Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
11 */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/cputype.h>
28 #include <asm/irq_regs.h>
29
30 static int
31 armpmu_map_cache_event(const unsigned (*cache_map)
32 [PERF_COUNT_HW_CACHE_MAX]
33 [PERF_COUNT_HW_CACHE_OP_MAX]
34 [PERF_COUNT_HW_CACHE_RESULT_MAX],
35 u64 config)
36 {
37 unsigned int cache_type, cache_op, cache_result, ret;
38
39 cache_type = (config >> 0) & 0xff;
40 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
41 return -EINVAL;
42
43 cache_op = (config >> 8) & 0xff;
44 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
45 return -EINVAL;
46
47 cache_result = (config >> 16) & 0xff;
48 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
49 return -EINVAL;
50
51 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
52
53 if (ret == CACHE_OP_UNSUPPORTED)
54 return -ENOENT;
55
56 return ret;
57 }
58
59 static int
60 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
61 {
62 int mapping;
63
64 if (config >= PERF_COUNT_HW_MAX)
65 return -EINVAL;
66
67 mapping = (*event_map)[config];
68 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
69 }
70
71 static int
72 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
73 {
74 return (int)(config & raw_event_mask);
75 }
76
77 int
78 armpmu_map_event(struct perf_event *event,
79 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
80 const unsigned (*cache_map)
81 [PERF_COUNT_HW_CACHE_MAX]
82 [PERF_COUNT_HW_CACHE_OP_MAX]
83 [PERF_COUNT_HW_CACHE_RESULT_MAX],
84 u32 raw_event_mask)
85 {
86 u64 config = event->attr.config;
87 int type = event->attr.type;
88
89 if (type == event->pmu->type)
90 return armpmu_map_raw_event(raw_event_mask, config);
91
92 switch (type) {
93 case PERF_TYPE_HARDWARE:
94 return armpmu_map_hw_event(event_map, config);
95 case PERF_TYPE_HW_CACHE:
96 return armpmu_map_cache_event(cache_map, config);
97 case PERF_TYPE_RAW:
98 return armpmu_map_raw_event(raw_event_mask, config);
99 }
100
101 return -ENOENT;
102 }
103
104 int armpmu_event_set_period(struct perf_event *event)
105 {
106 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
107 struct hw_perf_event *hwc = &event->hw;
108 s64 left = local64_read(&hwc->period_left);
109 s64 period = hwc->sample_period;
110 int ret = 0;
111
112 if (unlikely(left <= -period)) {
113 left = period;
114 local64_set(&hwc->period_left, left);
115 hwc->last_period = period;
116 ret = 1;
117 }
118
119 if (unlikely(left <= 0)) {
120 left += period;
121 local64_set(&hwc->period_left, left);
122 hwc->last_period = period;
123 ret = 1;
124 }
125
126 /*
127 * Limit the maximum period to prevent the counter value
128 * from overtaking the one we are about to program. In
129 * effect we are reducing max_period to account for
130 * interrupt latency (and we are being very conservative).
131 */
132 if (left > (armpmu->max_period >> 1))
133 left = armpmu->max_period >> 1;
134
135 local64_set(&hwc->prev_count, (u64)-left);
136
137 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
138
139 perf_event_update_userpage(event);
140
141 return ret;
142 }
143
144 u64 armpmu_event_update(struct perf_event *event)
145 {
146 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
147 struct hw_perf_event *hwc = &event->hw;
148 u64 delta, prev_raw_count, new_raw_count;
149
150 again:
151 prev_raw_count = local64_read(&hwc->prev_count);
152 new_raw_count = armpmu->read_counter(event);
153
154 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
155 new_raw_count) != prev_raw_count)
156 goto again;
157
158 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
159
160 local64_add(delta, &event->count);
161 local64_sub(delta, &hwc->period_left);
162
163 return new_raw_count;
164 }
165
166 static void
167 armpmu_read(struct perf_event *event)
168 {
169 armpmu_event_update(event);
170 }
171
172 static void
173 armpmu_stop(struct perf_event *event, int flags)
174 {
175 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
176 struct hw_perf_event *hwc = &event->hw;
177
178 /*
179 * ARM pmu always has to update the counter, so ignore
180 * PERF_EF_UPDATE, see comments in armpmu_start().
181 */
182 if (!(hwc->state & PERF_HES_STOPPED)) {
183 armpmu->disable(event);
184 armpmu_event_update(event);
185 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
186 }
187 }
188
189 static void armpmu_start(struct perf_event *event, int flags)
190 {
191 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
192 struct hw_perf_event *hwc = &event->hw;
193
194 /*
195 * ARM pmu always has to reprogram the period, so ignore
196 * PERF_EF_RELOAD, see the comment below.
197 */
198 if (flags & PERF_EF_RELOAD)
199 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
200
201 hwc->state = 0;
202 /*
203 * Set the period again. Some counters can't be stopped, so when we
204 * were stopped we simply disabled the IRQ source and the counter
205 * may have been left counting. If we don't do this step then we may
206 * get an interrupt too soon or *way* too late if the overflow has
207 * happened since disabling.
208 */
209 armpmu_event_set_period(event);
210 armpmu->enable(event);
211 }
212
213 static void
214 armpmu_del(struct perf_event *event, int flags)
215 {
216 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
217 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
218 struct hw_perf_event *hwc = &event->hw;
219 int idx = hwc->idx;
220
221 armpmu_stop(event, PERF_EF_UPDATE);
222 hw_events->events[idx] = NULL;
223 clear_bit(idx, hw_events->used_mask);
224 if (armpmu->clear_event_idx)
225 armpmu->clear_event_idx(hw_events, event);
226
227 perf_event_update_userpage(event);
228 }
229
230 static int
231 armpmu_add(struct perf_event *event, int flags)
232 {
233 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
234 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
235 struct hw_perf_event *hwc = &event->hw;
236 int idx;
237 int err = 0;
238
239 /* An event following a process won't be stopped earlier */
240 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
241 return -ENOENT;
242
243 perf_pmu_disable(event->pmu);
244
245 /* If we don't have a space for the counter then finish early. */
246 idx = armpmu->get_event_idx(hw_events, event);
247 if (idx < 0) {
248 err = idx;
249 goto out;
250 }
251
252 /*
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
255 */
256 event->hw.idx = idx;
257 armpmu->disable(event);
258 hw_events->events[idx] = event;
259
260 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 if (flags & PERF_EF_START)
262 armpmu_start(event, PERF_EF_RELOAD);
263
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event);
266
267 out:
268 perf_pmu_enable(event->pmu);
269 return err;
270 }
271
272 static int
273 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274 struct perf_event *event)
275 {
276 struct arm_pmu *armpmu;
277
278 if (is_software_event(event))
279 return 1;
280
281 /*
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
285 */
286 if (event->pmu != pmu)
287 return 0;
288
289 if (event->state < PERF_EVENT_STATE_OFF)
290 return 1;
291
292 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
293 return 1;
294
295 armpmu = to_arm_pmu(event->pmu);
296 return armpmu->get_event_idx(hw_events, event) >= 0;
297 }
298
299 static int
300 validate_group(struct perf_event *event)
301 {
302 struct perf_event *sibling, *leader = event->group_leader;
303 struct pmu_hw_events fake_pmu;
304
305 /*
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
308 */
309 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
310
311 if (!validate_event(event->pmu, &fake_pmu, leader))
312 return -EINVAL;
313
314 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
315 if (!validate_event(event->pmu, &fake_pmu, sibling))
316 return -EINVAL;
317 }
318
319 if (!validate_event(event->pmu, &fake_pmu, event))
320 return -EINVAL;
321
322 return 0;
323 }
324
325 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
326 {
327 struct arm_pmu *armpmu;
328 struct platform_device *plat_device;
329 struct arm_pmu_platdata *plat;
330 int ret;
331 u64 start_clock, finish_clock;
332
333 /*
334 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
335 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
336 * do any necessary shifting, we just need to perform the first
337 * dereference.
338 */
339 armpmu = *(void **)dev;
340 plat_device = armpmu->plat_device;
341 plat = dev_get_platdata(&plat_device->dev);
342
343 start_clock = sched_clock();
344 if (plat && plat->handle_irq)
345 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
346 else
347 ret = armpmu->handle_irq(irq, armpmu);
348 finish_clock = sched_clock();
349
350 perf_sample_event_took(finish_clock - start_clock);
351 return ret;
352 }
353
354 static void
355 armpmu_release_hardware(struct arm_pmu *armpmu)
356 {
357 armpmu->free_irq(armpmu);
358 }
359
360 static int
361 armpmu_reserve_hardware(struct arm_pmu *armpmu)
362 {
363 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
364 if (err) {
365 armpmu_release_hardware(armpmu);
366 return err;
367 }
368
369 return 0;
370 }
371
372 static void
373 hw_perf_event_destroy(struct perf_event *event)
374 {
375 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
376 atomic_t *active_events = &armpmu->active_events;
377 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
378
379 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
380 armpmu_release_hardware(armpmu);
381 mutex_unlock(pmu_reserve_mutex);
382 }
383 }
384
385 static int
386 event_requires_mode_exclusion(struct perf_event_attr *attr)
387 {
388 return attr->exclude_idle || attr->exclude_user ||
389 attr->exclude_kernel || attr->exclude_hv;
390 }
391
392 static int
393 __hw_perf_event_init(struct perf_event *event)
394 {
395 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
396 struct hw_perf_event *hwc = &event->hw;
397 int mapping;
398
399 mapping = armpmu->map_event(event);
400
401 if (mapping < 0) {
402 pr_debug("event %x:%llx not supported\n", event->attr.type,
403 event->attr.config);
404 return mapping;
405 }
406
407 /*
408 * We don't assign an index until we actually place the event onto
409 * hardware. Use -1 to signify that we haven't decided where to put it
410 * yet. For SMP systems, each core has it's own PMU so we can't do any
411 * clever allocation or constraints checking at this point.
412 */
413 hwc->idx = -1;
414 hwc->config_base = 0;
415 hwc->config = 0;
416 hwc->event_base = 0;
417
418 /*
419 * Check whether we need to exclude the counter from certain modes.
420 */
421 if ((!armpmu->set_event_filter ||
422 armpmu->set_event_filter(hwc, &event->attr)) &&
423 event_requires_mode_exclusion(&event->attr)) {
424 pr_debug("ARM performance counters do not support "
425 "mode exclusion\n");
426 return -EOPNOTSUPP;
427 }
428
429 /*
430 * Store the event encoding into the config_base field.
431 */
432 hwc->config_base |= (unsigned long)mapping;
433
434 if (!is_sampling_event(event)) {
435 /*
436 * For non-sampling runs, limit the sample_period to half
437 * of the counter width. That way, the new counter value
438 * is far less likely to overtake the previous one unless
439 * you have some serious IRQ latency issues.
440 */
441 hwc->sample_period = armpmu->max_period >> 1;
442 hwc->last_period = hwc->sample_period;
443 local64_set(&hwc->period_left, hwc->sample_period);
444 }
445
446 if (event->group_leader != event) {
447 if (validate_group(event) != 0)
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 static int armpmu_event_init(struct perf_event *event)
455 {
456 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
457 int err = 0;
458 atomic_t *active_events = &armpmu->active_events;
459
460 /*
461 * Reject CPU-affine events for CPUs that are of a different class to
462 * that which this PMU handles. Process-following events (where
463 * event->cpu == -1) can be migrated between CPUs, and thus we have to
464 * reject them later (in armpmu_add) if they're scheduled on a
465 * different class of CPU.
466 */
467 if (event->cpu != -1 &&
468 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
469 return -ENOENT;
470
471 /* does not support taken branch sampling */
472 if (has_branch_stack(event))
473 return -EOPNOTSUPP;
474
475 if (armpmu->map_event(event) == -ENOENT)
476 return -ENOENT;
477
478 event->destroy = hw_perf_event_destroy;
479
480 if (!atomic_inc_not_zero(active_events)) {
481 mutex_lock(&armpmu->reserve_mutex);
482 if (atomic_read(active_events) == 0)
483 err = armpmu_reserve_hardware(armpmu);
484
485 if (!err)
486 atomic_inc(active_events);
487 mutex_unlock(&armpmu->reserve_mutex);
488 }
489
490 if (err)
491 return err;
492
493 err = __hw_perf_event_init(event);
494 if (err)
495 hw_perf_event_destroy(event);
496
497 return err;
498 }
499
500 static void armpmu_enable(struct pmu *pmu)
501 {
502 struct arm_pmu *armpmu = to_arm_pmu(pmu);
503 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
504 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
505
506 /* For task-bound events we may be called on other CPUs */
507 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
508 return;
509
510 if (enabled)
511 armpmu->start(armpmu);
512 }
513
514 static void armpmu_disable(struct pmu *pmu)
515 {
516 struct arm_pmu *armpmu = to_arm_pmu(pmu);
517
518 /* For task-bound events we may be called on other CPUs */
519 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
520 return;
521
522 armpmu->stop(armpmu);
523 }
524
525 /*
526 * In heterogeneous systems, events are specific to a particular
527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
528 * the same microarchitecture.
529 */
530 static int armpmu_filter_match(struct perf_event *event)
531 {
532 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
533 unsigned int cpu = smp_processor_id();
534 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
535 }
536
537 static void armpmu_init(struct arm_pmu *armpmu)
538 {
539 atomic_set(&armpmu->active_events, 0);
540 mutex_init(&armpmu->reserve_mutex);
541
542 armpmu->pmu = (struct pmu) {
543 .pmu_enable = armpmu_enable,
544 .pmu_disable = armpmu_disable,
545 .event_init = armpmu_event_init,
546 .add = armpmu_add,
547 .del = armpmu_del,
548 .start = armpmu_start,
549 .stop = armpmu_stop,
550 .read = armpmu_read,
551 .filter_match = armpmu_filter_match,
552 };
553 }
554
555 /* Set at runtime when we know what CPU type we are. */
556 static struct arm_pmu *__oprofile_cpu_pmu;
557
558 /*
559 * Despite the names, these two functions are CPU-specific and are used
560 * by the OProfile/perf code.
561 */
562 const char *perf_pmu_name(void)
563 {
564 if (!__oprofile_cpu_pmu)
565 return NULL;
566
567 return __oprofile_cpu_pmu->name;
568 }
569 EXPORT_SYMBOL_GPL(perf_pmu_name);
570
571 int perf_num_counters(void)
572 {
573 int max_events = 0;
574
575 if (__oprofile_cpu_pmu != NULL)
576 max_events = __oprofile_cpu_pmu->num_events;
577
578 return max_events;
579 }
580 EXPORT_SYMBOL_GPL(perf_num_counters);
581
582 static void cpu_pmu_enable_percpu_irq(void *data)
583 {
584 int irq = *(int *)data;
585
586 enable_percpu_irq(irq, IRQ_TYPE_NONE);
587 }
588
589 static void cpu_pmu_disable_percpu_irq(void *data)
590 {
591 int irq = *(int *)data;
592
593 disable_percpu_irq(irq);
594 }
595
596 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
597 {
598 int i, irq, irqs;
599 struct platform_device *pmu_device = cpu_pmu->plat_device;
600 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
601
602 irqs = min(pmu_device->num_resources, num_possible_cpus());
603
604 irq = platform_get_irq(pmu_device, 0);
605 if (irq >= 0 && irq_is_percpu(irq)) {
606 on_each_cpu_mask(&cpu_pmu->supported_cpus,
607 cpu_pmu_disable_percpu_irq, &irq, 1);
608 free_percpu_irq(irq, &hw_events->percpu_pmu);
609 } else {
610 for (i = 0; i < irqs; ++i) {
611 int cpu = i;
612
613 if (cpu_pmu->irq_affinity)
614 cpu = cpu_pmu->irq_affinity[i];
615
616 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
617 continue;
618 irq = platform_get_irq(pmu_device, i);
619 if (irq >= 0)
620 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
621 }
622 }
623 }
624
625 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
626 {
627 int i, err, irq, irqs;
628 struct platform_device *pmu_device = cpu_pmu->plat_device;
629 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
630
631 if (!pmu_device)
632 return -ENODEV;
633
634 irqs = min(pmu_device->num_resources, num_possible_cpus());
635 if (irqs < 1) {
636 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
637 return 0;
638 }
639
640 irq = platform_get_irq(pmu_device, 0);
641 if (irq >= 0 && irq_is_percpu(irq)) {
642 err = request_percpu_irq(irq, handler, "arm-pmu",
643 &hw_events->percpu_pmu);
644 if (err) {
645 pr_err("unable to request IRQ%d for ARM PMU counters\n",
646 irq);
647 return err;
648 }
649
650 on_each_cpu_mask(&cpu_pmu->supported_cpus,
651 cpu_pmu_enable_percpu_irq, &irq, 1);
652 } else {
653 for (i = 0; i < irqs; ++i) {
654 int cpu = i;
655
656 err = 0;
657 irq = platform_get_irq(pmu_device, i);
658 if (irq < 0)
659 continue;
660
661 if (cpu_pmu->irq_affinity)
662 cpu = cpu_pmu->irq_affinity[i];
663
664 /*
665 * If we have a single PMU interrupt that we can't shift,
666 * assume that we're running on a uniprocessor machine and
667 * continue. Otherwise, continue without this interrupt.
668 */
669 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
670 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
671 irq, cpu);
672 continue;
673 }
674
675 err = request_irq(irq, handler,
676 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
677 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
678 if (err) {
679 pr_err("unable to request IRQ%d for ARM PMU counters\n",
680 irq);
681 return err;
682 }
683
684 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
685 }
686 }
687
688 return 0;
689 }
690
691 static DEFINE_SPINLOCK(arm_pmu_lock);
692 static LIST_HEAD(arm_pmu_list);
693
694 /*
695 * PMU hardware loses all context when a CPU goes offline.
696 * When a CPU is hotplugged back in, since some hardware registers are
697 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
698 * junk values out of them.
699 */
700 static int arm_perf_starting_cpu(unsigned int cpu)
701 {
702 struct arm_pmu *pmu;
703
704 spin_lock(&arm_pmu_lock);
705 list_for_each_entry(pmu, &arm_pmu_list, entry) {
706
707 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708 continue;
709 if (pmu->reset)
710 pmu->reset(pmu);
711 }
712 spin_unlock(&arm_pmu_lock);
713 return 0;
714 }
715
716 #ifdef CONFIG_CPU_PM
717 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
718 {
719 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
720 struct perf_event *event;
721 int idx;
722
723 for (idx = 0; idx < armpmu->num_events; idx++) {
724 /*
725 * If the counter is not used skip it, there is no
726 * need of stopping/restarting it.
727 */
728 if (!test_bit(idx, hw_events->used_mask))
729 continue;
730
731 event = hw_events->events[idx];
732
733 switch (cmd) {
734 case CPU_PM_ENTER:
735 /*
736 * Stop and update the counter
737 */
738 armpmu_stop(event, PERF_EF_UPDATE);
739 break;
740 case CPU_PM_EXIT:
741 case CPU_PM_ENTER_FAILED:
742 /*
743 * Restore and enable the counter.
744 * armpmu_start() indirectly calls
745 *
746 * perf_event_update_userpage()
747 *
748 * that requires RCU read locking to be functional,
749 * wrap the call within RCU_NONIDLE to make the
750 * RCU subsystem aware this cpu is not idle from
751 * an RCU perspective for the armpmu_start() call
752 * duration.
753 */
754 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
755 break;
756 default:
757 break;
758 }
759 }
760 }
761
762 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
763 void *v)
764 {
765 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
766 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
767 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
768
769 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
770 return NOTIFY_DONE;
771
772 /*
773 * Always reset the PMU registers on power-up even if
774 * there are no events running.
775 */
776 if (cmd == CPU_PM_EXIT && armpmu->reset)
777 armpmu->reset(armpmu);
778
779 if (!enabled)
780 return NOTIFY_OK;
781
782 switch (cmd) {
783 case CPU_PM_ENTER:
784 armpmu->stop(armpmu);
785 cpu_pm_pmu_setup(armpmu, cmd);
786 break;
787 case CPU_PM_EXIT:
788 cpu_pm_pmu_setup(armpmu, cmd);
789 case CPU_PM_ENTER_FAILED:
790 armpmu->start(armpmu);
791 break;
792 default:
793 return NOTIFY_DONE;
794 }
795
796 return NOTIFY_OK;
797 }
798
799 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
800 {
801 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
802 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
803 }
804
805 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
806 {
807 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
808 }
809 #else
810 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
811 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
812 #endif
813
814 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
815 {
816 int err;
817 int cpu;
818 struct pmu_hw_events __percpu *cpu_hw_events;
819
820 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
821 if (!cpu_hw_events)
822 return -ENOMEM;
823
824 spin_lock(&arm_pmu_lock);
825 list_add_tail(&cpu_pmu->entry, &arm_pmu_list);
826 spin_unlock(&arm_pmu_lock);
827
828 err = cpu_pm_pmu_register(cpu_pmu);
829 if (err)
830 goto out_unregister;
831
832 for_each_possible_cpu(cpu) {
833 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
834 raw_spin_lock_init(&events->pmu_lock);
835 events->percpu_pmu = cpu_pmu;
836 }
837
838 cpu_pmu->hw_events = cpu_hw_events;
839 cpu_pmu->request_irq = cpu_pmu_request_irq;
840 cpu_pmu->free_irq = cpu_pmu_free_irq;
841
842 /* Ensure the PMU has sane values out of reset. */
843 if (cpu_pmu->reset)
844 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
845 cpu_pmu, 1);
846
847 /* If no interrupts available, set the corresponding capability flag */
848 if (!platform_get_irq(cpu_pmu->plat_device, 0))
849 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
850
851 /*
852 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
853 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
854 * sharing into account (e.g. with our pmu::filter_match callback and
855 * pmu::event_init group validation).
856 */
857 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
858
859 return 0;
860
861 out_unregister:
862 spin_lock(&arm_pmu_lock);
863 list_del(&cpu_pmu->entry);
864 spin_unlock(&arm_pmu_lock);
865 free_percpu(cpu_hw_events);
866 return err;
867 }
868
869 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
870 {
871 cpu_pm_pmu_unregister(cpu_pmu);
872 spin_lock(&arm_pmu_lock);
873 list_del(&cpu_pmu->entry);
874 spin_unlock(&arm_pmu_lock);
875 free_percpu(cpu_pmu->hw_events);
876 }
877
878 /*
879 * CPU PMU identification and probing.
880 */
881 static int probe_current_pmu(struct arm_pmu *pmu,
882 const struct pmu_probe_info *info)
883 {
884 int cpu = get_cpu();
885 unsigned int cpuid = read_cpuid_id();
886 int ret = -ENODEV;
887
888 pr_info("probing PMU on CPU %d\n", cpu);
889
890 for (; info->init != NULL; info++) {
891 if ((cpuid & info->mask) != info->cpuid)
892 continue;
893 ret = info->init(pmu);
894 break;
895 }
896
897 put_cpu();
898 return ret;
899 }
900
901 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
902 {
903 int *irqs, i = 0;
904 bool using_spi = false;
905 struct platform_device *pdev = pmu->plat_device;
906
907 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
908 if (!irqs)
909 return -ENOMEM;
910
911 do {
912 struct device_node *dn;
913 int cpu, irq;
914
915 /* See if we have an affinity entry */
916 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
917 if (!dn)
918 break;
919
920 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
921 irq = platform_get_irq(pdev, i);
922 if (irq >= 0) {
923 bool spi = !irq_is_percpu(irq);
924
925 if (i > 0 && spi != using_spi) {
926 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
927 dn->name);
928 kfree(irqs);
929 return -EINVAL;
930 }
931
932 using_spi = spi;
933 }
934
935 /* Now look up the logical CPU number */
936 for_each_possible_cpu(cpu) {
937 struct device_node *cpu_dn;
938
939 cpu_dn = of_cpu_device_node_get(cpu);
940 of_node_put(cpu_dn);
941
942 if (dn == cpu_dn)
943 break;
944 }
945
946 if (cpu >= nr_cpu_ids) {
947 pr_warn("Failed to find logical CPU for %s\n",
948 dn->name);
949 of_node_put(dn);
950 cpumask_setall(&pmu->supported_cpus);
951 break;
952 }
953 of_node_put(dn);
954
955 /* For SPIs, we need to track the affinity per IRQ */
956 if (using_spi) {
957 if (i >= pdev->num_resources)
958 break;
959
960 irqs[i] = cpu;
961 }
962
963 /* Keep track of the CPUs containing this PMU type */
964 cpumask_set_cpu(cpu, &pmu->supported_cpus);
965 i++;
966 } while (1);
967
968 /* If we didn't manage to parse anything, try the interrupt affinity */
969 if (cpumask_weight(&pmu->supported_cpus) == 0) {
970 int irq = platform_get_irq(pdev, 0);
971
972 if (irq_is_percpu(irq)) {
973 /* If using PPIs, check the affinity of the partition */
974 int ret;
975
976 ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
977 if (ret) {
978 kfree(irqs);
979 return ret;
980 }
981 } else {
982 /* Otherwise default to all CPUs */
983 cpumask_setall(&pmu->supported_cpus);
984 }
985 }
986
987 /* If we matched up the IRQ affinities, use them to route the SPIs */
988 if (using_spi && i == pdev->num_resources)
989 pmu->irq_affinity = irqs;
990 else
991 kfree(irqs);
992
993 return 0;
994 }
995
996 int arm_pmu_device_probe(struct platform_device *pdev,
997 const struct of_device_id *of_table,
998 const struct pmu_probe_info *probe_table)
999 {
1000 const struct of_device_id *of_id;
1001 const int (*init_fn)(struct arm_pmu *);
1002 struct device_node *node = pdev->dev.of_node;
1003 struct arm_pmu *pmu;
1004 int ret = -ENODEV;
1005
1006 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1007 if (!pmu) {
1008 pr_info("failed to allocate PMU device!\n");
1009 return -ENOMEM;
1010 }
1011
1012 armpmu_init(pmu);
1013
1014 pmu->plat_device = pdev;
1015
1016 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1017 init_fn = of_id->data;
1018
1019 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1020 "secure-reg-access");
1021
1022 /* arm64 systems boot only as non-secure */
1023 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1024 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1025 pmu->secure_access = false;
1026 }
1027
1028 ret = of_pmu_irq_cfg(pmu);
1029 if (!ret)
1030 ret = init_fn(pmu);
1031 } else {
1032 cpumask_setall(&pmu->supported_cpus);
1033 ret = probe_current_pmu(pmu, probe_table);
1034 }
1035
1036 if (ret) {
1037 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1038 goto out_free;
1039 }
1040
1041 ret = cpu_pmu_init(pmu);
1042 if (ret)
1043 goto out_free;
1044
1045 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1046 if (ret)
1047 goto out_destroy;
1048
1049 if (!__oprofile_cpu_pmu)
1050 __oprofile_cpu_pmu = pmu;
1051
1052 pr_info("enabled with %s PMU driver, %d counters available\n",
1053 pmu->name, pmu->num_events);
1054
1055 return 0;
1056
1057 out_destroy:
1058 cpu_pmu_destroy(pmu);
1059 out_free:
1060 pr_info("%s: failed to register PMU devices!\n",
1061 of_node_full_name(node));
1062 kfree(pmu->irq_affinity);
1063 kfree(pmu);
1064 return ret;
1065 }
1066
1067 static int arm_pmu_hp_init(void)
1068 {
1069 int ret;
1070
1071 ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_STARTING,
1072 "AP_PERF_ARM_STARTING",
1073 arm_perf_starting_cpu, NULL);
1074 if (ret)
1075 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1076 ret);
1077 return ret;
1078 }
1079 subsys_initcall(arm_pmu_hp_init);
This page took 0.060358 seconds and 5 git commands to generate.