rfkill: rewrite
[deliverable/linux.git] / drivers / platform / x86 / toshiba_acpi.c
1 /*
2 * toshiba_acpi.c - Toshiba Laptop ACPI Extras
3 *
4 *
5 * Copyright (C) 2002-2004 John Belmonte
6 * Copyright (C) 2008 Philip Langdale
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 *
23 * The devolpment page for this driver is located at
24 * http://memebeam.org/toys/ToshibaAcpiDriver.
25 *
26 * Credits:
27 * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28 * engineering the Windows drivers
29 * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30 * Rob Miller - TV out and hotkeys help
31 *
32 *
33 * TODO
34 *
35 */
36
37 #define TOSHIBA_ACPI_VERSION "0.19"
38 #define PROC_INTERFACE_VERSION 1
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/platform_device.h>
47 #include <linux/rfkill.h>
48
49 #include <asm/uaccess.h>
50
51 #include <acpi/acpi_drivers.h>
52
53 MODULE_AUTHOR("John Belmonte");
54 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
55 MODULE_LICENSE("GPL");
56
57 #define MY_LOGPREFIX "toshiba_acpi: "
58 #define MY_ERR KERN_ERR MY_LOGPREFIX
59 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
60 #define MY_INFO KERN_INFO MY_LOGPREFIX
61
62 /* Toshiba ACPI method paths */
63 #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
64 #define METHOD_HCI_1 "\\_SB_.VALD.GHCI"
65 #define METHOD_HCI_2 "\\_SB_.VALZ.GHCI"
66 #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
67
68 /* Toshiba HCI interface definitions
69 *
70 * HCI is Toshiba's "Hardware Control Interface" which is supposed to
71 * be uniform across all their models. Ideally we would just call
72 * dedicated ACPI methods instead of using this primitive interface.
73 * However the ACPI methods seem to be incomplete in some areas (for
74 * example they allow setting, but not reading, the LCD brightness value),
75 * so this is still useful.
76 */
77
78 #define HCI_WORDS 6
79
80 /* operations */
81 #define HCI_SET 0xff00
82 #define HCI_GET 0xfe00
83
84 /* return codes */
85 #define HCI_SUCCESS 0x0000
86 #define HCI_FAILURE 0x1000
87 #define HCI_NOT_SUPPORTED 0x8000
88 #define HCI_EMPTY 0x8c00
89
90 /* registers */
91 #define HCI_FAN 0x0004
92 #define HCI_SYSTEM_EVENT 0x0016
93 #define HCI_VIDEO_OUT 0x001c
94 #define HCI_HOTKEY_EVENT 0x001e
95 #define HCI_LCD_BRIGHTNESS 0x002a
96 #define HCI_WIRELESS 0x0056
97
98 /* field definitions */
99 #define HCI_LCD_BRIGHTNESS_BITS 3
100 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
101 #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_VIDEO_OUT_LCD 0x1
103 #define HCI_VIDEO_OUT_CRT 0x2
104 #define HCI_VIDEO_OUT_TV 0x4
105 #define HCI_WIRELESS_KILL_SWITCH 0x01
106 #define HCI_WIRELESS_BT_PRESENT 0x0f
107 #define HCI_WIRELESS_BT_ATTACH 0x40
108 #define HCI_WIRELESS_BT_POWER 0x80
109
110 static const struct acpi_device_id toshiba_device_ids[] = {
111 {"TOS6200", 0},
112 {"TOS6208", 0},
113 {"TOS1900", 0},
114 {"", 0},
115 };
116 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
117
118 /* utility
119 */
120
121 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
122 {
123 *word = (*word & ~mask) | (mask * value);
124 }
125
126 /* acpi interface wrappers
127 */
128
129 static int is_valid_acpi_path(const char *methodName)
130 {
131 acpi_handle handle;
132 acpi_status status;
133
134 status = acpi_get_handle(NULL, (char *)methodName, &handle);
135 return !ACPI_FAILURE(status);
136 }
137
138 static int write_acpi_int(const char *methodName, int val)
139 {
140 struct acpi_object_list params;
141 union acpi_object in_objs[1];
142 acpi_status status;
143
144 params.count = ARRAY_SIZE(in_objs);
145 params.pointer = in_objs;
146 in_objs[0].type = ACPI_TYPE_INTEGER;
147 in_objs[0].integer.value = val;
148
149 status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
150 return (status == AE_OK);
151 }
152
153 #if 0
154 static int read_acpi_int(const char *methodName, int *pVal)
155 {
156 struct acpi_buffer results;
157 union acpi_object out_objs[1];
158 acpi_status status;
159
160 results.length = sizeof(out_objs);
161 results.pointer = out_objs;
162
163 status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
164 *pVal = out_objs[0].integer.value;
165
166 return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
167 }
168 #endif
169
170 static const char *method_hci /*= 0*/ ;
171
172 /* Perform a raw HCI call. Here we don't care about input or output buffer
173 * format.
174 */
175 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
176 {
177 struct acpi_object_list params;
178 union acpi_object in_objs[HCI_WORDS];
179 struct acpi_buffer results;
180 union acpi_object out_objs[HCI_WORDS + 1];
181 acpi_status status;
182 int i;
183
184 params.count = HCI_WORDS;
185 params.pointer = in_objs;
186 for (i = 0; i < HCI_WORDS; ++i) {
187 in_objs[i].type = ACPI_TYPE_INTEGER;
188 in_objs[i].integer.value = in[i];
189 }
190
191 results.length = sizeof(out_objs);
192 results.pointer = out_objs;
193
194 status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
195 &results);
196 if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
197 for (i = 0; i < out_objs->package.count; ++i) {
198 out[i] = out_objs->package.elements[i].integer.value;
199 }
200 }
201
202 return status;
203 }
204
205 /* common hci tasks (get or set one or two value)
206 *
207 * In addition to the ACPI status, the HCI system returns a result which
208 * may be useful (such as "not supported").
209 */
210
211 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
212 {
213 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
214 u32 out[HCI_WORDS];
215 acpi_status status = hci_raw(in, out);
216 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
217 return status;
218 }
219
220 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
221 {
222 u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
223 u32 out[HCI_WORDS];
224 acpi_status status = hci_raw(in, out);
225 *out1 = out[2];
226 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
227 return status;
228 }
229
230 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
231 {
232 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
233 u32 out[HCI_WORDS];
234 acpi_status status = hci_raw(in, out);
235 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
236 return status;
237 }
238
239 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
240 {
241 u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
242 u32 out[HCI_WORDS];
243 acpi_status status = hci_raw(in, out);
244 *out1 = out[2];
245 *out2 = out[3];
246 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
247 return status;
248 }
249
250 struct toshiba_acpi_dev {
251 struct platform_device *p_dev;
252 struct rfkill *bt_rfk;
253
254 const char *bt_name;
255
256 struct mutex mutex;
257 };
258
259 static struct toshiba_acpi_dev toshiba_acpi = {
260 .bt_name = "Toshiba Bluetooth",
261 };
262
263 /* Bluetooth rfkill handlers */
264
265 static u32 hci_get_bt_present(bool *present)
266 {
267 u32 hci_result;
268 u32 value, value2;
269
270 value = 0;
271 value2 = 0;
272 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
273 if (hci_result == HCI_SUCCESS)
274 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
275
276 return hci_result;
277 }
278
279 static u32 hci_get_radio_state(bool *radio_state)
280 {
281 u32 hci_result;
282 u32 value, value2;
283
284 value = 0;
285 value2 = 0x0001;
286 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
287
288 *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
289 return hci_result;
290 }
291
292 static int bt_rfkill_set_block(void *data, bool blocked)
293 {
294 struct toshiba_acpi_dev *dev = data;
295 u32 result1, result2;
296 u32 value;
297 int err;
298 bool radio_state;
299
300 value = (blocked == false);
301
302 mutex_lock(&dev->mutex);
303 if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
304 err = -EBUSY;
305 goto out;
306 }
307
308 if (!radio_state) {
309 err = 0;
310 goto out;
311 }
312
313 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
314 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
315
316 if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
317 err = -EBUSY;
318 else
319 err = 0;
320 out:
321 mutex_unlock(&dev->mutex);
322 return err;
323 }
324
325 static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
326 {
327 bool new_rfk_state;
328 bool value;
329 u32 hci_result;
330 struct toshiba_acpi_dev *dev = data;
331
332 mutex_lock(&dev->mutex);
333
334 hci_result = hci_get_radio_state(&value);
335 if (hci_result != HCI_SUCCESS) {
336 /* Can't do anything useful */
337 mutex_unlock(&dev->mutex);
338 }
339
340 new_rfk_state = value;
341
342 mutex_unlock(&dev->mutex);
343
344 if (rfkill_set_hw_state(rfkill, !new_rfk_state))
345 bt_rfkill_set_block(data, true);
346 }
347
348 static const struct rfkill_ops toshiba_rfk_ops = {
349 .set_block = bt_rfkill_set_block,
350 .poll = bt_rfkill_poll,
351 };
352
353 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
354 static struct backlight_device *toshiba_backlight_device;
355 static int force_fan;
356 static int last_key_event;
357 static int key_event_valid;
358
359 typedef struct _ProcItem {
360 const char *name;
361 char *(*read_func) (char *);
362 unsigned long (*write_func) (const char *, unsigned long);
363 } ProcItem;
364
365 /* proc file handlers
366 */
367
368 static int
369 dispatch_read(char *page, char **start, off_t off, int count, int *eof,
370 ProcItem * item)
371 {
372 char *p = page;
373 int len;
374
375 if (off == 0)
376 p = item->read_func(p);
377
378 /* ISSUE: I don't understand this code */
379 len = (p - page);
380 if (len <= off + count)
381 *eof = 1;
382 *start = page + off;
383 len -= off;
384 if (len > count)
385 len = count;
386 if (len < 0)
387 len = 0;
388 return len;
389 }
390
391 static int
392 dispatch_write(struct file *file, const char __user * buffer,
393 unsigned long count, ProcItem * item)
394 {
395 int result;
396 char *tmp_buffer;
397
398 /* Arg buffer points to userspace memory, which can't be accessed
399 * directly. Since we're making a copy, zero-terminate the
400 * destination so that sscanf can be used on it safely.
401 */
402 tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
403 if (!tmp_buffer)
404 return -ENOMEM;
405
406 if (copy_from_user(tmp_buffer, buffer, count)) {
407 result = -EFAULT;
408 } else {
409 tmp_buffer[count] = 0;
410 result = item->write_func(tmp_buffer, count);
411 }
412 kfree(tmp_buffer);
413 return result;
414 }
415
416 static int get_lcd(struct backlight_device *bd)
417 {
418 u32 hci_result;
419 u32 value;
420
421 hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
422 if (hci_result == HCI_SUCCESS) {
423 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
424 } else
425 return -EFAULT;
426 }
427
428 static char *read_lcd(char *p)
429 {
430 int value = get_lcd(NULL);
431
432 if (value >= 0) {
433 p += sprintf(p, "brightness: %d\n", value);
434 p += sprintf(p, "brightness_levels: %d\n",
435 HCI_LCD_BRIGHTNESS_LEVELS);
436 } else {
437 printk(MY_ERR "Error reading LCD brightness\n");
438 }
439
440 return p;
441 }
442
443 static int set_lcd(int value)
444 {
445 u32 hci_result;
446
447 value = value << HCI_LCD_BRIGHTNESS_SHIFT;
448 hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
449 if (hci_result != HCI_SUCCESS)
450 return -EFAULT;
451
452 return 0;
453 }
454
455 static int set_lcd_status(struct backlight_device *bd)
456 {
457 return set_lcd(bd->props.brightness);
458 }
459
460 static unsigned long write_lcd(const char *buffer, unsigned long count)
461 {
462 int value;
463 int ret;
464
465 if (sscanf(buffer, " brightness : %i", &value) == 1 &&
466 value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
467 ret = set_lcd(value);
468 if (ret == 0)
469 ret = count;
470 } else {
471 ret = -EINVAL;
472 }
473 return ret;
474 }
475
476 static char *read_video(char *p)
477 {
478 u32 hci_result;
479 u32 value;
480
481 hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
482 if (hci_result == HCI_SUCCESS) {
483 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
484 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
485 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
486 p += sprintf(p, "lcd_out: %d\n", is_lcd);
487 p += sprintf(p, "crt_out: %d\n", is_crt);
488 p += sprintf(p, "tv_out: %d\n", is_tv);
489 } else {
490 printk(MY_ERR "Error reading video out status\n");
491 }
492
493 return p;
494 }
495
496 static unsigned long write_video(const char *buffer, unsigned long count)
497 {
498 int value;
499 int remain = count;
500 int lcd_out = -1;
501 int crt_out = -1;
502 int tv_out = -1;
503 u32 hci_result;
504 u32 video_out;
505
506 /* scan expression. Multiple expressions may be delimited with ;
507 *
508 * NOTE: to keep scanning simple, invalid fields are ignored
509 */
510 while (remain) {
511 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
512 lcd_out = value & 1;
513 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
514 crt_out = value & 1;
515 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
516 tv_out = value & 1;
517 /* advance to one character past the next ; */
518 do {
519 ++buffer;
520 --remain;
521 }
522 while (remain && *(buffer - 1) != ';');
523 }
524
525 hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
526 if (hci_result == HCI_SUCCESS) {
527 unsigned int new_video_out = video_out;
528 if (lcd_out != -1)
529 _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
530 if (crt_out != -1)
531 _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
532 if (tv_out != -1)
533 _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
534 /* To avoid unnecessary video disruption, only write the new
535 * video setting if something changed. */
536 if (new_video_out != video_out)
537 write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
538 } else {
539 return -EFAULT;
540 }
541
542 return count;
543 }
544
545 static char *read_fan(char *p)
546 {
547 u32 hci_result;
548 u32 value;
549
550 hci_read1(HCI_FAN, &value, &hci_result);
551 if (hci_result == HCI_SUCCESS) {
552 p += sprintf(p, "running: %d\n", (value > 0));
553 p += sprintf(p, "force_on: %d\n", force_fan);
554 } else {
555 printk(MY_ERR "Error reading fan status\n");
556 }
557
558 return p;
559 }
560
561 static unsigned long write_fan(const char *buffer, unsigned long count)
562 {
563 int value;
564 u32 hci_result;
565
566 if (sscanf(buffer, " force_on : %i", &value) == 1 &&
567 value >= 0 && value <= 1) {
568 hci_write1(HCI_FAN, value, &hci_result);
569 if (hci_result != HCI_SUCCESS)
570 return -EFAULT;
571 else
572 force_fan = value;
573 } else {
574 return -EINVAL;
575 }
576
577 return count;
578 }
579
580 static char *read_keys(char *p)
581 {
582 u32 hci_result;
583 u32 value;
584
585 if (!key_event_valid) {
586 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
587 if (hci_result == HCI_SUCCESS) {
588 key_event_valid = 1;
589 last_key_event = value;
590 } else if (hci_result == HCI_EMPTY) {
591 /* better luck next time */
592 } else if (hci_result == HCI_NOT_SUPPORTED) {
593 /* This is a workaround for an unresolved issue on
594 * some machines where system events sporadically
595 * become disabled. */
596 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
597 printk(MY_NOTICE "Re-enabled hotkeys\n");
598 } else {
599 printk(MY_ERR "Error reading hotkey status\n");
600 goto end;
601 }
602 }
603
604 p += sprintf(p, "hotkey_ready: %d\n", key_event_valid);
605 p += sprintf(p, "hotkey: 0x%04x\n", last_key_event);
606
607 end:
608 return p;
609 }
610
611 static unsigned long write_keys(const char *buffer, unsigned long count)
612 {
613 int value;
614
615 if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
616 key_event_valid = 0;
617 } else {
618 return -EINVAL;
619 }
620
621 return count;
622 }
623
624 static char *read_version(char *p)
625 {
626 p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION);
627 p += sprintf(p, "proc_interface: %d\n",
628 PROC_INTERFACE_VERSION);
629 return p;
630 }
631
632 /* proc and module init
633 */
634
635 #define PROC_TOSHIBA "toshiba"
636
637 static ProcItem proc_items[] = {
638 {"lcd", read_lcd, write_lcd},
639 {"video", read_video, write_video},
640 {"fan", read_fan, write_fan},
641 {"keys", read_keys, write_keys},
642 {"version", read_version, NULL},
643 {NULL}
644 };
645
646 static acpi_status __init add_device(void)
647 {
648 struct proc_dir_entry *proc;
649 ProcItem *item;
650
651 for (item = proc_items; item->name; ++item) {
652 proc = create_proc_read_entry(item->name,
653 S_IFREG | S_IRUGO | S_IWUSR,
654 toshiba_proc_dir,
655 (read_proc_t *) dispatch_read,
656 item);
657 if (proc && item->write_func)
658 proc->write_proc = (write_proc_t *) dispatch_write;
659 }
660
661 return AE_OK;
662 }
663
664 static acpi_status remove_device(void)
665 {
666 ProcItem *item;
667
668 for (item = proc_items; item->name; ++item)
669 remove_proc_entry(item->name, toshiba_proc_dir);
670 return AE_OK;
671 }
672
673 static struct backlight_ops toshiba_backlight_data = {
674 .get_brightness = get_lcd,
675 .update_status = set_lcd_status,
676 };
677
678 static void toshiba_acpi_exit(void)
679 {
680 if (toshiba_acpi.bt_rfk) {
681 rfkill_unregister(toshiba_acpi.bt_rfk);
682 rfkill_destroy(toshiba_acpi.bt_rfk);
683 }
684
685 if (toshiba_backlight_device)
686 backlight_device_unregister(toshiba_backlight_device);
687
688 remove_device();
689
690 if (toshiba_proc_dir)
691 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
692
693 platform_device_unregister(toshiba_acpi.p_dev);
694
695 return;
696 }
697
698 static int __init toshiba_acpi_init(void)
699 {
700 acpi_status status = AE_OK;
701 u32 hci_result;
702 bool bt_present;
703 int ret = 0;
704
705 if (acpi_disabled)
706 return -ENODEV;
707
708 /* simple device detection: look for HCI method */
709 if (is_valid_acpi_path(METHOD_HCI_1))
710 method_hci = METHOD_HCI_1;
711 else if (is_valid_acpi_path(METHOD_HCI_2))
712 method_hci = METHOD_HCI_2;
713 else
714 return -ENODEV;
715
716 printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
717 TOSHIBA_ACPI_VERSION);
718 printk(MY_INFO " HCI method: %s\n", method_hci);
719
720 mutex_init(&toshiba_acpi.mutex);
721
722 toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
723 -1, NULL, 0);
724 if (IS_ERR(toshiba_acpi.p_dev)) {
725 ret = PTR_ERR(toshiba_acpi.p_dev);
726 printk(MY_ERR "unable to register platform device\n");
727 toshiba_acpi.p_dev = NULL;
728 toshiba_acpi_exit();
729 return ret;
730 }
731
732 force_fan = 0;
733 key_event_valid = 0;
734
735 /* enable event fifo */
736 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
737
738 toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
739 if (!toshiba_proc_dir) {
740 toshiba_acpi_exit();
741 return -ENODEV;
742 } else {
743 status = add_device();
744 if (ACPI_FAILURE(status)) {
745 toshiba_acpi_exit();
746 return -ENODEV;
747 }
748 }
749
750 toshiba_backlight_device = backlight_device_register("toshiba",
751 &toshiba_acpi.p_dev->dev,
752 NULL,
753 &toshiba_backlight_data);
754 if (IS_ERR(toshiba_backlight_device)) {
755 ret = PTR_ERR(toshiba_backlight_device);
756
757 printk(KERN_ERR "Could not register toshiba backlight device\n");
758 toshiba_backlight_device = NULL;
759 toshiba_acpi_exit();
760 return ret;
761 }
762 toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
763
764 /* Register rfkill switch for Bluetooth */
765 if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
766 toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
767 &toshiba_acpi.p_dev->dev,
768 RFKILL_TYPE_BLUETOOTH,
769 &toshiba_rfk_ops,
770 &toshiba_acpi);
771 if (!toshiba_acpi.bt_rfk) {
772 printk(MY_ERR "unable to allocate rfkill device\n");
773 toshiba_acpi_exit();
774 return -ENOMEM;
775 }
776
777 ret = rfkill_register(toshiba_acpi.bt_rfk);
778 if (ret) {
779 printk(MY_ERR "unable to register rfkill device\n");
780 rfkill_destroy(toshiba_acpi.bt_rfk);
781 toshiba_acpi_exit();
782 return ret;
783 }
784 }
785
786 return 0;
787 }
788
789 module_init(toshiba_acpi_init);
790 module_exit(toshiba_acpi_exit);
This page took 0.047809 seconds and 5 git commands to generate.