Merge remote-tracking branch 'xen-tip/linux-next'
[deliverable/linux.git] / drivers / power / supply / da9150-fg.c
1 /*
2 * DA9150 Fuel-Gauge Driver
3 *
4 * Copyright (c) 2015 Dialog Semiconductor
5 *
6 * Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/of_platform.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/power_supply.h>
23 #include <linux/list.h>
24 #include <asm/div64.h>
25 #include <linux/mfd/da9150/core.h>
26 #include <linux/mfd/da9150/registers.h>
27
28 /* Core2Wire */
29 #define DA9150_QIF_READ (0x0 << 7)
30 #define DA9150_QIF_WRITE (0x1 << 7)
31 #define DA9150_QIF_CODE_MASK 0x7F
32
33 #define DA9150_QIF_BYTE_SIZE 8
34 #define DA9150_QIF_BYTE_MASK 0xFF
35 #define DA9150_QIF_SHORT_SIZE 2
36 #define DA9150_QIF_LONG_SIZE 4
37
38 /* QIF Codes */
39 #define DA9150_QIF_UAVG 6
40 #define DA9150_QIF_UAVG_SIZE DA9150_QIF_LONG_SIZE
41 #define DA9150_QIF_IAVG 8
42 #define DA9150_QIF_IAVG_SIZE DA9150_QIF_LONG_SIZE
43 #define DA9150_QIF_NTCAVG 12
44 #define DA9150_QIF_NTCAVG_SIZE DA9150_QIF_LONG_SIZE
45 #define DA9150_QIF_SHUNT_VAL 36
46 #define DA9150_QIF_SHUNT_VAL_SIZE DA9150_QIF_SHORT_SIZE
47 #define DA9150_QIF_SD_GAIN 38
48 #define DA9150_QIF_SD_GAIN_SIZE DA9150_QIF_LONG_SIZE
49 #define DA9150_QIF_FCC_MAH 40
50 #define DA9150_QIF_FCC_MAH_SIZE DA9150_QIF_SHORT_SIZE
51 #define DA9150_QIF_SOC_PCT 43
52 #define DA9150_QIF_SOC_PCT_SIZE DA9150_QIF_SHORT_SIZE
53 #define DA9150_QIF_CHARGE_LIMIT 44
54 #define DA9150_QIF_CHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
55 #define DA9150_QIF_DISCHARGE_LIMIT 45
56 #define DA9150_QIF_DISCHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
57 #define DA9150_QIF_FW_MAIN_VER 118
58 #define DA9150_QIF_FW_MAIN_VER_SIZE DA9150_QIF_SHORT_SIZE
59 #define DA9150_QIF_E_FG_STATUS 126
60 #define DA9150_QIF_E_FG_STATUS_SIZE DA9150_QIF_SHORT_SIZE
61 #define DA9150_QIF_SYNC 127
62 #define DA9150_QIF_SYNC_SIZE DA9150_QIF_SHORT_SIZE
63 #define DA9150_QIF_MAX_CODES 128
64
65 /* QIF Sync Timeout */
66 #define DA9150_QIF_SYNC_TIMEOUT 1000
67 #define DA9150_QIF_SYNC_RETRIES 10
68
69 /* QIF E_FG_STATUS */
70 #define DA9150_FG_IRQ_LOW_SOC_MASK (1 << 0)
71 #define DA9150_FG_IRQ_HIGH_SOC_MASK (1 << 1)
72 #define DA9150_FG_IRQ_SOC_MASK \
73 (DA9150_FG_IRQ_LOW_SOC_MASK | DA9150_FG_IRQ_HIGH_SOC_MASK)
74
75 /* Private data */
76 struct da9150_fg {
77 struct da9150 *da9150;
78 struct device *dev;
79
80 struct mutex io_lock;
81
82 struct power_supply *battery;
83 struct delayed_work work;
84 u32 interval;
85
86 int warn_soc;
87 int crit_soc;
88 int soc;
89 };
90
91 /* Battery Properties */
92 static u32 da9150_fg_read_attr(struct da9150_fg *fg, u8 code, u8 size)
93
94 {
95 u8 buf[size];
96 u8 read_addr;
97 u32 res = 0;
98 int i;
99
100 /* Set QIF code (READ mode) */
101 read_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_READ;
102
103 da9150_read_qif(fg->da9150, read_addr, size, buf);
104 for (i = 0; i < size; ++i)
105 res |= (buf[i] << (i * DA9150_QIF_BYTE_SIZE));
106
107 return res;
108 }
109
110 static void da9150_fg_write_attr(struct da9150_fg *fg, u8 code, u8 size,
111 u32 val)
112
113 {
114 u8 buf[size];
115 u8 write_addr;
116 int i;
117
118 /* Set QIF code (WRITE mode) */
119 write_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_WRITE;
120
121 for (i = 0; i < size; ++i) {
122 buf[i] = (val >> (i * DA9150_QIF_BYTE_SIZE)) &
123 DA9150_QIF_BYTE_MASK;
124 }
125 da9150_write_qif(fg->da9150, write_addr, size, buf);
126 }
127
128 /* Trigger QIF Sync to update QIF readable data */
129 static void da9150_fg_read_sync_start(struct da9150_fg *fg)
130 {
131 int i = 0;
132 u32 res = 0;
133
134 mutex_lock(&fg->io_lock);
135
136 /* Check if QIF sync already requested, and write to sync if not */
137 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
138 DA9150_QIF_SYNC_SIZE);
139 if (res > 0)
140 da9150_fg_write_attr(fg, DA9150_QIF_SYNC,
141 DA9150_QIF_SYNC_SIZE, 0);
142
143 /* Wait for sync to complete */
144 res = 0;
145 while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
146 usleep_range(DA9150_QIF_SYNC_TIMEOUT,
147 DA9150_QIF_SYNC_TIMEOUT * 2);
148 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
149 DA9150_QIF_SYNC_SIZE);
150 }
151
152 /* Check if sync completed */
153 if (res == 0)
154 dev_err(fg->dev, "Failed to perform QIF read sync!\n");
155 }
156
157 /*
158 * Should always be called after QIF sync read has been performed, and all
159 * attributes required have been accessed.
160 */
161 static inline void da9150_fg_read_sync_end(struct da9150_fg *fg)
162 {
163 mutex_unlock(&fg->io_lock);
164 }
165
166 /* Sync read of single QIF attribute */
167 static u32 da9150_fg_read_attr_sync(struct da9150_fg *fg, u8 code, u8 size)
168 {
169 u32 val;
170
171 da9150_fg_read_sync_start(fg);
172 val = da9150_fg_read_attr(fg, code, size);
173 da9150_fg_read_sync_end(fg);
174
175 return val;
176 }
177
178 /* Wait for QIF Sync, write QIF data and wait for ack */
179 static void da9150_fg_write_attr_sync(struct da9150_fg *fg, u8 code, u8 size,
180 u32 val)
181 {
182 int i = 0;
183 u32 res = 0, sync_val;
184
185 mutex_lock(&fg->io_lock);
186
187 /* Check if QIF sync already requested */
188 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
189 DA9150_QIF_SYNC_SIZE);
190
191 /* Wait for an existing sync to complete */
192 while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
193 usleep_range(DA9150_QIF_SYNC_TIMEOUT,
194 DA9150_QIF_SYNC_TIMEOUT * 2);
195 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
196 DA9150_QIF_SYNC_SIZE);
197 }
198
199 if (res == 0) {
200 dev_err(fg->dev, "Timeout waiting for existing QIF sync!\n");
201 mutex_unlock(&fg->io_lock);
202 return;
203 }
204
205 /* Write value for QIF code */
206 da9150_fg_write_attr(fg, code, size, val);
207
208 /* Wait for write acknowledgment */
209 i = 0;
210 sync_val = res;
211 while ((res == sync_val) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
212 usleep_range(DA9150_QIF_SYNC_TIMEOUT,
213 DA9150_QIF_SYNC_TIMEOUT * 2);
214 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
215 DA9150_QIF_SYNC_SIZE);
216 }
217
218 mutex_unlock(&fg->io_lock);
219
220 /* Check write was actually successful */
221 if (res != (sync_val + 1))
222 dev_err(fg->dev, "Error performing QIF sync write for code %d\n",
223 code);
224 }
225
226 /* Power Supply attributes */
227 static int da9150_fg_capacity(struct da9150_fg *fg,
228 union power_supply_propval *val)
229 {
230 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
231 DA9150_QIF_SOC_PCT_SIZE);
232
233 if (val->intval > 100)
234 val->intval = 100;
235
236 return 0;
237 }
238
239 static int da9150_fg_current_avg(struct da9150_fg *fg,
240 union power_supply_propval *val)
241 {
242 u32 iavg, sd_gain, shunt_val;
243 u64 div, res;
244
245 da9150_fg_read_sync_start(fg);
246 iavg = da9150_fg_read_attr(fg, DA9150_QIF_IAVG,
247 DA9150_QIF_IAVG_SIZE);
248 shunt_val = da9150_fg_read_attr(fg, DA9150_QIF_SHUNT_VAL,
249 DA9150_QIF_SHUNT_VAL_SIZE);
250 sd_gain = da9150_fg_read_attr(fg, DA9150_QIF_SD_GAIN,
251 DA9150_QIF_SD_GAIN_SIZE);
252 da9150_fg_read_sync_end(fg);
253
254 div = (u64) (sd_gain * shunt_val * 65536ULL);
255 do_div(div, 1000000);
256 res = (u64) (iavg * 1000000ULL);
257 do_div(res, div);
258
259 val->intval = (int) res;
260
261 return 0;
262 }
263
264 static int da9150_fg_voltage_avg(struct da9150_fg *fg,
265 union power_supply_propval *val)
266 {
267 u64 res;
268
269 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_UAVG,
270 DA9150_QIF_UAVG_SIZE);
271
272 res = (u64) (val->intval * 186ULL);
273 do_div(res, 10000);
274 val->intval = (int) res;
275
276 return 0;
277 }
278
279 static int da9150_fg_charge_full(struct da9150_fg *fg,
280 union power_supply_propval *val)
281 {
282 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_FCC_MAH,
283 DA9150_QIF_FCC_MAH_SIZE);
284
285 val->intval = val->intval * 1000;
286
287 return 0;
288 }
289
290 /*
291 * Temperature reading from device is only valid if battery/system provides
292 * valid NTC to associated pin of DA9150 chip.
293 */
294 static int da9150_fg_temp(struct da9150_fg *fg,
295 union power_supply_propval *val)
296 {
297 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_NTCAVG,
298 DA9150_QIF_NTCAVG_SIZE);
299
300 val->intval = (val->intval * 10) / 1048576;
301
302 return 0;
303 }
304
305 static enum power_supply_property da9150_fg_props[] = {
306 POWER_SUPPLY_PROP_CAPACITY,
307 POWER_SUPPLY_PROP_CURRENT_AVG,
308 POWER_SUPPLY_PROP_VOLTAGE_AVG,
309 POWER_SUPPLY_PROP_CHARGE_FULL,
310 POWER_SUPPLY_PROP_TEMP,
311 };
312
313 static int da9150_fg_get_prop(struct power_supply *psy,
314 enum power_supply_property psp,
315 union power_supply_propval *val)
316 {
317 struct da9150_fg *fg = dev_get_drvdata(psy->dev.parent);
318 int ret;
319
320 switch (psp) {
321 case POWER_SUPPLY_PROP_CAPACITY:
322 ret = da9150_fg_capacity(fg, val);
323 break;
324 case POWER_SUPPLY_PROP_CURRENT_AVG:
325 ret = da9150_fg_current_avg(fg, val);
326 break;
327 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
328 ret = da9150_fg_voltage_avg(fg, val);
329 break;
330 case POWER_SUPPLY_PROP_CHARGE_FULL:
331 ret = da9150_fg_charge_full(fg, val);
332 break;
333 case POWER_SUPPLY_PROP_TEMP:
334 ret = da9150_fg_temp(fg, val);
335 break;
336 default:
337 ret = -EINVAL;
338 break;
339 }
340
341 return ret;
342 }
343
344 /* Repeated SOC check */
345 static bool da9150_fg_soc_changed(struct da9150_fg *fg)
346 {
347 union power_supply_propval val;
348
349 da9150_fg_capacity(fg, &val);
350 if (val.intval != fg->soc) {
351 fg->soc = val.intval;
352 return true;
353 }
354
355 return false;
356 }
357
358 static void da9150_fg_work(struct work_struct *work)
359 {
360 struct da9150_fg *fg = container_of(work, struct da9150_fg, work.work);
361
362 /* Report if SOC has changed */
363 if (da9150_fg_soc_changed(fg))
364 power_supply_changed(fg->battery);
365
366 schedule_delayed_work(&fg->work, msecs_to_jiffies(fg->interval));
367 }
368
369 /* SOC level event configuration */
370 static void da9150_fg_soc_event_config(struct da9150_fg *fg)
371 {
372 int soc;
373
374 soc = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
375 DA9150_QIF_SOC_PCT_SIZE);
376
377 if (soc > fg->warn_soc) {
378 /* If SOC > warn level, set discharge warn level event */
379 da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
380 DA9150_QIF_DISCHARGE_LIMIT_SIZE,
381 fg->warn_soc + 1);
382 } else if ((soc <= fg->warn_soc) && (soc > fg->crit_soc)) {
383 /*
384 * If SOC <= warn level, set discharge crit level event,
385 * and set charge warn level event.
386 */
387 da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
388 DA9150_QIF_DISCHARGE_LIMIT_SIZE,
389 fg->crit_soc + 1);
390
391 da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
392 DA9150_QIF_CHARGE_LIMIT_SIZE,
393 fg->warn_soc);
394 } else if (soc <= fg->crit_soc) {
395 /* If SOC <= crit level, set charge crit level event */
396 da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
397 DA9150_QIF_CHARGE_LIMIT_SIZE,
398 fg->crit_soc);
399 }
400 }
401
402 static irqreturn_t da9150_fg_irq(int irq, void *data)
403 {
404 struct da9150_fg *fg = data;
405 u32 e_fg_status;
406
407 /* Read FG IRQ status info */
408 e_fg_status = da9150_fg_read_attr(fg, DA9150_QIF_E_FG_STATUS,
409 DA9150_QIF_E_FG_STATUS_SIZE);
410
411 /* Handle warning/critical threhold events */
412 if (e_fg_status & DA9150_FG_IRQ_SOC_MASK)
413 da9150_fg_soc_event_config(fg);
414
415 /* Clear any FG IRQs */
416 da9150_fg_write_attr(fg, DA9150_QIF_E_FG_STATUS,
417 DA9150_QIF_E_FG_STATUS_SIZE, e_fg_status);
418
419 return IRQ_HANDLED;
420 }
421
422 static struct da9150_fg_pdata *da9150_fg_dt_pdata(struct device *dev)
423 {
424 struct device_node *fg_node = dev->of_node;
425 struct da9150_fg_pdata *pdata;
426
427 pdata = devm_kzalloc(dev, sizeof(struct da9150_fg_pdata), GFP_KERNEL);
428 if (!pdata)
429 return NULL;
430
431 of_property_read_u32(fg_node, "dlg,update-interval",
432 &pdata->update_interval);
433 of_property_read_u8(fg_node, "dlg,warn-soc-level",
434 &pdata->warn_soc_lvl);
435 of_property_read_u8(fg_node, "dlg,crit-soc-level",
436 &pdata->crit_soc_lvl);
437
438 return pdata;
439 }
440
441 static const struct power_supply_desc fg_desc = {
442 .name = "da9150-fg",
443 .type = POWER_SUPPLY_TYPE_BATTERY,
444 .properties = da9150_fg_props,
445 .num_properties = ARRAY_SIZE(da9150_fg_props),
446 .get_property = da9150_fg_get_prop,
447 };
448
449 static int da9150_fg_probe(struct platform_device *pdev)
450 {
451 struct device *dev = &pdev->dev;
452 struct da9150 *da9150 = dev_get_drvdata(dev->parent);
453 struct da9150_fg_pdata *fg_pdata = dev_get_platdata(dev);
454 struct da9150_fg *fg;
455 int ver, irq, ret = 0;
456
457 fg = devm_kzalloc(dev, sizeof(*fg), GFP_KERNEL);
458 if (fg == NULL)
459 return -ENOMEM;
460
461 platform_set_drvdata(pdev, fg);
462 fg->da9150 = da9150;
463 fg->dev = dev;
464
465 mutex_init(&fg->io_lock);
466
467 /* Enable QIF */
468 da9150_set_bits(da9150, DA9150_CORE2WIRE_CTRL_A, DA9150_FG_QIF_EN_MASK,
469 DA9150_FG_QIF_EN_MASK);
470
471 fg->battery = devm_power_supply_register(dev, &fg_desc, NULL);
472 if (IS_ERR(fg->battery)) {
473 ret = PTR_ERR(fg->battery);
474 return ret;
475 }
476
477 ver = da9150_fg_read_attr(fg, DA9150_QIF_FW_MAIN_VER,
478 DA9150_QIF_FW_MAIN_VER_SIZE);
479 dev_info(dev, "Version: 0x%x\n", ver);
480
481 /* Handle DT data if provided */
482 if (dev->of_node) {
483 fg_pdata = da9150_fg_dt_pdata(dev);
484 dev->platform_data = fg_pdata;
485 }
486
487 /* Handle any pdata provided */
488 if (fg_pdata) {
489 fg->interval = fg_pdata->update_interval;
490
491 if (fg_pdata->warn_soc_lvl > 100)
492 dev_warn(dev, "Invalid SOC warning level provided, Ignoring");
493 else
494 fg->warn_soc = fg_pdata->warn_soc_lvl;
495
496 if ((fg_pdata->crit_soc_lvl > 100) ||
497 (fg_pdata->crit_soc_lvl >= fg_pdata->warn_soc_lvl))
498 dev_warn(dev, "Invalid SOC critical level provided, Ignoring");
499 else
500 fg->crit_soc = fg_pdata->crit_soc_lvl;
501
502
503 }
504
505 /* Configure initial SOC level events */
506 da9150_fg_soc_event_config(fg);
507
508 /*
509 * If an interval period has been provided then setup repeating
510 * work for reporting data updates.
511 */
512 if (fg->interval) {
513 INIT_DELAYED_WORK(&fg->work, da9150_fg_work);
514 schedule_delayed_work(&fg->work,
515 msecs_to_jiffies(fg->interval));
516 }
517
518 /* Register IRQ */
519 irq = platform_get_irq_byname(pdev, "FG");
520 if (irq < 0) {
521 dev_err(dev, "Failed to get IRQ FG: %d\n", irq);
522 ret = irq;
523 goto irq_fail;
524 }
525
526 ret = devm_request_threaded_irq(dev, irq, NULL, da9150_fg_irq,
527 IRQF_ONESHOT, "FG", fg);
528 if (ret) {
529 dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret);
530 goto irq_fail;
531 }
532
533 return 0;
534
535 irq_fail:
536 if (fg->interval)
537 cancel_delayed_work(&fg->work);
538
539 return ret;
540 }
541
542 static int da9150_fg_remove(struct platform_device *pdev)
543 {
544 struct da9150_fg *fg = platform_get_drvdata(pdev);
545
546 if (fg->interval)
547 cancel_delayed_work(&fg->work);
548
549 return 0;
550 }
551
552 static int da9150_fg_resume(struct platform_device *pdev)
553 {
554 struct da9150_fg *fg = platform_get_drvdata(pdev);
555
556 /*
557 * Trigger SOC check to happen now so as to indicate any value change
558 * since last check before suspend.
559 */
560 if (fg->interval)
561 flush_delayed_work(&fg->work);
562
563 return 0;
564 }
565
566 static struct platform_driver da9150_fg_driver = {
567 .driver = {
568 .name = "da9150-fuel-gauge",
569 },
570 .probe = da9150_fg_probe,
571 .remove = da9150_fg_remove,
572 .resume = da9150_fg_resume,
573 };
574
575 module_platform_driver(da9150_fg_driver);
576
577 MODULE_DESCRIPTION("Fuel-Gauge Driver for DA9150");
578 MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
579 MODULE_LICENSE("GPL");
This page took 0.051979 seconds and 5 git commands to generate.