tracing: extend sched_pi_setprio
[deliverable/linux.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138 }
139
140 /**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161 }
162
163 /**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180 }
181
182 /**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209 {
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 const struct pinctrl_pin_desc *pin)
229 {
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, pin->number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n",
235 pin->number);
236 return -EINVAL;
237 }
238
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (pindesc == NULL) {
241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 return -ENOMEM;
243 }
244
245 /* Set owner */
246 pindesc->pctldev = pctldev;
247
248 /* Copy basic pin info */
249 if (pin->name) {
250 pindesc->name = pin->name;
251 } else {
252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
253 if (pindesc->name == NULL) {
254 kfree(pindesc);
255 return -ENOMEM;
256 }
257 pindesc->dynamic_name = true;
258 }
259
260 pindesc->drv_data = pin->drv_data;
261
262 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
263 pr_debug("registered pin %d (%s) on %s\n",
264 pin->number, pindesc->name, pctldev->desc->name);
265 return 0;
266 }
267
268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
269 struct pinctrl_pin_desc const *pins,
270 unsigned num_descs)
271 {
272 unsigned i;
273 int ret = 0;
274
275 for (i = 0; i < num_descs; i++) {
276 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
277 if (ret)
278 return ret;
279 }
280
281 return 0;
282 }
283
284 /**
285 * gpio_to_pin() - GPIO range GPIO number to pin number translation
286 * @range: GPIO range used for the translation
287 * @gpio: gpio pin to translate to a pin number
288 *
289 * Finds the pin number for a given GPIO using the specified GPIO range
290 * as a base for translation. The distinction between linear GPIO ranges
291 * and pin list based GPIO ranges is managed correctly by this function.
292 *
293 * This function assumes the gpio is part of the specified GPIO range, use
294 * only after making sure this is the case (e.g. by calling it on the
295 * result of successful pinctrl_get_device_gpio_range calls)!
296 */
297 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
298 unsigned int gpio)
299 {
300 unsigned int offset = gpio - range->base;
301 if (range->pins)
302 return range->pins[offset];
303 else
304 return range->pin_base + offset;
305 }
306
307 /**
308 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
309 * @pctldev: pin controller device to check
310 * @gpio: gpio pin to check taken from the global GPIO pin space
311 *
312 * Tries to match a GPIO pin number to the ranges handled by a certain pin
313 * controller, return the range or NULL
314 */
315 static struct pinctrl_gpio_range *
316 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
317 {
318 struct pinctrl_gpio_range *range = NULL;
319
320 mutex_lock(&pctldev->mutex);
321 /* Loop over the ranges */
322 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
323 /* Check if we're in the valid range */
324 if (gpio >= range->base &&
325 gpio < range->base + range->npins) {
326 mutex_unlock(&pctldev->mutex);
327 return range;
328 }
329 }
330 mutex_unlock(&pctldev->mutex);
331 return NULL;
332 }
333
334 /**
335 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
336 * the same GPIO chip are in range
337 * @gpio: gpio pin to check taken from the global GPIO pin space
338 *
339 * This function is complement of pinctrl_match_gpio_range(). If the return
340 * value of pinctrl_match_gpio_range() is NULL, this function could be used
341 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
342 * of the same GPIO chip don't have back-end pinctrl interface.
343 * If the return value is true, it means that pinctrl device is ready & the
344 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
345 * is false, it means that pinctrl device may not be ready.
346 */
347 #ifdef CONFIG_GPIOLIB
348 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
349 {
350 struct pinctrl_dev *pctldev;
351 struct pinctrl_gpio_range *range = NULL;
352 struct gpio_chip *chip = gpio_to_chip(gpio);
353
354 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
355 return false;
356
357 mutex_lock(&pinctrldev_list_mutex);
358
359 /* Loop over the pin controllers */
360 list_for_each_entry(pctldev, &pinctrldev_list, node) {
361 /* Loop over the ranges */
362 mutex_lock(&pctldev->mutex);
363 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
364 /* Check if any gpio range overlapped with gpio chip */
365 if (range->base + range->npins - 1 < chip->base ||
366 range->base > chip->base + chip->ngpio - 1)
367 continue;
368 mutex_unlock(&pctldev->mutex);
369 mutex_unlock(&pinctrldev_list_mutex);
370 return true;
371 }
372 mutex_unlock(&pctldev->mutex);
373 }
374
375 mutex_unlock(&pinctrldev_list_mutex);
376
377 return false;
378 }
379 #else
380 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
381 #endif
382
383 /**
384 * pinctrl_get_device_gpio_range() - find device for GPIO range
385 * @gpio: the pin to locate the pin controller for
386 * @outdev: the pin control device if found
387 * @outrange: the GPIO range if found
388 *
389 * Find the pin controller handling a certain GPIO pin from the pinspace of
390 * the GPIO subsystem, return the device and the matching GPIO range. Returns
391 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
392 * may still have not been registered.
393 */
394 static int pinctrl_get_device_gpio_range(unsigned gpio,
395 struct pinctrl_dev **outdev,
396 struct pinctrl_gpio_range **outrange)
397 {
398 struct pinctrl_dev *pctldev = NULL;
399
400 mutex_lock(&pinctrldev_list_mutex);
401
402 /* Loop over the pin controllers */
403 list_for_each_entry(pctldev, &pinctrldev_list, node) {
404 struct pinctrl_gpio_range *range;
405
406 range = pinctrl_match_gpio_range(pctldev, gpio);
407 if (range != NULL) {
408 *outdev = pctldev;
409 *outrange = range;
410 mutex_unlock(&pinctrldev_list_mutex);
411 return 0;
412 }
413 }
414
415 mutex_unlock(&pinctrldev_list_mutex);
416
417 return -EPROBE_DEFER;
418 }
419
420 /**
421 * pinctrl_add_gpio_range() - register a GPIO range for a controller
422 * @pctldev: pin controller device to add the range to
423 * @range: the GPIO range to add
424 *
425 * This adds a range of GPIOs to be handled by a certain pin controller. Call
426 * this to register handled ranges after registering your pin controller.
427 */
428 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
429 struct pinctrl_gpio_range *range)
430 {
431 mutex_lock(&pctldev->mutex);
432 list_add_tail(&range->node, &pctldev->gpio_ranges);
433 mutex_unlock(&pctldev->mutex);
434 }
435 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
436
437 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
438 struct pinctrl_gpio_range *ranges,
439 unsigned nranges)
440 {
441 int i;
442
443 for (i = 0; i < nranges; i++)
444 pinctrl_add_gpio_range(pctldev, &ranges[i]);
445 }
446 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
447
448 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
449 struct pinctrl_gpio_range *range)
450 {
451 struct pinctrl_dev *pctldev;
452
453 pctldev = get_pinctrl_dev_from_devname(devname);
454
455 /*
456 * If we can't find this device, let's assume that is because
457 * it has not probed yet, so the driver trying to register this
458 * range need to defer probing.
459 */
460 if (!pctldev) {
461 return ERR_PTR(-EPROBE_DEFER);
462 }
463 pinctrl_add_gpio_range(pctldev, range);
464
465 return pctldev;
466 }
467 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
468
469 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
470 const unsigned **pins, unsigned *num_pins)
471 {
472 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
473 int gs;
474
475 if (!pctlops->get_group_pins)
476 return -EINVAL;
477
478 gs = pinctrl_get_group_selector(pctldev, pin_group);
479 if (gs < 0)
480 return gs;
481
482 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
483 }
484 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
485
486 struct pinctrl_gpio_range *
487 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
488 unsigned int pin)
489 {
490 struct pinctrl_gpio_range *range;
491
492 /* Loop over the ranges */
493 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
494 /* Check if we're in the valid range */
495 if (range->pins) {
496 int a;
497 for (a = 0; a < range->npins; a++) {
498 if (range->pins[a] == pin)
499 return range;
500 }
501 } else if (pin >= range->pin_base &&
502 pin < range->pin_base + range->npins)
503 return range;
504 }
505
506 return NULL;
507 }
508 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
509
510 /**
511 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
512 * @pctldev: the pin controller device to look in
513 * @pin: a controller-local number to find the range for
514 */
515 struct pinctrl_gpio_range *
516 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
517 unsigned int pin)
518 {
519 struct pinctrl_gpio_range *range;
520
521 mutex_lock(&pctldev->mutex);
522 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
523 mutex_unlock(&pctldev->mutex);
524
525 return range;
526 }
527 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
528
529 /**
530 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
531 * @pctldev: pin controller device to remove the range from
532 * @range: the GPIO range to remove
533 */
534 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
535 struct pinctrl_gpio_range *range)
536 {
537 mutex_lock(&pctldev->mutex);
538 list_del(&range->node);
539 mutex_unlock(&pctldev->mutex);
540 }
541 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
542
543 /**
544 * pinctrl_get_group_selector() - returns the group selector for a group
545 * @pctldev: the pin controller handling the group
546 * @pin_group: the pin group to look up
547 */
548 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
549 const char *pin_group)
550 {
551 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
552 unsigned ngroups = pctlops->get_groups_count(pctldev);
553 unsigned group_selector = 0;
554
555 while (group_selector < ngroups) {
556 const char *gname = pctlops->get_group_name(pctldev,
557 group_selector);
558 if (!strcmp(gname, pin_group)) {
559 dev_dbg(pctldev->dev,
560 "found group selector %u for %s\n",
561 group_selector,
562 pin_group);
563 return group_selector;
564 }
565
566 group_selector++;
567 }
568
569 dev_err(pctldev->dev, "does not have pin group %s\n",
570 pin_group);
571
572 return -EINVAL;
573 }
574
575 /**
576 * pinctrl_request_gpio() - request a single pin to be used as GPIO
577 * @gpio: the GPIO pin number from the GPIO subsystem number space
578 *
579 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
580 * as part of their gpio_request() semantics, platforms and individual drivers
581 * shall *NOT* request GPIO pins to be muxed in.
582 */
583 int pinctrl_request_gpio(unsigned gpio)
584 {
585 struct pinctrl_dev *pctldev;
586 struct pinctrl_gpio_range *range;
587 int ret;
588 int pin;
589
590 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
591 if (ret) {
592 if (pinctrl_ready_for_gpio_range(gpio))
593 ret = 0;
594 return ret;
595 }
596
597 mutex_lock(&pctldev->mutex);
598
599 /* Convert to the pin controllers number space */
600 pin = gpio_to_pin(range, gpio);
601
602 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
603
604 mutex_unlock(&pctldev->mutex);
605
606 return ret;
607 }
608 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
609
610 /**
611 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
612 * @gpio: the GPIO pin number from the GPIO subsystem number space
613 *
614 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
615 * as part of their gpio_free() semantics, platforms and individual drivers
616 * shall *NOT* request GPIO pins to be muxed out.
617 */
618 void pinctrl_free_gpio(unsigned gpio)
619 {
620 struct pinctrl_dev *pctldev;
621 struct pinctrl_gpio_range *range;
622 int ret;
623 int pin;
624
625 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
626 if (ret) {
627 return;
628 }
629 mutex_lock(&pctldev->mutex);
630
631 /* Convert to the pin controllers number space */
632 pin = gpio_to_pin(range, gpio);
633
634 pinmux_free_gpio(pctldev, pin, range);
635
636 mutex_unlock(&pctldev->mutex);
637 }
638 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
639
640 static int pinctrl_gpio_direction(unsigned gpio, bool input)
641 {
642 struct pinctrl_dev *pctldev;
643 struct pinctrl_gpio_range *range;
644 int ret;
645 int pin;
646
647 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
648 if (ret) {
649 return ret;
650 }
651
652 mutex_lock(&pctldev->mutex);
653
654 /* Convert to the pin controllers number space */
655 pin = gpio_to_pin(range, gpio);
656 ret = pinmux_gpio_direction(pctldev, range, pin, input);
657
658 mutex_unlock(&pctldev->mutex);
659
660 return ret;
661 }
662
663 /**
664 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
665 * @gpio: the GPIO pin number from the GPIO subsystem number space
666 *
667 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
668 * as part of their gpio_direction_input() semantics, platforms and individual
669 * drivers shall *NOT* touch pin control GPIO calls.
670 */
671 int pinctrl_gpio_direction_input(unsigned gpio)
672 {
673 return pinctrl_gpio_direction(gpio, true);
674 }
675 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
676
677 /**
678 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
679 * @gpio: the GPIO pin number from the GPIO subsystem number space
680 *
681 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
682 * as part of their gpio_direction_output() semantics, platforms and individual
683 * drivers shall *NOT* touch pin control GPIO calls.
684 */
685 int pinctrl_gpio_direction_output(unsigned gpio)
686 {
687 return pinctrl_gpio_direction(gpio, false);
688 }
689 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
690
691 static struct pinctrl_state *find_state(struct pinctrl *p,
692 const char *name)
693 {
694 struct pinctrl_state *state;
695
696 list_for_each_entry(state, &p->states, node)
697 if (!strcmp(state->name, name))
698 return state;
699
700 return NULL;
701 }
702
703 static struct pinctrl_state *create_state(struct pinctrl *p,
704 const char *name)
705 {
706 struct pinctrl_state *state;
707
708 state = kzalloc(sizeof(*state), GFP_KERNEL);
709 if (state == NULL) {
710 dev_err(p->dev,
711 "failed to alloc struct pinctrl_state\n");
712 return ERR_PTR(-ENOMEM);
713 }
714
715 state->name = name;
716 INIT_LIST_HEAD(&state->settings);
717
718 list_add_tail(&state->node, &p->states);
719
720 return state;
721 }
722
723 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
724 {
725 struct pinctrl_state *state;
726 struct pinctrl_setting *setting;
727 int ret;
728
729 state = find_state(p, map->name);
730 if (!state)
731 state = create_state(p, map->name);
732 if (IS_ERR(state))
733 return PTR_ERR(state);
734
735 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
736 return 0;
737
738 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
739 if (setting == NULL) {
740 dev_err(p->dev,
741 "failed to alloc struct pinctrl_setting\n");
742 return -ENOMEM;
743 }
744
745 setting->type = map->type;
746
747 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
748 if (setting->pctldev == NULL) {
749 kfree(setting);
750 /* Do not defer probing of hogs (circular loop) */
751 if (!strcmp(map->ctrl_dev_name, map->dev_name))
752 return -ENODEV;
753 /*
754 * OK let us guess that the driver is not there yet, and
755 * let's defer obtaining this pinctrl handle to later...
756 */
757 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
758 map->ctrl_dev_name);
759 return -EPROBE_DEFER;
760 }
761
762 setting->dev_name = map->dev_name;
763
764 switch (map->type) {
765 case PIN_MAP_TYPE_MUX_GROUP:
766 ret = pinmux_map_to_setting(map, setting);
767 break;
768 case PIN_MAP_TYPE_CONFIGS_PIN:
769 case PIN_MAP_TYPE_CONFIGS_GROUP:
770 ret = pinconf_map_to_setting(map, setting);
771 break;
772 default:
773 ret = -EINVAL;
774 break;
775 }
776 if (ret < 0) {
777 kfree(setting);
778 return ret;
779 }
780
781 list_add_tail(&setting->node, &state->settings);
782
783 return 0;
784 }
785
786 static struct pinctrl *find_pinctrl(struct device *dev)
787 {
788 struct pinctrl *p;
789
790 mutex_lock(&pinctrl_list_mutex);
791 list_for_each_entry(p, &pinctrl_list, node)
792 if (p->dev == dev) {
793 mutex_unlock(&pinctrl_list_mutex);
794 return p;
795 }
796
797 mutex_unlock(&pinctrl_list_mutex);
798 return NULL;
799 }
800
801 static void pinctrl_free(struct pinctrl *p, bool inlist);
802
803 static struct pinctrl *create_pinctrl(struct device *dev)
804 {
805 struct pinctrl *p;
806 const char *devname;
807 struct pinctrl_maps *maps_node;
808 int i;
809 struct pinctrl_map const *map;
810 int ret;
811
812 /*
813 * create the state cookie holder struct pinctrl for each
814 * mapping, this is what consumers will get when requesting
815 * a pin control handle with pinctrl_get()
816 */
817 p = kzalloc(sizeof(*p), GFP_KERNEL);
818 if (p == NULL) {
819 dev_err(dev, "failed to alloc struct pinctrl\n");
820 return ERR_PTR(-ENOMEM);
821 }
822 p->dev = dev;
823 INIT_LIST_HEAD(&p->states);
824 INIT_LIST_HEAD(&p->dt_maps);
825
826 ret = pinctrl_dt_to_map(p);
827 if (ret < 0) {
828 kfree(p);
829 return ERR_PTR(ret);
830 }
831
832 devname = dev_name(dev);
833
834 mutex_lock(&pinctrl_maps_mutex);
835 /* Iterate over the pin control maps to locate the right ones */
836 for_each_maps(maps_node, i, map) {
837 /* Map must be for this device */
838 if (strcmp(map->dev_name, devname))
839 continue;
840
841 ret = add_setting(p, map);
842 /*
843 * At this point the adding of a setting may:
844 *
845 * - Defer, if the pinctrl device is not yet available
846 * - Fail, if the pinctrl device is not yet available,
847 * AND the setting is a hog. We cannot defer that, since
848 * the hog will kick in immediately after the device
849 * is registered.
850 *
851 * If the error returned was not -EPROBE_DEFER then we
852 * accumulate the errors to see if we end up with
853 * an -EPROBE_DEFER later, as that is the worst case.
854 */
855 if (ret == -EPROBE_DEFER) {
856 pinctrl_free(p, false);
857 mutex_unlock(&pinctrl_maps_mutex);
858 return ERR_PTR(ret);
859 }
860 }
861 mutex_unlock(&pinctrl_maps_mutex);
862
863 if (ret < 0) {
864 /* If some other error than deferral occured, return here */
865 pinctrl_free(p, false);
866 return ERR_PTR(ret);
867 }
868
869 kref_init(&p->users);
870
871 /* Add the pinctrl handle to the global list */
872 mutex_lock(&pinctrl_list_mutex);
873 list_add_tail(&p->node, &pinctrl_list);
874 mutex_unlock(&pinctrl_list_mutex);
875
876 return p;
877 }
878
879 /**
880 * pinctrl_get() - retrieves the pinctrl handle for a device
881 * @dev: the device to obtain the handle for
882 */
883 struct pinctrl *pinctrl_get(struct device *dev)
884 {
885 struct pinctrl *p;
886
887 if (WARN_ON(!dev))
888 return ERR_PTR(-EINVAL);
889
890 /*
891 * See if somebody else (such as the device core) has already
892 * obtained a handle to the pinctrl for this device. In that case,
893 * return another pointer to it.
894 */
895 p = find_pinctrl(dev);
896 if (p != NULL) {
897 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
898 kref_get(&p->users);
899 return p;
900 }
901
902 return create_pinctrl(dev);
903 }
904 EXPORT_SYMBOL_GPL(pinctrl_get);
905
906 static void pinctrl_free_setting(bool disable_setting,
907 struct pinctrl_setting *setting)
908 {
909 switch (setting->type) {
910 case PIN_MAP_TYPE_MUX_GROUP:
911 if (disable_setting)
912 pinmux_disable_setting(setting);
913 pinmux_free_setting(setting);
914 break;
915 case PIN_MAP_TYPE_CONFIGS_PIN:
916 case PIN_MAP_TYPE_CONFIGS_GROUP:
917 pinconf_free_setting(setting);
918 break;
919 default:
920 break;
921 }
922 }
923
924 static void pinctrl_free(struct pinctrl *p, bool inlist)
925 {
926 struct pinctrl_state *state, *n1;
927 struct pinctrl_setting *setting, *n2;
928
929 mutex_lock(&pinctrl_list_mutex);
930 list_for_each_entry_safe(state, n1, &p->states, node) {
931 list_for_each_entry_safe(setting, n2, &state->settings, node) {
932 pinctrl_free_setting(state == p->state, setting);
933 list_del(&setting->node);
934 kfree(setting);
935 }
936 list_del(&state->node);
937 kfree(state);
938 }
939
940 pinctrl_dt_free_maps(p);
941
942 if (inlist)
943 list_del(&p->node);
944 kfree(p);
945 mutex_unlock(&pinctrl_list_mutex);
946 }
947
948 /**
949 * pinctrl_release() - release the pinctrl handle
950 * @kref: the kref in the pinctrl being released
951 */
952 static void pinctrl_release(struct kref *kref)
953 {
954 struct pinctrl *p = container_of(kref, struct pinctrl, users);
955
956 pinctrl_free(p, true);
957 }
958
959 /**
960 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
961 * @p: the pinctrl handle to release
962 */
963 void pinctrl_put(struct pinctrl *p)
964 {
965 kref_put(&p->users, pinctrl_release);
966 }
967 EXPORT_SYMBOL_GPL(pinctrl_put);
968
969 /**
970 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
971 * @p: the pinctrl handle to retrieve the state from
972 * @name: the state name to retrieve
973 */
974 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
975 const char *name)
976 {
977 struct pinctrl_state *state;
978
979 state = find_state(p, name);
980 if (!state) {
981 if (pinctrl_dummy_state) {
982 /* create dummy state */
983 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
984 name);
985 state = create_state(p, name);
986 } else
987 state = ERR_PTR(-ENODEV);
988 }
989
990 return state;
991 }
992 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
993
994 /**
995 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
996 * @p: the pinctrl handle for the device that requests configuration
997 * @state: the state handle to select/activate/program
998 */
999 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1000 {
1001 struct pinctrl_setting *setting, *setting2;
1002 struct pinctrl_state *old_state = p->state;
1003 int ret;
1004
1005 if (p->state == state)
1006 return 0;
1007
1008 if (p->state) {
1009 /*
1010 * For each pinmux setting in the old state, forget SW's record
1011 * of mux owner for that pingroup. Any pingroups which are
1012 * still owned by the new state will be re-acquired by the call
1013 * to pinmux_enable_setting() in the loop below.
1014 */
1015 list_for_each_entry(setting, &p->state->settings, node) {
1016 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1017 continue;
1018 pinmux_disable_setting(setting);
1019 }
1020 }
1021
1022 p->state = NULL;
1023
1024 /* Apply all the settings for the new state */
1025 list_for_each_entry(setting, &state->settings, node) {
1026 switch (setting->type) {
1027 case PIN_MAP_TYPE_MUX_GROUP:
1028 ret = pinmux_enable_setting(setting);
1029 break;
1030 case PIN_MAP_TYPE_CONFIGS_PIN:
1031 case PIN_MAP_TYPE_CONFIGS_GROUP:
1032 ret = pinconf_apply_setting(setting);
1033 break;
1034 default:
1035 ret = -EINVAL;
1036 break;
1037 }
1038
1039 if (ret < 0) {
1040 goto unapply_new_state;
1041 }
1042 }
1043
1044 p->state = state;
1045
1046 return 0;
1047
1048 unapply_new_state:
1049 dev_err(p->dev, "Error applying setting, reverse things back\n");
1050
1051 list_for_each_entry(setting2, &state->settings, node) {
1052 if (&setting2->node == &setting->node)
1053 break;
1054 /*
1055 * All we can do here is pinmux_disable_setting.
1056 * That means that some pins are muxed differently now
1057 * than they were before applying the setting (We can't
1058 * "unmux a pin"!), but it's not a big deal since the pins
1059 * are free to be muxed by another apply_setting.
1060 */
1061 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1062 pinmux_disable_setting(setting2);
1063 }
1064
1065 /* There's no infinite recursive loop here because p->state is NULL */
1066 if (old_state)
1067 pinctrl_select_state(p, old_state);
1068
1069 return ret;
1070 }
1071 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1072
1073 static void devm_pinctrl_release(struct device *dev, void *res)
1074 {
1075 pinctrl_put(*(struct pinctrl **)res);
1076 }
1077
1078 /**
1079 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1080 * @dev: the device to obtain the handle for
1081 *
1082 * If there is a need to explicitly destroy the returned struct pinctrl,
1083 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1084 */
1085 struct pinctrl *devm_pinctrl_get(struct device *dev)
1086 {
1087 struct pinctrl **ptr, *p;
1088
1089 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1090 if (!ptr)
1091 return ERR_PTR(-ENOMEM);
1092
1093 p = pinctrl_get(dev);
1094 if (!IS_ERR(p)) {
1095 *ptr = p;
1096 devres_add(dev, ptr);
1097 } else {
1098 devres_free(ptr);
1099 }
1100
1101 return p;
1102 }
1103 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1104
1105 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1106 {
1107 struct pinctrl **p = res;
1108
1109 return *p == data;
1110 }
1111
1112 /**
1113 * devm_pinctrl_put() - Resource managed pinctrl_put()
1114 * @p: the pinctrl handle to release
1115 *
1116 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1117 * this function will not need to be called and the resource management
1118 * code will ensure that the resource is freed.
1119 */
1120 void devm_pinctrl_put(struct pinctrl *p)
1121 {
1122 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1123 devm_pinctrl_match, p));
1124 }
1125 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1126
1127 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1128 bool dup)
1129 {
1130 int i, ret;
1131 struct pinctrl_maps *maps_node;
1132
1133 pr_debug("add %u pinctrl maps\n", num_maps);
1134
1135 /* First sanity check the new mapping */
1136 for (i = 0; i < num_maps; i++) {
1137 if (!maps[i].dev_name) {
1138 pr_err("failed to register map %s (%d): no device given\n",
1139 maps[i].name, i);
1140 return -EINVAL;
1141 }
1142
1143 if (!maps[i].name) {
1144 pr_err("failed to register map %d: no map name given\n",
1145 i);
1146 return -EINVAL;
1147 }
1148
1149 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1150 !maps[i].ctrl_dev_name) {
1151 pr_err("failed to register map %s (%d): no pin control device given\n",
1152 maps[i].name, i);
1153 return -EINVAL;
1154 }
1155
1156 switch (maps[i].type) {
1157 case PIN_MAP_TYPE_DUMMY_STATE:
1158 break;
1159 case PIN_MAP_TYPE_MUX_GROUP:
1160 ret = pinmux_validate_map(&maps[i], i);
1161 if (ret < 0)
1162 return ret;
1163 break;
1164 case PIN_MAP_TYPE_CONFIGS_PIN:
1165 case PIN_MAP_TYPE_CONFIGS_GROUP:
1166 ret = pinconf_validate_map(&maps[i], i);
1167 if (ret < 0)
1168 return ret;
1169 break;
1170 default:
1171 pr_err("failed to register map %s (%d): invalid type given\n",
1172 maps[i].name, i);
1173 return -EINVAL;
1174 }
1175 }
1176
1177 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1178 if (!maps_node) {
1179 pr_err("failed to alloc struct pinctrl_maps\n");
1180 return -ENOMEM;
1181 }
1182
1183 maps_node->num_maps = num_maps;
1184 if (dup) {
1185 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1186 GFP_KERNEL);
1187 if (!maps_node->maps) {
1188 pr_err("failed to duplicate mapping table\n");
1189 kfree(maps_node);
1190 return -ENOMEM;
1191 }
1192 } else {
1193 maps_node->maps = maps;
1194 }
1195
1196 mutex_lock(&pinctrl_maps_mutex);
1197 list_add_tail(&maps_node->node, &pinctrl_maps);
1198 mutex_unlock(&pinctrl_maps_mutex);
1199
1200 return 0;
1201 }
1202
1203 /**
1204 * pinctrl_register_mappings() - register a set of pin controller mappings
1205 * @maps: the pincontrol mappings table to register. This should probably be
1206 * marked with __initdata so it can be discarded after boot. This
1207 * function will perform a shallow copy for the mapping entries.
1208 * @num_maps: the number of maps in the mapping table
1209 */
1210 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1211 unsigned num_maps)
1212 {
1213 return pinctrl_register_map(maps, num_maps, true);
1214 }
1215
1216 void pinctrl_unregister_map(struct pinctrl_map const *map)
1217 {
1218 struct pinctrl_maps *maps_node;
1219
1220 mutex_lock(&pinctrl_maps_mutex);
1221 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1222 if (maps_node->maps == map) {
1223 list_del(&maps_node->node);
1224 kfree(maps_node);
1225 mutex_unlock(&pinctrl_maps_mutex);
1226 return;
1227 }
1228 }
1229 mutex_unlock(&pinctrl_maps_mutex);
1230 }
1231
1232 /**
1233 * pinctrl_force_sleep() - turn a given controller device into sleep state
1234 * @pctldev: pin controller device
1235 */
1236 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1237 {
1238 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1239 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1243
1244 /**
1245 * pinctrl_force_default() - turn a given controller device into default state
1246 * @pctldev: pin controller device
1247 */
1248 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1249 {
1250 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1251 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1252 return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1255
1256 /**
1257 * pinctrl_init_done() - tell pinctrl probe is done
1258 *
1259 * We'll use this time to switch the pins from "init" to "default" unless the
1260 * driver selected some other state.
1261 *
1262 * @dev: device to that's done probing
1263 */
1264 int pinctrl_init_done(struct device *dev)
1265 {
1266 struct dev_pin_info *pins = dev->pins;
1267 int ret;
1268
1269 if (!pins)
1270 return 0;
1271
1272 if (IS_ERR(pins->init_state))
1273 return 0; /* No such state */
1274
1275 if (pins->p->state != pins->init_state)
1276 return 0; /* Not at init anyway */
1277
1278 if (IS_ERR(pins->default_state))
1279 return 0; /* No default state */
1280
1281 ret = pinctrl_select_state(pins->p, pins->default_state);
1282 if (ret)
1283 dev_err(dev, "failed to activate default pinctrl state\n");
1284
1285 return ret;
1286 }
1287
1288 #ifdef CONFIG_PM
1289
1290 /**
1291 * pinctrl_pm_select_state() - select pinctrl state for PM
1292 * @dev: device to select default state for
1293 * @state: state to set
1294 */
1295 static int pinctrl_pm_select_state(struct device *dev,
1296 struct pinctrl_state *state)
1297 {
1298 struct dev_pin_info *pins = dev->pins;
1299 int ret;
1300
1301 if (IS_ERR(state))
1302 return 0; /* No such state */
1303 ret = pinctrl_select_state(pins->p, state);
1304 if (ret)
1305 dev_err(dev, "failed to activate pinctrl state %s\n",
1306 state->name);
1307 return ret;
1308 }
1309
1310 /**
1311 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1312 * @dev: device to select default state for
1313 */
1314 int pinctrl_pm_select_default_state(struct device *dev)
1315 {
1316 if (!dev->pins)
1317 return 0;
1318
1319 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1320 }
1321 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1322
1323 /**
1324 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1325 * @dev: device to select sleep state for
1326 */
1327 int pinctrl_pm_select_sleep_state(struct device *dev)
1328 {
1329 if (!dev->pins)
1330 return 0;
1331
1332 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1333 }
1334 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1335
1336 /**
1337 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1338 * @dev: device to select idle state for
1339 */
1340 int pinctrl_pm_select_idle_state(struct device *dev)
1341 {
1342 if (!dev->pins)
1343 return 0;
1344
1345 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1346 }
1347 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1348 #endif
1349
1350 #ifdef CONFIG_DEBUG_FS
1351
1352 static int pinctrl_pins_show(struct seq_file *s, void *what)
1353 {
1354 struct pinctrl_dev *pctldev = s->private;
1355 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1356 unsigned i, pin;
1357
1358 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1359
1360 mutex_lock(&pctldev->mutex);
1361
1362 /* The pin number can be retrived from the pin controller descriptor */
1363 for (i = 0; i < pctldev->desc->npins; i++) {
1364 struct pin_desc *desc;
1365
1366 pin = pctldev->desc->pins[i].number;
1367 desc = pin_desc_get(pctldev, pin);
1368 /* Pin space may be sparse */
1369 if (desc == NULL)
1370 continue;
1371
1372 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1373
1374 /* Driver-specific info per pin */
1375 if (ops->pin_dbg_show)
1376 ops->pin_dbg_show(pctldev, s, pin);
1377
1378 seq_puts(s, "\n");
1379 }
1380
1381 mutex_unlock(&pctldev->mutex);
1382
1383 return 0;
1384 }
1385
1386 static int pinctrl_groups_show(struct seq_file *s, void *what)
1387 {
1388 struct pinctrl_dev *pctldev = s->private;
1389 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1390 unsigned ngroups, selector = 0;
1391
1392 mutex_lock(&pctldev->mutex);
1393
1394 ngroups = ops->get_groups_count(pctldev);
1395
1396 seq_puts(s, "registered pin groups:\n");
1397 while (selector < ngroups) {
1398 const unsigned *pins = NULL;
1399 unsigned num_pins = 0;
1400 const char *gname = ops->get_group_name(pctldev, selector);
1401 const char *pname;
1402 int ret = 0;
1403 int i;
1404
1405 if (ops->get_group_pins)
1406 ret = ops->get_group_pins(pctldev, selector,
1407 &pins, &num_pins);
1408 if (ret)
1409 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1410 gname);
1411 else {
1412 seq_printf(s, "group: %s\n", gname);
1413 for (i = 0; i < num_pins; i++) {
1414 pname = pin_get_name(pctldev, pins[i]);
1415 if (WARN_ON(!pname)) {
1416 mutex_unlock(&pctldev->mutex);
1417 return -EINVAL;
1418 }
1419 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1420 }
1421 seq_puts(s, "\n");
1422 }
1423 selector++;
1424 }
1425
1426 mutex_unlock(&pctldev->mutex);
1427
1428 return 0;
1429 }
1430
1431 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1432 {
1433 struct pinctrl_dev *pctldev = s->private;
1434 struct pinctrl_gpio_range *range = NULL;
1435
1436 seq_puts(s, "GPIO ranges handled:\n");
1437
1438 mutex_lock(&pctldev->mutex);
1439
1440 /* Loop over the ranges */
1441 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1442 if (range->pins) {
1443 int a;
1444 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1445 range->id, range->name,
1446 range->base, (range->base + range->npins - 1));
1447 for (a = 0; a < range->npins - 1; a++)
1448 seq_printf(s, "%u, ", range->pins[a]);
1449 seq_printf(s, "%u}\n", range->pins[a]);
1450 }
1451 else
1452 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1453 range->id, range->name,
1454 range->base, (range->base + range->npins - 1),
1455 range->pin_base,
1456 (range->pin_base + range->npins - 1));
1457 }
1458
1459 mutex_unlock(&pctldev->mutex);
1460
1461 return 0;
1462 }
1463
1464 static int pinctrl_devices_show(struct seq_file *s, void *what)
1465 {
1466 struct pinctrl_dev *pctldev;
1467
1468 seq_puts(s, "name [pinmux] [pinconf]\n");
1469
1470 mutex_lock(&pinctrldev_list_mutex);
1471
1472 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1473 seq_printf(s, "%s ", pctldev->desc->name);
1474 if (pctldev->desc->pmxops)
1475 seq_puts(s, "yes ");
1476 else
1477 seq_puts(s, "no ");
1478 if (pctldev->desc->confops)
1479 seq_puts(s, "yes");
1480 else
1481 seq_puts(s, "no");
1482 seq_puts(s, "\n");
1483 }
1484
1485 mutex_unlock(&pinctrldev_list_mutex);
1486
1487 return 0;
1488 }
1489
1490 static inline const char *map_type(enum pinctrl_map_type type)
1491 {
1492 static const char * const names[] = {
1493 "INVALID",
1494 "DUMMY_STATE",
1495 "MUX_GROUP",
1496 "CONFIGS_PIN",
1497 "CONFIGS_GROUP",
1498 };
1499
1500 if (type >= ARRAY_SIZE(names))
1501 return "UNKNOWN";
1502
1503 return names[type];
1504 }
1505
1506 static int pinctrl_maps_show(struct seq_file *s, void *what)
1507 {
1508 struct pinctrl_maps *maps_node;
1509 int i;
1510 struct pinctrl_map const *map;
1511
1512 seq_puts(s, "Pinctrl maps:\n");
1513
1514 mutex_lock(&pinctrl_maps_mutex);
1515 for_each_maps(maps_node, i, map) {
1516 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1517 map->dev_name, map->name, map_type(map->type),
1518 map->type);
1519
1520 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1521 seq_printf(s, "controlling device %s\n",
1522 map->ctrl_dev_name);
1523
1524 switch (map->type) {
1525 case PIN_MAP_TYPE_MUX_GROUP:
1526 pinmux_show_map(s, map);
1527 break;
1528 case PIN_MAP_TYPE_CONFIGS_PIN:
1529 case PIN_MAP_TYPE_CONFIGS_GROUP:
1530 pinconf_show_map(s, map);
1531 break;
1532 default:
1533 break;
1534 }
1535
1536 seq_printf(s, "\n");
1537 }
1538 mutex_unlock(&pinctrl_maps_mutex);
1539
1540 return 0;
1541 }
1542
1543 static int pinctrl_show(struct seq_file *s, void *what)
1544 {
1545 struct pinctrl *p;
1546 struct pinctrl_state *state;
1547 struct pinctrl_setting *setting;
1548
1549 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1550
1551 mutex_lock(&pinctrl_list_mutex);
1552
1553 list_for_each_entry(p, &pinctrl_list, node) {
1554 seq_printf(s, "device: %s current state: %s\n",
1555 dev_name(p->dev),
1556 p->state ? p->state->name : "none");
1557
1558 list_for_each_entry(state, &p->states, node) {
1559 seq_printf(s, " state: %s\n", state->name);
1560
1561 list_for_each_entry(setting, &state->settings, node) {
1562 struct pinctrl_dev *pctldev = setting->pctldev;
1563
1564 seq_printf(s, " type: %s controller %s ",
1565 map_type(setting->type),
1566 pinctrl_dev_get_name(pctldev));
1567
1568 switch (setting->type) {
1569 case PIN_MAP_TYPE_MUX_GROUP:
1570 pinmux_show_setting(s, setting);
1571 break;
1572 case PIN_MAP_TYPE_CONFIGS_PIN:
1573 case PIN_MAP_TYPE_CONFIGS_GROUP:
1574 pinconf_show_setting(s, setting);
1575 break;
1576 default:
1577 break;
1578 }
1579 }
1580 }
1581 }
1582
1583 mutex_unlock(&pinctrl_list_mutex);
1584
1585 return 0;
1586 }
1587
1588 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1589 {
1590 return single_open(file, pinctrl_pins_show, inode->i_private);
1591 }
1592
1593 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1594 {
1595 return single_open(file, pinctrl_groups_show, inode->i_private);
1596 }
1597
1598 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1599 {
1600 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1601 }
1602
1603 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1604 {
1605 return single_open(file, pinctrl_devices_show, NULL);
1606 }
1607
1608 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1609 {
1610 return single_open(file, pinctrl_maps_show, NULL);
1611 }
1612
1613 static int pinctrl_open(struct inode *inode, struct file *file)
1614 {
1615 return single_open(file, pinctrl_show, NULL);
1616 }
1617
1618 static const struct file_operations pinctrl_pins_ops = {
1619 .open = pinctrl_pins_open,
1620 .read = seq_read,
1621 .llseek = seq_lseek,
1622 .release = single_release,
1623 };
1624
1625 static const struct file_operations pinctrl_groups_ops = {
1626 .open = pinctrl_groups_open,
1627 .read = seq_read,
1628 .llseek = seq_lseek,
1629 .release = single_release,
1630 };
1631
1632 static const struct file_operations pinctrl_gpioranges_ops = {
1633 .open = pinctrl_gpioranges_open,
1634 .read = seq_read,
1635 .llseek = seq_lseek,
1636 .release = single_release,
1637 };
1638
1639 static const struct file_operations pinctrl_devices_ops = {
1640 .open = pinctrl_devices_open,
1641 .read = seq_read,
1642 .llseek = seq_lseek,
1643 .release = single_release,
1644 };
1645
1646 static const struct file_operations pinctrl_maps_ops = {
1647 .open = pinctrl_maps_open,
1648 .read = seq_read,
1649 .llseek = seq_lseek,
1650 .release = single_release,
1651 };
1652
1653 static const struct file_operations pinctrl_ops = {
1654 .open = pinctrl_open,
1655 .read = seq_read,
1656 .llseek = seq_lseek,
1657 .release = single_release,
1658 };
1659
1660 static struct dentry *debugfs_root;
1661
1662 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1663 {
1664 struct dentry *device_root;
1665
1666 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1667 debugfs_root);
1668 pctldev->device_root = device_root;
1669
1670 if (IS_ERR(device_root) || !device_root) {
1671 pr_warn("failed to create debugfs directory for %s\n",
1672 dev_name(pctldev->dev));
1673 return;
1674 }
1675 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1676 device_root, pctldev, &pinctrl_pins_ops);
1677 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1678 device_root, pctldev, &pinctrl_groups_ops);
1679 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1680 device_root, pctldev, &pinctrl_gpioranges_ops);
1681 if (pctldev->desc->pmxops)
1682 pinmux_init_device_debugfs(device_root, pctldev);
1683 if (pctldev->desc->confops)
1684 pinconf_init_device_debugfs(device_root, pctldev);
1685 }
1686
1687 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1688 {
1689 debugfs_remove_recursive(pctldev->device_root);
1690 }
1691
1692 static void pinctrl_init_debugfs(void)
1693 {
1694 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1695 if (IS_ERR(debugfs_root) || !debugfs_root) {
1696 pr_warn("failed to create debugfs directory\n");
1697 debugfs_root = NULL;
1698 return;
1699 }
1700
1701 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1702 debugfs_root, NULL, &pinctrl_devices_ops);
1703 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1704 debugfs_root, NULL, &pinctrl_maps_ops);
1705 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1706 debugfs_root, NULL, &pinctrl_ops);
1707 }
1708
1709 #else /* CONFIG_DEBUG_FS */
1710
1711 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1712 {
1713 }
1714
1715 static void pinctrl_init_debugfs(void)
1716 {
1717 }
1718
1719 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1720 {
1721 }
1722
1723 #endif
1724
1725 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1726 {
1727 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1728
1729 if (!ops ||
1730 !ops->get_groups_count ||
1731 !ops->get_group_name)
1732 return -EINVAL;
1733
1734 if (ops->dt_node_to_map && !ops->dt_free_map)
1735 return -EINVAL;
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * pinctrl_register() - register a pin controller device
1742 * @pctldesc: descriptor for this pin controller
1743 * @dev: parent device for this pin controller
1744 * @driver_data: private pin controller data for this pin controller
1745 */
1746 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1747 struct device *dev, void *driver_data)
1748 {
1749 struct pinctrl_dev *pctldev;
1750 int ret;
1751
1752 if (!pctldesc)
1753 return ERR_PTR(-EINVAL);
1754 if (!pctldesc->name)
1755 return ERR_PTR(-EINVAL);
1756
1757 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1758 if (pctldev == NULL) {
1759 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1760 return ERR_PTR(-ENOMEM);
1761 }
1762
1763 /* Initialize pin control device struct */
1764 pctldev->owner = pctldesc->owner;
1765 pctldev->desc = pctldesc;
1766 pctldev->driver_data = driver_data;
1767 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1768 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1769 pctldev->dev = dev;
1770 mutex_init(&pctldev->mutex);
1771
1772 /* check core ops for sanity */
1773 ret = pinctrl_check_ops(pctldev);
1774 if (ret) {
1775 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1776 goto out_err;
1777 }
1778
1779 /* If we're implementing pinmuxing, check the ops for sanity */
1780 if (pctldesc->pmxops) {
1781 ret = pinmux_check_ops(pctldev);
1782 if (ret)
1783 goto out_err;
1784 }
1785
1786 /* If we're implementing pinconfig, check the ops for sanity */
1787 if (pctldesc->confops) {
1788 ret = pinconf_check_ops(pctldev);
1789 if (ret)
1790 goto out_err;
1791 }
1792
1793 /* Register all the pins */
1794 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1795 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1796 if (ret) {
1797 dev_err(dev, "error during pin registration\n");
1798 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1799 pctldesc->npins);
1800 goto out_err;
1801 }
1802
1803 mutex_lock(&pinctrldev_list_mutex);
1804 list_add_tail(&pctldev->node, &pinctrldev_list);
1805 mutex_unlock(&pinctrldev_list_mutex);
1806
1807 pctldev->p = pinctrl_get(pctldev->dev);
1808
1809 if (!IS_ERR(pctldev->p)) {
1810 pctldev->hog_default =
1811 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1812 if (IS_ERR(pctldev->hog_default)) {
1813 dev_dbg(dev, "failed to lookup the default state\n");
1814 } else {
1815 if (pinctrl_select_state(pctldev->p,
1816 pctldev->hog_default))
1817 dev_err(dev,
1818 "failed to select default state\n");
1819 }
1820
1821 pctldev->hog_sleep =
1822 pinctrl_lookup_state(pctldev->p,
1823 PINCTRL_STATE_SLEEP);
1824 if (IS_ERR(pctldev->hog_sleep))
1825 dev_dbg(dev, "failed to lookup the sleep state\n");
1826 }
1827
1828 pinctrl_init_device_debugfs(pctldev);
1829
1830 return pctldev;
1831
1832 out_err:
1833 mutex_destroy(&pctldev->mutex);
1834 kfree(pctldev);
1835 return ERR_PTR(ret);
1836 }
1837 EXPORT_SYMBOL_GPL(pinctrl_register);
1838
1839 /**
1840 * pinctrl_unregister() - unregister pinmux
1841 * @pctldev: pin controller to unregister
1842 *
1843 * Called by pinmux drivers to unregister a pinmux.
1844 */
1845 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1846 {
1847 struct pinctrl_gpio_range *range, *n;
1848 if (pctldev == NULL)
1849 return;
1850
1851 mutex_lock(&pctldev->mutex);
1852 pinctrl_remove_device_debugfs(pctldev);
1853 mutex_unlock(&pctldev->mutex);
1854
1855 if (!IS_ERR(pctldev->p))
1856 pinctrl_put(pctldev->p);
1857
1858 mutex_lock(&pinctrldev_list_mutex);
1859 mutex_lock(&pctldev->mutex);
1860 /* TODO: check that no pinmuxes are still active? */
1861 list_del(&pctldev->node);
1862 /* Destroy descriptor tree */
1863 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1864 pctldev->desc->npins);
1865 /* remove gpio ranges map */
1866 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1867 list_del(&range->node);
1868
1869 mutex_unlock(&pctldev->mutex);
1870 mutex_destroy(&pctldev->mutex);
1871 kfree(pctldev);
1872 mutex_unlock(&pinctrldev_list_mutex);
1873 }
1874 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1875
1876 static void devm_pinctrl_dev_release(struct device *dev, void *res)
1877 {
1878 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
1879
1880 pinctrl_unregister(pctldev);
1881 }
1882
1883 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
1884 {
1885 struct pctldev **r = res;
1886
1887 if (WARN_ON(!r || !*r))
1888 return 0;
1889
1890 return *r == data;
1891 }
1892
1893 /**
1894 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
1895 * @dev: parent device for this pin controller
1896 * @pctldesc: descriptor for this pin controller
1897 * @driver_data: private pin controller data for this pin controller
1898 *
1899 * Returns an error pointer if pincontrol register failed. Otherwise
1900 * it returns valid pinctrl handle.
1901 *
1902 * The pinctrl device will be automatically released when the device is unbound.
1903 */
1904 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
1905 struct pinctrl_desc *pctldesc,
1906 void *driver_data)
1907 {
1908 struct pinctrl_dev **ptr, *pctldev;
1909
1910 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
1911 if (!ptr)
1912 return ERR_PTR(-ENOMEM);
1913
1914 pctldev = pinctrl_register(pctldesc, dev, driver_data);
1915 if (IS_ERR(pctldev)) {
1916 devres_free(ptr);
1917 return pctldev;
1918 }
1919
1920 *ptr = pctldev;
1921 devres_add(dev, ptr);
1922
1923 return pctldev;
1924 }
1925 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
1926
1927 /**
1928 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
1929 * @dev: device for which which resource was allocated
1930 * @pctldev: the pinctrl device to unregister.
1931 */
1932 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
1933 {
1934 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
1935 devm_pinctrl_dev_match, pctldev));
1936 }
1937 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
1938
1939 static int __init pinctrl_init(void)
1940 {
1941 pr_info("initialized pinctrl subsystem\n");
1942 pinctrl_init_debugfs();
1943 return 0;
1944 }
1945
1946 /* init early since many drivers really need to initialized pinmux early */
1947 core_initcall(pinctrl_init);
This page took 0.070798 seconds and 5 git commands to generate.