m68knommu: fix user a5 register being overwritten
[deliverable/linux.git] / drivers / pci / msi.c
1 /*
2 * File: msi.c
3 * Purpose: PCI Message Signaled Interrupt (MSI)
4 *
5 * Copyright (C) 2003-2004 Intel
6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7 * Copyright (C) 2016 Christoph Hellwig.
8 */
9
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/irqdomain.h>
24 #include <linux/of_irq.h>
25
26 #include "pci.h"
27
28 static int pci_msi_enable = 1;
29 int pci_msi_ignore_mask;
30
31 #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
32
33 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
34 static struct irq_domain *pci_msi_default_domain;
35 static DEFINE_MUTEX(pci_msi_domain_lock);
36
37 struct irq_domain * __weak arch_get_pci_msi_domain(struct pci_dev *dev)
38 {
39 return pci_msi_default_domain;
40 }
41
42 static struct irq_domain *pci_msi_get_domain(struct pci_dev *dev)
43 {
44 struct irq_domain *domain;
45
46 domain = dev_get_msi_domain(&dev->dev);
47 if (domain)
48 return domain;
49
50 return arch_get_pci_msi_domain(dev);
51 }
52
53 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
54 {
55 struct irq_domain *domain;
56
57 domain = pci_msi_get_domain(dev);
58 if (domain && irq_domain_is_hierarchy(domain))
59 return pci_msi_domain_alloc_irqs(domain, dev, nvec, type);
60
61 return arch_setup_msi_irqs(dev, nvec, type);
62 }
63
64 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
65 {
66 struct irq_domain *domain;
67
68 domain = pci_msi_get_domain(dev);
69 if (domain && irq_domain_is_hierarchy(domain))
70 pci_msi_domain_free_irqs(domain, dev);
71 else
72 arch_teardown_msi_irqs(dev);
73 }
74 #else
75 #define pci_msi_setup_msi_irqs arch_setup_msi_irqs
76 #define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs
77 #endif
78
79 /* Arch hooks */
80
81 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
82 {
83 struct msi_controller *chip = dev->bus->msi;
84 int err;
85
86 if (!chip || !chip->setup_irq)
87 return -EINVAL;
88
89 err = chip->setup_irq(chip, dev, desc);
90 if (err < 0)
91 return err;
92
93 irq_set_chip_data(desc->irq, chip);
94
95 return 0;
96 }
97
98 void __weak arch_teardown_msi_irq(unsigned int irq)
99 {
100 struct msi_controller *chip = irq_get_chip_data(irq);
101
102 if (!chip || !chip->teardown_irq)
103 return;
104
105 chip->teardown_irq(chip, irq);
106 }
107
108 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
109 {
110 struct msi_controller *chip = dev->bus->msi;
111 struct msi_desc *entry;
112 int ret;
113
114 if (chip && chip->setup_irqs)
115 return chip->setup_irqs(chip, dev, nvec, type);
116 /*
117 * If an architecture wants to support multiple MSI, it needs to
118 * override arch_setup_msi_irqs()
119 */
120 if (type == PCI_CAP_ID_MSI && nvec > 1)
121 return 1;
122
123 for_each_pci_msi_entry(entry, dev) {
124 ret = arch_setup_msi_irq(dev, entry);
125 if (ret < 0)
126 return ret;
127 if (ret > 0)
128 return -ENOSPC;
129 }
130
131 return 0;
132 }
133
134 /*
135 * We have a default implementation available as a separate non-weak
136 * function, as it is used by the Xen x86 PCI code
137 */
138 void default_teardown_msi_irqs(struct pci_dev *dev)
139 {
140 int i;
141 struct msi_desc *entry;
142
143 for_each_pci_msi_entry(entry, dev)
144 if (entry->irq)
145 for (i = 0; i < entry->nvec_used; i++)
146 arch_teardown_msi_irq(entry->irq + i);
147 }
148
149 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
150 {
151 return default_teardown_msi_irqs(dev);
152 }
153
154 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
155 {
156 struct msi_desc *entry;
157
158 entry = NULL;
159 if (dev->msix_enabled) {
160 for_each_pci_msi_entry(entry, dev) {
161 if (irq == entry->irq)
162 break;
163 }
164 } else if (dev->msi_enabled) {
165 entry = irq_get_msi_desc(irq);
166 }
167
168 if (entry)
169 __pci_write_msi_msg(entry, &entry->msg);
170 }
171
172 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
173 {
174 return default_restore_msi_irqs(dev);
175 }
176
177 static inline __attribute_const__ u32 msi_mask(unsigned x)
178 {
179 /* Don't shift by >= width of type */
180 if (x >= 5)
181 return 0xffffffff;
182 return (1 << (1 << x)) - 1;
183 }
184
185 /*
186 * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
187 * mask all MSI interrupts by clearing the MSI enable bit does not work
188 * reliably as devices without an INTx disable bit will then generate a
189 * level IRQ which will never be cleared.
190 */
191 u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
192 {
193 u32 mask_bits = desc->masked;
194
195 if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
196 return 0;
197
198 mask_bits &= ~mask;
199 mask_bits |= flag;
200 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
201 mask_bits);
202
203 return mask_bits;
204 }
205
206 static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
207 {
208 desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag);
209 }
210
211 static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
212 {
213 return desc->mask_base +
214 desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
215 }
216
217 /*
218 * This internal function does not flush PCI writes to the device.
219 * All users must ensure that they read from the device before either
220 * assuming that the device state is up to date, or returning out of this
221 * file. This saves a few milliseconds when initialising devices with lots
222 * of MSI-X interrupts.
223 */
224 u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
225 {
226 u32 mask_bits = desc->masked;
227
228 if (pci_msi_ignore_mask)
229 return 0;
230
231 mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
232 if (flag)
233 mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
234 writel(mask_bits, pci_msix_desc_addr(desc) + PCI_MSIX_ENTRY_VECTOR_CTRL);
235
236 return mask_bits;
237 }
238
239 static void msix_mask_irq(struct msi_desc *desc, u32 flag)
240 {
241 desc->masked = __pci_msix_desc_mask_irq(desc, flag);
242 }
243
244 static void msi_set_mask_bit(struct irq_data *data, u32 flag)
245 {
246 struct msi_desc *desc = irq_data_get_msi_desc(data);
247
248 if (desc->msi_attrib.is_msix) {
249 msix_mask_irq(desc, flag);
250 readl(desc->mask_base); /* Flush write to device */
251 } else {
252 unsigned offset = data->irq - desc->irq;
253 msi_mask_irq(desc, 1 << offset, flag << offset);
254 }
255 }
256
257 /**
258 * pci_msi_mask_irq - Generic irq chip callback to mask PCI/MSI interrupts
259 * @data: pointer to irqdata associated to that interrupt
260 */
261 void pci_msi_mask_irq(struct irq_data *data)
262 {
263 msi_set_mask_bit(data, 1);
264 }
265 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
266
267 /**
268 * pci_msi_unmask_irq - Generic irq chip callback to unmask PCI/MSI interrupts
269 * @data: pointer to irqdata associated to that interrupt
270 */
271 void pci_msi_unmask_irq(struct irq_data *data)
272 {
273 msi_set_mask_bit(data, 0);
274 }
275 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
276
277 void default_restore_msi_irqs(struct pci_dev *dev)
278 {
279 struct msi_desc *entry;
280
281 for_each_pci_msi_entry(entry, dev)
282 default_restore_msi_irq(dev, entry->irq);
283 }
284
285 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
286 {
287 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
288
289 BUG_ON(dev->current_state != PCI_D0);
290
291 if (entry->msi_attrib.is_msix) {
292 void __iomem *base = pci_msix_desc_addr(entry);
293
294 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
295 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
296 msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
297 } else {
298 int pos = dev->msi_cap;
299 u16 data;
300
301 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
302 &msg->address_lo);
303 if (entry->msi_attrib.is_64) {
304 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
305 &msg->address_hi);
306 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
307 } else {
308 msg->address_hi = 0;
309 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
310 }
311 msg->data = data;
312 }
313 }
314
315 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
316 {
317 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
318
319 if (dev->current_state != PCI_D0) {
320 /* Don't touch the hardware now */
321 } else if (entry->msi_attrib.is_msix) {
322 void __iomem *base = pci_msix_desc_addr(entry);
323
324 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
325 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
326 writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
327 } else {
328 int pos = dev->msi_cap;
329 u16 msgctl;
330
331 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
332 msgctl &= ~PCI_MSI_FLAGS_QSIZE;
333 msgctl |= entry->msi_attrib.multiple << 4;
334 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
335
336 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
337 msg->address_lo);
338 if (entry->msi_attrib.is_64) {
339 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
340 msg->address_hi);
341 pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
342 msg->data);
343 } else {
344 pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
345 msg->data);
346 }
347 }
348 entry->msg = *msg;
349 }
350
351 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
352 {
353 struct msi_desc *entry = irq_get_msi_desc(irq);
354
355 __pci_write_msi_msg(entry, msg);
356 }
357 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
358
359 static void free_msi_irqs(struct pci_dev *dev)
360 {
361 struct list_head *msi_list = dev_to_msi_list(&dev->dev);
362 struct msi_desc *entry, *tmp;
363 struct attribute **msi_attrs;
364 struct device_attribute *dev_attr;
365 int i, count = 0;
366
367 for_each_pci_msi_entry(entry, dev)
368 if (entry->irq)
369 for (i = 0; i < entry->nvec_used; i++)
370 BUG_ON(irq_has_action(entry->irq + i));
371
372 pci_msi_teardown_msi_irqs(dev);
373
374 list_for_each_entry_safe(entry, tmp, msi_list, list) {
375 if (entry->msi_attrib.is_msix) {
376 if (list_is_last(&entry->list, msi_list))
377 iounmap(entry->mask_base);
378 }
379
380 list_del(&entry->list);
381 kfree(entry);
382 }
383
384 if (dev->msi_irq_groups) {
385 sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
386 msi_attrs = dev->msi_irq_groups[0]->attrs;
387 while (msi_attrs[count]) {
388 dev_attr = container_of(msi_attrs[count],
389 struct device_attribute, attr);
390 kfree(dev_attr->attr.name);
391 kfree(dev_attr);
392 ++count;
393 }
394 kfree(msi_attrs);
395 kfree(dev->msi_irq_groups[0]);
396 kfree(dev->msi_irq_groups);
397 dev->msi_irq_groups = NULL;
398 }
399 }
400
401 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
402 {
403 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
404 pci_intx(dev, enable);
405 }
406
407 static void __pci_restore_msi_state(struct pci_dev *dev)
408 {
409 u16 control;
410 struct msi_desc *entry;
411
412 if (!dev->msi_enabled)
413 return;
414
415 entry = irq_get_msi_desc(dev->irq);
416
417 pci_intx_for_msi(dev, 0);
418 pci_msi_set_enable(dev, 0);
419 arch_restore_msi_irqs(dev);
420
421 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
422 msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
423 entry->masked);
424 control &= ~PCI_MSI_FLAGS_QSIZE;
425 control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
426 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
427 }
428
429 static void __pci_restore_msix_state(struct pci_dev *dev)
430 {
431 struct msi_desc *entry;
432
433 if (!dev->msix_enabled)
434 return;
435 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
436
437 /* route the table */
438 pci_intx_for_msi(dev, 0);
439 pci_msix_clear_and_set_ctrl(dev, 0,
440 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
441
442 arch_restore_msi_irqs(dev);
443 for_each_pci_msi_entry(entry, dev)
444 msix_mask_irq(entry, entry->masked);
445
446 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
447 }
448
449 void pci_restore_msi_state(struct pci_dev *dev)
450 {
451 __pci_restore_msi_state(dev);
452 __pci_restore_msix_state(dev);
453 }
454 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
455
456 static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
457 char *buf)
458 {
459 struct msi_desc *entry;
460 unsigned long irq;
461 int retval;
462
463 retval = kstrtoul(attr->attr.name, 10, &irq);
464 if (retval)
465 return retval;
466
467 entry = irq_get_msi_desc(irq);
468 if (entry)
469 return sprintf(buf, "%s\n",
470 entry->msi_attrib.is_msix ? "msix" : "msi");
471
472 return -ENODEV;
473 }
474
475 static int populate_msi_sysfs(struct pci_dev *pdev)
476 {
477 struct attribute **msi_attrs;
478 struct attribute *msi_attr;
479 struct device_attribute *msi_dev_attr;
480 struct attribute_group *msi_irq_group;
481 const struct attribute_group **msi_irq_groups;
482 struct msi_desc *entry;
483 int ret = -ENOMEM;
484 int num_msi = 0;
485 int count = 0;
486 int i;
487
488 /* Determine how many msi entries we have */
489 for_each_pci_msi_entry(entry, pdev)
490 num_msi += entry->nvec_used;
491 if (!num_msi)
492 return 0;
493
494 /* Dynamically create the MSI attributes for the PCI device */
495 msi_attrs = kzalloc(sizeof(void *) * (num_msi + 1), GFP_KERNEL);
496 if (!msi_attrs)
497 return -ENOMEM;
498 for_each_pci_msi_entry(entry, pdev) {
499 for (i = 0; i < entry->nvec_used; i++) {
500 msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
501 if (!msi_dev_attr)
502 goto error_attrs;
503 msi_attrs[count] = &msi_dev_attr->attr;
504
505 sysfs_attr_init(&msi_dev_attr->attr);
506 msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
507 entry->irq + i);
508 if (!msi_dev_attr->attr.name)
509 goto error_attrs;
510 msi_dev_attr->attr.mode = S_IRUGO;
511 msi_dev_attr->show = msi_mode_show;
512 ++count;
513 }
514 }
515
516 msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
517 if (!msi_irq_group)
518 goto error_attrs;
519 msi_irq_group->name = "msi_irqs";
520 msi_irq_group->attrs = msi_attrs;
521
522 msi_irq_groups = kzalloc(sizeof(void *) * 2, GFP_KERNEL);
523 if (!msi_irq_groups)
524 goto error_irq_group;
525 msi_irq_groups[0] = msi_irq_group;
526
527 ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
528 if (ret)
529 goto error_irq_groups;
530 pdev->msi_irq_groups = msi_irq_groups;
531
532 return 0;
533
534 error_irq_groups:
535 kfree(msi_irq_groups);
536 error_irq_group:
537 kfree(msi_irq_group);
538 error_attrs:
539 count = 0;
540 msi_attr = msi_attrs[count];
541 while (msi_attr) {
542 msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
543 kfree(msi_attr->name);
544 kfree(msi_dev_attr);
545 ++count;
546 msi_attr = msi_attrs[count];
547 }
548 kfree(msi_attrs);
549 return ret;
550 }
551
552 static struct msi_desc *msi_setup_entry(struct pci_dev *dev, int nvec)
553 {
554 u16 control;
555 struct msi_desc *entry;
556
557 /* MSI Entry Initialization */
558 entry = alloc_msi_entry(&dev->dev);
559 if (!entry)
560 return NULL;
561
562 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
563
564 entry->msi_attrib.is_msix = 0;
565 entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
566 entry->msi_attrib.entry_nr = 0;
567 entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT);
568 entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
569 entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
570 entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
571 entry->nvec_used = nvec;
572 entry->affinity = dev->irq_affinity;
573
574 if (control & PCI_MSI_FLAGS_64BIT)
575 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
576 else
577 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
578
579 /* Save the initial mask status */
580 if (entry->msi_attrib.maskbit)
581 pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
582
583 return entry;
584 }
585
586 static int msi_verify_entries(struct pci_dev *dev)
587 {
588 struct msi_desc *entry;
589
590 for_each_pci_msi_entry(entry, dev) {
591 if (!dev->no_64bit_msi || !entry->msg.address_hi)
592 continue;
593 dev_err(&dev->dev, "Device has broken 64-bit MSI but arch"
594 " tried to assign one above 4G\n");
595 return -EIO;
596 }
597 return 0;
598 }
599
600 /**
601 * msi_capability_init - configure device's MSI capability structure
602 * @dev: pointer to the pci_dev data structure of MSI device function
603 * @nvec: number of interrupts to allocate
604 *
605 * Setup the MSI capability structure of the device with the requested
606 * number of interrupts. A return value of zero indicates the successful
607 * setup of an entry with the new MSI irq. A negative return value indicates
608 * an error, and a positive return value indicates the number of interrupts
609 * which could have been allocated.
610 */
611 static int msi_capability_init(struct pci_dev *dev, int nvec)
612 {
613 struct msi_desc *entry;
614 int ret;
615 unsigned mask;
616
617 pci_msi_set_enable(dev, 0); /* Disable MSI during set up */
618
619 entry = msi_setup_entry(dev, nvec);
620 if (!entry)
621 return -ENOMEM;
622
623 /* All MSIs are unmasked by default, Mask them all */
624 mask = msi_mask(entry->msi_attrib.multi_cap);
625 msi_mask_irq(entry, mask, mask);
626
627 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
628
629 /* Configure MSI capability structure */
630 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
631 if (ret) {
632 msi_mask_irq(entry, mask, ~mask);
633 free_msi_irqs(dev);
634 return ret;
635 }
636
637 ret = msi_verify_entries(dev);
638 if (ret) {
639 msi_mask_irq(entry, mask, ~mask);
640 free_msi_irqs(dev);
641 return ret;
642 }
643
644 ret = populate_msi_sysfs(dev);
645 if (ret) {
646 msi_mask_irq(entry, mask, ~mask);
647 free_msi_irqs(dev);
648 return ret;
649 }
650
651 /* Set MSI enabled bits */
652 pci_intx_for_msi(dev, 0);
653 pci_msi_set_enable(dev, 1);
654 dev->msi_enabled = 1;
655
656 pcibios_free_irq(dev);
657 dev->irq = entry->irq;
658 return 0;
659 }
660
661 static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
662 {
663 resource_size_t phys_addr;
664 u32 table_offset;
665 unsigned long flags;
666 u8 bir;
667
668 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
669 &table_offset);
670 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
671 flags = pci_resource_flags(dev, bir);
672 if (!flags || (flags & IORESOURCE_UNSET))
673 return NULL;
674
675 table_offset &= PCI_MSIX_TABLE_OFFSET;
676 phys_addr = pci_resource_start(dev, bir) + table_offset;
677
678 return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
679 }
680
681 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
682 struct msix_entry *entries, int nvec)
683 {
684 const struct cpumask *mask = NULL;
685 struct msi_desc *entry;
686 int cpu = -1, i;
687
688 for (i = 0; i < nvec; i++) {
689 if (dev->irq_affinity) {
690 cpu = cpumask_next(cpu, dev->irq_affinity);
691 if (cpu >= nr_cpu_ids)
692 cpu = cpumask_first(dev->irq_affinity);
693 mask = cpumask_of(cpu);
694 }
695
696 entry = alloc_msi_entry(&dev->dev);
697 if (!entry) {
698 if (!i)
699 iounmap(base);
700 else
701 free_msi_irqs(dev);
702 /* No enough memory. Don't try again */
703 return -ENOMEM;
704 }
705
706 entry->msi_attrib.is_msix = 1;
707 entry->msi_attrib.is_64 = 1;
708 if (entries)
709 entry->msi_attrib.entry_nr = entries[i].entry;
710 else
711 entry->msi_attrib.entry_nr = i;
712 entry->msi_attrib.default_irq = dev->irq;
713 entry->mask_base = base;
714 entry->nvec_used = 1;
715 entry->affinity = mask;
716
717 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
718 }
719
720 return 0;
721 }
722
723 static void msix_program_entries(struct pci_dev *dev,
724 struct msix_entry *entries)
725 {
726 struct msi_desc *entry;
727 int i = 0;
728
729 for_each_pci_msi_entry(entry, dev) {
730 if (entries)
731 entries[i++].vector = entry->irq;
732 entry->masked = readl(pci_msix_desc_addr(entry) +
733 PCI_MSIX_ENTRY_VECTOR_CTRL);
734 msix_mask_irq(entry, 1);
735 }
736 }
737
738 /**
739 * msix_capability_init - configure device's MSI-X capability
740 * @dev: pointer to the pci_dev data structure of MSI-X device function
741 * @entries: pointer to an array of struct msix_entry entries
742 * @nvec: number of @entries
743 *
744 * Setup the MSI-X capability structure of device function with a
745 * single MSI-X irq. A return of zero indicates the successful setup of
746 * requested MSI-X entries with allocated irqs or non-zero for otherwise.
747 **/
748 static int msix_capability_init(struct pci_dev *dev,
749 struct msix_entry *entries, int nvec)
750 {
751 int ret;
752 u16 control;
753 void __iomem *base;
754
755 /* Ensure MSI-X is disabled while it is set up */
756 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
757
758 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
759 /* Request & Map MSI-X table region */
760 base = msix_map_region(dev, msix_table_size(control));
761 if (!base)
762 return -ENOMEM;
763
764 ret = msix_setup_entries(dev, base, entries, nvec);
765 if (ret)
766 return ret;
767
768 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
769 if (ret)
770 goto out_avail;
771
772 /* Check if all MSI entries honor device restrictions */
773 ret = msi_verify_entries(dev);
774 if (ret)
775 goto out_free;
776
777 /*
778 * Some devices require MSI-X to be enabled before we can touch the
779 * MSI-X registers. We need to mask all the vectors to prevent
780 * interrupts coming in before they're fully set up.
781 */
782 pci_msix_clear_and_set_ctrl(dev, 0,
783 PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE);
784
785 msix_program_entries(dev, entries);
786
787 ret = populate_msi_sysfs(dev);
788 if (ret)
789 goto out_free;
790
791 /* Set MSI-X enabled bits and unmask the function */
792 pci_intx_for_msi(dev, 0);
793 dev->msix_enabled = 1;
794 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
795
796 pcibios_free_irq(dev);
797 return 0;
798
799 out_avail:
800 if (ret < 0) {
801 /*
802 * If we had some success, report the number of irqs
803 * we succeeded in setting up.
804 */
805 struct msi_desc *entry;
806 int avail = 0;
807
808 for_each_pci_msi_entry(entry, dev) {
809 if (entry->irq != 0)
810 avail++;
811 }
812 if (avail != 0)
813 ret = avail;
814 }
815
816 out_free:
817 free_msi_irqs(dev);
818
819 return ret;
820 }
821
822 /**
823 * pci_msi_supported - check whether MSI may be enabled on a device
824 * @dev: pointer to the pci_dev data structure of MSI device function
825 * @nvec: how many MSIs have been requested ?
826 *
827 * Look at global flags, the device itself, and its parent buses
828 * to determine if MSI/-X are supported for the device. If MSI/-X is
829 * supported return 1, else return 0.
830 **/
831 static int pci_msi_supported(struct pci_dev *dev, int nvec)
832 {
833 struct pci_bus *bus;
834
835 /* MSI must be globally enabled and supported by the device */
836 if (!pci_msi_enable)
837 return 0;
838
839 if (!dev || dev->no_msi || dev->current_state != PCI_D0)
840 return 0;
841
842 /*
843 * You can't ask to have 0 or less MSIs configured.
844 * a) it's stupid ..
845 * b) the list manipulation code assumes nvec >= 1.
846 */
847 if (nvec < 1)
848 return 0;
849
850 /*
851 * Any bridge which does NOT route MSI transactions from its
852 * secondary bus to its primary bus must set NO_MSI flag on
853 * the secondary pci_bus.
854 * We expect only arch-specific PCI host bus controller driver
855 * or quirks for specific PCI bridges to be setting NO_MSI.
856 */
857 for (bus = dev->bus; bus; bus = bus->parent)
858 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
859 return 0;
860
861 return 1;
862 }
863
864 /**
865 * pci_msi_vec_count - Return the number of MSI vectors a device can send
866 * @dev: device to report about
867 *
868 * This function returns the number of MSI vectors a device requested via
869 * Multiple Message Capable register. It returns a negative errno if the
870 * device is not capable sending MSI interrupts. Otherwise, the call succeeds
871 * and returns a power of two, up to a maximum of 2^5 (32), according to the
872 * MSI specification.
873 **/
874 int pci_msi_vec_count(struct pci_dev *dev)
875 {
876 int ret;
877 u16 msgctl;
878
879 if (!dev->msi_cap)
880 return -EINVAL;
881
882 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
883 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
884
885 return ret;
886 }
887 EXPORT_SYMBOL(pci_msi_vec_count);
888
889 void pci_msi_shutdown(struct pci_dev *dev)
890 {
891 struct msi_desc *desc;
892 u32 mask;
893
894 if (!pci_msi_enable || !dev || !dev->msi_enabled)
895 return;
896
897 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
898 desc = first_pci_msi_entry(dev);
899
900 pci_msi_set_enable(dev, 0);
901 pci_intx_for_msi(dev, 1);
902 dev->msi_enabled = 0;
903
904 /* Return the device with MSI unmasked as initial states */
905 mask = msi_mask(desc->msi_attrib.multi_cap);
906 /* Keep cached state to be restored */
907 __pci_msi_desc_mask_irq(desc, mask, ~mask);
908
909 /* Restore dev->irq to its default pin-assertion irq */
910 dev->irq = desc->msi_attrib.default_irq;
911 pcibios_alloc_irq(dev);
912 }
913
914 void pci_disable_msi(struct pci_dev *dev)
915 {
916 if (!pci_msi_enable || !dev || !dev->msi_enabled)
917 return;
918
919 pci_msi_shutdown(dev);
920 free_msi_irqs(dev);
921 }
922 EXPORT_SYMBOL(pci_disable_msi);
923
924 /**
925 * pci_msix_vec_count - return the number of device's MSI-X table entries
926 * @dev: pointer to the pci_dev data structure of MSI-X device function
927 * This function returns the number of device's MSI-X table entries and
928 * therefore the number of MSI-X vectors device is capable of sending.
929 * It returns a negative errno if the device is not capable of sending MSI-X
930 * interrupts.
931 **/
932 int pci_msix_vec_count(struct pci_dev *dev)
933 {
934 u16 control;
935
936 if (!dev->msix_cap)
937 return -EINVAL;
938
939 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
940 return msix_table_size(control);
941 }
942 EXPORT_SYMBOL(pci_msix_vec_count);
943
944 /**
945 * pci_enable_msix - configure device's MSI-X capability structure
946 * @dev: pointer to the pci_dev data structure of MSI-X device function
947 * @entries: pointer to an array of MSI-X entries (optional)
948 * @nvec: number of MSI-X irqs requested for allocation by device driver
949 *
950 * Setup the MSI-X capability structure of device function with the number
951 * of requested irqs upon its software driver call to request for
952 * MSI-X mode enabled on its hardware device function. A return of zero
953 * indicates the successful configuration of MSI-X capability structure
954 * with new allocated MSI-X irqs. A return of < 0 indicates a failure.
955 * Or a return of > 0 indicates that driver request is exceeding the number
956 * of irqs or MSI-X vectors available. Driver should use the returned value to
957 * re-send its request.
958 **/
959 int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
960 {
961 int nr_entries;
962 int i, j;
963
964 if (!pci_msi_supported(dev, nvec))
965 return -EINVAL;
966
967 nr_entries = pci_msix_vec_count(dev);
968 if (nr_entries < 0)
969 return nr_entries;
970 if (nvec > nr_entries)
971 return nr_entries;
972
973 if (entries) {
974 /* Check for any invalid entries */
975 for (i = 0; i < nvec; i++) {
976 if (entries[i].entry >= nr_entries)
977 return -EINVAL; /* invalid entry */
978 for (j = i + 1; j < nvec; j++) {
979 if (entries[i].entry == entries[j].entry)
980 return -EINVAL; /* duplicate entry */
981 }
982 }
983 }
984 WARN_ON(!!dev->msix_enabled);
985
986 /* Check whether driver already requested for MSI irq */
987 if (dev->msi_enabled) {
988 dev_info(&dev->dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
989 return -EINVAL;
990 }
991 return msix_capability_init(dev, entries, nvec);
992 }
993 EXPORT_SYMBOL(pci_enable_msix);
994
995 void pci_msix_shutdown(struct pci_dev *dev)
996 {
997 struct msi_desc *entry;
998
999 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1000 return;
1001
1002 /* Return the device with MSI-X masked as initial states */
1003 for_each_pci_msi_entry(entry, dev) {
1004 /* Keep cached states to be restored */
1005 __pci_msix_desc_mask_irq(entry, 1);
1006 }
1007
1008 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1009 pci_intx_for_msi(dev, 1);
1010 dev->msix_enabled = 0;
1011 pcibios_alloc_irq(dev);
1012 }
1013
1014 void pci_disable_msix(struct pci_dev *dev)
1015 {
1016 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1017 return;
1018
1019 pci_msix_shutdown(dev);
1020 free_msi_irqs(dev);
1021 }
1022 EXPORT_SYMBOL(pci_disable_msix);
1023
1024 void pci_no_msi(void)
1025 {
1026 pci_msi_enable = 0;
1027 }
1028
1029 /**
1030 * pci_msi_enabled - is MSI enabled?
1031 *
1032 * Returns true if MSI has not been disabled by the command-line option
1033 * pci=nomsi.
1034 **/
1035 int pci_msi_enabled(void)
1036 {
1037 return pci_msi_enable;
1038 }
1039 EXPORT_SYMBOL(pci_msi_enabled);
1040
1041 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1042 unsigned int flags)
1043 {
1044 int nvec;
1045 int rc;
1046
1047 if (!pci_msi_supported(dev, minvec))
1048 return -EINVAL;
1049
1050 WARN_ON(!!dev->msi_enabled);
1051
1052 /* Check whether driver already requested MSI-X irqs */
1053 if (dev->msix_enabled) {
1054 dev_info(&dev->dev,
1055 "can't enable MSI (MSI-X already enabled)\n");
1056 return -EINVAL;
1057 }
1058
1059 if (maxvec < minvec)
1060 return -ERANGE;
1061
1062 nvec = pci_msi_vec_count(dev);
1063 if (nvec < 0)
1064 return nvec;
1065 if (nvec < minvec)
1066 return -EINVAL;
1067
1068 if (nvec > maxvec)
1069 nvec = maxvec;
1070
1071 for (;;) {
1072 if (!(flags & PCI_IRQ_NOAFFINITY)) {
1073 dev->irq_affinity = irq_create_affinity_mask(&nvec);
1074 if (nvec < minvec)
1075 return -ENOSPC;
1076 }
1077
1078 rc = msi_capability_init(dev, nvec);
1079 if (rc == 0)
1080 return nvec;
1081
1082 kfree(dev->irq_affinity);
1083 dev->irq_affinity = NULL;
1084
1085 if (rc < 0)
1086 return rc;
1087 if (rc < minvec)
1088 return -ENOSPC;
1089
1090 nvec = rc;
1091 }
1092 }
1093
1094 /**
1095 * pci_enable_msi_range - configure device's MSI capability structure
1096 * @dev: device to configure
1097 * @minvec: minimal number of interrupts to configure
1098 * @maxvec: maximum number of interrupts to configure
1099 *
1100 * This function tries to allocate a maximum possible number of interrupts in a
1101 * range between @minvec and @maxvec. It returns a negative errno if an error
1102 * occurs. If it succeeds, it returns the actual number of interrupts allocated
1103 * and updates the @dev's irq member to the lowest new interrupt number;
1104 * the other interrupt numbers allocated to this device are consecutive.
1105 **/
1106 int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec)
1107 {
1108 return __pci_enable_msi_range(dev, minvec, maxvec, PCI_IRQ_NOAFFINITY);
1109 }
1110 EXPORT_SYMBOL(pci_enable_msi_range);
1111
1112 static int __pci_enable_msix_range(struct pci_dev *dev,
1113 struct msix_entry *entries, int minvec, int maxvec,
1114 unsigned int flags)
1115 {
1116 int nvec = maxvec;
1117 int rc;
1118
1119 if (maxvec < minvec)
1120 return -ERANGE;
1121
1122 for (;;) {
1123 if (!(flags & PCI_IRQ_NOAFFINITY)) {
1124 dev->irq_affinity = irq_create_affinity_mask(&nvec);
1125 if (nvec < minvec)
1126 return -ENOSPC;
1127 }
1128
1129 rc = pci_enable_msix(dev, entries, nvec);
1130 if (rc == 0)
1131 return nvec;
1132
1133 kfree(dev->irq_affinity);
1134 dev->irq_affinity = NULL;
1135
1136 if (rc < 0)
1137 return rc;
1138 if (rc < minvec)
1139 return -ENOSPC;
1140
1141 nvec = rc;
1142 }
1143 }
1144
1145 /**
1146 * pci_enable_msix_range - configure device's MSI-X capability structure
1147 * @dev: pointer to the pci_dev data structure of MSI-X device function
1148 * @entries: pointer to an array of MSI-X entries
1149 * @minvec: minimum number of MSI-X irqs requested
1150 * @maxvec: maximum number of MSI-X irqs requested
1151 *
1152 * Setup the MSI-X capability structure of device function with a maximum
1153 * possible number of interrupts in the range between @minvec and @maxvec
1154 * upon its software driver call to request for MSI-X mode enabled on its
1155 * hardware device function. It returns a negative errno if an error occurs.
1156 * If it succeeds, it returns the actual number of interrupts allocated and
1157 * indicates the successful configuration of MSI-X capability structure
1158 * with new allocated MSI-X interrupts.
1159 **/
1160 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1161 int minvec, int maxvec)
1162 {
1163 return __pci_enable_msix_range(dev, entries, minvec, maxvec,
1164 PCI_IRQ_NOAFFINITY);
1165 }
1166 EXPORT_SYMBOL(pci_enable_msix_range);
1167
1168 /**
1169 * pci_alloc_irq_vectors - allocate multiple IRQs for a device
1170 * @dev: PCI device to operate on
1171 * @min_vecs: minimum number of vectors required (must be >= 1)
1172 * @max_vecs: maximum (desired) number of vectors
1173 * @flags: flags or quirks for the allocation
1174 *
1175 * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1176 * vectors if available, and fall back to a single legacy vector
1177 * if neither is available. Return the number of vectors allocated,
1178 * (which might be smaller than @max_vecs) if successful, or a negative
1179 * error code on error. If less than @min_vecs interrupt vectors are
1180 * available for @dev the function will fail with -ENOSPC.
1181 *
1182 * To get the Linux IRQ number used for a vector that can be passed to
1183 * request_irq() use the pci_irq_vector() helper.
1184 */
1185 int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,
1186 unsigned int max_vecs, unsigned int flags)
1187 {
1188 int vecs = -ENOSPC;
1189
1190 if (!(flags & PCI_IRQ_NOMSIX)) {
1191 vecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
1192 flags);
1193 if (vecs > 0)
1194 return vecs;
1195 }
1196
1197 if (!(flags & PCI_IRQ_NOMSI)) {
1198 vecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, flags);
1199 if (vecs > 0)
1200 return vecs;
1201 }
1202
1203 /* use legacy irq if allowed */
1204 if (!(flags & PCI_IRQ_NOLEGACY) && min_vecs == 1)
1205 return 1;
1206 return vecs;
1207 }
1208 EXPORT_SYMBOL(pci_alloc_irq_vectors);
1209
1210 /**
1211 * pci_free_irq_vectors - free previously allocated IRQs for a device
1212 * @dev: PCI device to operate on
1213 *
1214 * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1215 */
1216 void pci_free_irq_vectors(struct pci_dev *dev)
1217 {
1218 pci_disable_msix(dev);
1219 pci_disable_msi(dev);
1220 }
1221 EXPORT_SYMBOL(pci_free_irq_vectors);
1222
1223 /**
1224 * pci_irq_vector - return Linux IRQ number of a device vector
1225 * @dev: PCI device to operate on
1226 * @nr: device-relative interrupt vector index (0-based).
1227 */
1228 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1229 {
1230 if (dev->msix_enabled) {
1231 struct msi_desc *entry;
1232 int i = 0;
1233
1234 for_each_pci_msi_entry(entry, dev) {
1235 if (i == nr)
1236 return entry->irq;
1237 i++;
1238 }
1239 WARN_ON_ONCE(1);
1240 return -EINVAL;
1241 }
1242
1243 if (dev->msi_enabled) {
1244 struct msi_desc *entry = first_pci_msi_entry(dev);
1245
1246 if (WARN_ON_ONCE(nr >= entry->nvec_used))
1247 return -EINVAL;
1248 } else {
1249 if (WARN_ON_ONCE(nr > 0))
1250 return -EINVAL;
1251 }
1252
1253 return dev->irq + nr;
1254 }
1255 EXPORT_SYMBOL(pci_irq_vector);
1256
1257 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1258 {
1259 return to_pci_dev(desc->dev);
1260 }
1261 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1262
1263 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1264 {
1265 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1266
1267 return dev->bus->sysdata;
1268 }
1269 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1270
1271 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1272 /**
1273 * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1274 * @irq_data: Pointer to interrupt data of the MSI interrupt
1275 * @msg: Pointer to the message
1276 */
1277 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1278 {
1279 struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1280
1281 /*
1282 * For MSI-X desc->irq is always equal to irq_data->irq. For
1283 * MSI only the first interrupt of MULTI MSI passes the test.
1284 */
1285 if (desc->irq == irq_data->irq)
1286 __pci_write_msi_msg(desc, msg);
1287 }
1288
1289 /**
1290 * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1291 * @dev: Pointer to the PCI device
1292 * @desc: Pointer to the msi descriptor
1293 *
1294 * The ID number is only used within the irqdomain.
1295 */
1296 irq_hw_number_t pci_msi_domain_calc_hwirq(struct pci_dev *dev,
1297 struct msi_desc *desc)
1298 {
1299 return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1300 PCI_DEVID(dev->bus->number, dev->devfn) << 11 |
1301 (pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27;
1302 }
1303
1304 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1305 {
1306 return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1307 }
1308
1309 /**
1310 * pci_msi_domain_check_cap - Verify that @domain supports the capabilities for @dev
1311 * @domain: The interrupt domain to check
1312 * @info: The domain info for verification
1313 * @dev: The device to check
1314 *
1315 * Returns:
1316 * 0 if the functionality is supported
1317 * 1 if Multi MSI is requested, but the domain does not support it
1318 * -ENOTSUPP otherwise
1319 */
1320 int pci_msi_domain_check_cap(struct irq_domain *domain,
1321 struct msi_domain_info *info, struct device *dev)
1322 {
1323 struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1324
1325 /* Special handling to support pci_enable_msi_range() */
1326 if (pci_msi_desc_is_multi_msi(desc) &&
1327 !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1328 return 1;
1329 else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1330 return -ENOTSUPP;
1331
1332 return 0;
1333 }
1334
1335 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1336 struct msi_desc *desc, int error)
1337 {
1338 /* Special handling to support pci_enable_msi_range() */
1339 if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1340 return 1;
1341
1342 return error;
1343 }
1344
1345 #ifdef GENERIC_MSI_DOMAIN_OPS
1346 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1347 struct msi_desc *desc)
1348 {
1349 arg->desc = desc;
1350 arg->hwirq = pci_msi_domain_calc_hwirq(msi_desc_to_pci_dev(desc),
1351 desc);
1352 }
1353 #else
1354 #define pci_msi_domain_set_desc NULL
1355 #endif
1356
1357 static struct msi_domain_ops pci_msi_domain_ops_default = {
1358 .set_desc = pci_msi_domain_set_desc,
1359 .msi_check = pci_msi_domain_check_cap,
1360 .handle_error = pci_msi_domain_handle_error,
1361 };
1362
1363 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1364 {
1365 struct msi_domain_ops *ops = info->ops;
1366
1367 if (ops == NULL) {
1368 info->ops = &pci_msi_domain_ops_default;
1369 } else {
1370 if (ops->set_desc == NULL)
1371 ops->set_desc = pci_msi_domain_set_desc;
1372 if (ops->msi_check == NULL)
1373 ops->msi_check = pci_msi_domain_check_cap;
1374 if (ops->handle_error == NULL)
1375 ops->handle_error = pci_msi_domain_handle_error;
1376 }
1377 }
1378
1379 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1380 {
1381 struct irq_chip *chip = info->chip;
1382
1383 BUG_ON(!chip);
1384 if (!chip->irq_write_msi_msg)
1385 chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1386 if (!chip->irq_mask)
1387 chip->irq_mask = pci_msi_mask_irq;
1388 if (!chip->irq_unmask)
1389 chip->irq_unmask = pci_msi_unmask_irq;
1390 }
1391
1392 /**
1393 * pci_msi_create_irq_domain - Create a MSI interrupt domain
1394 * @fwnode: Optional fwnode of the interrupt controller
1395 * @info: MSI domain info
1396 * @parent: Parent irq domain
1397 *
1398 * Updates the domain and chip ops and creates a MSI interrupt domain.
1399 *
1400 * Returns:
1401 * A domain pointer or NULL in case of failure.
1402 */
1403 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1404 struct msi_domain_info *info,
1405 struct irq_domain *parent)
1406 {
1407 struct irq_domain *domain;
1408
1409 if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1410 pci_msi_domain_update_dom_ops(info);
1411 if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1412 pci_msi_domain_update_chip_ops(info);
1413
1414 domain = msi_create_irq_domain(fwnode, info, parent);
1415 if (!domain)
1416 return NULL;
1417
1418 domain->bus_token = DOMAIN_BUS_PCI_MSI;
1419 return domain;
1420 }
1421 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1422
1423 /**
1424 * pci_msi_domain_alloc_irqs - Allocate interrupts for @dev in @domain
1425 * @domain: The interrupt domain to allocate from
1426 * @dev: The device for which to allocate
1427 * @nvec: The number of interrupts to allocate
1428 * @type: Unused to allow simpler migration from the arch_XXX interfaces
1429 *
1430 * Returns:
1431 * A virtual interrupt number or an error code in case of failure
1432 */
1433 int pci_msi_domain_alloc_irqs(struct irq_domain *domain, struct pci_dev *dev,
1434 int nvec, int type)
1435 {
1436 return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
1437 }
1438
1439 /**
1440 * pci_msi_domain_free_irqs - Free interrupts for @dev in @domain
1441 * @domain: The interrupt domain
1442 * @dev: The device for which to free interrupts
1443 */
1444 void pci_msi_domain_free_irqs(struct irq_domain *domain, struct pci_dev *dev)
1445 {
1446 msi_domain_free_irqs(domain, &dev->dev);
1447 }
1448
1449 /**
1450 * pci_msi_create_default_irq_domain - Create a default MSI interrupt domain
1451 * @fwnode: Optional fwnode of the interrupt controller
1452 * @info: MSI domain info
1453 * @parent: Parent irq domain
1454 *
1455 * Returns: A domain pointer or NULL in case of failure. If successful
1456 * the default PCI/MSI irqdomain pointer is updated.
1457 */
1458 struct irq_domain *pci_msi_create_default_irq_domain(struct fwnode_handle *fwnode,
1459 struct msi_domain_info *info, struct irq_domain *parent)
1460 {
1461 struct irq_domain *domain;
1462
1463 mutex_lock(&pci_msi_domain_lock);
1464 if (pci_msi_default_domain) {
1465 pr_err("PCI: default irq domain for PCI MSI has already been created.\n");
1466 domain = NULL;
1467 } else {
1468 domain = pci_msi_create_irq_domain(fwnode, info, parent);
1469 pci_msi_default_domain = domain;
1470 }
1471 mutex_unlock(&pci_msi_domain_lock);
1472
1473 return domain;
1474 }
1475
1476 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1477 {
1478 u32 *pa = data;
1479
1480 *pa = alias;
1481 return 0;
1482 }
1483 /**
1484 * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1485 * @domain: The interrupt domain
1486 * @pdev: The PCI device.
1487 *
1488 * The RID for a device is formed from the alias, with a firmware
1489 * supplied mapping applied
1490 *
1491 * Returns: The RID.
1492 */
1493 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1494 {
1495 struct device_node *of_node;
1496 u32 rid = 0;
1497
1498 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1499
1500 of_node = irq_domain_get_of_node(domain);
1501 if (of_node)
1502 rid = of_msi_map_rid(&pdev->dev, of_node, rid);
1503
1504 return rid;
1505 }
1506
1507 /**
1508 * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1509 * @pdev: The PCI device
1510 *
1511 * Use the firmware data to find a device-specific MSI domain
1512 * (i.e. not one that is ste as a default).
1513 *
1514 * Returns: The coresponding MSI domain or NULL if none has been found.
1515 */
1516 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1517 {
1518 u32 rid = 0;
1519
1520 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1521 return of_msi_map_get_device_domain(&pdev->dev, rid);
1522 }
1523 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
This page took 0.064317 seconds and 5 git commands to generate.