->ctrl.device,
1339 "Got rdma device removal event, deleting ctrl\n");
1340
1341 /* Get rid of reconnect work if its running */
1342 cancel_delayed_work_sync(&ctrl->reconnect_work);
1343
1344 /* Disable the queue so ctrl delete won't free it */
1345 if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1346 /* Free this queue ourselves */
1347 nvme_rdma_stop_queue(queue);
1348 nvme_rdma_destroy_queue_ib(queue);
1349
1350 /* Return non-zero so the cm_id will destroy implicitly */
1351 ret = 1;
1352 }
1353
1354 /* Queue controller deletion */
1355 queue_work(nvme_rdma_wq, &ctrl->delete_work);
1356 flush_work(&ctrl->delete_work);
1357 return ret;
1358 }
1359
1360 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1361 struct rdma_cm_event *ev)
1362 {
1363 struct nvme_rdma_queue *queue = cm_id->context;
1364 int cm_error = 0;
1365
1366 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1367 rdma_event_msg(ev->event), ev->event,
1368 ev->status, cm_id);
1369
1370 switch (ev->event) {
1371 case RDMA_CM_EVENT_ADDR_RESOLVED:
1372 cm_error = nvme_rdma_addr_resolved(queue);
1373 break;
1374 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1375 cm_error = nvme_rdma_route_resolved(queue);
1376 break;
1377 case RDMA_CM_EVENT_ESTABLISHED:
1378 queue->cm_error = nvme_rdma_conn_established(queue);
1379 /* complete cm_done regardless of success/failure */
1380 complete(&queue->cm_done);
1381 return 0;
1382 case RDMA_CM_EVENT_REJECTED:
1383 cm_error = nvme_rdma_conn_rejected(queue, ev);
1384 break;
1385 case RDMA_CM_EVENT_ADDR_ERROR:
1386 case RDMA_CM_EVENT_ROUTE_ERROR:
1387 case RDMA_CM_EVENT_CONNECT_ERROR:
1388 case RDMA_CM_EVENT_UNREACHABLE:
1389 dev_dbg(queue->ctrl->ctrl.device,
1390 "CM error event %d\n", ev->event);
1391 cm_error = -ECONNRESET;
1392 break;
1393 case RDMA_CM_EVENT_DISCONNECTED:
1394 case RDMA_CM_EVENT_ADDR_CHANGE:
1395 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1396 dev_dbg(queue->ctrl->ctrl.device,
1397 "disconnect received - connection closed\n");
1398 nvme_rdma_error_recovery(queue->ctrl);
1399 break;
1400 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1401 /* return 1 means impliciy CM ID destroy */
1402 return nvme_rdma_device_unplug(queue);
1403 default:
1404 dev_err(queue->ctrl->ctrl.device,
1405 "Unexpected RDMA CM event (%d)\n", ev->event);
1406 nvme_rdma_error_recovery(queue->ctrl);
1407 break;
1408 }
1409
1410 if (cm_error) {
1411 queue->cm_error = cm_error;
1412 complete(&queue->cm_done);
1413 }
1414
1415 return 0;
1416 }
1417
1418 static enum blk_eh_timer_return
1419 nvme_rdma_timeout(struct request *rq, bool reserved)
1420 {
1421 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1422
1423 /* queue error recovery */
1424 nvme_rdma_error_recovery(req->queue->ctrl);
1425
1426 /* fail with DNR on cmd timeout */
1427 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1428
1429 return BLK_EH_HANDLED;
1430 }
1431
1432 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1433 const struct blk_mq_queue_data *bd)
1434 {
1435 struct nvme_ns *ns = hctx->queue->queuedata;
1436 struct nvme_rdma_queue *queue = hctx->driver_data;
1437 struct request *rq = bd->rq;
1438 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1439 struct nvme_rdma_qe *sqe = &req->sqe;
1440 struct nvme_command *c = sqe->data;
1441 bool flush = false;
1442 struct ib_device *dev;
1443 unsigned int map_len;
1444 int ret;
1445
1446 WARN_ON_ONCE(rq->tag < 0);
1447
1448 dev = queue->device->dev;
1449 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1450 sizeof(struct nvme_command), DMA_TO_DEVICE);
1451
1452 ret = nvme_setup_cmd(ns, rq, c);
1453 if (ret)
1454 return ret;
1455
1456 c->common.command_id = rq->tag;
1457 blk_mq_start_request(rq);
1458
1459 map_len = nvme_map_len(rq);
1460 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1461 if (ret < 0) {
1462 dev_err(queue->ctrl->ctrl.device,
1463 "Failed to map data (%d)\n", ret);
1464 nvme_cleanup_cmd(rq);
1465 goto err;
1466 }
1467
1468 ib_dma_sync_single_for_device(dev, sqe->dma,
1469 sizeof(struct nvme_command), DMA_TO_DEVICE);
1470
1471 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1472 flush = true;
1473 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1474 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1475 if (ret) {
1476 nvme_rdma_unmap_data(queue, rq);
1477 goto err;
1478 }
1479
1480 return BLK_MQ_RQ_QUEUE_OK;
1481 err:
1482 return (ret == -ENOMEM || ret == -EAGAIN) ?
1483 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1484 }
1485
1486 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1487 {
1488 struct nvme_rdma_queue *queue = hctx->driver_data;
1489 struct ib_cq *cq = queue->ib_cq;
1490 struct ib_wc wc;
1491 int found = 0;
1492
1493 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1494 while (ib_poll_cq(cq, 1, &wc) > 0) {
1495 struct ib_cqe *cqe = wc.wr_cqe;
1496
1497 if (cqe) {
1498 if (cqe->done == nvme_rdma_recv_done)
1499 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1500 else
1501 cqe->done(cq, &wc);
1502 }
1503 }
1504
1505 return found;
1506 }
1507
1508 static void nvme_rdma_complete_rq(struct request *rq)
1509 {
1510 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1511 struct nvme_rdma_queue *queue = req->queue;
1512 int error = 0;
1513
1514 nvme_rdma_unmap_data(queue, rq);
1515
1516 if (unlikely(rq->errors)) {
1517 if (nvme_req_needs_retry(rq, rq->errors)) {
1518 nvme_requeue_req(rq);
1519 return;
1520 }
1521
1522 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1523 error = rq->errors;
1524 else
1525 error = nvme_error_status(rq->errors);
1526 }
1527
1528 blk_mq_end_request(rq, error);
1529 }
1530
1531 static struct blk_mq_ops nvme_rdma_mq_ops = {
1532 .queue_rq = nvme_rdma_queue_rq,
1533 .complete = nvme_rdma_complete_rq,
1534 .map_queue = blk_mq_map_queue,
1535 .init_request = nvme_rdma_init_request,
1536 .exit_request = nvme_rdma_exit_request,
1537 .reinit_request = nvme_rdma_reinit_request,
1538 .init_hctx = nvme_rdma_init_hctx,
1539 .poll = nvme_rdma_poll,
1540 .timeout = nvme_rdma_timeout,
1541 };
1542
1543 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1544 .queue_rq = nvme_rdma_queue_rq,
1545 .complete = nvme_rdma_complete_rq,
1546 .map_queue = blk_mq_map_queue,
1547 .init_request = nvme_rdma_init_admin_request,
1548 .exit_request = nvme_rdma_exit_admin_request,
1549 .reinit_request = nvme_rdma_reinit_request,
1550 .init_hctx = nvme_rdma_init_admin_hctx,
1551 .timeout = nvme_rdma_timeout,
1552 };
1553
1554 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1555 {
1556 int error;
1557
1558 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1559 if (error)
1560 return error;
1561
1562 ctrl->device = ctrl->queues[0].device;
1563
1564 /*
1565 * We need a reference on the device as long as the tag_set is alive,
1566 * as the MRs in the request structures need a valid ib_device.
1567 */
1568 error = -EINVAL;
1569 if (!nvme_rdma_dev_get(ctrl->device))
1570 goto out_free_queue;
1571
1572 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1573 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1574
1575 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1576 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1577 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1578 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1579 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1580 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1581 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1582 ctrl->admin_tag_set.driver_data = ctrl;
1583 ctrl->admin_tag_set.nr_hw_queues = 1;
1584 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1585
1586 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1587 if (error)
1588 goto out_put_dev;
1589
1590 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1591 if (IS_ERR(ctrl->ctrl.admin_q)) {
1592 error = PTR_ERR(ctrl->ctrl.admin_q);
1593 goto out_free_tagset;
1594 }
1595
1596 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1597 if (error)
1598 goto out_cleanup_queue;
1599
1600 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1601 if (error) {
1602 dev_err(ctrl->ctrl.device,
1603 "prop_get NVME_REG_CAP failed\n");
1604 goto out_cleanup_queue;
1605 }
1606
1607 ctrl->ctrl.sqsize =
1608 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1609
1610 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1611 if (error)
1612 goto out_cleanup_queue;
1613
1614 ctrl->ctrl.max_hw_sectors =
1615 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1616
1617 error = nvme_init_identify(&ctrl->ctrl);
1618 if (error)
1619 goto out_cleanup_queue;
1620
1621 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1622 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1623 DMA_TO_DEVICE);
1624 if (error)
1625 goto out_cleanup_queue;
1626
1627 nvme_start_keep_alive(&ctrl->ctrl);
1628
1629 return 0;
1630
1631 out_cleanup_queue:
1632 blk_cleanup_queue(ctrl->ctrl.admin_q);
1633 out_free_tagset:
1634 /* disconnect and drain the queue before freeing the tagset */
1635 nvme_rdma_stop_queue(&ctrl->queues[0]);
1636 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1637 out_put_dev:
1638 nvme_rdma_dev_put(ctrl->device);
1639 out_free_queue:
1640 nvme_rdma_free_queue(&ctrl->queues[0]);
1641 return error;
1642 }
1643
1644 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1645 {
1646 nvme_stop_keep_alive(&ctrl->ctrl);
1647 cancel_work_sync(&ctrl->err_work);
1648 cancel_delayed_work_sync(&ctrl->reconnect_work);
1649
1650 if (ctrl->queue_count > 1) {
1651 nvme_stop_queues(&ctrl->ctrl);
1652 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1653 nvme_cancel_request, &ctrl->ctrl);
1654 nvme_rdma_free_io_queues(ctrl);
1655 }
1656
1657 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1658 nvme_shutdown_ctrl(&ctrl->ctrl);
1659
1660 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1661 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1662 nvme_cancel_request, &ctrl->ctrl);
1663 nvme_rdma_destroy_admin_queue(ctrl);
1664 }
1665
1666 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1667 {
1668 nvme_uninit_ctrl(&ctrl->ctrl);
1669 if (shutdown)
1670 nvme_rdma_shutdown_ctrl(ctrl);
1671
1672 if (ctrl->ctrl.tagset) {
1673 blk_cleanup_queue(ctrl->ctrl.connect_q);
1674 blk_mq_free_tag_set(&ctrl->tag_set);
1675 nvme_rdma_dev_put(ctrl->device);
1676 }
1677
1678 nvme_put_ctrl(&ctrl->ctrl);
1679 }
1680
1681 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1682 {
1683 struct nvme_rdma_ctrl *ctrl = container_of(work,
1684 struct nvme_rdma_ctrl, delete_work);
1685
1686 __nvme_rdma_remove_ctrl(ctrl, true);
1687 }
1688
1689 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1690 {
1691 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1692 return -EBUSY;
1693
1694 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1695 return -EBUSY;
1696
1697 return 0;
1698 }
1699
1700 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1701 {
1702 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1703 int ret;
1704
1705 ret = __nvme_rdma_del_ctrl(ctrl);
1706 if (ret)
1707 return ret;
1708
1709 flush_work(&ctrl->delete_work);
1710
1711 return 0;
1712 }
1713
1714 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1715 {
1716 struct nvme_rdma_ctrl *ctrl = container_of(work,
1717 struct nvme_rdma_ctrl, delete_work);
1718
1719 __nvme_rdma_remove_ctrl(ctrl, false);
1720 }
1721
1722 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1723 {
1724 struct nvme_rdma_ctrl *ctrl = container_of(work,
1725 struct nvme_rdma_ctrl, reset_work);
1726 int ret;
1727 bool changed;
1728
1729 nvme_rdma_shutdown_ctrl(ctrl);
1730
1731 ret = nvme_rdma_configure_admin_queue(ctrl);
1732 if (ret) {
1733 /* ctrl is already shutdown, just remove the ctrl */
1734 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1735 goto del_dead_ctrl;
1736 }
1737
1738 if (ctrl->queue_count > 1) {
1739 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1740 if (ret)
1741 goto del_dead_ctrl;
1742
1743 ret = nvme_rdma_init_io_queues(ctrl);
1744 if (ret)
1745 goto del_dead_ctrl;
1746
1747 ret = nvme_rdma_connect_io_queues(ctrl);
1748 if (ret)
1749 goto del_dead_ctrl;
1750 }
1751
1752 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1753 WARN_ON_ONCE(!changed);
1754
1755 if (ctrl->queue_count > 1) {
1756 nvme_start_queues(&ctrl->ctrl);
1757 nvme_queue_scan(&ctrl->ctrl);
1758 nvme_queue_async_events(&ctrl->ctrl);
1759 }
1760
1761 return;
1762
1763 del_dead_ctrl:
1764 /* Deleting this dead controller... */
1765 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1766 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1767 }
1768
1769 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1770 {
1771 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1772
1773 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1774 return -EBUSY;
1775
1776 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1777 return -EBUSY;
1778
1779 flush_work(&ctrl->reset_work);
1780
1781 return 0;
1782 }
1783
1784 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1785 .name = "rdma",
1786 .module = THIS_MODULE,
1787 .is_fabrics = true,
1788 .reg_read32 = nvmf_reg_read32,
1789 .reg_read64 = nvmf_reg_read64,
1790 .reg_write32 = nvmf_reg_write32,
1791 .reset_ctrl = nvme_rdma_reset_ctrl,
1792 .free_ctrl = nvme_rdma_free_ctrl,
1793 .submit_async_event = nvme_rdma_submit_async_event,
1794 .delete_ctrl = nvme_rdma_del_ctrl,
1795 .get_subsysnqn = nvmf_get_subsysnqn,
1796 .get_address = nvmf_get_address,
1797 };
1798
1799 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1800 {
1801 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1802 int ret;
1803
1804 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1805 if (ret)
1806 return ret;
1807
1808 ctrl->queue_count = opts->nr_io_queues + 1;
1809 if (ctrl->queue_count < 2)
1810 return 0;
1811
1812 dev_info(ctrl->ctrl.device,
1813 "creating %d I/O queues.\n", opts->nr_io_queues);
1814
1815 ret = nvme_rdma_init_io_queues(ctrl);
1816 if (ret)
1817 return ret;
1818
1819 /*
1820 * We need a reference on the device as long as the tag_set is alive,
1821 * as the MRs in the request structures need a valid ib_device.
1822 */
1823 ret = -EINVAL;
1824 if (!nvme_rdma_dev_get(ctrl->device))
1825 goto out_free_io_queues;
1826
1827 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1828 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1829 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1830 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1831 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1832 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1833 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1834 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1835 ctrl->tag_set.driver_data = ctrl;
1836 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1837 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1838
1839 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1840 if (ret)
1841 goto out_put_dev;
1842 ctrl->ctrl.tagset = &ctrl->tag_set;
1843
1844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1845 if (IS_ERR(ctrl->ctrl.connect_q)) {
1846 ret = PTR_ERR(ctrl->ctrl.connect_q);
1847 goto out_free_tag_set;
1848 }
1849
1850 ret = nvme_rdma_connect_io_queues(ctrl);
1851 if (ret)
1852 goto out_cleanup_connect_q;
1853
1854 return 0;
1855
1856 out_cleanup_connect_q:
1857 blk_cleanup_queue(ctrl->ctrl.connect_q);
1858 out_free_tag_set:
1859 blk_mq_free_tag_set(&ctrl->tag_set);
1860 out_put_dev:
1861 nvme_rdma_dev_put(ctrl->device);
1862 out_free_io_queues:
1863 nvme_rdma_free_io_queues(ctrl);
1864 return ret;
1865 }
1866
1867 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1868 {
1869 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1870 size_t buflen = strlen(p);
1871
1872 /* XXX: handle IPv6 addresses */
1873
1874 if (buflen > INET_ADDRSTRLEN)
1875 return -EINVAL;
1876 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1877 return -EINVAL;
1878 in_addr->sin_family = AF_INET;
1879 return 0;
1880 }
1881
1882 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1883 struct nvmf_ctrl_options *opts)
1884 {
1885 struct nvme_rdma_ctrl *ctrl;
1886 int ret;
1887 bool changed;
1888
1889 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1890 if (!ctrl)
1891 return ERR_PTR(-ENOMEM);
1892 ctrl->ctrl.opts = opts;
1893 INIT_LIST_HEAD(&ctrl->list);
1894
1895 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1896 if (ret) {
1897 pr_err("malformed IP address passed: %s\n", opts->traddr);
1898 goto out_free_ctrl;
1899 }
1900
1901 if (opts->mask & NVMF_OPT_TRSVCID) {
1902 u16 port;
1903
1904 ret = kstrtou16(opts->trsvcid, 0, &port);
1905 if (ret)
1906 goto out_free_ctrl;
1907
1908 ctrl->addr_in.sin_port = cpu_to_be16(port);
1909 } else {
1910 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1911 }
1912
1913 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1914 0 /* no quirks, we're perfect! */);
1915 if (ret)
1916 goto out_free_ctrl;
1917
1918 ctrl->reconnect_delay = opts->reconnect_delay;
1919 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1920 nvme_rdma_reconnect_ctrl_work);
1921 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1922 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1923 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1924 spin_lock_init(&ctrl->lock);
1925
1926 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1927 ctrl->ctrl.sqsize = opts->queue_size - 1;
1928 ctrl->ctrl.kato = opts->kato;
1929
1930 ret = -ENOMEM;
1931 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1932 GFP_KERNEL);
1933 if (!ctrl->queues)
1934 goto out_uninit_ctrl;
1935
1936 ret = nvme_rdma_configure_admin_queue(ctrl);
1937 if (ret)
1938 goto out_kfree_queues;
1939
1940 /* sanity check icdoff */
1941 if (ctrl->ctrl.icdoff) {
1942 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1943 goto out_remove_admin_queue;
1944 }
1945
1946 /* sanity check keyed sgls */
1947 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1948 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1949 goto out_remove_admin_queue;
1950 }
1951
1952 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1953 /* warn if maxcmd is lower than queue_size */
1954 dev_warn(ctrl->ctrl.device,
1955 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1956 opts->queue_size, ctrl->ctrl.maxcmd);
1957 opts->queue_size = ctrl->ctrl.maxcmd;
1958 }
1959
1960 if (opts->nr_io_queues) {
1961 ret = nvme_rdma_create_io_queues(ctrl);
1962 if (ret)
1963 goto out_remove_admin_queue;
1964 }
1965
1966 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1967 WARN_ON_ONCE(!changed);
1968
1969 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1970 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1971
1972 kref_get(&ctrl->ctrl.kref);
1973
1974 mutex_lock(&nvme_rdma_ctrl_mutex);
1975 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1976 mutex_unlock(&nvme_rdma_ctrl_mutex);
1977
1978 if (opts->nr_io_queues) {
1979 nvme_queue_scan(&ctrl->ctrl);
1980 nvme_queue_async_events(&ctrl->ctrl);
1981 }
1982
1983 return &ctrl->ctrl;
1984
1985 out_remove_admin_queue:
1986 nvme_stop_keep_alive(&ctrl->ctrl);
1987 nvme_rdma_destroy_admin_queue(ctrl);
1988 out_kfree_queues:
1989 kfree(ctrl->queues);
1990 out_uninit_ctrl:
1991 nvme_uninit_ctrl(&ctrl->ctrl);
1992 nvme_put_ctrl(&ctrl->ctrl);
1993 if (ret > 0)
1994 ret = -EIO;
1995 return ERR_PTR(ret);
1996 out_free_ctrl:
1997 kfree(ctrl);
1998 return ERR_PTR(ret);
1999 }
2000
2001 static struct nvmf_transport_ops nvme_rdma_transport = {
2002 .name = "rdma",
2003 .required_opts = NVMF_OPT_TRADDR,
2004 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
2005 .create_ctrl = nvme_rdma_create_ctrl,
2006 };
2007
2008 static int __init nvme_rdma_init_module(void)
2009 {
2010 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2011 if (!nvme_rdma_wq)
2012 return -ENOMEM;
2013
2014 nvmf_register_transport(&nvme_rdma_transport);
2015 return 0;
2016 }
2017
2018 static void __exit nvme_rdma_cleanup_module(void)
2019 {
2020 struct nvme_rdma_ctrl *ctrl;
2021
2022 nvmf_unregister_transport(&nvme_rdma_transport);
2023
2024 mutex_lock(&nvme_rdma_ctrl_mutex);
2025 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2026 __nvme_rdma_del_ctrl(ctrl);
2027 mutex_unlock(&nvme_rdma_ctrl_mutex);
2028
2029 destroy_workqueue(nvme_rdma_wq);
2030 }
2031
2032 module_init(nvme_rdma_init_module);
2033 module_exit(nvme_rdma_cleanup_module);
2034
2035 MODULE_LICENSE("GPL v2");
This page took 0.071966 seconds and 5 git commands to generate.