Merge tag 'pci-v4.5-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include <linux/aer.h>
31 #include "pci.h"
32
33 const char *pci_power_names[] = {
34 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 };
36 EXPORT_SYMBOL_GPL(pci_power_names);
37
38 int isa_dma_bridge_buggy;
39 EXPORT_SYMBOL(isa_dma_bridge_buggy);
40
41 int pci_pci_problems;
42 EXPORT_SYMBOL(pci_pci_problems);
43
44 unsigned int pci_pm_d3_delay;
45
46 static void pci_pme_list_scan(struct work_struct *work);
47
48 static LIST_HEAD(pci_pme_list);
49 static DEFINE_MUTEX(pci_pme_list_mutex);
50 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
51
52 struct pci_pme_device {
53 struct list_head list;
54 struct pci_dev *dev;
55 };
56
57 #define PME_TIMEOUT 1000 /* How long between PME checks */
58
59 static void pci_dev_d3_sleep(struct pci_dev *dev)
60 {
61 unsigned int delay = dev->d3_delay;
62
63 if (delay < pci_pm_d3_delay)
64 delay = pci_pm_d3_delay;
65
66 msleep(delay);
67 }
68
69 #ifdef CONFIG_PCI_DOMAINS
70 int pci_domains_supported = 1;
71 #endif
72
73 #define DEFAULT_CARDBUS_IO_SIZE (256)
74 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
76 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
77 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
78
79 #define DEFAULT_HOTPLUG_IO_SIZE (256)
80 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
82 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
83 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
84
85 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
86
87 /*
88 * The default CLS is used if arch didn't set CLS explicitly and not
89 * all pci devices agree on the same value. Arch can override either
90 * the dfl or actual value as it sees fit. Don't forget this is
91 * measured in 32-bit words, not bytes.
92 */
93 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
94 u8 pci_cache_line_size;
95
96 /*
97 * If we set up a device for bus mastering, we need to check the latency
98 * timer as certain BIOSes forget to set it properly.
99 */
100 unsigned int pcibios_max_latency = 255;
101
102 /* If set, the PCIe ARI capability will not be used. */
103 static bool pcie_ari_disabled;
104
105 /**
106 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
107 * @bus: pointer to PCI bus structure to search
108 *
109 * Given a PCI bus, returns the highest PCI bus number present in the set
110 * including the given PCI bus and its list of child PCI buses.
111 */
112 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
113 {
114 struct pci_bus *tmp;
115 unsigned char max, n;
116
117 max = bus->busn_res.end;
118 list_for_each_entry(tmp, &bus->children, node) {
119 n = pci_bus_max_busnr(tmp);
120 if (n > max)
121 max = n;
122 }
123 return max;
124 }
125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
126
127 #ifdef CONFIG_HAS_IOMEM
128 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
129 {
130 struct resource *res = &pdev->resource[bar];
131
132 /*
133 * Make sure the BAR is actually a memory resource, not an IO resource
134 */
135 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
136 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
137 return NULL;
138 }
139 return ioremap_nocache(res->start, resource_size(res));
140 }
141 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
142
143 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
144 {
145 /*
146 * Make sure the BAR is actually a memory resource, not an IO resource
147 */
148 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
149 WARN_ON(1);
150 return NULL;
151 }
152 return ioremap_wc(pci_resource_start(pdev, bar),
153 pci_resource_len(pdev, bar));
154 }
155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
156 #endif
157
158
159 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
160 u8 pos, int cap, int *ttl)
161 {
162 u8 id;
163 u16 ent;
164
165 pci_bus_read_config_byte(bus, devfn, pos, &pos);
166
167 while ((*ttl)--) {
168 if (pos < 0x40)
169 break;
170 pos &= ~3;
171 pci_bus_read_config_word(bus, devfn, pos, &ent);
172
173 id = ent & 0xff;
174 if (id == 0xff)
175 break;
176 if (id == cap)
177 return pos;
178 pos = (ent >> 8);
179 }
180 return 0;
181 }
182
183 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap)
185 {
186 int ttl = PCI_FIND_CAP_TTL;
187
188 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
189 }
190
191 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
192 {
193 return __pci_find_next_cap(dev->bus, dev->devfn,
194 pos + PCI_CAP_LIST_NEXT, cap);
195 }
196 EXPORT_SYMBOL_GPL(pci_find_next_capability);
197
198 static int __pci_bus_find_cap_start(struct pci_bus *bus,
199 unsigned int devfn, u8 hdr_type)
200 {
201 u16 status;
202
203 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
204 if (!(status & PCI_STATUS_CAP_LIST))
205 return 0;
206
207 switch (hdr_type) {
208 case PCI_HEADER_TYPE_NORMAL:
209 case PCI_HEADER_TYPE_BRIDGE:
210 return PCI_CAPABILITY_LIST;
211 case PCI_HEADER_TYPE_CARDBUS:
212 return PCI_CB_CAPABILITY_LIST;
213 }
214
215 return 0;
216 }
217
218 /**
219 * pci_find_capability - query for devices' capabilities
220 * @dev: PCI device to query
221 * @cap: capability code
222 *
223 * Tell if a device supports a given PCI capability.
224 * Returns the address of the requested capability structure within the
225 * device's PCI configuration space or 0 in case the device does not
226 * support it. Possible values for @cap:
227 *
228 * %PCI_CAP_ID_PM Power Management
229 * %PCI_CAP_ID_AGP Accelerated Graphics Port
230 * %PCI_CAP_ID_VPD Vital Product Data
231 * %PCI_CAP_ID_SLOTID Slot Identification
232 * %PCI_CAP_ID_MSI Message Signalled Interrupts
233 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
234 * %PCI_CAP_ID_PCIX PCI-X
235 * %PCI_CAP_ID_EXP PCI Express
236 */
237 int pci_find_capability(struct pci_dev *dev, int cap)
238 {
239 int pos;
240
241 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
242 if (pos)
243 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
244
245 return pos;
246 }
247 EXPORT_SYMBOL(pci_find_capability);
248
249 /**
250 * pci_bus_find_capability - query for devices' capabilities
251 * @bus: the PCI bus to query
252 * @devfn: PCI device to query
253 * @cap: capability code
254 *
255 * Like pci_find_capability() but works for pci devices that do not have a
256 * pci_dev structure set up yet.
257 *
258 * Returns the address of the requested capability structure within the
259 * device's PCI configuration space or 0 in case the device does not
260 * support it.
261 */
262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 int pos;
265 u8 hdr_type;
266
267 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268
269 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 if (pos)
271 pos = __pci_find_next_cap(bus, devfn, pos, cap);
272
273 return pos;
274 }
275 EXPORT_SYMBOL(pci_bus_find_capability);
276
277 /**
278 * pci_find_next_ext_capability - Find an extended capability
279 * @dev: PCI device to query
280 * @start: address at which to start looking (0 to start at beginning of list)
281 * @cap: capability code
282 *
283 * Returns the address of the next matching extended capability structure
284 * within the device's PCI configuration space or 0 if the device does
285 * not support it. Some capabilities can occur several times, e.g., the
286 * vendor-specific capability, and this provides a way to find them all.
287 */
288 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
289 {
290 u32 header;
291 int ttl;
292 int pos = PCI_CFG_SPACE_SIZE;
293
294 /* minimum 8 bytes per capability */
295 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
296
297 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
298 return 0;
299
300 if (start)
301 pos = start;
302
303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 return 0;
305
306 /*
307 * If we have no capabilities, this is indicated by cap ID,
308 * cap version and next pointer all being 0.
309 */
310 if (header == 0)
311 return 0;
312
313 while (ttl-- > 0) {
314 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
315 return pos;
316
317 pos = PCI_EXT_CAP_NEXT(header);
318 if (pos < PCI_CFG_SPACE_SIZE)
319 break;
320
321 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
322 break;
323 }
324
325 return 0;
326 }
327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
328
329 /**
330 * pci_find_ext_capability - Find an extended capability
331 * @dev: PCI device to query
332 * @cap: capability code
333 *
334 * Returns the address of the requested extended capability structure
335 * within the device's PCI configuration space or 0 if the device does
336 * not support it. Possible values for @cap:
337 *
338 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
339 * %PCI_EXT_CAP_ID_VC Virtual Channel
340 * %PCI_EXT_CAP_ID_DSN Device Serial Number
341 * %PCI_EXT_CAP_ID_PWR Power Budgeting
342 */
343 int pci_find_ext_capability(struct pci_dev *dev, int cap)
344 {
345 return pci_find_next_ext_capability(dev, 0, cap);
346 }
347 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
348
349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
350 {
351 int rc, ttl = PCI_FIND_CAP_TTL;
352 u8 cap, mask;
353
354 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
355 mask = HT_3BIT_CAP_MASK;
356 else
357 mask = HT_5BIT_CAP_MASK;
358
359 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
360 PCI_CAP_ID_HT, &ttl);
361 while (pos) {
362 rc = pci_read_config_byte(dev, pos + 3, &cap);
363 if (rc != PCIBIOS_SUCCESSFUL)
364 return 0;
365
366 if ((cap & mask) == ht_cap)
367 return pos;
368
369 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
370 pos + PCI_CAP_LIST_NEXT,
371 PCI_CAP_ID_HT, &ttl);
372 }
373
374 return 0;
375 }
376 /**
377 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378 * @dev: PCI device to query
379 * @pos: Position from which to continue searching
380 * @ht_cap: Hypertransport capability code
381 *
382 * To be used in conjunction with pci_find_ht_capability() to search for
383 * all capabilities matching @ht_cap. @pos should always be a value returned
384 * from pci_find_ht_capability().
385 *
386 * NB. To be 100% safe against broken PCI devices, the caller should take
387 * steps to avoid an infinite loop.
388 */
389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
390 {
391 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
392 }
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
394
395 /**
396 * pci_find_ht_capability - query a device's Hypertransport capabilities
397 * @dev: PCI device to query
398 * @ht_cap: Hypertransport capability code
399 *
400 * Tell if a device supports a given Hypertransport capability.
401 * Returns an address within the device's PCI configuration space
402 * or 0 in case the device does not support the request capability.
403 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404 * which has a Hypertransport capability matching @ht_cap.
405 */
406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
407 {
408 int pos;
409
410 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
411 if (pos)
412 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
413
414 return pos;
415 }
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
417
418 /**
419 * pci_find_parent_resource - return resource region of parent bus of given region
420 * @dev: PCI device structure contains resources to be searched
421 * @res: child resource record for which parent is sought
422 *
423 * For given resource region of given device, return the resource
424 * region of parent bus the given region is contained in.
425 */
426 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
427 struct resource *res)
428 {
429 const struct pci_bus *bus = dev->bus;
430 struct resource *r;
431 int i;
432
433 pci_bus_for_each_resource(bus, r, i) {
434 if (!r)
435 continue;
436 if (res->start && resource_contains(r, res)) {
437
438 /*
439 * If the window is prefetchable but the BAR is
440 * not, the allocator made a mistake.
441 */
442 if (r->flags & IORESOURCE_PREFETCH &&
443 !(res->flags & IORESOURCE_PREFETCH))
444 return NULL;
445
446 /*
447 * If we're below a transparent bridge, there may
448 * be both a positively-decoded aperture and a
449 * subtractively-decoded region that contain the BAR.
450 * We want the positively-decoded one, so this depends
451 * on pci_bus_for_each_resource() giving us those
452 * first.
453 */
454 return r;
455 }
456 }
457 return NULL;
458 }
459 EXPORT_SYMBOL(pci_find_parent_resource);
460
461 /**
462 * pci_find_pcie_root_port - return PCIe Root Port
463 * @dev: PCI device to query
464 *
465 * Traverse up the parent chain and return the PCIe Root Port PCI Device
466 * for a given PCI Device.
467 */
468 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
469 {
470 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
471
472 bridge = pci_upstream_bridge(dev);
473 while (bridge && pci_is_pcie(bridge)) {
474 highest_pcie_bridge = bridge;
475 bridge = pci_upstream_bridge(bridge);
476 }
477
478 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
479 return NULL;
480
481 return highest_pcie_bridge;
482 }
483 EXPORT_SYMBOL(pci_find_pcie_root_port);
484
485 /**
486 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
487 * @dev: the PCI device to operate on
488 * @pos: config space offset of status word
489 * @mask: mask of bit(s) to care about in status word
490 *
491 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
492 */
493 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
494 {
495 int i;
496
497 /* Wait for Transaction Pending bit clean */
498 for (i = 0; i < 4; i++) {
499 u16 status;
500 if (i)
501 msleep((1 << (i - 1)) * 100);
502
503 pci_read_config_word(dev, pos, &status);
504 if (!(status & mask))
505 return 1;
506 }
507
508 return 0;
509 }
510
511 /**
512 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
513 * @dev: PCI device to have its BARs restored
514 *
515 * Restore the BAR values for a given device, so as to make it
516 * accessible by its driver.
517 */
518 static void pci_restore_bars(struct pci_dev *dev)
519 {
520 int i;
521
522 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
523 if (dev->is_virtfn)
524 return;
525
526 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
527 pci_update_resource(dev, i);
528 }
529
530 static const struct pci_platform_pm_ops *pci_platform_pm;
531
532 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
533 {
534 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
535 || !ops->sleep_wake)
536 return -EINVAL;
537 pci_platform_pm = ops;
538 return 0;
539 }
540
541 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
542 {
543 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
544 }
545
546 static inline int platform_pci_set_power_state(struct pci_dev *dev,
547 pci_power_t t)
548 {
549 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
550 }
551
552 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
553 {
554 return pci_platform_pm ?
555 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
556 }
557
558 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
559 {
560 return pci_platform_pm ?
561 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
562 }
563
564 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
565 {
566 return pci_platform_pm ?
567 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
568 }
569
570 static inline bool platform_pci_need_resume(struct pci_dev *dev)
571 {
572 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
573 }
574
575 /**
576 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
577 * given PCI device
578 * @dev: PCI device to handle.
579 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
580 *
581 * RETURN VALUE:
582 * -EINVAL if the requested state is invalid.
583 * -EIO if device does not support PCI PM or its PM capabilities register has a
584 * wrong version, or device doesn't support the requested state.
585 * 0 if device already is in the requested state.
586 * 0 if device's power state has been successfully changed.
587 */
588 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
589 {
590 u16 pmcsr;
591 bool need_restore = false;
592
593 /* Check if we're already there */
594 if (dev->current_state == state)
595 return 0;
596
597 if (!dev->pm_cap)
598 return -EIO;
599
600 if (state < PCI_D0 || state > PCI_D3hot)
601 return -EINVAL;
602
603 /* Validate current state:
604 * Can enter D0 from any state, but if we can only go deeper
605 * to sleep if we're already in a low power state
606 */
607 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
608 && dev->current_state > state) {
609 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
610 dev->current_state, state);
611 return -EINVAL;
612 }
613
614 /* check if this device supports the desired state */
615 if ((state == PCI_D1 && !dev->d1_support)
616 || (state == PCI_D2 && !dev->d2_support))
617 return -EIO;
618
619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620
621 /* If we're (effectively) in D3, force entire word to 0.
622 * This doesn't affect PME_Status, disables PME_En, and
623 * sets PowerState to 0.
624 */
625 switch (dev->current_state) {
626 case PCI_D0:
627 case PCI_D1:
628 case PCI_D2:
629 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
630 pmcsr |= state;
631 break;
632 case PCI_D3hot:
633 case PCI_D3cold:
634 case PCI_UNKNOWN: /* Boot-up */
635 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
636 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
637 need_restore = true;
638 /* Fall-through: force to D0 */
639 default:
640 pmcsr = 0;
641 break;
642 }
643
644 /* enter specified state */
645 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
646
647 /* Mandatory power management transition delays */
648 /* see PCI PM 1.1 5.6.1 table 18 */
649 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
650 pci_dev_d3_sleep(dev);
651 else if (state == PCI_D2 || dev->current_state == PCI_D2)
652 udelay(PCI_PM_D2_DELAY);
653
654 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
655 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
656 if (dev->current_state != state && printk_ratelimit())
657 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
658 dev->current_state);
659
660 /*
661 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
662 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
663 * from D3hot to D0 _may_ perform an internal reset, thereby
664 * going to "D0 Uninitialized" rather than "D0 Initialized".
665 * For example, at least some versions of the 3c905B and the
666 * 3c556B exhibit this behaviour.
667 *
668 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
669 * devices in a D3hot state at boot. Consequently, we need to
670 * restore at least the BARs so that the device will be
671 * accessible to its driver.
672 */
673 if (need_restore)
674 pci_restore_bars(dev);
675
676 if (dev->bus->self)
677 pcie_aspm_pm_state_change(dev->bus->self);
678
679 return 0;
680 }
681
682 /**
683 * pci_update_current_state - Read PCI power state of given device from its
684 * PCI PM registers and cache it
685 * @dev: PCI device to handle.
686 * @state: State to cache in case the device doesn't have the PM capability
687 */
688 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
689 {
690 if (dev->pm_cap) {
691 u16 pmcsr;
692
693 /*
694 * Configuration space is not accessible for device in
695 * D3cold, so just keep or set D3cold for safety
696 */
697 if (dev->current_state == PCI_D3cold)
698 return;
699 if (state == PCI_D3cold) {
700 dev->current_state = PCI_D3cold;
701 return;
702 }
703 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
704 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
705 } else {
706 dev->current_state = state;
707 }
708 }
709
710 /**
711 * pci_power_up - Put the given device into D0 forcibly
712 * @dev: PCI device to power up
713 */
714 void pci_power_up(struct pci_dev *dev)
715 {
716 if (platform_pci_power_manageable(dev))
717 platform_pci_set_power_state(dev, PCI_D0);
718
719 pci_raw_set_power_state(dev, PCI_D0);
720 pci_update_current_state(dev, PCI_D0);
721 }
722
723 /**
724 * pci_platform_power_transition - Use platform to change device power state
725 * @dev: PCI device to handle.
726 * @state: State to put the device into.
727 */
728 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
729 {
730 int error;
731
732 if (platform_pci_power_manageable(dev)) {
733 error = platform_pci_set_power_state(dev, state);
734 if (!error)
735 pci_update_current_state(dev, state);
736 } else
737 error = -ENODEV;
738
739 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
740 dev->current_state = PCI_D0;
741
742 return error;
743 }
744
745 /**
746 * pci_wakeup - Wake up a PCI device
747 * @pci_dev: Device to handle.
748 * @ign: ignored parameter
749 */
750 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
751 {
752 pci_wakeup_event(pci_dev);
753 pm_request_resume(&pci_dev->dev);
754 return 0;
755 }
756
757 /**
758 * pci_wakeup_bus - Walk given bus and wake up devices on it
759 * @bus: Top bus of the subtree to walk.
760 */
761 static void pci_wakeup_bus(struct pci_bus *bus)
762 {
763 if (bus)
764 pci_walk_bus(bus, pci_wakeup, NULL);
765 }
766
767 /**
768 * __pci_start_power_transition - Start power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
771 */
772 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
773 {
774 if (state == PCI_D0) {
775 pci_platform_power_transition(dev, PCI_D0);
776 /*
777 * Mandatory power management transition delays, see
778 * PCI Express Base Specification Revision 2.0 Section
779 * 6.6.1: Conventional Reset. Do not delay for
780 * devices powered on/off by corresponding bridge,
781 * because have already delayed for the bridge.
782 */
783 if (dev->runtime_d3cold) {
784 msleep(dev->d3cold_delay);
785 /*
786 * When powering on a bridge from D3cold, the
787 * whole hierarchy may be powered on into
788 * D0uninitialized state, resume them to give
789 * them a chance to suspend again
790 */
791 pci_wakeup_bus(dev->subordinate);
792 }
793 }
794 }
795
796 /**
797 * __pci_dev_set_current_state - Set current state of a PCI device
798 * @dev: Device to handle
799 * @data: pointer to state to be set
800 */
801 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
802 {
803 pci_power_t state = *(pci_power_t *)data;
804
805 dev->current_state = state;
806 return 0;
807 }
808
809 /**
810 * __pci_bus_set_current_state - Walk given bus and set current state of devices
811 * @bus: Top bus of the subtree to walk.
812 * @state: state to be set
813 */
814 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
815 {
816 if (bus)
817 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
818 }
819
820 /**
821 * __pci_complete_power_transition - Complete power transition of a PCI device
822 * @dev: PCI device to handle.
823 * @state: State to put the device into.
824 *
825 * This function should not be called directly by device drivers.
826 */
827 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
828 {
829 int ret;
830
831 if (state <= PCI_D0)
832 return -EINVAL;
833 ret = pci_platform_power_transition(dev, state);
834 /* Power off the bridge may power off the whole hierarchy */
835 if (!ret && state == PCI_D3cold)
836 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
840
841 /**
842 * pci_set_power_state - Set the power state of a PCI device
843 * @dev: PCI device to handle.
844 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
845 *
846 * Transition a device to a new power state, using the platform firmware and/or
847 * the device's PCI PM registers.
848 *
849 * RETURN VALUE:
850 * -EINVAL if the requested state is invalid.
851 * -EIO if device does not support PCI PM or its PM capabilities register has a
852 * wrong version, or device doesn't support the requested state.
853 * 0 if device already is in the requested state.
854 * 0 if device's power state has been successfully changed.
855 */
856 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
857 {
858 int error;
859
860 /* bound the state we're entering */
861 if (state > PCI_D3cold)
862 state = PCI_D3cold;
863 else if (state < PCI_D0)
864 state = PCI_D0;
865 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
866 /*
867 * If the device or the parent bridge do not support PCI PM,
868 * ignore the request if we're doing anything other than putting
869 * it into D0 (which would only happen on boot).
870 */
871 return 0;
872
873 /* Check if we're already there */
874 if (dev->current_state == state)
875 return 0;
876
877 __pci_start_power_transition(dev, state);
878
879 /* This device is quirked not to be put into D3, so
880 don't put it in D3 */
881 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
882 return 0;
883
884 /*
885 * To put device in D3cold, we put device into D3hot in native
886 * way, then put device into D3cold with platform ops
887 */
888 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
889 PCI_D3hot : state);
890
891 if (!__pci_complete_power_transition(dev, state))
892 error = 0;
893
894 return error;
895 }
896 EXPORT_SYMBOL(pci_set_power_state);
897
898 /**
899 * pci_choose_state - Choose the power state of a PCI device
900 * @dev: PCI device to be suspended
901 * @state: target sleep state for the whole system. This is the value
902 * that is passed to suspend() function.
903 *
904 * Returns PCI power state suitable for given device and given system
905 * message.
906 */
907
908 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
909 {
910 pci_power_t ret;
911
912 if (!dev->pm_cap)
913 return PCI_D0;
914
915 ret = platform_pci_choose_state(dev);
916 if (ret != PCI_POWER_ERROR)
917 return ret;
918
919 switch (state.event) {
920 case PM_EVENT_ON:
921 return PCI_D0;
922 case PM_EVENT_FREEZE:
923 case PM_EVENT_PRETHAW:
924 /* REVISIT both freeze and pre-thaw "should" use D0 */
925 case PM_EVENT_SUSPEND:
926 case PM_EVENT_HIBERNATE:
927 return PCI_D3hot;
928 default:
929 dev_info(&dev->dev, "unrecognized suspend event %d\n",
930 state.event);
931 BUG();
932 }
933 return PCI_D0;
934 }
935 EXPORT_SYMBOL(pci_choose_state);
936
937 #define PCI_EXP_SAVE_REGS 7
938
939 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
940 u16 cap, bool extended)
941 {
942 struct pci_cap_saved_state *tmp;
943
944 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
945 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
946 return tmp;
947 }
948 return NULL;
949 }
950
951 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
952 {
953 return _pci_find_saved_cap(dev, cap, false);
954 }
955
956 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
957 {
958 return _pci_find_saved_cap(dev, cap, true);
959 }
960
961 static int pci_save_pcie_state(struct pci_dev *dev)
962 {
963 int i = 0;
964 struct pci_cap_saved_state *save_state;
965 u16 *cap;
966
967 if (!pci_is_pcie(dev))
968 return 0;
969
970 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
971 if (!save_state) {
972 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
973 return -ENOMEM;
974 }
975
976 cap = (u16 *)&save_state->cap.data[0];
977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
978 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
979 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
980 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
981 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
982 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
983 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
984
985 return 0;
986 }
987
988 static void pci_restore_pcie_state(struct pci_dev *dev)
989 {
990 int i = 0;
991 struct pci_cap_saved_state *save_state;
992 u16 *cap;
993
994 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
995 if (!save_state)
996 return;
997
998 cap = (u16 *)&save_state->cap.data[0];
999 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1000 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1001 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1002 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1003 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1004 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1005 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1006 }
1007
1008
1009 static int pci_save_pcix_state(struct pci_dev *dev)
1010 {
1011 int pos;
1012 struct pci_cap_saved_state *save_state;
1013
1014 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1015 if (!pos)
1016 return 0;
1017
1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1019 if (!save_state) {
1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1021 return -ENOMEM;
1022 }
1023
1024 pci_read_config_word(dev, pos + PCI_X_CMD,
1025 (u16 *)save_state->cap.data);
1026
1027 return 0;
1028 }
1029
1030 static void pci_restore_pcix_state(struct pci_dev *dev)
1031 {
1032 int i = 0, pos;
1033 struct pci_cap_saved_state *save_state;
1034 u16 *cap;
1035
1036 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1037 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1038 if (!save_state || !pos)
1039 return;
1040 cap = (u16 *)&save_state->cap.data[0];
1041
1042 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1043 }
1044
1045
1046 /**
1047 * pci_save_state - save the PCI configuration space of a device before suspending
1048 * @dev: - PCI device that we're dealing with
1049 */
1050 int pci_save_state(struct pci_dev *dev)
1051 {
1052 int i;
1053 /* XXX: 100% dword access ok here? */
1054 for (i = 0; i < 16; i++)
1055 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1056 dev->state_saved = true;
1057
1058 i = pci_save_pcie_state(dev);
1059 if (i != 0)
1060 return i;
1061
1062 i = pci_save_pcix_state(dev);
1063 if (i != 0)
1064 return i;
1065
1066 return pci_save_vc_state(dev);
1067 }
1068 EXPORT_SYMBOL(pci_save_state);
1069
1070 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1071 u32 saved_val, int retry)
1072 {
1073 u32 val;
1074
1075 pci_read_config_dword(pdev, offset, &val);
1076 if (val == saved_val)
1077 return;
1078
1079 for (;;) {
1080 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1081 offset, val, saved_val);
1082 pci_write_config_dword(pdev, offset, saved_val);
1083 if (retry-- <= 0)
1084 return;
1085
1086 pci_read_config_dword(pdev, offset, &val);
1087 if (val == saved_val)
1088 return;
1089
1090 mdelay(1);
1091 }
1092 }
1093
1094 static void pci_restore_config_space_range(struct pci_dev *pdev,
1095 int start, int end, int retry)
1096 {
1097 int index;
1098
1099 for (index = end; index >= start; index--)
1100 pci_restore_config_dword(pdev, 4 * index,
1101 pdev->saved_config_space[index],
1102 retry);
1103 }
1104
1105 static void pci_restore_config_space(struct pci_dev *pdev)
1106 {
1107 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1108 pci_restore_config_space_range(pdev, 10, 15, 0);
1109 /* Restore BARs before the command register. */
1110 pci_restore_config_space_range(pdev, 4, 9, 10);
1111 pci_restore_config_space_range(pdev, 0, 3, 0);
1112 } else {
1113 pci_restore_config_space_range(pdev, 0, 15, 0);
1114 }
1115 }
1116
1117 /**
1118 * pci_restore_state - Restore the saved state of a PCI device
1119 * @dev: - PCI device that we're dealing with
1120 */
1121 void pci_restore_state(struct pci_dev *dev)
1122 {
1123 if (!dev->state_saved)
1124 return;
1125
1126 /* PCI Express register must be restored first */
1127 pci_restore_pcie_state(dev);
1128 pci_restore_ats_state(dev);
1129 pci_restore_vc_state(dev);
1130
1131 pci_cleanup_aer_error_status_regs(dev);
1132
1133 pci_restore_config_space(dev);
1134
1135 pci_restore_pcix_state(dev);
1136 pci_restore_msi_state(dev);
1137
1138 /* Restore ACS and IOV configuration state */
1139 pci_enable_acs(dev);
1140 pci_restore_iov_state(dev);
1141
1142 dev->state_saved = false;
1143 }
1144 EXPORT_SYMBOL(pci_restore_state);
1145
1146 struct pci_saved_state {
1147 u32 config_space[16];
1148 struct pci_cap_saved_data cap[0];
1149 };
1150
1151 /**
1152 * pci_store_saved_state - Allocate and return an opaque struct containing
1153 * the device saved state.
1154 * @dev: PCI device that we're dealing with
1155 *
1156 * Return NULL if no state or error.
1157 */
1158 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1159 {
1160 struct pci_saved_state *state;
1161 struct pci_cap_saved_state *tmp;
1162 struct pci_cap_saved_data *cap;
1163 size_t size;
1164
1165 if (!dev->state_saved)
1166 return NULL;
1167
1168 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1169
1170 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1171 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1172
1173 state = kzalloc(size, GFP_KERNEL);
1174 if (!state)
1175 return NULL;
1176
1177 memcpy(state->config_space, dev->saved_config_space,
1178 sizeof(state->config_space));
1179
1180 cap = state->cap;
1181 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1182 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1183 memcpy(cap, &tmp->cap, len);
1184 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1185 }
1186 /* Empty cap_save terminates list */
1187
1188 return state;
1189 }
1190 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1191
1192 /**
1193 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1194 * @dev: PCI device that we're dealing with
1195 * @state: Saved state returned from pci_store_saved_state()
1196 */
1197 int pci_load_saved_state(struct pci_dev *dev,
1198 struct pci_saved_state *state)
1199 {
1200 struct pci_cap_saved_data *cap;
1201
1202 dev->state_saved = false;
1203
1204 if (!state)
1205 return 0;
1206
1207 memcpy(dev->saved_config_space, state->config_space,
1208 sizeof(state->config_space));
1209
1210 cap = state->cap;
1211 while (cap->size) {
1212 struct pci_cap_saved_state *tmp;
1213
1214 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1215 if (!tmp || tmp->cap.size != cap->size)
1216 return -EINVAL;
1217
1218 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1219 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1220 sizeof(struct pci_cap_saved_data) + cap->size);
1221 }
1222
1223 dev->state_saved = true;
1224 return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1227
1228 /**
1229 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1230 * and free the memory allocated for it.
1231 * @dev: PCI device that we're dealing with
1232 * @state: Pointer to saved state returned from pci_store_saved_state()
1233 */
1234 int pci_load_and_free_saved_state(struct pci_dev *dev,
1235 struct pci_saved_state **state)
1236 {
1237 int ret = pci_load_saved_state(dev, *state);
1238 kfree(*state);
1239 *state = NULL;
1240 return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1243
1244 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1245 {
1246 return pci_enable_resources(dev, bars);
1247 }
1248
1249 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1250 {
1251 int err;
1252 struct pci_dev *bridge;
1253 u16 cmd;
1254 u8 pin;
1255
1256 err = pci_set_power_state(dev, PCI_D0);
1257 if (err < 0 && err != -EIO)
1258 return err;
1259
1260 bridge = pci_upstream_bridge(dev);
1261 if (bridge)
1262 pcie_aspm_powersave_config_link(bridge);
1263
1264 err = pcibios_enable_device(dev, bars);
1265 if (err < 0)
1266 return err;
1267 pci_fixup_device(pci_fixup_enable, dev);
1268
1269 if (dev->msi_enabled || dev->msix_enabled)
1270 return 0;
1271
1272 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1273 if (pin) {
1274 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1275 if (cmd & PCI_COMMAND_INTX_DISABLE)
1276 pci_write_config_word(dev, PCI_COMMAND,
1277 cmd & ~PCI_COMMAND_INTX_DISABLE);
1278 }
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * pci_reenable_device - Resume abandoned device
1285 * @dev: PCI device to be resumed
1286 *
1287 * Note this function is a backend of pci_default_resume and is not supposed
1288 * to be called by normal code, write proper resume handler and use it instead.
1289 */
1290 int pci_reenable_device(struct pci_dev *dev)
1291 {
1292 if (pci_is_enabled(dev))
1293 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(pci_reenable_device);
1297
1298 static void pci_enable_bridge(struct pci_dev *dev)
1299 {
1300 struct pci_dev *bridge;
1301 int retval;
1302
1303 bridge = pci_upstream_bridge(dev);
1304 if (bridge)
1305 pci_enable_bridge(bridge);
1306
1307 if (pci_is_enabled(dev)) {
1308 if (!dev->is_busmaster)
1309 pci_set_master(dev);
1310 return;
1311 }
1312
1313 retval = pci_enable_device(dev);
1314 if (retval)
1315 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1316 retval);
1317 pci_set_master(dev);
1318 }
1319
1320 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1321 {
1322 struct pci_dev *bridge;
1323 int err;
1324 int i, bars = 0;
1325
1326 /*
1327 * Power state could be unknown at this point, either due to a fresh
1328 * boot or a device removal call. So get the current power state
1329 * so that things like MSI message writing will behave as expected
1330 * (e.g. if the device really is in D0 at enable time).
1331 */
1332 if (dev->pm_cap) {
1333 u16 pmcsr;
1334 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1335 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1336 }
1337
1338 if (atomic_inc_return(&dev->enable_cnt) > 1)
1339 return 0; /* already enabled */
1340
1341 bridge = pci_upstream_bridge(dev);
1342 if (bridge)
1343 pci_enable_bridge(bridge);
1344
1345 /* only skip sriov related */
1346 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1347 if (dev->resource[i].flags & flags)
1348 bars |= (1 << i);
1349 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1350 if (dev->resource[i].flags & flags)
1351 bars |= (1 << i);
1352
1353 err = do_pci_enable_device(dev, bars);
1354 if (err < 0)
1355 atomic_dec(&dev->enable_cnt);
1356 return err;
1357 }
1358
1359 /**
1360 * pci_enable_device_io - Initialize a device for use with IO space
1361 * @dev: PCI device to be initialized
1362 *
1363 * Initialize device before it's used by a driver. Ask low-level code
1364 * to enable I/O resources. Wake up the device if it was suspended.
1365 * Beware, this function can fail.
1366 */
1367 int pci_enable_device_io(struct pci_dev *dev)
1368 {
1369 return pci_enable_device_flags(dev, IORESOURCE_IO);
1370 }
1371 EXPORT_SYMBOL(pci_enable_device_io);
1372
1373 /**
1374 * pci_enable_device_mem - Initialize a device for use with Memory space
1375 * @dev: PCI device to be initialized
1376 *
1377 * Initialize device before it's used by a driver. Ask low-level code
1378 * to enable Memory resources. Wake up the device if it was suspended.
1379 * Beware, this function can fail.
1380 */
1381 int pci_enable_device_mem(struct pci_dev *dev)
1382 {
1383 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1384 }
1385 EXPORT_SYMBOL(pci_enable_device_mem);
1386
1387 /**
1388 * pci_enable_device - Initialize device before it's used by a driver.
1389 * @dev: PCI device to be initialized
1390 *
1391 * Initialize device before it's used by a driver. Ask low-level code
1392 * to enable I/O and memory. Wake up the device if it was suspended.
1393 * Beware, this function can fail.
1394 *
1395 * Note we don't actually enable the device many times if we call
1396 * this function repeatedly (we just increment the count).
1397 */
1398 int pci_enable_device(struct pci_dev *dev)
1399 {
1400 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1401 }
1402 EXPORT_SYMBOL(pci_enable_device);
1403
1404 /*
1405 * Managed PCI resources. This manages device on/off, intx/msi/msix
1406 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1407 * there's no need to track it separately. pci_devres is initialized
1408 * when a device is enabled using managed PCI device enable interface.
1409 */
1410 struct pci_devres {
1411 unsigned int enabled:1;
1412 unsigned int pinned:1;
1413 unsigned int orig_intx:1;
1414 unsigned int restore_intx:1;
1415 u32 region_mask;
1416 };
1417
1418 static void pcim_release(struct device *gendev, void *res)
1419 {
1420 struct pci_dev *dev = to_pci_dev(gendev);
1421 struct pci_devres *this = res;
1422 int i;
1423
1424 if (dev->msi_enabled)
1425 pci_disable_msi(dev);
1426 if (dev->msix_enabled)
1427 pci_disable_msix(dev);
1428
1429 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1430 if (this->region_mask & (1 << i))
1431 pci_release_region(dev, i);
1432
1433 if (this->restore_intx)
1434 pci_intx(dev, this->orig_intx);
1435
1436 if (this->enabled && !this->pinned)
1437 pci_disable_device(dev);
1438 }
1439
1440 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1441 {
1442 struct pci_devres *dr, *new_dr;
1443
1444 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1445 if (dr)
1446 return dr;
1447
1448 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1449 if (!new_dr)
1450 return NULL;
1451 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1452 }
1453
1454 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1455 {
1456 if (pci_is_managed(pdev))
1457 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1458 return NULL;
1459 }
1460
1461 /**
1462 * pcim_enable_device - Managed pci_enable_device()
1463 * @pdev: PCI device to be initialized
1464 *
1465 * Managed pci_enable_device().
1466 */
1467 int pcim_enable_device(struct pci_dev *pdev)
1468 {
1469 struct pci_devres *dr;
1470 int rc;
1471
1472 dr = get_pci_dr(pdev);
1473 if (unlikely(!dr))
1474 return -ENOMEM;
1475 if (dr->enabled)
1476 return 0;
1477
1478 rc = pci_enable_device(pdev);
1479 if (!rc) {
1480 pdev->is_managed = 1;
1481 dr->enabled = 1;
1482 }
1483 return rc;
1484 }
1485 EXPORT_SYMBOL(pcim_enable_device);
1486
1487 /**
1488 * pcim_pin_device - Pin managed PCI device
1489 * @pdev: PCI device to pin
1490 *
1491 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1492 * driver detach. @pdev must have been enabled with
1493 * pcim_enable_device().
1494 */
1495 void pcim_pin_device(struct pci_dev *pdev)
1496 {
1497 struct pci_devres *dr;
1498
1499 dr = find_pci_dr(pdev);
1500 WARN_ON(!dr || !dr->enabled);
1501 if (dr)
1502 dr->pinned = 1;
1503 }
1504 EXPORT_SYMBOL(pcim_pin_device);
1505
1506 /*
1507 * pcibios_add_device - provide arch specific hooks when adding device dev
1508 * @dev: the PCI device being added
1509 *
1510 * Permits the platform to provide architecture specific functionality when
1511 * devices are added. This is the default implementation. Architecture
1512 * implementations can override this.
1513 */
1514 int __weak pcibios_add_device(struct pci_dev *dev)
1515 {
1516 return 0;
1517 }
1518
1519 /**
1520 * pcibios_release_device - provide arch specific hooks when releasing device dev
1521 * @dev: the PCI device being released
1522 *
1523 * Permits the platform to provide architecture specific functionality when
1524 * devices are released. This is the default implementation. Architecture
1525 * implementations can override this.
1526 */
1527 void __weak pcibios_release_device(struct pci_dev *dev) {}
1528
1529 /**
1530 * pcibios_disable_device - disable arch specific PCI resources for device dev
1531 * @dev: the PCI device to disable
1532 *
1533 * Disables architecture specific PCI resources for the device. This
1534 * is the default implementation. Architecture implementations can
1535 * override this.
1536 */
1537 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1538
1539 /**
1540 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1541 * @irq: ISA IRQ to penalize
1542 * @active: IRQ active or not
1543 *
1544 * Permits the platform to provide architecture-specific functionality when
1545 * penalizing ISA IRQs. This is the default implementation. Architecture
1546 * implementations can override this.
1547 */
1548 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1549
1550 static void do_pci_disable_device(struct pci_dev *dev)
1551 {
1552 u16 pci_command;
1553
1554 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1555 if (pci_command & PCI_COMMAND_MASTER) {
1556 pci_command &= ~PCI_COMMAND_MASTER;
1557 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1558 }
1559
1560 pcibios_disable_device(dev);
1561 }
1562
1563 /**
1564 * pci_disable_enabled_device - Disable device without updating enable_cnt
1565 * @dev: PCI device to disable
1566 *
1567 * NOTE: This function is a backend of PCI power management routines and is
1568 * not supposed to be called drivers.
1569 */
1570 void pci_disable_enabled_device(struct pci_dev *dev)
1571 {
1572 if (pci_is_enabled(dev))
1573 do_pci_disable_device(dev);
1574 }
1575
1576 /**
1577 * pci_disable_device - Disable PCI device after use
1578 * @dev: PCI device to be disabled
1579 *
1580 * Signal to the system that the PCI device is not in use by the system
1581 * anymore. This only involves disabling PCI bus-mastering, if active.
1582 *
1583 * Note we don't actually disable the device until all callers of
1584 * pci_enable_device() have called pci_disable_device().
1585 */
1586 void pci_disable_device(struct pci_dev *dev)
1587 {
1588 struct pci_devres *dr;
1589
1590 dr = find_pci_dr(dev);
1591 if (dr)
1592 dr->enabled = 0;
1593
1594 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1595 "disabling already-disabled device");
1596
1597 if (atomic_dec_return(&dev->enable_cnt) != 0)
1598 return;
1599
1600 do_pci_disable_device(dev);
1601
1602 dev->is_busmaster = 0;
1603 }
1604 EXPORT_SYMBOL(pci_disable_device);
1605
1606 /**
1607 * pcibios_set_pcie_reset_state - set reset state for device dev
1608 * @dev: the PCIe device reset
1609 * @state: Reset state to enter into
1610 *
1611 *
1612 * Sets the PCIe reset state for the device. This is the default
1613 * implementation. Architecture implementations can override this.
1614 */
1615 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1616 enum pcie_reset_state state)
1617 {
1618 return -EINVAL;
1619 }
1620
1621 /**
1622 * pci_set_pcie_reset_state - set reset state for device dev
1623 * @dev: the PCIe device reset
1624 * @state: Reset state to enter into
1625 *
1626 *
1627 * Sets the PCI reset state for the device.
1628 */
1629 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1630 {
1631 return pcibios_set_pcie_reset_state(dev, state);
1632 }
1633 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1634
1635 /**
1636 * pci_check_pme_status - Check if given device has generated PME.
1637 * @dev: Device to check.
1638 *
1639 * Check the PME status of the device and if set, clear it and clear PME enable
1640 * (if set). Return 'true' if PME status and PME enable were both set or
1641 * 'false' otherwise.
1642 */
1643 bool pci_check_pme_status(struct pci_dev *dev)
1644 {
1645 int pmcsr_pos;
1646 u16 pmcsr;
1647 bool ret = false;
1648
1649 if (!dev->pm_cap)
1650 return false;
1651
1652 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1653 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1654 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1655 return false;
1656
1657 /* Clear PME status. */
1658 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1659 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1660 /* Disable PME to avoid interrupt flood. */
1661 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1662 ret = true;
1663 }
1664
1665 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1666
1667 return ret;
1668 }
1669
1670 /**
1671 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1672 * @dev: Device to handle.
1673 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1674 *
1675 * Check if @dev has generated PME and queue a resume request for it in that
1676 * case.
1677 */
1678 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1679 {
1680 if (pme_poll_reset && dev->pme_poll)
1681 dev->pme_poll = false;
1682
1683 if (pci_check_pme_status(dev)) {
1684 pci_wakeup_event(dev);
1685 pm_request_resume(&dev->dev);
1686 }
1687 return 0;
1688 }
1689
1690 /**
1691 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1692 * @bus: Top bus of the subtree to walk.
1693 */
1694 void pci_pme_wakeup_bus(struct pci_bus *bus)
1695 {
1696 if (bus)
1697 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1698 }
1699
1700
1701 /**
1702 * pci_pme_capable - check the capability of PCI device to generate PME#
1703 * @dev: PCI device to handle.
1704 * @state: PCI state from which device will issue PME#.
1705 */
1706 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1707 {
1708 if (!dev->pm_cap)
1709 return false;
1710
1711 return !!(dev->pme_support & (1 << state));
1712 }
1713 EXPORT_SYMBOL(pci_pme_capable);
1714
1715 static void pci_pme_list_scan(struct work_struct *work)
1716 {
1717 struct pci_pme_device *pme_dev, *n;
1718
1719 mutex_lock(&pci_pme_list_mutex);
1720 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1721 if (pme_dev->dev->pme_poll) {
1722 struct pci_dev *bridge;
1723
1724 bridge = pme_dev->dev->bus->self;
1725 /*
1726 * If bridge is in low power state, the
1727 * configuration space of subordinate devices
1728 * may be not accessible
1729 */
1730 if (bridge && bridge->current_state != PCI_D0)
1731 continue;
1732 pci_pme_wakeup(pme_dev->dev, NULL);
1733 } else {
1734 list_del(&pme_dev->list);
1735 kfree(pme_dev);
1736 }
1737 }
1738 if (!list_empty(&pci_pme_list))
1739 schedule_delayed_work(&pci_pme_work,
1740 msecs_to_jiffies(PME_TIMEOUT));
1741 mutex_unlock(&pci_pme_list_mutex);
1742 }
1743
1744 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1745 {
1746 u16 pmcsr;
1747
1748 if (!dev->pme_support)
1749 return;
1750
1751 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1752 /* Clear PME_Status by writing 1 to it and enable PME# */
1753 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1754 if (!enable)
1755 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1756
1757 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1758 }
1759
1760 /**
1761 * pci_pme_active - enable or disable PCI device's PME# function
1762 * @dev: PCI device to handle.
1763 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1764 *
1765 * The caller must verify that the device is capable of generating PME# before
1766 * calling this function with @enable equal to 'true'.
1767 */
1768 void pci_pme_active(struct pci_dev *dev, bool enable)
1769 {
1770 __pci_pme_active(dev, enable);
1771
1772 /*
1773 * PCI (as opposed to PCIe) PME requires that the device have
1774 * its PME# line hooked up correctly. Not all hardware vendors
1775 * do this, so the PME never gets delivered and the device
1776 * remains asleep. The easiest way around this is to
1777 * periodically walk the list of suspended devices and check
1778 * whether any have their PME flag set. The assumption is that
1779 * we'll wake up often enough anyway that this won't be a huge
1780 * hit, and the power savings from the devices will still be a
1781 * win.
1782 *
1783 * Although PCIe uses in-band PME message instead of PME# line
1784 * to report PME, PME does not work for some PCIe devices in
1785 * reality. For example, there are devices that set their PME
1786 * status bits, but don't really bother to send a PME message;
1787 * there are PCI Express Root Ports that don't bother to
1788 * trigger interrupts when they receive PME messages from the
1789 * devices below. So PME poll is used for PCIe devices too.
1790 */
1791
1792 if (dev->pme_poll) {
1793 struct pci_pme_device *pme_dev;
1794 if (enable) {
1795 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1796 GFP_KERNEL);
1797 if (!pme_dev) {
1798 dev_warn(&dev->dev, "can't enable PME#\n");
1799 return;
1800 }
1801 pme_dev->dev = dev;
1802 mutex_lock(&pci_pme_list_mutex);
1803 list_add(&pme_dev->list, &pci_pme_list);
1804 if (list_is_singular(&pci_pme_list))
1805 schedule_delayed_work(&pci_pme_work,
1806 msecs_to_jiffies(PME_TIMEOUT));
1807 mutex_unlock(&pci_pme_list_mutex);
1808 } else {
1809 mutex_lock(&pci_pme_list_mutex);
1810 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1811 if (pme_dev->dev == dev) {
1812 list_del(&pme_dev->list);
1813 kfree(pme_dev);
1814 break;
1815 }
1816 }
1817 mutex_unlock(&pci_pme_list_mutex);
1818 }
1819 }
1820
1821 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1822 }
1823 EXPORT_SYMBOL(pci_pme_active);
1824
1825 /**
1826 * __pci_enable_wake - enable PCI device as wakeup event source
1827 * @dev: PCI device affected
1828 * @state: PCI state from which device will issue wakeup events
1829 * @runtime: True if the events are to be generated at run time
1830 * @enable: True to enable event generation; false to disable
1831 *
1832 * This enables the device as a wakeup event source, or disables it.
1833 * When such events involves platform-specific hooks, those hooks are
1834 * called automatically by this routine.
1835 *
1836 * Devices with legacy power management (no standard PCI PM capabilities)
1837 * always require such platform hooks.
1838 *
1839 * RETURN VALUE:
1840 * 0 is returned on success
1841 * -EINVAL is returned if device is not supposed to wake up the system
1842 * Error code depending on the platform is returned if both the platform and
1843 * the native mechanism fail to enable the generation of wake-up events
1844 */
1845 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1846 bool runtime, bool enable)
1847 {
1848 int ret = 0;
1849
1850 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1851 return -EINVAL;
1852
1853 /* Don't do the same thing twice in a row for one device. */
1854 if (!!enable == !!dev->wakeup_prepared)
1855 return 0;
1856
1857 /*
1858 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1859 * Anderson we should be doing PME# wake enable followed by ACPI wake
1860 * enable. To disable wake-up we call the platform first, for symmetry.
1861 */
1862
1863 if (enable) {
1864 int error;
1865
1866 if (pci_pme_capable(dev, state))
1867 pci_pme_active(dev, true);
1868 else
1869 ret = 1;
1870 error = runtime ? platform_pci_run_wake(dev, true) :
1871 platform_pci_sleep_wake(dev, true);
1872 if (ret)
1873 ret = error;
1874 if (!ret)
1875 dev->wakeup_prepared = true;
1876 } else {
1877 if (runtime)
1878 platform_pci_run_wake(dev, false);
1879 else
1880 platform_pci_sleep_wake(dev, false);
1881 pci_pme_active(dev, false);
1882 dev->wakeup_prepared = false;
1883 }
1884
1885 return ret;
1886 }
1887 EXPORT_SYMBOL(__pci_enable_wake);
1888
1889 /**
1890 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1891 * @dev: PCI device to prepare
1892 * @enable: True to enable wake-up event generation; false to disable
1893 *
1894 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1895 * and this function allows them to set that up cleanly - pci_enable_wake()
1896 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1897 * ordering constraints.
1898 *
1899 * This function only returns error code if the device is not capable of
1900 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1901 * enable wake-up power for it.
1902 */
1903 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1904 {
1905 return pci_pme_capable(dev, PCI_D3cold) ?
1906 pci_enable_wake(dev, PCI_D3cold, enable) :
1907 pci_enable_wake(dev, PCI_D3hot, enable);
1908 }
1909 EXPORT_SYMBOL(pci_wake_from_d3);
1910
1911 /**
1912 * pci_target_state - find an appropriate low power state for a given PCI dev
1913 * @dev: PCI device
1914 *
1915 * Use underlying platform code to find a supported low power state for @dev.
1916 * If the platform can't manage @dev, return the deepest state from which it
1917 * can generate wake events, based on any available PME info.
1918 */
1919 static pci_power_t pci_target_state(struct pci_dev *dev)
1920 {
1921 pci_power_t target_state = PCI_D3hot;
1922
1923 if (platform_pci_power_manageable(dev)) {
1924 /*
1925 * Call the platform to choose the target state of the device
1926 * and enable wake-up from this state if supported.
1927 */
1928 pci_power_t state = platform_pci_choose_state(dev);
1929
1930 switch (state) {
1931 case PCI_POWER_ERROR:
1932 case PCI_UNKNOWN:
1933 break;
1934 case PCI_D1:
1935 case PCI_D2:
1936 if (pci_no_d1d2(dev))
1937 break;
1938 default:
1939 target_state = state;
1940 }
1941 } else if (!dev->pm_cap) {
1942 target_state = PCI_D0;
1943 } else if (device_may_wakeup(&dev->dev)) {
1944 /*
1945 * Find the deepest state from which the device can generate
1946 * wake-up events, make it the target state and enable device
1947 * to generate PME#.
1948 */
1949 if (dev->pme_support) {
1950 while (target_state
1951 && !(dev->pme_support & (1 << target_state)))
1952 target_state--;
1953 }
1954 }
1955
1956 return target_state;
1957 }
1958
1959 /**
1960 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1961 * @dev: Device to handle.
1962 *
1963 * Choose the power state appropriate for the device depending on whether
1964 * it can wake up the system and/or is power manageable by the platform
1965 * (PCI_D3hot is the default) and put the device into that state.
1966 */
1967 int pci_prepare_to_sleep(struct pci_dev *dev)
1968 {
1969 pci_power_t target_state = pci_target_state(dev);
1970 int error;
1971
1972 if (target_state == PCI_POWER_ERROR)
1973 return -EIO;
1974
1975 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1976
1977 error = pci_set_power_state(dev, target_state);
1978
1979 if (error)
1980 pci_enable_wake(dev, target_state, false);
1981
1982 return error;
1983 }
1984 EXPORT_SYMBOL(pci_prepare_to_sleep);
1985
1986 /**
1987 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1988 * @dev: Device to handle.
1989 *
1990 * Disable device's system wake-up capability and put it into D0.
1991 */
1992 int pci_back_from_sleep(struct pci_dev *dev)
1993 {
1994 pci_enable_wake(dev, PCI_D0, false);
1995 return pci_set_power_state(dev, PCI_D0);
1996 }
1997 EXPORT_SYMBOL(pci_back_from_sleep);
1998
1999 /**
2000 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2001 * @dev: PCI device being suspended.
2002 *
2003 * Prepare @dev to generate wake-up events at run time and put it into a low
2004 * power state.
2005 */
2006 int pci_finish_runtime_suspend(struct pci_dev *dev)
2007 {
2008 pci_power_t target_state = pci_target_state(dev);
2009 int error;
2010
2011 if (target_state == PCI_POWER_ERROR)
2012 return -EIO;
2013
2014 dev->runtime_d3cold = target_state == PCI_D3cold;
2015
2016 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2017
2018 error = pci_set_power_state(dev, target_state);
2019
2020 if (error) {
2021 __pci_enable_wake(dev, target_state, true, false);
2022 dev->runtime_d3cold = false;
2023 }
2024
2025 return error;
2026 }
2027
2028 /**
2029 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2030 * @dev: Device to check.
2031 *
2032 * Return true if the device itself is capable of generating wake-up events
2033 * (through the platform or using the native PCIe PME) or if the device supports
2034 * PME and one of its upstream bridges can generate wake-up events.
2035 */
2036 bool pci_dev_run_wake(struct pci_dev *dev)
2037 {
2038 struct pci_bus *bus = dev->bus;
2039
2040 if (device_run_wake(&dev->dev))
2041 return true;
2042
2043 if (!dev->pme_support)
2044 return false;
2045
2046 while (bus->parent) {
2047 struct pci_dev *bridge = bus->self;
2048
2049 if (device_run_wake(&bridge->dev))
2050 return true;
2051
2052 bus = bus->parent;
2053 }
2054
2055 /* We have reached the root bus. */
2056 if (bus->bridge)
2057 return device_run_wake(bus->bridge);
2058
2059 return false;
2060 }
2061 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2062
2063 /**
2064 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2065 * @pci_dev: Device to check.
2066 *
2067 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2068 * reconfigured due to wakeup settings difference between system and runtime
2069 * suspend and the current power state of it is suitable for the upcoming
2070 * (system) transition.
2071 *
2072 * If the device is not configured for system wakeup, disable PME for it before
2073 * returning 'true' to prevent it from waking up the system unnecessarily.
2074 */
2075 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2076 {
2077 struct device *dev = &pci_dev->dev;
2078
2079 if (!pm_runtime_suspended(dev)
2080 || pci_target_state(pci_dev) != pci_dev->current_state
2081 || platform_pci_need_resume(pci_dev))
2082 return false;
2083
2084 /*
2085 * At this point the device is good to go unless it's been configured
2086 * to generate PME at the runtime suspend time, but it is not supposed
2087 * to wake up the system. In that case, simply disable PME for it
2088 * (it will have to be re-enabled on exit from system resume).
2089 *
2090 * If the device's power state is D3cold and the platform check above
2091 * hasn't triggered, the device's configuration is suitable and we don't
2092 * need to manipulate it at all.
2093 */
2094 spin_lock_irq(&dev->power.lock);
2095
2096 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2097 !device_may_wakeup(dev))
2098 __pci_pme_active(pci_dev, false);
2099
2100 spin_unlock_irq(&dev->power.lock);
2101 return true;
2102 }
2103
2104 /**
2105 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2106 * @pci_dev: Device to handle.
2107 *
2108 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2109 * it might have been disabled during the prepare phase of system suspend if
2110 * the device was not configured for system wakeup.
2111 */
2112 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2113 {
2114 struct device *dev = &pci_dev->dev;
2115
2116 if (!pci_dev_run_wake(pci_dev))
2117 return;
2118
2119 spin_lock_irq(&dev->power.lock);
2120
2121 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2122 __pci_pme_active(pci_dev, true);
2123
2124 spin_unlock_irq(&dev->power.lock);
2125 }
2126
2127 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2128 {
2129 struct device *dev = &pdev->dev;
2130 struct device *parent = dev->parent;
2131
2132 if (parent)
2133 pm_runtime_get_sync(parent);
2134 pm_runtime_get_noresume(dev);
2135 /*
2136 * pdev->current_state is set to PCI_D3cold during suspending,
2137 * so wait until suspending completes
2138 */
2139 pm_runtime_barrier(dev);
2140 /*
2141 * Only need to resume devices in D3cold, because config
2142 * registers are still accessible for devices suspended but
2143 * not in D3cold.
2144 */
2145 if (pdev->current_state == PCI_D3cold)
2146 pm_runtime_resume(dev);
2147 }
2148
2149 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2150 {
2151 struct device *dev = &pdev->dev;
2152 struct device *parent = dev->parent;
2153
2154 pm_runtime_put(dev);
2155 if (parent)
2156 pm_runtime_put_sync(parent);
2157 }
2158
2159 /**
2160 * pci_pm_init - Initialize PM functions of given PCI device
2161 * @dev: PCI device to handle.
2162 */
2163 void pci_pm_init(struct pci_dev *dev)
2164 {
2165 int pm;
2166 u16 pmc;
2167
2168 pm_runtime_forbid(&dev->dev);
2169 pm_runtime_set_active(&dev->dev);
2170 pm_runtime_enable(&dev->dev);
2171 device_enable_async_suspend(&dev->dev);
2172 dev->wakeup_prepared = false;
2173
2174 dev->pm_cap = 0;
2175 dev->pme_support = 0;
2176
2177 /* find PCI PM capability in list */
2178 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2179 if (!pm)
2180 return;
2181 /* Check device's ability to generate PME# */
2182 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2183
2184 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2185 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2186 pmc & PCI_PM_CAP_VER_MASK);
2187 return;
2188 }
2189
2190 dev->pm_cap = pm;
2191 dev->d3_delay = PCI_PM_D3_WAIT;
2192 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2193 dev->d3cold_allowed = true;
2194
2195 dev->d1_support = false;
2196 dev->d2_support = false;
2197 if (!pci_no_d1d2(dev)) {
2198 if (pmc & PCI_PM_CAP_D1)
2199 dev->d1_support = true;
2200 if (pmc & PCI_PM_CAP_D2)
2201 dev->d2_support = true;
2202
2203 if (dev->d1_support || dev->d2_support)
2204 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2205 dev->d1_support ? " D1" : "",
2206 dev->d2_support ? " D2" : "");
2207 }
2208
2209 pmc &= PCI_PM_CAP_PME_MASK;
2210 if (pmc) {
2211 dev_printk(KERN_DEBUG, &dev->dev,
2212 "PME# supported from%s%s%s%s%s\n",
2213 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2214 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2215 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2216 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2217 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2218 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2219 dev->pme_poll = true;
2220 /*
2221 * Make device's PM flags reflect the wake-up capability, but
2222 * let the user space enable it to wake up the system as needed.
2223 */
2224 device_set_wakeup_capable(&dev->dev, true);
2225 /* Disable the PME# generation functionality */
2226 pci_pme_active(dev, false);
2227 }
2228 }
2229
2230 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2231 {
2232 unsigned long flags = IORESOURCE_PCI_FIXED;
2233
2234 switch (prop) {
2235 case PCI_EA_P_MEM:
2236 case PCI_EA_P_VF_MEM:
2237 flags |= IORESOURCE_MEM;
2238 break;
2239 case PCI_EA_P_MEM_PREFETCH:
2240 case PCI_EA_P_VF_MEM_PREFETCH:
2241 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2242 break;
2243 case PCI_EA_P_IO:
2244 flags |= IORESOURCE_IO;
2245 break;
2246 default:
2247 return 0;
2248 }
2249
2250 return flags;
2251 }
2252
2253 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2254 u8 prop)
2255 {
2256 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2257 return &dev->resource[bei];
2258 #ifdef CONFIG_PCI_IOV
2259 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2260 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2261 return &dev->resource[PCI_IOV_RESOURCES +
2262 bei - PCI_EA_BEI_VF_BAR0];
2263 #endif
2264 else if (bei == PCI_EA_BEI_ROM)
2265 return &dev->resource[PCI_ROM_RESOURCE];
2266 else
2267 return NULL;
2268 }
2269
2270 /* Read an Enhanced Allocation (EA) entry */
2271 static int pci_ea_read(struct pci_dev *dev, int offset)
2272 {
2273 struct resource *res;
2274 int ent_size, ent_offset = offset;
2275 resource_size_t start, end;
2276 unsigned long flags;
2277 u32 dw0, bei, base, max_offset;
2278 u8 prop;
2279 bool support_64 = (sizeof(resource_size_t) >= 8);
2280
2281 pci_read_config_dword(dev, ent_offset, &dw0);
2282 ent_offset += 4;
2283
2284 /* Entry size field indicates DWORDs after 1st */
2285 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2286
2287 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2288 goto out;
2289
2290 bei = (dw0 & PCI_EA_BEI) >> 4;
2291 prop = (dw0 & PCI_EA_PP) >> 8;
2292
2293 /*
2294 * If the Property is in the reserved range, try the Secondary
2295 * Property instead.
2296 */
2297 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2298 prop = (dw0 & PCI_EA_SP) >> 16;
2299 if (prop > PCI_EA_P_BRIDGE_IO)
2300 goto out;
2301
2302 res = pci_ea_get_resource(dev, bei, prop);
2303 if (!res) {
2304 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2305 goto out;
2306 }
2307
2308 flags = pci_ea_flags(dev, prop);
2309 if (!flags) {
2310 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2311 goto out;
2312 }
2313
2314 /* Read Base */
2315 pci_read_config_dword(dev, ent_offset, &base);
2316 start = (base & PCI_EA_FIELD_MASK);
2317 ent_offset += 4;
2318
2319 /* Read MaxOffset */
2320 pci_read_config_dword(dev, ent_offset, &max_offset);
2321 ent_offset += 4;
2322
2323 /* Read Base MSBs (if 64-bit entry) */
2324 if (base & PCI_EA_IS_64) {
2325 u32 base_upper;
2326
2327 pci_read_config_dword(dev, ent_offset, &base_upper);
2328 ent_offset += 4;
2329
2330 flags |= IORESOURCE_MEM_64;
2331
2332 /* entry starts above 32-bit boundary, can't use */
2333 if (!support_64 && base_upper)
2334 goto out;
2335
2336 if (support_64)
2337 start |= ((u64)base_upper << 32);
2338 }
2339
2340 end = start + (max_offset | 0x03);
2341
2342 /* Read MaxOffset MSBs (if 64-bit entry) */
2343 if (max_offset & PCI_EA_IS_64) {
2344 u32 max_offset_upper;
2345
2346 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2347 ent_offset += 4;
2348
2349 flags |= IORESOURCE_MEM_64;
2350
2351 /* entry too big, can't use */
2352 if (!support_64 && max_offset_upper)
2353 goto out;
2354
2355 if (support_64)
2356 end += ((u64)max_offset_upper << 32);
2357 }
2358
2359 if (end < start) {
2360 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2361 goto out;
2362 }
2363
2364 if (ent_size != ent_offset - offset) {
2365 dev_err(&dev->dev,
2366 "EA Entry Size (%d) does not match length read (%d)\n",
2367 ent_size, ent_offset - offset);
2368 goto out;
2369 }
2370
2371 res->name = pci_name(dev);
2372 res->start = start;
2373 res->end = end;
2374 res->flags = flags;
2375
2376 if (bei <= PCI_EA_BEI_BAR5)
2377 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2378 bei, res, prop);
2379 else if (bei == PCI_EA_BEI_ROM)
2380 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2381 res, prop);
2382 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2383 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2384 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2385 else
2386 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2387 bei, res, prop);
2388
2389 out:
2390 return offset + ent_size;
2391 }
2392
2393 /* Enhanced Allocation Initalization */
2394 void pci_ea_init(struct pci_dev *dev)
2395 {
2396 int ea;
2397 u8 num_ent;
2398 int offset;
2399 int i;
2400
2401 /* find PCI EA capability in list */
2402 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2403 if (!ea)
2404 return;
2405
2406 /* determine the number of entries */
2407 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2408 &num_ent);
2409 num_ent &= PCI_EA_NUM_ENT_MASK;
2410
2411 offset = ea + PCI_EA_FIRST_ENT;
2412
2413 /* Skip DWORD 2 for type 1 functions */
2414 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2415 offset += 4;
2416
2417 /* parse each EA entry */
2418 for (i = 0; i < num_ent; ++i)
2419 offset = pci_ea_read(dev, offset);
2420 }
2421
2422 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2423 struct pci_cap_saved_state *new_cap)
2424 {
2425 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2426 }
2427
2428 /**
2429 * _pci_add_cap_save_buffer - allocate buffer for saving given
2430 * capability registers
2431 * @dev: the PCI device
2432 * @cap: the capability to allocate the buffer for
2433 * @extended: Standard or Extended capability ID
2434 * @size: requested size of the buffer
2435 */
2436 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2437 bool extended, unsigned int size)
2438 {
2439 int pos;
2440 struct pci_cap_saved_state *save_state;
2441
2442 if (extended)
2443 pos = pci_find_ext_capability(dev, cap);
2444 else
2445 pos = pci_find_capability(dev, cap);
2446
2447 if (!pos)
2448 return 0;
2449
2450 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2451 if (!save_state)
2452 return -ENOMEM;
2453
2454 save_state->cap.cap_nr = cap;
2455 save_state->cap.cap_extended = extended;
2456 save_state->cap.size = size;
2457 pci_add_saved_cap(dev, save_state);
2458
2459 return 0;
2460 }
2461
2462 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2463 {
2464 return _pci_add_cap_save_buffer(dev, cap, false, size);
2465 }
2466
2467 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2468 {
2469 return _pci_add_cap_save_buffer(dev, cap, true, size);
2470 }
2471
2472 /**
2473 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2474 * @dev: the PCI device
2475 */
2476 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2477 {
2478 int error;
2479
2480 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2481 PCI_EXP_SAVE_REGS * sizeof(u16));
2482 if (error)
2483 dev_err(&dev->dev,
2484 "unable to preallocate PCI Express save buffer\n");
2485
2486 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2487 if (error)
2488 dev_err(&dev->dev,
2489 "unable to preallocate PCI-X save buffer\n");
2490
2491 pci_allocate_vc_save_buffers(dev);
2492 }
2493
2494 void pci_free_cap_save_buffers(struct pci_dev *dev)
2495 {
2496 struct pci_cap_saved_state *tmp;
2497 struct hlist_node *n;
2498
2499 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2500 kfree(tmp);
2501 }
2502
2503 /**
2504 * pci_configure_ari - enable or disable ARI forwarding
2505 * @dev: the PCI device
2506 *
2507 * If @dev and its upstream bridge both support ARI, enable ARI in the
2508 * bridge. Otherwise, disable ARI in the bridge.
2509 */
2510 void pci_configure_ari(struct pci_dev *dev)
2511 {
2512 u32 cap;
2513 struct pci_dev *bridge;
2514
2515 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2516 return;
2517
2518 bridge = dev->bus->self;
2519 if (!bridge)
2520 return;
2521
2522 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2523 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2524 return;
2525
2526 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2527 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2528 PCI_EXP_DEVCTL2_ARI);
2529 bridge->ari_enabled = 1;
2530 } else {
2531 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2532 PCI_EXP_DEVCTL2_ARI);
2533 bridge->ari_enabled = 0;
2534 }
2535 }
2536
2537 static int pci_acs_enable;
2538
2539 /**
2540 * pci_request_acs - ask for ACS to be enabled if supported
2541 */
2542 void pci_request_acs(void)
2543 {
2544 pci_acs_enable = 1;
2545 }
2546
2547 /**
2548 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2549 * @dev: the PCI device
2550 */
2551 static int pci_std_enable_acs(struct pci_dev *dev)
2552 {
2553 int pos;
2554 u16 cap;
2555 u16 ctrl;
2556
2557 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2558 if (!pos)
2559 return -ENODEV;
2560
2561 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2562 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2563
2564 /* Source Validation */
2565 ctrl |= (cap & PCI_ACS_SV);
2566
2567 /* P2P Request Redirect */
2568 ctrl |= (cap & PCI_ACS_RR);
2569
2570 /* P2P Completion Redirect */
2571 ctrl |= (cap & PCI_ACS_CR);
2572
2573 /* Upstream Forwarding */
2574 ctrl |= (cap & PCI_ACS_UF);
2575
2576 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2577
2578 return 0;
2579 }
2580
2581 /**
2582 * pci_enable_acs - enable ACS if hardware support it
2583 * @dev: the PCI device
2584 */
2585 void pci_enable_acs(struct pci_dev *dev)
2586 {
2587 if (!pci_acs_enable)
2588 return;
2589
2590 if (!pci_std_enable_acs(dev))
2591 return;
2592
2593 pci_dev_specific_enable_acs(dev);
2594 }
2595
2596 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2597 {
2598 int pos;
2599 u16 cap, ctrl;
2600
2601 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2602 if (!pos)
2603 return false;
2604
2605 /*
2606 * Except for egress control, capabilities are either required
2607 * or only required if controllable. Features missing from the
2608 * capability field can therefore be assumed as hard-wired enabled.
2609 */
2610 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2611 acs_flags &= (cap | PCI_ACS_EC);
2612
2613 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2614 return (ctrl & acs_flags) == acs_flags;
2615 }
2616
2617 /**
2618 * pci_acs_enabled - test ACS against required flags for a given device
2619 * @pdev: device to test
2620 * @acs_flags: required PCI ACS flags
2621 *
2622 * Return true if the device supports the provided flags. Automatically
2623 * filters out flags that are not implemented on multifunction devices.
2624 *
2625 * Note that this interface checks the effective ACS capabilities of the
2626 * device rather than the actual capabilities. For instance, most single
2627 * function endpoints are not required to support ACS because they have no
2628 * opportunity for peer-to-peer access. We therefore return 'true'
2629 * regardless of whether the device exposes an ACS capability. This makes
2630 * it much easier for callers of this function to ignore the actual type
2631 * or topology of the device when testing ACS support.
2632 */
2633 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2634 {
2635 int ret;
2636
2637 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2638 if (ret >= 0)
2639 return ret > 0;
2640
2641 /*
2642 * Conventional PCI and PCI-X devices never support ACS, either
2643 * effectively or actually. The shared bus topology implies that
2644 * any device on the bus can receive or snoop DMA.
2645 */
2646 if (!pci_is_pcie(pdev))
2647 return false;
2648
2649 switch (pci_pcie_type(pdev)) {
2650 /*
2651 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2652 * but since their primary interface is PCI/X, we conservatively
2653 * handle them as we would a non-PCIe device.
2654 */
2655 case PCI_EXP_TYPE_PCIE_BRIDGE:
2656 /*
2657 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2658 * applicable... must never implement an ACS Extended Capability...".
2659 * This seems arbitrary, but we take a conservative interpretation
2660 * of this statement.
2661 */
2662 case PCI_EXP_TYPE_PCI_BRIDGE:
2663 case PCI_EXP_TYPE_RC_EC:
2664 return false;
2665 /*
2666 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2667 * implement ACS in order to indicate their peer-to-peer capabilities,
2668 * regardless of whether they are single- or multi-function devices.
2669 */
2670 case PCI_EXP_TYPE_DOWNSTREAM:
2671 case PCI_EXP_TYPE_ROOT_PORT:
2672 return pci_acs_flags_enabled(pdev, acs_flags);
2673 /*
2674 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2675 * implemented by the remaining PCIe types to indicate peer-to-peer
2676 * capabilities, but only when they are part of a multifunction
2677 * device. The footnote for section 6.12 indicates the specific
2678 * PCIe types included here.
2679 */
2680 case PCI_EXP_TYPE_ENDPOINT:
2681 case PCI_EXP_TYPE_UPSTREAM:
2682 case PCI_EXP_TYPE_LEG_END:
2683 case PCI_EXP_TYPE_RC_END:
2684 if (!pdev->multifunction)
2685 break;
2686
2687 return pci_acs_flags_enabled(pdev, acs_flags);
2688 }
2689
2690 /*
2691 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2692 * to single function devices with the exception of downstream ports.
2693 */
2694 return true;
2695 }
2696
2697 /**
2698 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2699 * @start: starting downstream device
2700 * @end: ending upstream device or NULL to search to the root bus
2701 * @acs_flags: required flags
2702 *
2703 * Walk up a device tree from start to end testing PCI ACS support. If
2704 * any step along the way does not support the required flags, return false.
2705 */
2706 bool pci_acs_path_enabled(struct pci_dev *start,
2707 struct pci_dev *end, u16 acs_flags)
2708 {
2709 struct pci_dev *pdev, *parent = start;
2710
2711 do {
2712 pdev = parent;
2713
2714 if (!pci_acs_enabled(pdev, acs_flags))
2715 return false;
2716
2717 if (pci_is_root_bus(pdev->bus))
2718 return (end == NULL);
2719
2720 parent = pdev->bus->self;
2721 } while (pdev != end);
2722
2723 return true;
2724 }
2725
2726 /**
2727 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2728 * @dev: the PCI device
2729 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2730 *
2731 * Perform INTx swizzling for a device behind one level of bridge. This is
2732 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2733 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2734 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2735 * the PCI Express Base Specification, Revision 2.1)
2736 */
2737 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2738 {
2739 int slot;
2740
2741 if (pci_ari_enabled(dev->bus))
2742 slot = 0;
2743 else
2744 slot = PCI_SLOT(dev->devfn);
2745
2746 return (((pin - 1) + slot) % 4) + 1;
2747 }
2748
2749 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2750 {
2751 u8 pin;
2752
2753 pin = dev->pin;
2754 if (!pin)
2755 return -1;
2756
2757 while (!pci_is_root_bus(dev->bus)) {
2758 pin = pci_swizzle_interrupt_pin(dev, pin);
2759 dev = dev->bus->self;
2760 }
2761 *bridge = dev;
2762 return pin;
2763 }
2764
2765 /**
2766 * pci_common_swizzle - swizzle INTx all the way to root bridge
2767 * @dev: the PCI device
2768 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2769 *
2770 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2771 * bridges all the way up to a PCI root bus.
2772 */
2773 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2774 {
2775 u8 pin = *pinp;
2776
2777 while (!pci_is_root_bus(dev->bus)) {
2778 pin = pci_swizzle_interrupt_pin(dev, pin);
2779 dev = dev->bus->self;
2780 }
2781 *pinp = pin;
2782 return PCI_SLOT(dev->devfn);
2783 }
2784 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2785
2786 /**
2787 * pci_release_region - Release a PCI bar
2788 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2789 * @bar: BAR to release
2790 *
2791 * Releases the PCI I/O and memory resources previously reserved by a
2792 * successful call to pci_request_region. Call this function only
2793 * after all use of the PCI regions has ceased.
2794 */
2795 void pci_release_region(struct pci_dev *pdev, int bar)
2796 {
2797 struct pci_devres *dr;
2798
2799 if (pci_resource_len(pdev, bar) == 0)
2800 return;
2801 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2802 release_region(pci_resource_start(pdev, bar),
2803 pci_resource_len(pdev, bar));
2804 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2805 release_mem_region(pci_resource_start(pdev, bar),
2806 pci_resource_len(pdev, bar));
2807
2808 dr = find_pci_dr(pdev);
2809 if (dr)
2810 dr->region_mask &= ~(1 << bar);
2811 }
2812 EXPORT_SYMBOL(pci_release_region);
2813
2814 /**
2815 * __pci_request_region - Reserved PCI I/O and memory resource
2816 * @pdev: PCI device whose resources are to be reserved
2817 * @bar: BAR to be reserved
2818 * @res_name: Name to be associated with resource.
2819 * @exclusive: whether the region access is exclusive or not
2820 *
2821 * Mark the PCI region associated with PCI device @pdev BR @bar as
2822 * being reserved by owner @res_name. Do not access any
2823 * address inside the PCI regions unless this call returns
2824 * successfully.
2825 *
2826 * If @exclusive is set, then the region is marked so that userspace
2827 * is explicitly not allowed to map the resource via /dev/mem or
2828 * sysfs MMIO access.
2829 *
2830 * Returns 0 on success, or %EBUSY on error. A warning
2831 * message is also printed on failure.
2832 */
2833 static int __pci_request_region(struct pci_dev *pdev, int bar,
2834 const char *res_name, int exclusive)
2835 {
2836 struct pci_devres *dr;
2837
2838 if (pci_resource_len(pdev, bar) == 0)
2839 return 0;
2840
2841 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2842 if (!request_region(pci_resource_start(pdev, bar),
2843 pci_resource_len(pdev, bar), res_name))
2844 goto err_out;
2845 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2846 if (!__request_mem_region(pci_resource_start(pdev, bar),
2847 pci_resource_len(pdev, bar), res_name,
2848 exclusive))
2849 goto err_out;
2850 }
2851
2852 dr = find_pci_dr(pdev);
2853 if (dr)
2854 dr->region_mask |= 1 << bar;
2855
2856 return 0;
2857
2858 err_out:
2859 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2860 &pdev->resource[bar]);
2861 return -EBUSY;
2862 }
2863
2864 /**
2865 * pci_request_region - Reserve PCI I/O and memory resource
2866 * @pdev: PCI device whose resources are to be reserved
2867 * @bar: BAR to be reserved
2868 * @res_name: Name to be associated with resource
2869 *
2870 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2871 * being reserved by owner @res_name. Do not access any
2872 * address inside the PCI regions unless this call returns
2873 * successfully.
2874 *
2875 * Returns 0 on success, or %EBUSY on error. A warning
2876 * message is also printed on failure.
2877 */
2878 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2879 {
2880 return __pci_request_region(pdev, bar, res_name, 0);
2881 }
2882 EXPORT_SYMBOL(pci_request_region);
2883
2884 /**
2885 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2886 * @pdev: PCI device whose resources are to be reserved
2887 * @bar: BAR to be reserved
2888 * @res_name: Name to be associated with resource.
2889 *
2890 * Mark the PCI region associated with PCI device @pdev BR @bar as
2891 * being reserved by owner @res_name. Do not access any
2892 * address inside the PCI regions unless this call returns
2893 * successfully.
2894 *
2895 * Returns 0 on success, or %EBUSY on error. A warning
2896 * message is also printed on failure.
2897 *
2898 * The key difference that _exclusive makes it that userspace is
2899 * explicitly not allowed to map the resource via /dev/mem or
2900 * sysfs.
2901 */
2902 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2903 const char *res_name)
2904 {
2905 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2906 }
2907 EXPORT_SYMBOL(pci_request_region_exclusive);
2908
2909 /**
2910 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2911 * @pdev: PCI device whose resources were previously reserved
2912 * @bars: Bitmask of BARs to be released
2913 *
2914 * Release selected PCI I/O and memory resources previously reserved.
2915 * Call this function only after all use of the PCI regions has ceased.
2916 */
2917 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2918 {
2919 int i;
2920
2921 for (i = 0; i < 6; i++)
2922 if (bars & (1 << i))
2923 pci_release_region(pdev, i);
2924 }
2925 EXPORT_SYMBOL(pci_release_selected_regions);
2926
2927 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2928 const char *res_name, int excl)
2929 {
2930 int i;
2931
2932 for (i = 0; i < 6; i++)
2933 if (bars & (1 << i))
2934 if (__pci_request_region(pdev, i, res_name, excl))
2935 goto err_out;
2936 return 0;
2937
2938 err_out:
2939 while (--i >= 0)
2940 if (bars & (1 << i))
2941 pci_release_region(pdev, i);
2942
2943 return -EBUSY;
2944 }
2945
2946
2947 /**
2948 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2949 * @pdev: PCI device whose resources are to be reserved
2950 * @bars: Bitmask of BARs to be requested
2951 * @res_name: Name to be associated with resource
2952 */
2953 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2954 const char *res_name)
2955 {
2956 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2957 }
2958 EXPORT_SYMBOL(pci_request_selected_regions);
2959
2960 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2961 const char *res_name)
2962 {
2963 return __pci_request_selected_regions(pdev, bars, res_name,
2964 IORESOURCE_EXCLUSIVE);
2965 }
2966 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2967
2968 /**
2969 * pci_release_regions - Release reserved PCI I/O and memory resources
2970 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2971 *
2972 * Releases all PCI I/O and memory resources previously reserved by a
2973 * successful call to pci_request_regions. Call this function only
2974 * after all use of the PCI regions has ceased.
2975 */
2976
2977 void pci_release_regions(struct pci_dev *pdev)
2978 {
2979 pci_release_selected_regions(pdev, (1 << 6) - 1);
2980 }
2981 EXPORT_SYMBOL(pci_release_regions);
2982
2983 /**
2984 * pci_request_regions - Reserved PCI I/O and memory resources
2985 * @pdev: PCI device whose resources are to be reserved
2986 * @res_name: Name to be associated with resource.
2987 *
2988 * Mark all PCI regions associated with PCI device @pdev as
2989 * being reserved by owner @res_name. Do not access any
2990 * address inside the PCI regions unless this call returns
2991 * successfully.
2992 *
2993 * Returns 0 on success, or %EBUSY on error. A warning
2994 * message is also printed on failure.
2995 */
2996 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2997 {
2998 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2999 }
3000 EXPORT_SYMBOL(pci_request_regions);
3001
3002 /**
3003 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3004 * @pdev: PCI device whose resources are to be reserved
3005 * @res_name: Name to be associated with resource.
3006 *
3007 * Mark all PCI regions associated with PCI device @pdev as
3008 * being reserved by owner @res_name. Do not access any
3009 * address inside the PCI regions unless this call returns
3010 * successfully.
3011 *
3012 * pci_request_regions_exclusive() will mark the region so that
3013 * /dev/mem and the sysfs MMIO access will not be allowed.
3014 *
3015 * Returns 0 on success, or %EBUSY on error. A warning
3016 * message is also printed on failure.
3017 */
3018 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3019 {
3020 return pci_request_selected_regions_exclusive(pdev,
3021 ((1 << 6) - 1), res_name);
3022 }
3023 EXPORT_SYMBOL(pci_request_regions_exclusive);
3024
3025 /**
3026 * pci_remap_iospace - Remap the memory mapped I/O space
3027 * @res: Resource describing the I/O space
3028 * @phys_addr: physical address of range to be mapped
3029 *
3030 * Remap the memory mapped I/O space described by the @res
3031 * and the CPU physical address @phys_addr into virtual address space.
3032 * Only architectures that have memory mapped IO functions defined
3033 * (and the PCI_IOBASE value defined) should call this function.
3034 */
3035 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3036 {
3037 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3038 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3039
3040 if (!(res->flags & IORESOURCE_IO))
3041 return -EINVAL;
3042
3043 if (res->end > IO_SPACE_LIMIT)
3044 return -EINVAL;
3045
3046 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3047 pgprot_device(PAGE_KERNEL));
3048 #else
3049 /* this architecture does not have memory mapped I/O space,
3050 so this function should never be called */
3051 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3052 return -ENODEV;
3053 #endif
3054 }
3055
3056 static void __pci_set_master(struct pci_dev *dev, bool enable)
3057 {
3058 u16 old_cmd, cmd;
3059
3060 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3061 if (enable)
3062 cmd = old_cmd | PCI_COMMAND_MASTER;
3063 else
3064 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3065 if (cmd != old_cmd) {
3066 dev_dbg(&dev->dev, "%s bus mastering\n",
3067 enable ? "enabling" : "disabling");
3068 pci_write_config_word(dev, PCI_COMMAND, cmd);
3069 }
3070 dev->is_busmaster = enable;
3071 }
3072
3073 /**
3074 * pcibios_setup - process "pci=" kernel boot arguments
3075 * @str: string used to pass in "pci=" kernel boot arguments
3076 *
3077 * Process kernel boot arguments. This is the default implementation.
3078 * Architecture specific implementations can override this as necessary.
3079 */
3080 char * __weak __init pcibios_setup(char *str)
3081 {
3082 return str;
3083 }
3084
3085 /**
3086 * pcibios_set_master - enable PCI bus-mastering for device dev
3087 * @dev: the PCI device to enable
3088 *
3089 * Enables PCI bus-mastering for the device. This is the default
3090 * implementation. Architecture specific implementations can override
3091 * this if necessary.
3092 */
3093 void __weak pcibios_set_master(struct pci_dev *dev)
3094 {
3095 u8 lat;
3096
3097 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3098 if (pci_is_pcie(dev))
3099 return;
3100
3101 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3102 if (lat < 16)
3103 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3104 else if (lat > pcibios_max_latency)
3105 lat = pcibios_max_latency;
3106 else
3107 return;
3108
3109 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3110 }
3111
3112 /**
3113 * pci_set_master - enables bus-mastering for device dev
3114 * @dev: the PCI device to enable
3115 *
3116 * Enables bus-mastering on the device and calls pcibios_set_master()
3117 * to do the needed arch specific settings.
3118 */
3119 void pci_set_master(struct pci_dev *dev)
3120 {
3121 __pci_set_master(dev, true);
3122 pcibios_set_master(dev);
3123 }
3124 EXPORT_SYMBOL(pci_set_master);
3125
3126 /**
3127 * pci_clear_master - disables bus-mastering for device dev
3128 * @dev: the PCI device to disable
3129 */
3130 void pci_clear_master(struct pci_dev *dev)
3131 {
3132 __pci_set_master(dev, false);
3133 }
3134 EXPORT_SYMBOL(pci_clear_master);
3135
3136 /**
3137 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3138 * @dev: the PCI device for which MWI is to be enabled
3139 *
3140 * Helper function for pci_set_mwi.
3141 * Originally copied from drivers/net/acenic.c.
3142 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3143 *
3144 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3145 */
3146 int pci_set_cacheline_size(struct pci_dev *dev)
3147 {
3148 u8 cacheline_size;
3149
3150 if (!pci_cache_line_size)
3151 return -EINVAL;
3152
3153 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3154 equal to or multiple of the right value. */
3155 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3156 if (cacheline_size >= pci_cache_line_size &&
3157 (cacheline_size % pci_cache_line_size) == 0)
3158 return 0;
3159
3160 /* Write the correct value. */
3161 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3162 /* Read it back. */
3163 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3164 if (cacheline_size == pci_cache_line_size)
3165 return 0;
3166
3167 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3168 pci_cache_line_size << 2);
3169
3170 return -EINVAL;
3171 }
3172 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3173
3174 /**
3175 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3176 * @dev: the PCI device for which MWI is enabled
3177 *
3178 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3179 *
3180 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3181 */
3182 int pci_set_mwi(struct pci_dev *dev)
3183 {
3184 #ifdef PCI_DISABLE_MWI
3185 return 0;
3186 #else
3187 int rc;
3188 u16 cmd;
3189
3190 rc = pci_set_cacheline_size(dev);
3191 if (rc)
3192 return rc;
3193
3194 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3195 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3196 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3197 cmd |= PCI_COMMAND_INVALIDATE;
3198 pci_write_config_word(dev, PCI_COMMAND, cmd);
3199 }
3200 return 0;
3201 #endif
3202 }
3203 EXPORT_SYMBOL(pci_set_mwi);
3204
3205 /**
3206 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3207 * @dev: the PCI device for which MWI is enabled
3208 *
3209 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3210 * Callers are not required to check the return value.
3211 *
3212 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3213 */
3214 int pci_try_set_mwi(struct pci_dev *dev)
3215 {
3216 #ifdef PCI_DISABLE_MWI
3217 return 0;
3218 #else
3219 return pci_set_mwi(dev);
3220 #endif
3221 }
3222 EXPORT_SYMBOL(pci_try_set_mwi);
3223
3224 /**
3225 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3226 * @dev: the PCI device to disable
3227 *
3228 * Disables PCI Memory-Write-Invalidate transaction on the device
3229 */
3230 void pci_clear_mwi(struct pci_dev *dev)
3231 {
3232 #ifndef PCI_DISABLE_MWI
3233 u16 cmd;
3234
3235 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3236 if (cmd & PCI_COMMAND_INVALIDATE) {
3237 cmd &= ~PCI_COMMAND_INVALIDATE;
3238 pci_write_config_word(dev, PCI_COMMAND, cmd);
3239 }
3240 #endif
3241 }
3242 EXPORT_SYMBOL(pci_clear_mwi);
3243
3244 /**
3245 * pci_intx - enables/disables PCI INTx for device dev
3246 * @pdev: the PCI device to operate on
3247 * @enable: boolean: whether to enable or disable PCI INTx
3248 *
3249 * Enables/disables PCI INTx for device dev
3250 */
3251 void pci_intx(struct pci_dev *pdev, int enable)
3252 {
3253 u16 pci_command, new;
3254
3255 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3256
3257 if (enable)
3258 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3259 else
3260 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3261
3262 if (new != pci_command) {
3263 struct pci_devres *dr;
3264
3265 pci_write_config_word(pdev, PCI_COMMAND, new);
3266
3267 dr = find_pci_dr(pdev);
3268 if (dr && !dr->restore_intx) {
3269 dr->restore_intx = 1;
3270 dr->orig_intx = !enable;
3271 }
3272 }
3273 }
3274 EXPORT_SYMBOL_GPL(pci_intx);
3275
3276 /**
3277 * pci_intx_mask_supported - probe for INTx masking support
3278 * @dev: the PCI device to operate on
3279 *
3280 * Check if the device dev support INTx masking via the config space
3281 * command word.
3282 */
3283 bool pci_intx_mask_supported(struct pci_dev *dev)
3284 {
3285 bool mask_supported = false;
3286 u16 orig, new;
3287
3288 if (dev->broken_intx_masking)
3289 return false;
3290
3291 pci_cfg_access_lock(dev);
3292
3293 pci_read_config_word(dev, PCI_COMMAND, &orig);
3294 pci_write_config_word(dev, PCI_COMMAND,
3295 orig ^ PCI_COMMAND_INTX_DISABLE);
3296 pci_read_config_word(dev, PCI_COMMAND, &new);
3297
3298 /*
3299 * There's no way to protect against hardware bugs or detect them
3300 * reliably, but as long as we know what the value should be, let's
3301 * go ahead and check it.
3302 */
3303 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3304 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3305 orig, new);
3306 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3307 mask_supported = true;
3308 pci_write_config_word(dev, PCI_COMMAND, orig);
3309 }
3310
3311 pci_cfg_access_unlock(dev);
3312 return mask_supported;
3313 }
3314 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3315
3316 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3317 {
3318 struct pci_bus *bus = dev->bus;
3319 bool mask_updated = true;
3320 u32 cmd_status_dword;
3321 u16 origcmd, newcmd;
3322 unsigned long flags;
3323 bool irq_pending;
3324
3325 /*
3326 * We do a single dword read to retrieve both command and status.
3327 * Document assumptions that make this possible.
3328 */
3329 BUILD_BUG_ON(PCI_COMMAND % 4);
3330 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3331
3332 raw_spin_lock_irqsave(&pci_lock, flags);
3333
3334 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3335
3336 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3337
3338 /*
3339 * Check interrupt status register to see whether our device
3340 * triggered the interrupt (when masking) or the next IRQ is
3341 * already pending (when unmasking).
3342 */
3343 if (mask != irq_pending) {
3344 mask_updated = false;
3345 goto done;
3346 }
3347
3348 origcmd = cmd_status_dword;
3349 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3350 if (mask)
3351 newcmd |= PCI_COMMAND_INTX_DISABLE;
3352 if (newcmd != origcmd)
3353 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3354
3355 done:
3356 raw_spin_unlock_irqrestore(&pci_lock, flags);
3357
3358 return mask_updated;
3359 }
3360
3361 /**
3362 * pci_check_and_mask_intx - mask INTx on pending interrupt
3363 * @dev: the PCI device to operate on
3364 *
3365 * Check if the device dev has its INTx line asserted, mask it and
3366 * return true in that case. False is returned if not interrupt was
3367 * pending.
3368 */
3369 bool pci_check_and_mask_intx(struct pci_dev *dev)
3370 {
3371 return pci_check_and_set_intx_mask(dev, true);
3372 }
3373 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3374
3375 /**
3376 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3377 * @dev: the PCI device to operate on
3378 *
3379 * Check if the device dev has its INTx line asserted, unmask it if not
3380 * and return true. False is returned and the mask remains active if
3381 * there was still an interrupt pending.
3382 */
3383 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3384 {
3385 return pci_check_and_set_intx_mask(dev, false);
3386 }
3387 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3388
3389 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3390 {
3391 return dma_set_max_seg_size(&dev->dev, size);
3392 }
3393 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3394
3395 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3396 {
3397 return dma_set_seg_boundary(&dev->dev, mask);
3398 }
3399 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3400
3401 /**
3402 * pci_wait_for_pending_transaction - waits for pending transaction
3403 * @dev: the PCI device to operate on
3404 *
3405 * Return 0 if transaction is pending 1 otherwise.
3406 */
3407 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3408 {
3409 if (!pci_is_pcie(dev))
3410 return 1;
3411
3412 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3413 PCI_EXP_DEVSTA_TRPND);
3414 }
3415 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3416
3417 static int pcie_flr(struct pci_dev *dev, int probe)
3418 {
3419 u32 cap;
3420
3421 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3422 if (!(cap & PCI_EXP_DEVCAP_FLR))
3423 return -ENOTTY;
3424
3425 if (probe)
3426 return 0;
3427
3428 if (!pci_wait_for_pending_transaction(dev))
3429 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3430
3431 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3432 msleep(100);
3433 return 0;
3434 }
3435
3436 static int pci_af_flr(struct pci_dev *dev, int probe)
3437 {
3438 int pos;
3439 u8 cap;
3440
3441 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3442 if (!pos)
3443 return -ENOTTY;
3444
3445 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3446 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3447 return -ENOTTY;
3448
3449 if (probe)
3450 return 0;
3451
3452 /*
3453 * Wait for Transaction Pending bit to clear. A word-aligned test
3454 * is used, so we use the conrol offset rather than status and shift
3455 * the test bit to match.
3456 */
3457 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3458 PCI_AF_STATUS_TP << 8))
3459 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3460
3461 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3462 msleep(100);
3463 return 0;
3464 }
3465
3466 /**
3467 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3468 * @dev: Device to reset.
3469 * @probe: If set, only check if the device can be reset this way.
3470 *
3471 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3472 * unset, it will be reinitialized internally when going from PCI_D3hot to
3473 * PCI_D0. If that's the case and the device is not in a low-power state
3474 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3475 *
3476 * NOTE: This causes the caller to sleep for twice the device power transition
3477 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3478 * by default (i.e. unless the @dev's d3_delay field has a different value).
3479 * Moreover, only devices in D0 can be reset by this function.
3480 */
3481 static int pci_pm_reset(struct pci_dev *dev, int probe)
3482 {
3483 u16 csr;
3484
3485 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3486 return -ENOTTY;
3487
3488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3489 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3490 return -ENOTTY;
3491
3492 if (probe)
3493 return 0;
3494
3495 if (dev->current_state != PCI_D0)
3496 return -EINVAL;
3497
3498 csr &= ~PCI_PM_CTRL_STATE_MASK;
3499 csr |= PCI_D3hot;
3500 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3501 pci_dev_d3_sleep(dev);
3502
3503 csr &= ~PCI_PM_CTRL_STATE_MASK;
3504 csr |= PCI_D0;
3505 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3506 pci_dev_d3_sleep(dev);
3507
3508 return 0;
3509 }
3510
3511 void pci_reset_secondary_bus(struct pci_dev *dev)
3512 {
3513 u16 ctrl;
3514
3515 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3516 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3517 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3518 /*
3519 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3520 * this to 2ms to ensure that we meet the minimum requirement.
3521 */
3522 msleep(2);
3523
3524 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3525 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3526
3527 /*
3528 * Trhfa for conventional PCI is 2^25 clock cycles.
3529 * Assuming a minimum 33MHz clock this results in a 1s
3530 * delay before we can consider subordinate devices to
3531 * be re-initialized. PCIe has some ways to shorten this,
3532 * but we don't make use of them yet.
3533 */
3534 ssleep(1);
3535 }
3536
3537 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3538 {
3539 pci_reset_secondary_bus(dev);
3540 }
3541
3542 /**
3543 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3544 * @dev: Bridge device
3545 *
3546 * Use the bridge control register to assert reset on the secondary bus.
3547 * Devices on the secondary bus are left in power-on state.
3548 */
3549 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3550 {
3551 pcibios_reset_secondary_bus(dev);
3552 }
3553 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3554
3555 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3556 {
3557 struct pci_dev *pdev;
3558
3559 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3560 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3561 return -ENOTTY;
3562
3563 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3564 if (pdev != dev)
3565 return -ENOTTY;
3566
3567 if (probe)
3568 return 0;
3569
3570 pci_reset_bridge_secondary_bus(dev->bus->self);
3571
3572 return 0;
3573 }
3574
3575 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3576 {
3577 int rc = -ENOTTY;
3578
3579 if (!hotplug || !try_module_get(hotplug->ops->owner))
3580 return rc;
3581
3582 if (hotplug->ops->reset_slot)
3583 rc = hotplug->ops->reset_slot(hotplug, probe);
3584
3585 module_put(hotplug->ops->owner);
3586
3587 return rc;
3588 }
3589
3590 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3591 {
3592 struct pci_dev *pdev;
3593
3594 if (dev->subordinate || !dev->slot ||
3595 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3596 return -ENOTTY;
3597
3598 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3599 if (pdev != dev && pdev->slot == dev->slot)
3600 return -ENOTTY;
3601
3602 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3603 }
3604
3605 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3606 {
3607 int rc;
3608
3609 might_sleep();
3610
3611 rc = pci_dev_specific_reset(dev, probe);
3612 if (rc != -ENOTTY)
3613 goto done;
3614
3615 rc = pcie_flr(dev, probe);
3616 if (rc != -ENOTTY)
3617 goto done;
3618
3619 rc = pci_af_flr(dev, probe);
3620 if (rc != -ENOTTY)
3621 goto done;
3622
3623 rc = pci_pm_reset(dev, probe);
3624 if (rc != -ENOTTY)
3625 goto done;
3626
3627 rc = pci_dev_reset_slot_function(dev, probe);
3628 if (rc != -ENOTTY)
3629 goto done;
3630
3631 rc = pci_parent_bus_reset(dev, probe);
3632 done:
3633 return rc;
3634 }
3635
3636 static void pci_dev_lock(struct pci_dev *dev)
3637 {
3638 pci_cfg_access_lock(dev);
3639 /* block PM suspend, driver probe, etc. */
3640 device_lock(&dev->dev);
3641 }
3642
3643 /* Return 1 on successful lock, 0 on contention */
3644 static int pci_dev_trylock(struct pci_dev *dev)
3645 {
3646 if (pci_cfg_access_trylock(dev)) {
3647 if (device_trylock(&dev->dev))
3648 return 1;
3649 pci_cfg_access_unlock(dev);
3650 }
3651
3652 return 0;
3653 }
3654
3655 static void pci_dev_unlock(struct pci_dev *dev)
3656 {
3657 device_unlock(&dev->dev);
3658 pci_cfg_access_unlock(dev);
3659 }
3660
3661 /**
3662 * pci_reset_notify - notify device driver of reset
3663 * @dev: device to be notified of reset
3664 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3665 * completed
3666 *
3667 * Must be called prior to device access being disabled and after device
3668 * access is restored.
3669 */
3670 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3671 {
3672 const struct pci_error_handlers *err_handler =
3673 dev->driver ? dev->driver->err_handler : NULL;
3674 if (err_handler && err_handler->reset_notify)
3675 err_handler->reset_notify(dev, prepare);
3676 }
3677
3678 static void pci_dev_save_and_disable(struct pci_dev *dev)
3679 {
3680 pci_reset_notify(dev, true);
3681
3682 /*
3683 * Wake-up device prior to save. PM registers default to D0 after
3684 * reset and a simple register restore doesn't reliably return
3685 * to a non-D0 state anyway.
3686 */
3687 pci_set_power_state(dev, PCI_D0);
3688
3689 pci_save_state(dev);
3690 /*
3691 * Disable the device by clearing the Command register, except for
3692 * INTx-disable which is set. This not only disables MMIO and I/O port
3693 * BARs, but also prevents the device from being Bus Master, preventing
3694 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3695 * compliant devices, INTx-disable prevents legacy interrupts.
3696 */
3697 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3698 }
3699
3700 static void pci_dev_restore(struct pci_dev *dev)
3701 {
3702 pci_restore_state(dev);
3703 pci_reset_notify(dev, false);
3704 }
3705
3706 static int pci_dev_reset(struct pci_dev *dev, int probe)
3707 {
3708 int rc;
3709
3710 if (!probe)
3711 pci_dev_lock(dev);
3712
3713 rc = __pci_dev_reset(dev, probe);
3714
3715 if (!probe)
3716 pci_dev_unlock(dev);
3717
3718 return rc;
3719 }
3720
3721 /**
3722 * __pci_reset_function - reset a PCI device function
3723 * @dev: PCI device to reset
3724 *
3725 * Some devices allow an individual function to be reset without affecting
3726 * other functions in the same device. The PCI device must be responsive
3727 * to PCI config space in order to use this function.
3728 *
3729 * The device function is presumed to be unused when this function is called.
3730 * Resetting the device will make the contents of PCI configuration space
3731 * random, so any caller of this must be prepared to reinitialise the
3732 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3733 * etc.
3734 *
3735 * Returns 0 if the device function was successfully reset or negative if the
3736 * device doesn't support resetting a single function.
3737 */
3738 int __pci_reset_function(struct pci_dev *dev)
3739 {
3740 return pci_dev_reset(dev, 0);
3741 }
3742 EXPORT_SYMBOL_GPL(__pci_reset_function);
3743
3744 /**
3745 * __pci_reset_function_locked - reset a PCI device function while holding
3746 * the @dev mutex lock.
3747 * @dev: PCI device to reset
3748 *
3749 * Some devices allow an individual function to be reset without affecting
3750 * other functions in the same device. The PCI device must be responsive
3751 * to PCI config space in order to use this function.
3752 *
3753 * The device function is presumed to be unused and the caller is holding
3754 * the device mutex lock when this function is called.
3755 * Resetting the device will make the contents of PCI configuration space
3756 * random, so any caller of this must be prepared to reinitialise the
3757 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3758 * etc.
3759 *
3760 * Returns 0 if the device function was successfully reset or negative if the
3761 * device doesn't support resetting a single function.
3762 */
3763 int __pci_reset_function_locked(struct pci_dev *dev)
3764 {
3765 return __pci_dev_reset(dev, 0);
3766 }
3767 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3768
3769 /**
3770 * pci_probe_reset_function - check whether the device can be safely reset
3771 * @dev: PCI device to reset
3772 *
3773 * Some devices allow an individual function to be reset without affecting
3774 * other functions in the same device. The PCI device must be responsive
3775 * to PCI config space in order to use this function.
3776 *
3777 * Returns 0 if the device function can be reset or negative if the
3778 * device doesn't support resetting a single function.
3779 */
3780 int pci_probe_reset_function(struct pci_dev *dev)
3781 {
3782 return pci_dev_reset(dev, 1);
3783 }
3784
3785 /**
3786 * pci_reset_function - quiesce and reset a PCI device function
3787 * @dev: PCI device to reset
3788 *
3789 * Some devices allow an individual function to be reset without affecting
3790 * other functions in the same device. The PCI device must be responsive
3791 * to PCI config space in order to use this function.
3792 *
3793 * This function does not just reset the PCI portion of a device, but
3794 * clears all the state associated with the device. This function differs
3795 * from __pci_reset_function in that it saves and restores device state
3796 * over the reset.
3797 *
3798 * Returns 0 if the device function was successfully reset or negative if the
3799 * device doesn't support resetting a single function.
3800 */
3801 int pci_reset_function(struct pci_dev *dev)
3802 {
3803 int rc;
3804
3805 rc = pci_dev_reset(dev, 1);
3806 if (rc)
3807 return rc;
3808
3809 pci_dev_save_and_disable(dev);
3810
3811 rc = pci_dev_reset(dev, 0);
3812
3813 pci_dev_restore(dev);
3814
3815 return rc;
3816 }
3817 EXPORT_SYMBOL_GPL(pci_reset_function);
3818
3819 /**
3820 * pci_try_reset_function - quiesce and reset a PCI device function
3821 * @dev: PCI device to reset
3822 *
3823 * Same as above, except return -EAGAIN if unable to lock device.
3824 */
3825 int pci_try_reset_function(struct pci_dev *dev)
3826 {
3827 int rc;
3828
3829 rc = pci_dev_reset(dev, 1);
3830 if (rc)
3831 return rc;
3832
3833 pci_dev_save_and_disable(dev);
3834
3835 if (pci_dev_trylock(dev)) {
3836 rc = __pci_dev_reset(dev, 0);
3837 pci_dev_unlock(dev);
3838 } else
3839 rc = -EAGAIN;
3840
3841 pci_dev_restore(dev);
3842
3843 return rc;
3844 }
3845 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3846
3847 /* Do any devices on or below this bus prevent a bus reset? */
3848 static bool pci_bus_resetable(struct pci_bus *bus)
3849 {
3850 struct pci_dev *dev;
3851
3852 list_for_each_entry(dev, &bus->devices, bus_list) {
3853 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3854 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3855 return false;
3856 }
3857
3858 return true;
3859 }
3860
3861 /* Lock devices from the top of the tree down */
3862 static void pci_bus_lock(struct pci_bus *bus)
3863 {
3864 struct pci_dev *dev;
3865
3866 list_for_each_entry(dev, &bus->devices, bus_list) {
3867 pci_dev_lock(dev);
3868 if (dev->subordinate)
3869 pci_bus_lock(dev->subordinate);
3870 }
3871 }
3872
3873 /* Unlock devices from the bottom of the tree up */
3874 static void pci_bus_unlock(struct pci_bus *bus)
3875 {
3876 struct pci_dev *dev;
3877
3878 list_for_each_entry(dev, &bus->devices, bus_list) {
3879 if (dev->subordinate)
3880 pci_bus_unlock(dev->subordinate);
3881 pci_dev_unlock(dev);
3882 }
3883 }
3884
3885 /* Return 1 on successful lock, 0 on contention */
3886 static int pci_bus_trylock(struct pci_bus *bus)
3887 {
3888 struct pci_dev *dev;
3889
3890 list_for_each_entry(dev, &bus->devices, bus_list) {
3891 if (!pci_dev_trylock(dev))
3892 goto unlock;
3893 if (dev->subordinate) {
3894 if (!pci_bus_trylock(dev->subordinate)) {
3895 pci_dev_unlock(dev);
3896 goto unlock;
3897 }
3898 }
3899 }
3900 return 1;
3901
3902 unlock:
3903 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3904 if (dev->subordinate)
3905 pci_bus_unlock(dev->subordinate);
3906 pci_dev_unlock(dev);
3907 }
3908 return 0;
3909 }
3910
3911 /* Do any devices on or below this slot prevent a bus reset? */
3912 static bool pci_slot_resetable(struct pci_slot *slot)
3913 {
3914 struct pci_dev *dev;
3915
3916 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3917 if (!dev->slot || dev->slot != slot)
3918 continue;
3919 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3920 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3921 return false;
3922 }
3923
3924 return true;
3925 }
3926
3927 /* Lock devices from the top of the tree down */
3928 static void pci_slot_lock(struct pci_slot *slot)
3929 {
3930 struct pci_dev *dev;
3931
3932 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3933 if (!dev->slot || dev->slot != slot)
3934 continue;
3935 pci_dev_lock(dev);
3936 if (dev->subordinate)
3937 pci_bus_lock(dev->subordinate);
3938 }
3939 }
3940
3941 /* Unlock devices from the bottom of the tree up */
3942 static void pci_slot_unlock(struct pci_slot *slot)
3943 {
3944 struct pci_dev *dev;
3945
3946 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3947 if (!dev->slot || dev->slot != slot)
3948 continue;
3949 if (dev->subordinate)
3950 pci_bus_unlock(dev->subordinate);
3951 pci_dev_unlock(dev);
3952 }
3953 }
3954
3955 /* Return 1 on successful lock, 0 on contention */
3956 static int pci_slot_trylock(struct pci_slot *slot)
3957 {
3958 struct pci_dev *dev;
3959
3960 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3961 if (!dev->slot || dev->slot != slot)
3962 continue;
3963 if (!pci_dev_trylock(dev))
3964 goto unlock;
3965 if (dev->subordinate) {
3966 if (!pci_bus_trylock(dev->subordinate)) {
3967 pci_dev_unlock(dev);
3968 goto unlock;
3969 }
3970 }
3971 }
3972 return 1;
3973
3974 unlock:
3975 list_for_each_entry_continue_reverse(dev,
3976 &slot->bus->devices, bus_list) {
3977 if (!dev->slot || dev->slot != slot)
3978 continue;
3979 if (dev->subordinate)
3980 pci_bus_unlock(dev->subordinate);
3981 pci_dev_unlock(dev);
3982 }
3983 return 0;
3984 }
3985
3986 /* Save and disable devices from the top of the tree down */
3987 static void pci_bus_save_and_disable(struct pci_bus *bus)
3988 {
3989 struct pci_dev *dev;
3990
3991 list_for_each_entry(dev, &bus->devices, bus_list) {
3992 pci_dev_save_and_disable(dev);
3993 if (dev->subordinate)
3994 pci_bus_save_and_disable(dev->subordinate);
3995 }
3996 }
3997
3998 /*
3999 * Restore devices from top of the tree down - parent bridges need to be
4000 * restored before we can get to subordinate devices.
4001 */
4002 static void pci_bus_restore(struct pci_bus *bus)
4003 {
4004 struct pci_dev *dev;
4005
4006 list_for_each_entry(dev, &bus->devices, bus_list) {
4007 pci_dev_restore(dev);
4008 if (dev->subordinate)
4009 pci_bus_restore(dev->subordinate);
4010 }
4011 }
4012
4013 /* Save and disable devices from the top of the tree down */
4014 static void pci_slot_save_and_disable(struct pci_slot *slot)
4015 {
4016 struct pci_dev *dev;
4017
4018 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4019 if (!dev->slot || dev->slot != slot)
4020 continue;
4021 pci_dev_save_and_disable(dev);
4022 if (dev->subordinate)
4023 pci_bus_save_and_disable(dev->subordinate);
4024 }
4025 }
4026
4027 /*
4028 * Restore devices from top of the tree down - parent bridges need to be
4029 * restored before we can get to subordinate devices.
4030 */
4031 static void pci_slot_restore(struct pci_slot *slot)
4032 {
4033 struct pci_dev *dev;
4034
4035 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4036 if (!dev->slot || dev->slot != slot)
4037 continue;
4038 pci_dev_restore(dev);
4039 if (dev->subordinate)
4040 pci_bus_restore(dev->subordinate);
4041 }
4042 }
4043
4044 static int pci_slot_reset(struct pci_slot *slot, int probe)
4045 {
4046 int rc;
4047
4048 if (!slot || !pci_slot_resetable(slot))
4049 return -ENOTTY;
4050
4051 if (!probe)
4052 pci_slot_lock(slot);
4053
4054 might_sleep();
4055
4056 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4057
4058 if (!probe)
4059 pci_slot_unlock(slot);
4060
4061 return rc;
4062 }
4063
4064 /**
4065 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4066 * @slot: PCI slot to probe
4067 *
4068 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4069 */
4070 int pci_probe_reset_slot(struct pci_slot *slot)
4071 {
4072 return pci_slot_reset(slot, 1);
4073 }
4074 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4075
4076 /**
4077 * pci_reset_slot - reset a PCI slot
4078 * @slot: PCI slot to reset
4079 *
4080 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4081 * independent of other slots. For instance, some slots may support slot power
4082 * control. In the case of a 1:1 bus to slot architecture, this function may
4083 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4084 * Generally a slot reset should be attempted before a bus reset. All of the
4085 * function of the slot and any subordinate buses behind the slot are reset
4086 * through this function. PCI config space of all devices in the slot and
4087 * behind the slot is saved before and restored after reset.
4088 *
4089 * Return 0 on success, non-zero on error.
4090 */
4091 int pci_reset_slot(struct pci_slot *slot)
4092 {
4093 int rc;
4094
4095 rc = pci_slot_reset(slot, 1);
4096 if (rc)
4097 return rc;
4098
4099 pci_slot_save_and_disable(slot);
4100
4101 rc = pci_slot_reset(slot, 0);
4102
4103 pci_slot_restore(slot);
4104
4105 return rc;
4106 }
4107 EXPORT_SYMBOL_GPL(pci_reset_slot);
4108
4109 /**
4110 * pci_try_reset_slot - Try to reset a PCI slot
4111 * @slot: PCI slot to reset
4112 *
4113 * Same as above except return -EAGAIN if the slot cannot be locked
4114 */
4115 int pci_try_reset_slot(struct pci_slot *slot)
4116 {
4117 int rc;
4118
4119 rc = pci_slot_reset(slot, 1);
4120 if (rc)
4121 return rc;
4122
4123 pci_slot_save_and_disable(slot);
4124
4125 if (pci_slot_trylock(slot)) {
4126 might_sleep();
4127 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4128 pci_slot_unlock(slot);
4129 } else
4130 rc = -EAGAIN;
4131
4132 pci_slot_restore(slot);
4133
4134 return rc;
4135 }
4136 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4137
4138 static int pci_bus_reset(struct pci_bus *bus, int probe)
4139 {
4140 if (!bus->self || !pci_bus_resetable(bus))
4141 return -ENOTTY;
4142
4143 if (probe)
4144 return 0;
4145
4146 pci_bus_lock(bus);
4147
4148 might_sleep();
4149
4150 pci_reset_bridge_secondary_bus(bus->self);
4151
4152 pci_bus_unlock(bus);
4153
4154 return 0;
4155 }
4156
4157 /**
4158 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4159 * @bus: PCI bus to probe
4160 *
4161 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4162 */
4163 int pci_probe_reset_bus(struct pci_bus *bus)
4164 {
4165 return pci_bus_reset(bus, 1);
4166 }
4167 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4168
4169 /**
4170 * pci_reset_bus - reset a PCI bus
4171 * @bus: top level PCI bus to reset
4172 *
4173 * Do a bus reset on the given bus and any subordinate buses, saving
4174 * and restoring state of all devices.
4175 *
4176 * Return 0 on success, non-zero on error.
4177 */
4178 int pci_reset_bus(struct pci_bus *bus)
4179 {
4180 int rc;
4181
4182 rc = pci_bus_reset(bus, 1);
4183 if (rc)
4184 return rc;
4185
4186 pci_bus_save_and_disable(bus);
4187
4188 rc = pci_bus_reset(bus, 0);
4189
4190 pci_bus_restore(bus);
4191
4192 return rc;
4193 }
4194 EXPORT_SYMBOL_GPL(pci_reset_bus);
4195
4196 /**
4197 * pci_try_reset_bus - Try to reset a PCI bus
4198 * @bus: top level PCI bus to reset
4199 *
4200 * Same as above except return -EAGAIN if the bus cannot be locked
4201 */
4202 int pci_try_reset_bus(struct pci_bus *bus)
4203 {
4204 int rc;
4205
4206 rc = pci_bus_reset(bus, 1);
4207 if (rc)
4208 return rc;
4209
4210 pci_bus_save_and_disable(bus);
4211
4212 if (pci_bus_trylock(bus)) {
4213 might_sleep();
4214 pci_reset_bridge_secondary_bus(bus->self);
4215 pci_bus_unlock(bus);
4216 } else
4217 rc = -EAGAIN;
4218
4219 pci_bus_restore(bus);
4220
4221 return rc;
4222 }
4223 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4224
4225 /**
4226 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4227 * @dev: PCI device to query
4228 *
4229 * Returns mmrbc: maximum designed memory read count in bytes
4230 * or appropriate error value.
4231 */
4232 int pcix_get_max_mmrbc(struct pci_dev *dev)
4233 {
4234 int cap;
4235 u32 stat;
4236
4237 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4238 if (!cap)
4239 return -EINVAL;
4240
4241 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4242 return -EINVAL;
4243
4244 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4245 }
4246 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4247
4248 /**
4249 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4250 * @dev: PCI device to query
4251 *
4252 * Returns mmrbc: maximum memory read count in bytes
4253 * or appropriate error value.
4254 */
4255 int pcix_get_mmrbc(struct pci_dev *dev)
4256 {
4257 int cap;
4258 u16 cmd;
4259
4260 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4261 if (!cap)
4262 return -EINVAL;
4263
4264 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4265 return -EINVAL;
4266
4267 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4268 }
4269 EXPORT_SYMBOL(pcix_get_mmrbc);
4270
4271 /**
4272 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4273 * @dev: PCI device to query
4274 * @mmrbc: maximum memory read count in bytes
4275 * valid values are 512, 1024, 2048, 4096
4276 *
4277 * If possible sets maximum memory read byte count, some bridges have erratas
4278 * that prevent this.
4279 */
4280 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4281 {
4282 int cap;
4283 u32 stat, v, o;
4284 u16 cmd;
4285
4286 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4287 return -EINVAL;
4288
4289 v = ffs(mmrbc) - 10;
4290
4291 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4292 if (!cap)
4293 return -EINVAL;
4294
4295 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4296 return -EINVAL;
4297
4298 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4299 return -E2BIG;
4300
4301 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4302 return -EINVAL;
4303
4304 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4305 if (o != v) {
4306 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4307 return -EIO;
4308
4309 cmd &= ~PCI_X_CMD_MAX_READ;
4310 cmd |= v << 2;
4311 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4312 return -EIO;
4313 }
4314 return 0;
4315 }
4316 EXPORT_SYMBOL(pcix_set_mmrbc);
4317
4318 /**
4319 * pcie_get_readrq - get PCI Express read request size
4320 * @dev: PCI device to query
4321 *
4322 * Returns maximum memory read request in bytes
4323 * or appropriate error value.
4324 */
4325 int pcie_get_readrq(struct pci_dev *dev)
4326 {
4327 u16 ctl;
4328
4329 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4330
4331 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4332 }
4333 EXPORT_SYMBOL(pcie_get_readrq);
4334
4335 /**
4336 * pcie_set_readrq - set PCI Express maximum memory read request
4337 * @dev: PCI device to query
4338 * @rq: maximum memory read count in bytes
4339 * valid values are 128, 256, 512, 1024, 2048, 4096
4340 *
4341 * If possible sets maximum memory read request in bytes
4342 */
4343 int pcie_set_readrq(struct pci_dev *dev, int rq)
4344 {
4345 u16 v;
4346
4347 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4348 return -EINVAL;
4349
4350 /*
4351 * If using the "performance" PCIe config, we clamp the
4352 * read rq size to the max packet size to prevent the
4353 * host bridge generating requests larger than we can
4354 * cope with
4355 */
4356 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4357 int mps = pcie_get_mps(dev);
4358
4359 if (mps < rq)
4360 rq = mps;
4361 }
4362
4363 v = (ffs(rq) - 8) << 12;
4364
4365 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4366 PCI_EXP_DEVCTL_READRQ, v);
4367 }
4368 EXPORT_SYMBOL(pcie_set_readrq);
4369
4370 /**
4371 * pcie_get_mps - get PCI Express maximum payload size
4372 * @dev: PCI device to query
4373 *
4374 * Returns maximum payload size in bytes
4375 */
4376 int pcie_get_mps(struct pci_dev *dev)
4377 {
4378 u16 ctl;
4379
4380 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4381
4382 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4383 }
4384 EXPORT_SYMBOL(pcie_get_mps);
4385
4386 /**
4387 * pcie_set_mps - set PCI Express maximum payload size
4388 * @dev: PCI device to query
4389 * @mps: maximum payload size in bytes
4390 * valid values are 128, 256, 512, 1024, 2048, 4096
4391 *
4392 * If possible sets maximum payload size
4393 */
4394 int pcie_set_mps(struct pci_dev *dev, int mps)
4395 {
4396 u16 v;
4397
4398 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4399 return -EINVAL;
4400
4401 v = ffs(mps) - 8;
4402 if (v > dev->pcie_mpss)
4403 return -EINVAL;
4404 v <<= 5;
4405
4406 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4407 PCI_EXP_DEVCTL_PAYLOAD, v);
4408 }
4409 EXPORT_SYMBOL(pcie_set_mps);
4410
4411 /**
4412 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4413 * @dev: PCI device to query
4414 * @speed: storage for minimum speed
4415 * @width: storage for minimum width
4416 *
4417 * This function will walk up the PCI device chain and determine the minimum
4418 * link width and speed of the device.
4419 */
4420 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4421 enum pcie_link_width *width)
4422 {
4423 int ret;
4424
4425 *speed = PCI_SPEED_UNKNOWN;
4426 *width = PCIE_LNK_WIDTH_UNKNOWN;
4427
4428 while (dev) {
4429 u16 lnksta;
4430 enum pci_bus_speed next_speed;
4431 enum pcie_link_width next_width;
4432
4433 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4434 if (ret)
4435 return ret;
4436
4437 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4438 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4439 PCI_EXP_LNKSTA_NLW_SHIFT;
4440
4441 if (next_speed < *speed)
4442 *speed = next_speed;
4443
4444 if (next_width < *width)
4445 *width = next_width;
4446
4447 dev = dev->bus->self;
4448 }
4449
4450 return 0;
4451 }
4452 EXPORT_SYMBOL(pcie_get_minimum_link);
4453
4454 /**
4455 * pci_select_bars - Make BAR mask from the type of resource
4456 * @dev: the PCI device for which BAR mask is made
4457 * @flags: resource type mask to be selected
4458 *
4459 * This helper routine makes bar mask from the type of resource.
4460 */
4461 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4462 {
4463 int i, bars = 0;
4464 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4465 if (pci_resource_flags(dev, i) & flags)
4466 bars |= (1 << i);
4467 return bars;
4468 }
4469 EXPORT_SYMBOL(pci_select_bars);
4470
4471 /**
4472 * pci_resource_bar - get position of the BAR associated with a resource
4473 * @dev: the PCI device
4474 * @resno: the resource number
4475 * @type: the BAR type to be filled in
4476 *
4477 * Returns BAR position in config space, or 0 if the BAR is invalid.
4478 */
4479 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4480 {
4481 int reg;
4482
4483 if (resno < PCI_ROM_RESOURCE) {
4484 *type = pci_bar_unknown;
4485 return PCI_BASE_ADDRESS_0 + 4 * resno;
4486 } else if (resno == PCI_ROM_RESOURCE) {
4487 *type = pci_bar_mem32;
4488 return dev->rom_base_reg;
4489 } else if (resno < PCI_BRIDGE_RESOURCES) {
4490 /* device specific resource */
4491 *type = pci_bar_unknown;
4492 reg = pci_iov_resource_bar(dev, resno);
4493 if (reg)
4494 return reg;
4495 }
4496
4497 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4498 return 0;
4499 }
4500
4501 /* Some architectures require additional programming to enable VGA */
4502 static arch_set_vga_state_t arch_set_vga_state;
4503
4504 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4505 {
4506 arch_set_vga_state = func; /* NULL disables */
4507 }
4508
4509 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4510 unsigned int command_bits, u32 flags)
4511 {
4512 if (arch_set_vga_state)
4513 return arch_set_vga_state(dev, decode, command_bits,
4514 flags);
4515 return 0;
4516 }
4517
4518 /**
4519 * pci_set_vga_state - set VGA decode state on device and parents if requested
4520 * @dev: the PCI device
4521 * @decode: true = enable decoding, false = disable decoding
4522 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4523 * @flags: traverse ancestors and change bridges
4524 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4525 */
4526 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4527 unsigned int command_bits, u32 flags)
4528 {
4529 struct pci_bus *bus;
4530 struct pci_dev *bridge;
4531 u16 cmd;
4532 int rc;
4533
4534 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4535
4536 /* ARCH specific VGA enables */
4537 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4538 if (rc)
4539 return rc;
4540
4541 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4542 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4543 if (decode == true)
4544 cmd |= command_bits;
4545 else
4546 cmd &= ~command_bits;
4547 pci_write_config_word(dev, PCI_COMMAND, cmd);
4548 }
4549
4550 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4551 return 0;
4552
4553 bus = dev->bus;
4554 while (bus) {
4555 bridge = bus->self;
4556 if (bridge) {
4557 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4558 &cmd);
4559 if (decode == true)
4560 cmd |= PCI_BRIDGE_CTL_VGA;
4561 else
4562 cmd &= ~PCI_BRIDGE_CTL_VGA;
4563 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4564 cmd);
4565 }
4566 bus = bus->parent;
4567 }
4568 return 0;
4569 }
4570
4571 bool pci_device_is_present(struct pci_dev *pdev)
4572 {
4573 u32 v;
4574
4575 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4576 }
4577 EXPORT_SYMBOL_GPL(pci_device_is_present);
4578
4579 void pci_ignore_hotplug(struct pci_dev *dev)
4580 {
4581 struct pci_dev *bridge = dev->bus->self;
4582
4583 dev->ignore_hotplug = 1;
4584 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4585 if (bridge)
4586 bridge->ignore_hotplug = 1;
4587 }
4588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4589
4590 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4591 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4592 static DEFINE_SPINLOCK(resource_alignment_lock);
4593
4594 /**
4595 * pci_specified_resource_alignment - get resource alignment specified by user.
4596 * @dev: the PCI device to get
4597 *
4598 * RETURNS: Resource alignment if it is specified.
4599 * Zero if it is not specified.
4600 */
4601 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4602 {
4603 int seg, bus, slot, func, align_order, count;
4604 resource_size_t align = 0;
4605 char *p;
4606
4607 spin_lock(&resource_alignment_lock);
4608 p = resource_alignment_param;
4609 while (*p) {
4610 count = 0;
4611 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4612 p[count] == '@') {
4613 p += count + 1;
4614 } else {
4615 align_order = -1;
4616 }
4617 if (sscanf(p, "%x:%x:%x.%x%n",
4618 &seg, &bus, &slot, &func, &count) != 4) {
4619 seg = 0;
4620 if (sscanf(p, "%x:%x.%x%n",
4621 &bus, &slot, &func, &count) != 3) {
4622 /* Invalid format */
4623 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4624 p);
4625 break;
4626 }
4627 }
4628 p += count;
4629 if (seg == pci_domain_nr(dev->bus) &&
4630 bus == dev->bus->number &&
4631 slot == PCI_SLOT(dev->devfn) &&
4632 func == PCI_FUNC(dev->devfn)) {
4633 if (align_order == -1)
4634 align = PAGE_SIZE;
4635 else
4636 align = 1 << align_order;
4637 /* Found */
4638 break;
4639 }
4640 if (*p != ';' && *p != ',') {
4641 /* End of param or invalid format */
4642 break;
4643 }
4644 p++;
4645 }
4646 spin_unlock(&resource_alignment_lock);
4647 return align;
4648 }
4649
4650 /*
4651 * This function disables memory decoding and releases memory resources
4652 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4653 * It also rounds up size to specified alignment.
4654 * Later on, the kernel will assign page-aligned memory resource back
4655 * to the device.
4656 */
4657 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4658 {
4659 int i;
4660 struct resource *r;
4661 resource_size_t align, size;
4662 u16 command;
4663
4664 /* check if specified PCI is target device to reassign */
4665 align = pci_specified_resource_alignment(dev);
4666 if (!align)
4667 return;
4668
4669 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4670 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4671 dev_warn(&dev->dev,
4672 "Can't reassign resources to host bridge.\n");
4673 return;
4674 }
4675
4676 dev_info(&dev->dev,
4677 "Disabling memory decoding and releasing memory resources.\n");
4678 pci_read_config_word(dev, PCI_COMMAND, &command);
4679 command &= ~PCI_COMMAND_MEMORY;
4680 pci_write_config_word(dev, PCI_COMMAND, command);
4681
4682 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4683 r = &dev->resource[i];
4684 if (!(r->flags & IORESOURCE_MEM))
4685 continue;
4686 size = resource_size(r);
4687 if (size < align) {
4688 size = align;
4689 dev_info(&dev->dev,
4690 "Rounding up size of resource #%d to %#llx.\n",
4691 i, (unsigned long long)size);
4692 }
4693 r->flags |= IORESOURCE_UNSET;
4694 r->end = size - 1;
4695 r->start = 0;
4696 }
4697 /* Need to disable bridge's resource window,
4698 * to enable the kernel to reassign new resource
4699 * window later on.
4700 */
4701 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4702 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4703 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4704 r = &dev->resource[i];
4705 if (!(r->flags & IORESOURCE_MEM))
4706 continue;
4707 r->flags |= IORESOURCE_UNSET;
4708 r->end = resource_size(r) - 1;
4709 r->start = 0;
4710 }
4711 pci_disable_bridge_window(dev);
4712 }
4713 }
4714
4715 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4716 {
4717 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4718 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4719 spin_lock(&resource_alignment_lock);
4720 strncpy(resource_alignment_param, buf, count);
4721 resource_alignment_param[count] = '\0';
4722 spin_unlock(&resource_alignment_lock);
4723 return count;
4724 }
4725
4726 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4727 {
4728 size_t count;
4729 spin_lock(&resource_alignment_lock);
4730 count = snprintf(buf, size, "%s", resource_alignment_param);
4731 spin_unlock(&resource_alignment_lock);
4732 return count;
4733 }
4734
4735 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4736 {
4737 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4738 }
4739
4740 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4741 const char *buf, size_t count)
4742 {
4743 return pci_set_resource_alignment_param(buf, count);
4744 }
4745
4746 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4747 pci_resource_alignment_store);
4748
4749 static int __init pci_resource_alignment_sysfs_init(void)
4750 {
4751 return bus_create_file(&pci_bus_type,
4752 &bus_attr_resource_alignment);
4753 }
4754 late_initcall(pci_resource_alignment_sysfs_init);
4755
4756 static void pci_no_domains(void)
4757 {
4758 #ifdef CONFIG_PCI_DOMAINS
4759 pci_domains_supported = 0;
4760 #endif
4761 }
4762
4763 #ifdef CONFIG_PCI_DOMAINS
4764 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4765
4766 int pci_get_new_domain_nr(void)
4767 {
4768 return atomic_inc_return(&__domain_nr);
4769 }
4770
4771 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4772 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4773 {
4774 static int use_dt_domains = -1;
4775 int domain = of_get_pci_domain_nr(parent->of_node);
4776
4777 /*
4778 * Check DT domain and use_dt_domains values.
4779 *
4780 * If DT domain property is valid (domain >= 0) and
4781 * use_dt_domains != 0, the DT assignment is valid since this means
4782 * we have not previously allocated a domain number by using
4783 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4784 * 1, to indicate that we have just assigned a domain number from
4785 * DT.
4786 *
4787 * If DT domain property value is not valid (ie domain < 0), and we
4788 * have not previously assigned a domain number from DT
4789 * (use_dt_domains != 1) we should assign a domain number by
4790 * using the:
4791 *
4792 * pci_get_new_domain_nr()
4793 *
4794 * API and update the use_dt_domains value to keep track of method we
4795 * are using to assign domain numbers (use_dt_domains = 0).
4796 *
4797 * All other combinations imply we have a platform that is trying
4798 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4799 * which is a recipe for domain mishandling and it is prevented by
4800 * invalidating the domain value (domain = -1) and printing a
4801 * corresponding error.
4802 */
4803 if (domain >= 0 && use_dt_domains) {
4804 use_dt_domains = 1;
4805 } else if (domain < 0 && use_dt_domains != 1) {
4806 use_dt_domains = 0;
4807 domain = pci_get_new_domain_nr();
4808 } else {
4809 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4810 parent->of_node->full_name);
4811 domain = -1;
4812 }
4813
4814 bus->domain_nr = domain;
4815 }
4816 #endif
4817 #endif
4818
4819 /**
4820 * pci_ext_cfg_avail - can we access extended PCI config space?
4821 *
4822 * Returns 1 if we can access PCI extended config space (offsets
4823 * greater than 0xff). This is the default implementation. Architecture
4824 * implementations can override this.
4825 */
4826 int __weak pci_ext_cfg_avail(void)
4827 {
4828 return 1;
4829 }
4830
4831 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4832 {
4833 }
4834 EXPORT_SYMBOL(pci_fixup_cardbus);
4835
4836 static int __init pci_setup(char *str)
4837 {
4838 while (str) {
4839 char *k = strchr(str, ',');
4840 if (k)
4841 *k++ = 0;
4842 if (*str && (str = pcibios_setup(str)) && *str) {
4843 if (!strcmp(str, "nomsi")) {
4844 pci_no_msi();
4845 } else if (!strcmp(str, "noaer")) {
4846 pci_no_aer();
4847 } else if (!strncmp(str, "realloc=", 8)) {
4848 pci_realloc_get_opt(str + 8);
4849 } else if (!strncmp(str, "realloc", 7)) {
4850 pci_realloc_get_opt("on");
4851 } else if (!strcmp(str, "nodomains")) {
4852 pci_no_domains();
4853 } else if (!strncmp(str, "noari", 5)) {
4854 pcie_ari_disabled = true;
4855 } else if (!strncmp(str, "cbiosize=", 9)) {
4856 pci_cardbus_io_size = memparse(str + 9, &str);
4857 } else if (!strncmp(str, "cbmemsize=", 10)) {
4858 pci_cardbus_mem_size = memparse(str + 10, &str);
4859 } else if (!strncmp(str, "resource_alignment=", 19)) {
4860 pci_set_resource_alignment_param(str + 19,
4861 strlen(str + 19));
4862 } else if (!strncmp(str, "ecrc=", 5)) {
4863 pcie_ecrc_get_policy(str + 5);
4864 } else if (!strncmp(str, "hpiosize=", 9)) {
4865 pci_hotplug_io_size = memparse(str + 9, &str);
4866 } else if (!strncmp(str, "hpmemsize=", 10)) {
4867 pci_hotplug_mem_size = memparse(str + 10, &str);
4868 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4869 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4870 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4871 pcie_bus_config = PCIE_BUS_SAFE;
4872 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4873 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4874 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4875 pcie_bus_config = PCIE_BUS_PEER2PEER;
4876 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4877 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4878 } else {
4879 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4880 str);
4881 }
4882 }
4883 str = k;
4884 }
4885 return 0;
4886 }
4887 early_param("pci", pci_setup);
This page took 0.26668 seconds and 5 git commands to generate.