Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
139 return false;
140 }
141
142 if (rdev->constraints->valid_ops_mask & ops)
143 return true;
144
145 return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
152
153 return NULL;
154 }
155
156 /**
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
159 */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 int i;
163
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
171 */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 struct regulator *supply;
175
176 while (1) {
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
179
180 if (!rdev->supply)
181 return;
182
183 rdev = supply->rdev;
184 }
185 }
186
187 /**
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
191 *
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
194 * returns NULL.
195 */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
200
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206 if (!regnode) {
207 dev_dbg(dev, "Looking up %s property in node %s failed",
208 prop_name, dev->of_node->full_name);
209 return NULL;
210 }
211 return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
217 {
218 BUG_ON(*min_uV > *max_uV);
219
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
222 return -EPERM;
223 }
224
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
229
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 *min_uV, *max_uV);
233 return -EINVAL;
234 }
235
236 return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
241 */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
244 {
245 struct regulator *regulator;
246
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 /*
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
251 */
252 if (!regulator->min_uV && !regulator->max_uV)
253 continue;
254
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
259 }
260
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 *min_uV, *max_uV);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
273 {
274 BUG_ON(*min_uA > *max_uA);
275
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
278 return -EPERM;
279 }
280
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
285
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 *min_uA, *max_uA);
289 return -EINVAL;
290 }
291
292 return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298 switch (*mode) {
299 case REGULATOR_MODE_FAST:
300 case REGULATOR_MODE_NORMAL:
301 case REGULATOR_MODE_IDLE:
302 case REGULATOR_MODE_STANDBY:
303 break;
304 default:
305 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 return -EINVAL;
307 }
308
309 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310 rdev_err(rdev, "mode operation not allowed\n");
311 return -EPERM;
312 }
313
314 /* The modes are bitmasks, the most power hungry modes having
315 * the lowest values. If the requested mode isn't supported
316 * try higher modes. */
317 while (*mode) {
318 if (rdev->constraints->valid_modes_mask & *mode)
319 return 0;
320 *mode /= 2;
321 }
322
323 return -EINVAL;
324 }
325
326 static ssize_t regulator_uV_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330 ssize_t ret;
331
332 mutex_lock(&rdev->mutex);
333 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334 mutex_unlock(&rdev->mutex);
335
336 return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339
340 static ssize_t regulator_uA_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
342 {
343 struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350 char *buf)
351 {
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354 return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360 switch (mode) {
361 case REGULATOR_MODE_FAST:
362 return sprintf(buf, "fast\n");
363 case REGULATOR_MODE_NORMAL:
364 return sprintf(buf, "normal\n");
365 case REGULATOR_MODE_IDLE:
366 return sprintf(buf, "idle\n");
367 case REGULATOR_MODE_STANDBY:
368 return sprintf(buf, "standby\n");
369 }
370 return sprintf(buf, "unknown\n");
371 }
372
373 static ssize_t regulator_opmode_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
375 {
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384 if (state > 0)
385 return sprintf(buf, "enabled\n");
386 else if (state == 0)
387 return sprintf(buf, "disabled\n");
388 else
389 return sprintf(buf, "unknown\n");
390 }
391
392 static ssize_t regulator_state_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
394 {
395 struct regulator_dev *rdev = dev_get_drvdata(dev);
396 ssize_t ret;
397
398 mutex_lock(&rdev->mutex);
399 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400 mutex_unlock(&rdev->mutex);
401
402 return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405
406 static ssize_t regulator_status_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
408 {
409 struct regulator_dev *rdev = dev_get_drvdata(dev);
410 int status;
411 char *label;
412
413 status = rdev->desc->ops->get_status(rdev);
414 if (status < 0)
415 return status;
416
417 switch (status) {
418 case REGULATOR_STATUS_OFF:
419 label = "off";
420 break;
421 case REGULATOR_STATUS_ON:
422 label = "on";
423 break;
424 case REGULATOR_STATUS_ERROR:
425 label = "error";
426 break;
427 case REGULATOR_STATUS_FAST:
428 label = "fast";
429 break;
430 case REGULATOR_STATUS_NORMAL:
431 label = "normal";
432 break;
433 case REGULATOR_STATUS_IDLE:
434 label = "idle";
435 break;
436 case REGULATOR_STATUS_STANDBY:
437 label = "standby";
438 break;
439 case REGULATOR_STATUS_BYPASS:
440 label = "bypass";
441 break;
442 case REGULATOR_STATUS_UNDEFINED:
443 label = "undefined";
444 break;
445 default:
446 return -ERANGE;
447 }
448
449 return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452
453 static ssize_t regulator_min_uA_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
460
461 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464
465 static ssize_t regulator_max_uA_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
467 {
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
472
473 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476
477 static ssize_t regulator_min_uV_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488
489 static ssize_t regulator_max_uV_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500
501 static ssize_t regulator_total_uA_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 struct regulator *regulator;
506 int uA = 0;
507
508 mutex_lock(&rdev->mutex);
509 list_for_each_entry(regulator, &rdev->consumer_list, list)
510 uA += regulator->uA_load;
511 mutex_unlock(&rdev->mutex);
512 return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517 char *buf)
518 {
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520 return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525 char *buf)
526 {
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529 switch (rdev->desc->type) {
530 case REGULATOR_VOLTAGE:
531 return sprintf(buf, "voltage\n");
532 case REGULATOR_CURRENT:
533 return sprintf(buf, "current\n");
534 }
535 return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540 struct device_attribute *attr, char *buf)
541 {
542 struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547 regulator_suspend_mem_uV_show, NULL);
548
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550 struct device_attribute *attr, char *buf)
551 {
552 struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557 regulator_suspend_disk_uV_show, NULL);
558
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567 regulator_suspend_standby_uV_show, NULL);
568
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578 regulator_suspend_mem_mode_show, NULL);
579
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_opmode(buf,
586 rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589 regulator_suspend_disk_mode_show, NULL);
590
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_opmode(buf,
597 rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600 regulator_suspend_standby_mode_show, NULL);
601
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611 regulator_suspend_mem_state_show, NULL);
612
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617
618 return regulator_print_state(buf,
619 rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622 regulator_suspend_disk_state_show, NULL);
623
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625 struct device_attribute *attr, char *buf)
626 {
627 struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629 return regulator_print_state(buf,
630 rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633 regulator_suspend_standby_state_show, NULL);
634
635 static ssize_t regulator_bypass_show(struct device *dev,
636 struct device_attribute *attr, char *buf)
637 {
638 struct regulator_dev *rdev = dev_get_drvdata(dev);
639 const char *report;
640 bool bypass;
641 int ret;
642
643 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644
645 if (ret != 0)
646 report = "unknown";
647 else if (bypass)
648 report = "enabled";
649 else
650 report = "disabled";
651
652 return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655 regulator_bypass_show, NULL);
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658 * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661 struct regulator *sibling;
662 int current_uA = 0, output_uV, input_uV, err;
663 unsigned int mode;
664
665 lockdep_assert_held_once(&rdev->mutex);
666
667 /*
668 * first check to see if we can set modes at all, otherwise just
669 * tell the consumer everything is OK.
670 */
671 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 return 0;
673
674 if (!rdev->desc->ops->get_optimum_mode &&
675 !rdev->desc->ops->set_load)
676 return 0;
677
678 if (!rdev->desc->ops->set_mode &&
679 !rdev->desc->ops->set_load)
680 return -EINVAL;
681
682 /* get output voltage */
683 output_uV = _regulator_get_voltage(rdev);
684 if (output_uV <= 0) {
685 rdev_err(rdev, "invalid output voltage found\n");
686 return -EINVAL;
687 }
688
689 /* get input voltage */
690 input_uV = 0;
691 if (rdev->supply)
692 input_uV = regulator_get_voltage(rdev->supply);
693 if (input_uV <= 0)
694 input_uV = rdev->constraints->input_uV;
695 if (input_uV <= 0) {
696 rdev_err(rdev, "invalid input voltage found\n");
697 return -EINVAL;
698 }
699
700 /* calc total requested load */
701 list_for_each_entry(sibling, &rdev->consumer_list, list)
702 current_uA += sibling->uA_load;
703
704 current_uA += rdev->constraints->system_load;
705
706 if (rdev->desc->ops->set_load) {
707 /* set the optimum mode for our new total regulator load */
708 err = rdev->desc->ops->set_load(rdev, current_uA);
709 if (err < 0)
710 rdev_err(rdev, "failed to set load %d\n", current_uA);
711 } else {
712 /* now get the optimum mode for our new total regulator load */
713 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714 output_uV, current_uA);
715
716 /* check the new mode is allowed */
717 err = regulator_mode_constrain(rdev, &mode);
718 if (err < 0) {
719 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720 current_uA, input_uV, output_uV);
721 return err;
722 }
723
724 err = rdev->desc->ops->set_mode(rdev, mode);
725 if (err < 0)
726 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727 }
728
729 return err;
730 }
731
732 static int suspend_set_state(struct regulator_dev *rdev,
733 struct regulator_state *rstate)
734 {
735 int ret = 0;
736
737 /* If we have no suspend mode configration don't set anything;
738 * only warn if the driver implements set_suspend_voltage or
739 * set_suspend_mode callback.
740 */
741 if (!rstate->enabled && !rstate->disabled) {
742 if (rdev->desc->ops->set_suspend_voltage ||
743 rdev->desc->ops->set_suspend_mode)
744 rdev_warn(rdev, "No configuration\n");
745 return 0;
746 }
747
748 if (rstate->enabled && rstate->disabled) {
749 rdev_err(rdev, "invalid configuration\n");
750 return -EINVAL;
751 }
752
753 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754 ret = rdev->desc->ops->set_suspend_enable(rdev);
755 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756 ret = rdev->desc->ops->set_suspend_disable(rdev);
757 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758 ret = 0;
759
760 if (ret < 0) {
761 rdev_err(rdev, "failed to enabled/disable\n");
762 return ret;
763 }
764
765 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767 if (ret < 0) {
768 rdev_err(rdev, "failed to set voltage\n");
769 return ret;
770 }
771 }
772
773 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775 if (ret < 0) {
776 rdev_err(rdev, "failed to set mode\n");
777 return ret;
778 }
779 }
780 return ret;
781 }
782
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786 if (!rdev->constraints)
787 return -EINVAL;
788
789 switch (state) {
790 case PM_SUSPEND_STANDBY:
791 return suspend_set_state(rdev,
792 &rdev->constraints->state_standby);
793 case PM_SUSPEND_MEM:
794 return suspend_set_state(rdev,
795 &rdev->constraints->state_mem);
796 case PM_SUSPEND_MAX:
797 return suspend_set_state(rdev,
798 &rdev->constraints->state_disk);
799 default:
800 return -EINVAL;
801 }
802 }
803
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806 struct regulation_constraints *constraints = rdev->constraints;
807 char buf[160] = "";
808 size_t len = sizeof(buf) - 1;
809 int count = 0;
810 int ret;
811
812 if (constraints->min_uV && constraints->max_uV) {
813 if (constraints->min_uV == constraints->max_uV)
814 count += scnprintf(buf + count, len - count, "%d mV ",
815 constraints->min_uV / 1000);
816 else
817 count += scnprintf(buf + count, len - count,
818 "%d <--> %d mV ",
819 constraints->min_uV / 1000,
820 constraints->max_uV / 1000);
821 }
822
823 if (!constraints->min_uV ||
824 constraints->min_uV != constraints->max_uV) {
825 ret = _regulator_get_voltage(rdev);
826 if (ret > 0)
827 count += scnprintf(buf + count, len - count,
828 "at %d mV ", ret / 1000);
829 }
830
831 if (constraints->uV_offset)
832 count += scnprintf(buf + count, len - count, "%dmV offset ",
833 constraints->uV_offset / 1000);
834
835 if (constraints->min_uA && constraints->max_uA) {
836 if (constraints->min_uA == constraints->max_uA)
837 count += scnprintf(buf + count, len - count, "%d mA ",
838 constraints->min_uA / 1000);
839 else
840 count += scnprintf(buf + count, len - count,
841 "%d <--> %d mA ",
842 constraints->min_uA / 1000,
843 constraints->max_uA / 1000);
844 }
845
846 if (!constraints->min_uA ||
847 constraints->min_uA != constraints->max_uA) {
848 ret = _regulator_get_current_limit(rdev);
849 if (ret > 0)
850 count += scnprintf(buf + count, len - count,
851 "at %d mA ", ret / 1000);
852 }
853
854 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855 count += scnprintf(buf + count, len - count, "fast ");
856 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857 count += scnprintf(buf + count, len - count, "normal ");
858 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859 count += scnprintf(buf + count, len - count, "idle ");
860 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861 count += scnprintf(buf + count, len - count, "standby");
862
863 if (!count)
864 scnprintf(buf, len, "no parameters");
865
866 rdev_dbg(rdev, "%s\n", buf);
867
868 if ((constraints->min_uV != constraints->max_uV) &&
869 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870 rdev_warn(rdev,
871 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875 struct regulation_constraints *constraints)
876 {
877 const struct regulator_ops *ops = rdev->desc->ops;
878 int ret;
879
880 /* do we need to apply the constraint voltage */
881 if (rdev->constraints->apply_uV &&
882 rdev->constraints->min_uV && rdev->constraints->max_uV) {
883 int target_min, target_max;
884 int current_uV = _regulator_get_voltage(rdev);
885 if (current_uV < 0) {
886 rdev_err(rdev,
887 "failed to get the current voltage(%d)\n",
888 current_uV);
889 return current_uV;
890 }
891
892 /*
893 * If we're below the minimum voltage move up to the
894 * minimum voltage, if we're above the maximum voltage
895 * then move down to the maximum.
896 */
897 target_min = current_uV;
898 target_max = current_uV;
899
900 if (current_uV < rdev->constraints->min_uV) {
901 target_min = rdev->constraints->min_uV;
902 target_max = rdev->constraints->min_uV;
903 }
904
905 if (current_uV > rdev->constraints->max_uV) {
906 target_min = rdev->constraints->max_uV;
907 target_max = rdev->constraints->max_uV;
908 }
909
910 if (target_min != current_uV || target_max != current_uV) {
911 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912 current_uV, target_min, target_max);
913 ret = _regulator_do_set_voltage(
914 rdev, target_min, target_max);
915 if (ret < 0) {
916 rdev_err(rdev,
917 "failed to apply %d-%duV constraint(%d)\n",
918 target_min, target_max, ret);
919 return ret;
920 }
921 }
922 }
923
924 /* constrain machine-level voltage specs to fit
925 * the actual range supported by this regulator.
926 */
927 if (ops->list_voltage && rdev->desc->n_voltages) {
928 int count = rdev->desc->n_voltages;
929 int i;
930 int min_uV = INT_MAX;
931 int max_uV = INT_MIN;
932 int cmin = constraints->min_uV;
933 int cmax = constraints->max_uV;
934
935 /* it's safe to autoconfigure fixed-voltage supplies
936 and the constraints are used by list_voltage. */
937 if (count == 1 && !cmin) {
938 cmin = 1;
939 cmax = INT_MAX;
940 constraints->min_uV = cmin;
941 constraints->max_uV = cmax;
942 }
943
944 /* voltage constraints are optional */
945 if ((cmin == 0) && (cmax == 0))
946 return 0;
947
948 /* else require explicit machine-level constraints */
949 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950 rdev_err(rdev, "invalid voltage constraints\n");
951 return -EINVAL;
952 }
953
954 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955 for (i = 0; i < count; i++) {
956 int value;
957
958 value = ops->list_voltage(rdev, i);
959 if (value <= 0)
960 continue;
961
962 /* maybe adjust [min_uV..max_uV] */
963 if (value >= cmin && value < min_uV)
964 min_uV = value;
965 if (value <= cmax && value > max_uV)
966 max_uV = value;
967 }
968
969 /* final: [min_uV..max_uV] valid iff constraints valid */
970 if (max_uV < min_uV) {
971 rdev_err(rdev,
972 "unsupportable voltage constraints %u-%uuV\n",
973 min_uV, max_uV);
974 return -EINVAL;
975 }
976
977 /* use regulator's subset of machine constraints */
978 if (constraints->min_uV < min_uV) {
979 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980 constraints->min_uV, min_uV);
981 constraints->min_uV = min_uV;
982 }
983 if (constraints->max_uV > max_uV) {
984 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985 constraints->max_uV, max_uV);
986 constraints->max_uV = max_uV;
987 }
988 }
989
990 return 0;
991 }
992
993 static int machine_constraints_current(struct regulator_dev *rdev,
994 struct regulation_constraints *constraints)
995 {
996 const struct regulator_ops *ops = rdev->desc->ops;
997 int ret;
998
999 if (!constraints->min_uA && !constraints->max_uA)
1000 return 0;
1001
1002 if (constraints->min_uA > constraints->max_uA) {
1003 rdev_err(rdev, "Invalid current constraints\n");
1004 return -EINVAL;
1005 }
1006
1007 if (!ops->set_current_limit || !ops->get_current_limit) {
1008 rdev_warn(rdev, "Operation of current configuration missing\n");
1009 return 0;
1010 }
1011
1012 /* Set regulator current in constraints range */
1013 ret = ops->set_current_limit(rdev, constraints->min_uA,
1014 constraints->max_uA);
1015 if (ret < 0) {
1016 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017 return ret;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024
1025 /**
1026 * set_machine_constraints - sets regulator constraints
1027 * @rdev: regulator source
1028 * @constraints: constraints to apply
1029 *
1030 * Allows platform initialisation code to define and constrain
1031 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1032 * Constraints *must* be set by platform code in order for some
1033 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034 * set_mode.
1035 */
1036 static int set_machine_constraints(struct regulator_dev *rdev,
1037 const struct regulation_constraints *constraints)
1038 {
1039 int ret = 0;
1040 const struct regulator_ops *ops = rdev->desc->ops;
1041
1042 if (constraints)
1043 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1044 GFP_KERNEL);
1045 else
1046 rdev->constraints = kzalloc(sizeof(*constraints),
1047 GFP_KERNEL);
1048 if (!rdev->constraints)
1049 return -ENOMEM;
1050
1051 ret = machine_constraints_voltage(rdev, rdev->constraints);
1052 if (ret != 0)
1053 return ret;
1054
1055 ret = machine_constraints_current(rdev, rdev->constraints);
1056 if (ret != 0)
1057 return ret;
1058
1059 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1060 ret = ops->set_input_current_limit(rdev,
1061 rdev->constraints->ilim_uA);
1062 if (ret < 0) {
1063 rdev_err(rdev, "failed to set input limit\n");
1064 return ret;
1065 }
1066 }
1067
1068 /* do we need to setup our suspend state */
1069 if (rdev->constraints->initial_state) {
1070 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071 if (ret < 0) {
1072 rdev_err(rdev, "failed to set suspend state\n");
1073 return ret;
1074 }
1075 }
1076
1077 if (rdev->constraints->initial_mode) {
1078 if (!ops->set_mode) {
1079 rdev_err(rdev, "no set_mode operation\n");
1080 return -EINVAL;
1081 }
1082
1083 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084 if (ret < 0) {
1085 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086 return ret;
1087 }
1088 }
1089
1090 /* If the constraints say the regulator should be on at this point
1091 * and we have control then make sure it is enabled.
1092 */
1093 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094 ret = _regulator_do_enable(rdev);
1095 if (ret < 0 && ret != -EINVAL) {
1096 rdev_err(rdev, "failed to enable\n");
1097 return ret;
1098 }
1099 }
1100
1101 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102 && ops->set_ramp_delay) {
1103 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104 if (ret < 0) {
1105 rdev_err(rdev, "failed to set ramp_delay\n");
1106 return ret;
1107 }
1108 }
1109
1110 if (rdev->constraints->pull_down && ops->set_pull_down) {
1111 ret = ops->set_pull_down(rdev);
1112 if (ret < 0) {
1113 rdev_err(rdev, "failed to set pull down\n");
1114 return ret;
1115 }
1116 }
1117
1118 if (rdev->constraints->soft_start && ops->set_soft_start) {
1119 ret = ops->set_soft_start(rdev);
1120 if (ret < 0) {
1121 rdev_err(rdev, "failed to set soft start\n");
1122 return ret;
1123 }
1124 }
1125
1126 if (rdev->constraints->over_current_protection
1127 && ops->set_over_current_protection) {
1128 ret = ops->set_over_current_protection(rdev);
1129 if (ret < 0) {
1130 rdev_err(rdev, "failed to set over current protection\n");
1131 return ret;
1132 }
1133 }
1134
1135 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1136 bool ad_state = (rdev->constraints->active_discharge ==
1137 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1138
1139 ret = ops->set_active_discharge(rdev, ad_state);
1140 if (ret < 0) {
1141 rdev_err(rdev, "failed to set active discharge\n");
1142 return ret;
1143 }
1144 }
1145
1146 print_constraints(rdev);
1147 return 0;
1148 }
1149
1150 /**
1151 * set_supply - set regulator supply regulator
1152 * @rdev: regulator name
1153 * @supply_rdev: supply regulator name
1154 *
1155 * Called by platform initialisation code to set the supply regulator for this
1156 * regulator. This ensures that a regulators supply will also be enabled by the
1157 * core if it's child is enabled.
1158 */
1159 static int set_supply(struct regulator_dev *rdev,
1160 struct regulator_dev *supply_rdev)
1161 {
1162 int err;
1163
1164 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1165
1166 if (!try_module_get(supply_rdev->owner))
1167 return -ENODEV;
1168
1169 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170 if (rdev->supply == NULL) {
1171 err = -ENOMEM;
1172 return err;
1173 }
1174 supply_rdev->open_count++;
1175
1176 return 0;
1177 }
1178
1179 /**
1180 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181 * @rdev: regulator source
1182 * @consumer_dev_name: dev_name() string for device supply applies to
1183 * @supply: symbolic name for supply
1184 *
1185 * Allows platform initialisation code to map physical regulator
1186 * sources to symbolic names for supplies for use by devices. Devices
1187 * should use these symbolic names to request regulators, avoiding the
1188 * need to provide board-specific regulator names as platform data.
1189 */
1190 static int set_consumer_device_supply(struct regulator_dev *rdev,
1191 const char *consumer_dev_name,
1192 const char *supply)
1193 {
1194 struct regulator_map *node;
1195 int has_dev;
1196
1197 if (supply == NULL)
1198 return -EINVAL;
1199
1200 if (consumer_dev_name != NULL)
1201 has_dev = 1;
1202 else
1203 has_dev = 0;
1204
1205 list_for_each_entry(node, &regulator_map_list, list) {
1206 if (node->dev_name && consumer_dev_name) {
1207 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1208 continue;
1209 } else if (node->dev_name || consumer_dev_name) {
1210 continue;
1211 }
1212
1213 if (strcmp(node->supply, supply) != 0)
1214 continue;
1215
1216 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1217 consumer_dev_name,
1218 dev_name(&node->regulator->dev),
1219 node->regulator->desc->name,
1220 supply,
1221 dev_name(&rdev->dev), rdev_get_name(rdev));
1222 return -EBUSY;
1223 }
1224
1225 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226 if (node == NULL)
1227 return -ENOMEM;
1228
1229 node->regulator = rdev;
1230 node->supply = supply;
1231
1232 if (has_dev) {
1233 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1234 if (node->dev_name == NULL) {
1235 kfree(node);
1236 return -ENOMEM;
1237 }
1238 }
1239
1240 list_add(&node->list, &regulator_map_list);
1241 return 0;
1242 }
1243
1244 static void unset_regulator_supplies(struct regulator_dev *rdev)
1245 {
1246 struct regulator_map *node, *n;
1247
1248 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1249 if (rdev == node->regulator) {
1250 list_del(&node->list);
1251 kfree(node->dev_name);
1252 kfree(node);
1253 }
1254 }
1255 }
1256
1257 #ifdef CONFIG_DEBUG_FS
1258 static ssize_t constraint_flags_read_file(struct file *file,
1259 char __user *user_buf,
1260 size_t count, loff_t *ppos)
1261 {
1262 const struct regulator *regulator = file->private_data;
1263 const struct regulation_constraints *c = regulator->rdev->constraints;
1264 char *buf;
1265 ssize_t ret;
1266
1267 if (!c)
1268 return 0;
1269
1270 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1271 if (!buf)
1272 return -ENOMEM;
1273
1274 ret = snprintf(buf, PAGE_SIZE,
1275 "always_on: %u\n"
1276 "boot_on: %u\n"
1277 "apply_uV: %u\n"
1278 "ramp_disable: %u\n"
1279 "soft_start: %u\n"
1280 "pull_down: %u\n"
1281 "over_current_protection: %u\n",
1282 c->always_on,
1283 c->boot_on,
1284 c->apply_uV,
1285 c->ramp_disable,
1286 c->soft_start,
1287 c->pull_down,
1288 c->over_current_protection);
1289
1290 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1291 kfree(buf);
1292
1293 return ret;
1294 }
1295
1296 #endif
1297
1298 static const struct file_operations constraint_flags_fops = {
1299 #ifdef CONFIG_DEBUG_FS
1300 .open = simple_open,
1301 .read = constraint_flags_read_file,
1302 .llseek = default_llseek,
1303 #endif
1304 };
1305
1306 #define REG_STR_SIZE 64
1307
1308 static struct regulator *create_regulator(struct regulator_dev *rdev,
1309 struct device *dev,
1310 const char *supply_name)
1311 {
1312 struct regulator *regulator;
1313 char buf[REG_STR_SIZE];
1314 int err, size;
1315
1316 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1317 if (regulator == NULL)
1318 return NULL;
1319
1320 mutex_lock(&rdev->mutex);
1321 regulator->rdev = rdev;
1322 list_add(&regulator->list, &rdev->consumer_list);
1323
1324 if (dev) {
1325 regulator->dev = dev;
1326
1327 /* Add a link to the device sysfs entry */
1328 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1329 dev->kobj.name, supply_name);
1330 if (size >= REG_STR_SIZE)
1331 goto overflow_err;
1332
1333 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1334 if (regulator->supply_name == NULL)
1335 goto overflow_err;
1336
1337 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338 buf);
1339 if (err) {
1340 rdev_dbg(rdev, "could not add device link %s err %d\n",
1341 dev->kobj.name, err);
1342 /* non-fatal */
1343 }
1344 } else {
1345 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1346 if (regulator->supply_name == NULL)
1347 goto overflow_err;
1348 }
1349
1350 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1351 rdev->debugfs);
1352 if (!regulator->debugfs) {
1353 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354 } else {
1355 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1356 &regulator->uA_load);
1357 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1358 &regulator->min_uV);
1359 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1360 &regulator->max_uV);
1361 debugfs_create_file("constraint_flags", 0444,
1362 regulator->debugfs, regulator,
1363 &constraint_flags_fops);
1364 }
1365
1366 /*
1367 * Check now if the regulator is an always on regulator - if
1368 * it is then we don't need to do nearly so much work for
1369 * enable/disable calls.
1370 */
1371 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372 _regulator_is_enabled(rdev))
1373 regulator->always_on = true;
1374
1375 mutex_unlock(&rdev->mutex);
1376 return regulator;
1377 overflow_err:
1378 list_del(&regulator->list);
1379 kfree(regulator);
1380 mutex_unlock(&rdev->mutex);
1381 return NULL;
1382 }
1383
1384 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1385 {
1386 if (rdev->constraints && rdev->constraints->enable_time)
1387 return rdev->constraints->enable_time;
1388 if (!rdev->desc->ops->enable_time)
1389 return rdev->desc->enable_time;
1390 return rdev->desc->ops->enable_time(rdev);
1391 }
1392
1393 static struct regulator_supply_alias *regulator_find_supply_alias(
1394 struct device *dev, const char *supply)
1395 {
1396 struct regulator_supply_alias *map;
1397
1398 list_for_each_entry(map, &regulator_supply_alias_list, list)
1399 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1400 return map;
1401
1402 return NULL;
1403 }
1404
1405 static void regulator_supply_alias(struct device **dev, const char **supply)
1406 {
1407 struct regulator_supply_alias *map;
1408
1409 map = regulator_find_supply_alias(*dev, *supply);
1410 if (map) {
1411 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1412 *supply, map->alias_supply,
1413 dev_name(map->alias_dev));
1414 *dev = map->alias_dev;
1415 *supply = map->alias_supply;
1416 }
1417 }
1418
1419 static int of_node_match(struct device *dev, const void *data)
1420 {
1421 return dev->of_node == data;
1422 }
1423
1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1425 {
1426 struct device *dev;
1427
1428 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1429
1430 return dev ? dev_to_rdev(dev) : NULL;
1431 }
1432
1433 static int regulator_match(struct device *dev, const void *data)
1434 {
1435 struct regulator_dev *r = dev_to_rdev(dev);
1436
1437 return strcmp(rdev_get_name(r), data) == 0;
1438 }
1439
1440 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1441 {
1442 struct device *dev;
1443
1444 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1445
1446 return dev ? dev_to_rdev(dev) : NULL;
1447 }
1448
1449 /**
1450 * regulator_dev_lookup - lookup a regulator device.
1451 * @dev: device for regulator "consumer".
1452 * @supply: Supply name or regulator ID.
1453 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1454 * lookup could succeed in the future.
1455 *
1456 * If successful, returns a struct regulator_dev that corresponds to the name
1457 * @supply and with the embedded struct device refcount incremented by one,
1458 * or NULL on failure. The refcount must be dropped by calling put_device().
1459 */
1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461 const char *supply,
1462 int *ret)
1463 {
1464 struct regulator_dev *r;
1465 struct device_node *node;
1466 struct regulator_map *map;
1467 const char *devname = NULL;
1468
1469 regulator_supply_alias(&dev, &supply);
1470
1471 /* first do a dt based lookup */
1472 if (dev && dev->of_node) {
1473 node = of_get_regulator(dev, supply);
1474 if (node) {
1475 r = of_find_regulator_by_node(node);
1476 if (r)
1477 return r;
1478 *ret = -EPROBE_DEFER;
1479 return NULL;
1480 } else {
1481 /*
1482 * If we couldn't even get the node then it's
1483 * not just that the device didn't register
1484 * yet, there's no node and we'll never
1485 * succeed.
1486 */
1487 *ret = -ENODEV;
1488 }
1489 }
1490
1491 /* if not found, try doing it non-dt way */
1492 if (dev)
1493 devname = dev_name(dev);
1494
1495 r = regulator_lookup_by_name(supply);
1496 if (r)
1497 return r;
1498
1499 mutex_lock(&regulator_list_mutex);
1500 list_for_each_entry(map, &regulator_map_list, list) {
1501 /* If the mapping has a device set up it must match */
1502 if (map->dev_name &&
1503 (!devname || strcmp(map->dev_name, devname)))
1504 continue;
1505
1506 if (strcmp(map->supply, supply) == 0 &&
1507 get_device(&map->regulator->dev)) {
1508 mutex_unlock(&regulator_list_mutex);
1509 return map->regulator;
1510 }
1511 }
1512 mutex_unlock(&regulator_list_mutex);
1513
1514 return NULL;
1515 }
1516
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519 struct regulator_dev *r;
1520 struct device *dev = rdev->dev.parent;
1521 int ret;
1522
1523 /* No supply to resovle? */
1524 if (!rdev->supply_name)
1525 return 0;
1526
1527 /* Supply already resolved? */
1528 if (rdev->supply)
1529 return 0;
1530
1531 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532 if (!r) {
1533 if (ret == -ENODEV) {
1534 /*
1535 * No supply was specified for this regulator and
1536 * there will never be one.
1537 */
1538 return 0;
1539 }
1540
1541 /* Did the lookup explicitly defer for us? */
1542 if (ret == -EPROBE_DEFER)
1543 return ret;
1544
1545 if (have_full_constraints()) {
1546 r = dummy_regulator_rdev;
1547 get_device(&r->dev);
1548 } else {
1549 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550 rdev->supply_name, rdev->desc->name);
1551 return -EPROBE_DEFER;
1552 }
1553 }
1554
1555 /* Recursively resolve the supply of the supply */
1556 ret = regulator_resolve_supply(r);
1557 if (ret < 0) {
1558 put_device(&r->dev);
1559 return ret;
1560 }
1561
1562 ret = set_supply(rdev, r);
1563 if (ret < 0) {
1564 put_device(&r->dev);
1565 return ret;
1566 }
1567
1568 /* Cascade always-on state to supply */
1569 if (_regulator_is_enabled(rdev)) {
1570 ret = regulator_enable(rdev->supply);
1571 if (ret < 0) {
1572 _regulator_put(rdev->supply);
1573 rdev->supply = NULL;
1574 return ret;
1575 }
1576 }
1577
1578 return 0;
1579 }
1580
1581 /* Internal regulator request function */
1582 static struct regulator *_regulator_get(struct device *dev, const char *id,
1583 bool exclusive, bool allow_dummy)
1584 {
1585 struct regulator_dev *rdev;
1586 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587 const char *devname = NULL;
1588 int ret;
1589
1590 if (id == NULL) {
1591 pr_err("get() with no identifier\n");
1592 return ERR_PTR(-EINVAL);
1593 }
1594
1595 if (dev)
1596 devname = dev_name(dev);
1597
1598 if (have_full_constraints())
1599 ret = -ENODEV;
1600 else
1601 ret = -EPROBE_DEFER;
1602
1603 rdev = regulator_dev_lookup(dev, id, &ret);
1604 if (rdev)
1605 goto found;
1606
1607 regulator = ERR_PTR(ret);
1608
1609 /*
1610 * If we have return value from dev_lookup fail, we do not expect to
1611 * succeed, so, quit with appropriate error value
1612 */
1613 if (ret && ret != -ENODEV)
1614 return regulator;
1615
1616 if (!devname)
1617 devname = "deviceless";
1618
1619 /*
1620 * Assume that a regulator is physically present and enabled
1621 * even if it isn't hooked up and just provide a dummy.
1622 */
1623 if (have_full_constraints() && allow_dummy) {
1624 pr_warn("%s supply %s not found, using dummy regulator\n",
1625 devname, id);
1626
1627 rdev = dummy_regulator_rdev;
1628 get_device(&rdev->dev);
1629 goto found;
1630 /* Don't log an error when called from regulator_get_optional() */
1631 } else if (!have_full_constraints() || exclusive) {
1632 dev_warn(dev, "dummy supplies not allowed\n");
1633 }
1634
1635 return regulator;
1636
1637 found:
1638 if (rdev->exclusive) {
1639 regulator = ERR_PTR(-EPERM);
1640 put_device(&rdev->dev);
1641 return regulator;
1642 }
1643
1644 if (exclusive && rdev->open_count) {
1645 regulator = ERR_PTR(-EBUSY);
1646 put_device(&rdev->dev);
1647 return regulator;
1648 }
1649
1650 ret = regulator_resolve_supply(rdev);
1651 if (ret < 0) {
1652 regulator = ERR_PTR(ret);
1653 put_device(&rdev->dev);
1654 return regulator;
1655 }
1656
1657 if (!try_module_get(rdev->owner)) {
1658 put_device(&rdev->dev);
1659 return regulator;
1660 }
1661
1662 regulator = create_regulator(rdev, dev, id);
1663 if (regulator == NULL) {
1664 regulator = ERR_PTR(-ENOMEM);
1665 put_device(&rdev->dev);
1666 module_put(rdev->owner);
1667 return regulator;
1668 }
1669
1670 rdev->open_count++;
1671 if (exclusive) {
1672 rdev->exclusive = 1;
1673
1674 ret = _regulator_is_enabled(rdev);
1675 if (ret > 0)
1676 rdev->use_count = 1;
1677 else
1678 rdev->use_count = 0;
1679 }
1680
1681 return regulator;
1682 }
1683
1684 /**
1685 * regulator_get - lookup and obtain a reference to a regulator.
1686 * @dev: device for regulator "consumer"
1687 * @id: Supply name or regulator ID.
1688 *
1689 * Returns a struct regulator corresponding to the regulator producer,
1690 * or IS_ERR() condition containing errno.
1691 *
1692 * Use of supply names configured via regulator_set_device_supply() is
1693 * strongly encouraged. It is recommended that the supply name used
1694 * should match the name used for the supply and/or the relevant
1695 * device pins in the datasheet.
1696 */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699 return _regulator_get(dev, id, false, true);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702
1703 /**
1704 * regulator_get_exclusive - obtain exclusive access to a regulator.
1705 * @dev: device for regulator "consumer"
1706 * @id: Supply name or regulator ID.
1707 *
1708 * Returns a struct regulator corresponding to the regulator producer,
1709 * or IS_ERR() condition containing errno. Other consumers will be
1710 * unable to obtain this regulator while this reference is held and the
1711 * use count for the regulator will be initialised to reflect the current
1712 * state of the regulator.
1713 *
1714 * This is intended for use by consumers which cannot tolerate shared
1715 * use of the regulator such as those which need to force the
1716 * regulator off for correct operation of the hardware they are
1717 * controlling.
1718 *
1719 * Use of supply names configured via regulator_set_device_supply() is
1720 * strongly encouraged. It is recommended that the supply name used
1721 * should match the name used for the supply and/or the relevant
1722 * device pins in the datasheet.
1723 */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726 return _regulator_get(dev, id, true, false);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729
1730 /**
1731 * regulator_get_optional - obtain optional access to a regulator.
1732 * @dev: device for regulator "consumer"
1733 * @id: Supply name or regulator ID.
1734 *
1735 * Returns a struct regulator corresponding to the regulator producer,
1736 * or IS_ERR() condition containing errno.
1737 *
1738 * This is intended for use by consumers for devices which can have
1739 * some supplies unconnected in normal use, such as some MMC devices.
1740 * It can allow the regulator core to provide stub supplies for other
1741 * supplies requested using normal regulator_get() calls without
1742 * disrupting the operation of drivers that can handle absent
1743 * supplies.
1744 *
1745 * Use of supply names configured via regulator_set_device_supply() is
1746 * strongly encouraged. It is recommended that the supply name used
1747 * should match the name used for the supply and/or the relevant
1748 * device pins in the datasheet.
1749 */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752 return _regulator_get(dev, id, false, false);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759 struct regulator_dev *rdev;
1760
1761 if (IS_ERR_OR_NULL(regulator))
1762 return;
1763
1764 lockdep_assert_held_once(&regulator_list_mutex);
1765
1766 rdev = regulator->rdev;
1767
1768 debugfs_remove_recursive(regulator->debugfs);
1769
1770 /* remove any sysfs entries */
1771 if (regulator->dev)
1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773 mutex_lock(&rdev->mutex);
1774 list_del(&regulator->list);
1775
1776 rdev->open_count--;
1777 rdev->exclusive = 0;
1778 put_device(&rdev->dev);
1779 mutex_unlock(&rdev->mutex);
1780
1781 kfree(regulator->supply_name);
1782 kfree(regulator);
1783
1784 module_put(rdev->owner);
1785 }
1786
1787 /**
1788 * regulator_put - "free" the regulator source
1789 * @regulator: regulator source
1790 *
1791 * Note: drivers must ensure that all regulator_enable calls made on this
1792 * regulator source are balanced by regulator_disable calls prior to calling
1793 * this function.
1794 */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797 mutex_lock(&regulator_list_mutex);
1798 _regulator_put(regulator);
1799 mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802
1803 /**
1804 * regulator_register_supply_alias - Provide device alias for supply lookup
1805 *
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 * @alias_dev: device that should be used to lookup the supply
1809 * @alias_id: Supply name or regulator ID that should be used to lookup the
1810 * supply
1811 *
1812 * All lookups for id on dev will instead be conducted for alias_id on
1813 * alias_dev.
1814 */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816 struct device *alias_dev,
1817 const char *alias_id)
1818 {
1819 struct regulator_supply_alias *map;
1820
1821 map = regulator_find_supply_alias(dev, id);
1822 if (map)
1823 return -EEXIST;
1824
1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826 if (!map)
1827 return -ENOMEM;
1828
1829 map->src_dev = dev;
1830 map->src_supply = id;
1831 map->alias_dev = alias_dev;
1832 map->alias_supply = alias_id;
1833
1834 list_add(&map->list, &regulator_supply_alias_list);
1835
1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 id, dev_name(dev), alias_id, dev_name(alias_dev));
1838
1839 return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842
1843 /**
1844 * regulator_unregister_supply_alias - Remove device alias
1845 *
1846 * @dev: device that will be given as the regulator "consumer"
1847 * @id: Supply name or regulator ID
1848 *
1849 * Remove a lookup alias if one exists for id on dev.
1850 */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853 struct regulator_supply_alias *map;
1854
1855 map = regulator_find_supply_alias(dev, id);
1856 if (map) {
1857 list_del(&map->list);
1858 kfree(map);
1859 }
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862
1863 /**
1864 * regulator_bulk_register_supply_alias - register multiple aliases
1865 *
1866 * @dev: device that will be given as the regulator "consumer"
1867 * @id: List of supply names or regulator IDs
1868 * @alias_dev: device that should be used to lookup the supply
1869 * @alias_id: List of supply names or regulator IDs that should be used to
1870 * lookup the supply
1871 * @num_id: Number of aliases to register
1872 *
1873 * @return 0 on success, an errno on failure.
1874 *
1875 * This helper function allows drivers to register several supply
1876 * aliases in one operation. If any of the aliases cannot be
1877 * registered any aliases that were registered will be removed
1878 * before returning to the caller.
1879 */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881 const char *const *id,
1882 struct device *alias_dev,
1883 const char *const *alias_id,
1884 int num_id)
1885 {
1886 int i;
1887 int ret;
1888
1889 for (i = 0; i < num_id; ++i) {
1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891 alias_id[i]);
1892 if (ret < 0)
1893 goto err;
1894 }
1895
1896 return 0;
1897
1898 err:
1899 dev_err(dev,
1900 "Failed to create supply alias %s,%s -> %s,%s\n",
1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902
1903 while (--i >= 0)
1904 regulator_unregister_supply_alias(dev, id[i]);
1905
1906 return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909
1910 /**
1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912 *
1913 * @dev: device that will be given as the regulator "consumer"
1914 * @id: List of supply names or regulator IDs
1915 * @num_id: Number of aliases to unregister
1916 *
1917 * This helper function allows drivers to unregister several supply
1918 * aliases in one operation.
1919 */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921 const char *const *id,
1922 int num_id)
1923 {
1924 int i;
1925
1926 for (i = 0; i < num_id; ++i)
1927 regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930
1931
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934 const struct regulator_config *config)
1935 {
1936 struct regulator_enable_gpio *pin;
1937 struct gpio_desc *gpiod;
1938 int ret;
1939
1940 gpiod = gpio_to_desc(config->ena_gpio);
1941
1942 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943 if (pin->gpiod == gpiod) {
1944 rdev_dbg(rdev, "GPIO %d is already used\n",
1945 config->ena_gpio);
1946 goto update_ena_gpio_to_rdev;
1947 }
1948 }
1949
1950 ret = gpio_request_one(config->ena_gpio,
1951 GPIOF_DIR_OUT | config->ena_gpio_flags,
1952 rdev_get_name(rdev));
1953 if (ret)
1954 return ret;
1955
1956 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957 if (pin == NULL) {
1958 gpio_free(config->ena_gpio);
1959 return -ENOMEM;
1960 }
1961
1962 pin->gpiod = gpiod;
1963 pin->ena_gpio_invert = config->ena_gpio_invert;
1964 list_add(&pin->list, &regulator_ena_gpio_list);
1965
1966 update_ena_gpio_to_rdev:
1967 pin->request_count++;
1968 rdev->ena_pin = pin;
1969 return 0;
1970 }
1971
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1973 {
1974 struct regulator_enable_gpio *pin, *n;
1975
1976 if (!rdev->ena_pin)
1977 return;
1978
1979 /* Free the GPIO only in case of no use */
1980 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981 if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 if (pin->request_count <= 1) {
1983 pin->request_count = 0;
1984 gpiod_put(pin->gpiod);
1985 list_del(&pin->list);
1986 kfree(pin);
1987 rdev->ena_pin = NULL;
1988 return;
1989 } else {
1990 pin->request_count--;
1991 }
1992 }
1993 }
1994 }
1995
1996 /**
1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998 * @rdev: regulator_dev structure
1999 * @enable: enable GPIO at initial use?
2000 *
2001 * GPIO is enabled in case of initial use. (enable_count is 0)
2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2003 */
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2005 {
2006 struct regulator_enable_gpio *pin = rdev->ena_pin;
2007
2008 if (!pin)
2009 return -EINVAL;
2010
2011 if (enable) {
2012 /* Enable GPIO at initial use */
2013 if (pin->enable_count == 0)
2014 gpiod_set_value_cansleep(pin->gpiod,
2015 !pin->ena_gpio_invert);
2016
2017 pin->enable_count++;
2018 } else {
2019 if (pin->enable_count > 1) {
2020 pin->enable_count--;
2021 return 0;
2022 }
2023
2024 /* Disable GPIO if not used */
2025 if (pin->enable_count <= 1) {
2026 gpiod_set_value_cansleep(pin->gpiod,
2027 pin->ena_gpio_invert);
2028 pin->enable_count = 0;
2029 }
2030 }
2031
2032 return 0;
2033 }
2034
2035 /**
2036 * _regulator_enable_delay - a delay helper function
2037 * @delay: time to delay in microseconds
2038 *
2039 * Delay for the requested amount of time as per the guidelines in:
2040 *
2041 * Documentation/timers/timers-howto.txt
2042 *
2043 * The assumption here is that regulators will never be enabled in
2044 * atomic context and therefore sleeping functions can be used.
2045 */
2046 static void _regulator_enable_delay(unsigned int delay)
2047 {
2048 unsigned int ms = delay / 1000;
2049 unsigned int us = delay % 1000;
2050
2051 if (ms > 0) {
2052 /*
2053 * For small enough values, handle super-millisecond
2054 * delays in the usleep_range() call below.
2055 */
2056 if (ms < 20)
2057 us += ms * 1000;
2058 else
2059 msleep(ms);
2060 }
2061
2062 /*
2063 * Give the scheduler some room to coalesce with any other
2064 * wakeup sources. For delays shorter than 10 us, don't even
2065 * bother setting up high-resolution timers and just busy-
2066 * loop.
2067 */
2068 if (us >= 10)
2069 usleep_range(us, us + 100);
2070 else
2071 udelay(us);
2072 }
2073
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2075 {
2076 int ret, delay;
2077
2078 /* Query before enabling in case configuration dependent. */
2079 ret = _regulator_get_enable_time(rdev);
2080 if (ret >= 0) {
2081 delay = ret;
2082 } else {
2083 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084 delay = 0;
2085 }
2086
2087 trace_regulator_enable(rdev_get_name(rdev));
2088
2089 if (rdev->desc->off_on_delay) {
2090 /* if needed, keep a distance of off_on_delay from last time
2091 * this regulator was disabled.
2092 */
2093 unsigned long start_jiffy = jiffies;
2094 unsigned long intended, max_delay, remaining;
2095
2096 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097 intended = rdev->last_off_jiffy + max_delay;
2098
2099 if (time_before(start_jiffy, intended)) {
2100 /* calc remaining jiffies to deal with one-time
2101 * timer wrapping.
2102 * in case of multiple timer wrapping, either it can be
2103 * detected by out-of-range remaining, or it cannot be
2104 * detected and we gets a panelty of
2105 * _regulator_enable_delay().
2106 */
2107 remaining = intended - start_jiffy;
2108 if (remaining <= max_delay)
2109 _regulator_enable_delay(
2110 jiffies_to_usecs(remaining));
2111 }
2112 }
2113
2114 if (rdev->ena_pin) {
2115 if (!rdev->ena_gpio_state) {
2116 ret = regulator_ena_gpio_ctrl(rdev, true);
2117 if (ret < 0)
2118 return ret;
2119 rdev->ena_gpio_state = 1;
2120 }
2121 } else if (rdev->desc->ops->enable) {
2122 ret = rdev->desc->ops->enable(rdev);
2123 if (ret < 0)
2124 return ret;
2125 } else {
2126 return -EINVAL;
2127 }
2128
2129 /* Allow the regulator to ramp; it would be useful to extend
2130 * this for bulk operations so that the regulators can ramp
2131 * together. */
2132 trace_regulator_enable_delay(rdev_get_name(rdev));
2133
2134 _regulator_enable_delay(delay);
2135
2136 trace_regulator_enable_complete(rdev_get_name(rdev));
2137
2138 return 0;
2139 }
2140
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2143 {
2144 int ret;
2145
2146 lockdep_assert_held_once(&rdev->mutex);
2147
2148 /* check voltage and requested load before enabling */
2149 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150 drms_uA_update(rdev);
2151
2152 if (rdev->use_count == 0) {
2153 /* The regulator may on if it's not switchable or left on */
2154 ret = _regulator_is_enabled(rdev);
2155 if (ret == -EINVAL || ret == 0) {
2156 if (!regulator_ops_is_valid(rdev,
2157 REGULATOR_CHANGE_STATUS))
2158 return -EPERM;
2159
2160 ret = _regulator_do_enable(rdev);
2161 if (ret < 0)
2162 return ret;
2163
2164 } else if (ret < 0) {
2165 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166 return ret;
2167 }
2168 /* Fallthrough on positive return values - already enabled */
2169 }
2170
2171 rdev->use_count++;
2172
2173 return 0;
2174 }
2175
2176 /**
2177 * regulator_enable - enable regulator output
2178 * @regulator: regulator source
2179 *
2180 * Request that the regulator be enabled with the regulator output at
2181 * the predefined voltage or current value. Calls to regulator_enable()
2182 * must be balanced with calls to regulator_disable().
2183 *
2184 * NOTE: the output value can be set by other drivers, boot loader or may be
2185 * hardwired in the regulator.
2186 */
2187 int regulator_enable(struct regulator *regulator)
2188 {
2189 struct regulator_dev *rdev = regulator->rdev;
2190 int ret = 0;
2191
2192 if (regulator->always_on)
2193 return 0;
2194
2195 if (rdev->supply) {
2196 ret = regulator_enable(rdev->supply);
2197 if (ret != 0)
2198 return ret;
2199 }
2200
2201 mutex_lock(&rdev->mutex);
2202 ret = _regulator_enable(rdev);
2203 mutex_unlock(&rdev->mutex);
2204
2205 if (ret != 0 && rdev->supply)
2206 regulator_disable(rdev->supply);
2207
2208 return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_enable);
2211
2212 static int _regulator_do_disable(struct regulator_dev *rdev)
2213 {
2214 int ret;
2215
2216 trace_regulator_disable(rdev_get_name(rdev));
2217
2218 if (rdev->ena_pin) {
2219 if (rdev->ena_gpio_state) {
2220 ret = regulator_ena_gpio_ctrl(rdev, false);
2221 if (ret < 0)
2222 return ret;
2223 rdev->ena_gpio_state = 0;
2224 }
2225
2226 } else if (rdev->desc->ops->disable) {
2227 ret = rdev->desc->ops->disable(rdev);
2228 if (ret != 0)
2229 return ret;
2230 }
2231
2232 /* cares about last_off_jiffy only if off_on_delay is required by
2233 * device.
2234 */
2235 if (rdev->desc->off_on_delay)
2236 rdev->last_off_jiffy = jiffies;
2237
2238 trace_regulator_disable_complete(rdev_get_name(rdev));
2239
2240 return 0;
2241 }
2242
2243 /* locks held by regulator_disable() */
2244 static int _regulator_disable(struct regulator_dev *rdev)
2245 {
2246 int ret = 0;
2247
2248 lockdep_assert_held_once(&rdev->mutex);
2249
2250 if (WARN(rdev->use_count <= 0,
2251 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2252 return -EIO;
2253
2254 /* are we the last user and permitted to disable ? */
2255 if (rdev->use_count == 1 &&
2256 (rdev->constraints && !rdev->constraints->always_on)) {
2257
2258 /* we are last user */
2259 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260 ret = _notifier_call_chain(rdev,
2261 REGULATOR_EVENT_PRE_DISABLE,
2262 NULL);
2263 if (ret & NOTIFY_STOP_MASK)
2264 return -EINVAL;
2265
2266 ret = _regulator_do_disable(rdev);
2267 if (ret < 0) {
2268 rdev_err(rdev, "failed to disable\n");
2269 _notifier_call_chain(rdev,
2270 REGULATOR_EVENT_ABORT_DISABLE,
2271 NULL);
2272 return ret;
2273 }
2274 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2275 NULL);
2276 }
2277
2278 rdev->use_count = 0;
2279 } else if (rdev->use_count > 1) {
2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281 drms_uA_update(rdev);
2282
2283 rdev->use_count--;
2284 }
2285
2286 return ret;
2287 }
2288
2289 /**
2290 * regulator_disable - disable regulator output
2291 * @regulator: regulator source
2292 *
2293 * Disable the regulator output voltage or current. Calls to
2294 * regulator_enable() must be balanced with calls to
2295 * regulator_disable().
2296 *
2297 * NOTE: this will only disable the regulator output if no other consumer
2298 * devices have it enabled, the regulator device supports disabling and
2299 * machine constraints permit this operation.
2300 */
2301 int regulator_disable(struct regulator *regulator)
2302 {
2303 struct regulator_dev *rdev = regulator->rdev;
2304 int ret = 0;
2305
2306 if (regulator->always_on)
2307 return 0;
2308
2309 mutex_lock(&rdev->mutex);
2310 ret = _regulator_disable(rdev);
2311 mutex_unlock(&rdev->mutex);
2312
2313 if (ret == 0 && rdev->supply)
2314 regulator_disable(rdev->supply);
2315
2316 return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_disable);
2319
2320 /* locks held by regulator_force_disable() */
2321 static int _regulator_force_disable(struct regulator_dev *rdev)
2322 {
2323 int ret = 0;
2324
2325 lockdep_assert_held_once(&rdev->mutex);
2326
2327 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2328 REGULATOR_EVENT_PRE_DISABLE, NULL);
2329 if (ret & NOTIFY_STOP_MASK)
2330 return -EINVAL;
2331
2332 ret = _regulator_do_disable(rdev);
2333 if (ret < 0) {
2334 rdev_err(rdev, "failed to force disable\n");
2335 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337 return ret;
2338 }
2339
2340 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 REGULATOR_EVENT_DISABLE, NULL);
2342
2343 return 0;
2344 }
2345
2346 /**
2347 * regulator_force_disable - force disable regulator output
2348 * @regulator: regulator source
2349 *
2350 * Forcibly disable the regulator output voltage or current.
2351 * NOTE: this *will* disable the regulator output even if other consumer
2352 * devices have it enabled. This should be used for situations when device
2353 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2354 */
2355 int regulator_force_disable(struct regulator *regulator)
2356 {
2357 struct regulator_dev *rdev = regulator->rdev;
2358 int ret;
2359
2360 mutex_lock(&rdev->mutex);
2361 regulator->uA_load = 0;
2362 ret = _regulator_force_disable(regulator->rdev);
2363 mutex_unlock(&rdev->mutex);
2364
2365 if (rdev->supply)
2366 while (rdev->open_count--)
2367 regulator_disable(rdev->supply);
2368
2369 return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_force_disable);
2372
2373 static void regulator_disable_work(struct work_struct *work)
2374 {
2375 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2376 disable_work.work);
2377 int count, i, ret;
2378
2379 mutex_lock(&rdev->mutex);
2380
2381 BUG_ON(!rdev->deferred_disables);
2382
2383 count = rdev->deferred_disables;
2384 rdev->deferred_disables = 0;
2385
2386 for (i = 0; i < count; i++) {
2387 ret = _regulator_disable(rdev);
2388 if (ret != 0)
2389 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2390 }
2391
2392 mutex_unlock(&rdev->mutex);
2393
2394 if (rdev->supply) {
2395 for (i = 0; i < count; i++) {
2396 ret = regulator_disable(rdev->supply);
2397 if (ret != 0) {
2398 rdev_err(rdev,
2399 "Supply disable failed: %d\n", ret);
2400 }
2401 }
2402 }
2403 }
2404
2405 /**
2406 * regulator_disable_deferred - disable regulator output with delay
2407 * @regulator: regulator source
2408 * @ms: miliseconds until the regulator is disabled
2409 *
2410 * Execute regulator_disable() on the regulator after a delay. This
2411 * is intended for use with devices that require some time to quiesce.
2412 *
2413 * NOTE: this will only disable the regulator output if no other consumer
2414 * devices have it enabled, the regulator device supports disabling and
2415 * machine constraints permit this operation.
2416 */
2417 int regulator_disable_deferred(struct regulator *regulator, int ms)
2418 {
2419 struct regulator_dev *rdev = regulator->rdev;
2420
2421 if (regulator->always_on)
2422 return 0;
2423
2424 if (!ms)
2425 return regulator_disable(regulator);
2426
2427 mutex_lock(&rdev->mutex);
2428 rdev->deferred_disables++;
2429 mutex_unlock(&rdev->mutex);
2430
2431 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2432 msecs_to_jiffies(ms));
2433 return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2436
2437 static int _regulator_is_enabled(struct regulator_dev *rdev)
2438 {
2439 /* A GPIO control always takes precedence */
2440 if (rdev->ena_pin)
2441 return rdev->ena_gpio_state;
2442
2443 /* If we don't know then assume that the regulator is always on */
2444 if (!rdev->desc->ops->is_enabled)
2445 return 1;
2446
2447 return rdev->desc->ops->is_enabled(rdev);
2448 }
2449
2450 static int _regulator_list_voltage(struct regulator *regulator,
2451 unsigned selector, int lock)
2452 {
2453 struct regulator_dev *rdev = regulator->rdev;
2454 const struct regulator_ops *ops = rdev->desc->ops;
2455 int ret;
2456
2457 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2458 return rdev->desc->fixed_uV;
2459
2460 if (ops->list_voltage) {
2461 if (selector >= rdev->desc->n_voltages)
2462 return -EINVAL;
2463 if (lock)
2464 mutex_lock(&rdev->mutex);
2465 ret = ops->list_voltage(rdev, selector);
2466 if (lock)
2467 mutex_unlock(&rdev->mutex);
2468 } else if (rdev->supply) {
2469 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2470 } else {
2471 return -EINVAL;
2472 }
2473
2474 if (ret > 0) {
2475 if (ret < rdev->constraints->min_uV)
2476 ret = 0;
2477 else if (ret > rdev->constraints->max_uV)
2478 ret = 0;
2479 }
2480
2481 return ret;
2482 }
2483
2484 /**
2485 * regulator_is_enabled - is the regulator output enabled
2486 * @regulator: regulator source
2487 *
2488 * Returns positive if the regulator driver backing the source/client
2489 * has requested that the device be enabled, zero if it hasn't, else a
2490 * negative errno code.
2491 *
2492 * Note that the device backing this regulator handle can have multiple
2493 * users, so it might be enabled even if regulator_enable() was never
2494 * called for this particular source.
2495 */
2496 int regulator_is_enabled(struct regulator *regulator)
2497 {
2498 int ret;
2499
2500 if (regulator->always_on)
2501 return 1;
2502
2503 mutex_lock(&regulator->rdev->mutex);
2504 ret = _regulator_is_enabled(regulator->rdev);
2505 mutex_unlock(&regulator->rdev->mutex);
2506
2507 return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2510
2511 /**
2512 * regulator_count_voltages - count regulator_list_voltage() selectors
2513 * @regulator: regulator source
2514 *
2515 * Returns number of selectors, or negative errno. Selectors are
2516 * numbered starting at zero, and typically correspond to bitfields
2517 * in hardware registers.
2518 */
2519 int regulator_count_voltages(struct regulator *regulator)
2520 {
2521 struct regulator_dev *rdev = regulator->rdev;
2522
2523 if (rdev->desc->n_voltages)
2524 return rdev->desc->n_voltages;
2525
2526 if (!rdev->supply)
2527 return -EINVAL;
2528
2529 return regulator_count_voltages(rdev->supply);
2530 }
2531 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2532
2533 /**
2534 * regulator_list_voltage - enumerate supported voltages
2535 * @regulator: regulator source
2536 * @selector: identify voltage to list
2537 * Context: can sleep
2538 *
2539 * Returns a voltage that can be passed to @regulator_set_voltage(),
2540 * zero if this selector code can't be used on this system, or a
2541 * negative errno.
2542 */
2543 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2544 {
2545 return _regulator_list_voltage(regulator, selector, 1);
2546 }
2547 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2548
2549 /**
2550 * regulator_get_regmap - get the regulator's register map
2551 * @regulator: regulator source
2552 *
2553 * Returns the register map for the given regulator, or an ERR_PTR value
2554 * if the regulator doesn't use regmap.
2555 */
2556 struct regmap *regulator_get_regmap(struct regulator *regulator)
2557 {
2558 struct regmap *map = regulator->rdev->regmap;
2559
2560 return map ? map : ERR_PTR(-EOPNOTSUPP);
2561 }
2562
2563 /**
2564 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2565 * @regulator: regulator source
2566 * @vsel_reg: voltage selector register, output parameter
2567 * @vsel_mask: mask for voltage selector bitfield, output parameter
2568 *
2569 * Returns the hardware register offset and bitmask used for setting the
2570 * regulator voltage. This might be useful when configuring voltage-scaling
2571 * hardware or firmware that can make I2C requests behind the kernel's back,
2572 * for example.
2573 *
2574 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2575 * and 0 is returned, otherwise a negative errno is returned.
2576 */
2577 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2578 unsigned *vsel_reg,
2579 unsigned *vsel_mask)
2580 {
2581 struct regulator_dev *rdev = regulator->rdev;
2582 const struct regulator_ops *ops = rdev->desc->ops;
2583
2584 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2585 return -EOPNOTSUPP;
2586
2587 *vsel_reg = rdev->desc->vsel_reg;
2588 *vsel_mask = rdev->desc->vsel_mask;
2589
2590 return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2593
2594 /**
2595 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2596 * @regulator: regulator source
2597 * @selector: identify voltage to list
2598 *
2599 * Converts the selector to a hardware-specific voltage selector that can be
2600 * directly written to the regulator registers. The address of the voltage
2601 * register can be determined by calling @regulator_get_hardware_vsel_register.
2602 *
2603 * On error a negative errno is returned.
2604 */
2605 int regulator_list_hardware_vsel(struct regulator *regulator,
2606 unsigned selector)
2607 {
2608 struct regulator_dev *rdev = regulator->rdev;
2609 const struct regulator_ops *ops = rdev->desc->ops;
2610
2611 if (selector >= rdev->desc->n_voltages)
2612 return -EINVAL;
2613 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2614 return -EOPNOTSUPP;
2615
2616 return selector;
2617 }
2618 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2619
2620 /**
2621 * regulator_get_linear_step - return the voltage step size between VSEL values
2622 * @regulator: regulator source
2623 *
2624 * Returns the voltage step size between VSEL values for linear
2625 * regulators, or return 0 if the regulator isn't a linear regulator.
2626 */
2627 unsigned int regulator_get_linear_step(struct regulator *regulator)
2628 {
2629 struct regulator_dev *rdev = regulator->rdev;
2630
2631 return rdev->desc->uV_step;
2632 }
2633 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2634
2635 /**
2636 * regulator_is_supported_voltage - check if a voltage range can be supported
2637 *
2638 * @regulator: Regulator to check.
2639 * @min_uV: Minimum required voltage in uV.
2640 * @max_uV: Maximum required voltage in uV.
2641 *
2642 * Returns a boolean or a negative error code.
2643 */
2644 int regulator_is_supported_voltage(struct regulator *regulator,
2645 int min_uV, int max_uV)
2646 {
2647 struct regulator_dev *rdev = regulator->rdev;
2648 int i, voltages, ret;
2649
2650 /* If we can't change voltage check the current voltage */
2651 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2652 ret = regulator_get_voltage(regulator);
2653 if (ret >= 0)
2654 return min_uV <= ret && ret <= max_uV;
2655 else
2656 return ret;
2657 }
2658
2659 /* Any voltage within constrains range is fine? */
2660 if (rdev->desc->continuous_voltage_range)
2661 return min_uV >= rdev->constraints->min_uV &&
2662 max_uV <= rdev->constraints->max_uV;
2663
2664 ret = regulator_count_voltages(regulator);
2665 if (ret < 0)
2666 return ret;
2667 voltages = ret;
2668
2669 for (i = 0; i < voltages; i++) {
2670 ret = regulator_list_voltage(regulator, i);
2671
2672 if (ret >= min_uV && ret <= max_uV)
2673 return 1;
2674 }
2675
2676 return 0;
2677 }
2678 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2679
2680 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2681 int max_uV)
2682 {
2683 const struct regulator_desc *desc = rdev->desc;
2684
2685 if (desc->ops->map_voltage)
2686 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2687
2688 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2689 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2690
2691 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2692 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2693
2694 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2695 }
2696
2697 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2698 int min_uV, int max_uV,
2699 unsigned *selector)
2700 {
2701 struct pre_voltage_change_data data;
2702 int ret;
2703
2704 data.old_uV = _regulator_get_voltage(rdev);
2705 data.min_uV = min_uV;
2706 data.max_uV = max_uV;
2707 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2708 &data);
2709 if (ret & NOTIFY_STOP_MASK)
2710 return -EINVAL;
2711
2712 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2713 if (ret >= 0)
2714 return ret;
2715
2716 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2717 (void *)data.old_uV);
2718
2719 return ret;
2720 }
2721
2722 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2723 int uV, unsigned selector)
2724 {
2725 struct pre_voltage_change_data data;
2726 int ret;
2727
2728 data.old_uV = _regulator_get_voltage(rdev);
2729 data.min_uV = uV;
2730 data.max_uV = uV;
2731 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2732 &data);
2733 if (ret & NOTIFY_STOP_MASK)
2734 return -EINVAL;
2735
2736 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2737 if (ret >= 0)
2738 return ret;
2739
2740 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2741 (void *)data.old_uV);
2742
2743 return ret;
2744 }
2745
2746 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2747 int min_uV, int max_uV)
2748 {
2749 int ret;
2750 int delay = 0;
2751 int best_val = 0;
2752 unsigned int selector;
2753 int old_selector = -1;
2754
2755 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2756
2757 min_uV += rdev->constraints->uV_offset;
2758 max_uV += rdev->constraints->uV_offset;
2759
2760 /*
2761 * If we can't obtain the old selector there is not enough
2762 * info to call set_voltage_time_sel().
2763 */
2764 if (_regulator_is_enabled(rdev) &&
2765 rdev->desc->ops->set_voltage_time_sel &&
2766 rdev->desc->ops->get_voltage_sel) {
2767 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2768 if (old_selector < 0)
2769 return old_selector;
2770 }
2771
2772 if (rdev->desc->ops->set_voltage) {
2773 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2774 &selector);
2775
2776 if (ret >= 0) {
2777 if (rdev->desc->ops->list_voltage)
2778 best_val = rdev->desc->ops->list_voltage(rdev,
2779 selector);
2780 else
2781 best_val = _regulator_get_voltage(rdev);
2782 }
2783
2784 } else if (rdev->desc->ops->set_voltage_sel) {
2785 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2786 if (ret >= 0) {
2787 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2788 if (min_uV <= best_val && max_uV >= best_val) {
2789 selector = ret;
2790 if (old_selector == selector)
2791 ret = 0;
2792 else
2793 ret = _regulator_call_set_voltage_sel(
2794 rdev, best_val, selector);
2795 } else {
2796 ret = -EINVAL;
2797 }
2798 }
2799 } else {
2800 ret = -EINVAL;
2801 }
2802
2803 /* Call set_voltage_time_sel if successfully obtained old_selector */
2804 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2805 && old_selector != selector) {
2806
2807 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2808 old_selector, selector);
2809 if (delay < 0) {
2810 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2811 delay);
2812 delay = 0;
2813 }
2814
2815 /* Insert any necessary delays */
2816 if (delay >= 1000) {
2817 mdelay(delay / 1000);
2818 udelay(delay % 1000);
2819 } else if (delay) {
2820 udelay(delay);
2821 }
2822 }
2823
2824 if (ret == 0 && best_val >= 0) {
2825 unsigned long data = best_val;
2826
2827 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2828 (void *)data);
2829 }
2830
2831 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2832
2833 return ret;
2834 }
2835
2836 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2837 int min_uV, int max_uV)
2838 {
2839 struct regulator_dev *rdev = regulator->rdev;
2840 int ret = 0;
2841 int old_min_uV, old_max_uV;
2842 int current_uV;
2843 int best_supply_uV = 0;
2844 int supply_change_uV = 0;
2845
2846 /* If we're setting the same range as last time the change
2847 * should be a noop (some cpufreq implementations use the same
2848 * voltage for multiple frequencies, for example).
2849 */
2850 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2851 goto out;
2852
2853 /* If we're trying to set a range that overlaps the current voltage,
2854 * return successfully even though the regulator does not support
2855 * changing the voltage.
2856 */
2857 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2858 current_uV = _regulator_get_voltage(rdev);
2859 if (min_uV <= current_uV && current_uV <= max_uV) {
2860 regulator->min_uV = min_uV;
2861 regulator->max_uV = max_uV;
2862 goto out;
2863 }
2864 }
2865
2866 /* sanity check */
2867 if (!rdev->desc->ops->set_voltage &&
2868 !rdev->desc->ops->set_voltage_sel) {
2869 ret = -EINVAL;
2870 goto out;
2871 }
2872
2873 /* constraints check */
2874 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2875 if (ret < 0)
2876 goto out;
2877
2878 /* restore original values in case of error */
2879 old_min_uV = regulator->min_uV;
2880 old_max_uV = regulator->max_uV;
2881 regulator->min_uV = min_uV;
2882 regulator->max_uV = max_uV;
2883
2884 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2885 if (ret < 0)
2886 goto out2;
2887
2888 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2889 !rdev->desc->ops->get_voltage)) {
2890 int current_supply_uV;
2891 int selector;
2892
2893 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2894 if (selector < 0) {
2895 ret = selector;
2896 goto out2;
2897 }
2898
2899 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2900 if (best_supply_uV < 0) {
2901 ret = best_supply_uV;
2902 goto out2;
2903 }
2904
2905 best_supply_uV += rdev->desc->min_dropout_uV;
2906
2907 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2908 if (current_supply_uV < 0) {
2909 ret = current_supply_uV;
2910 goto out2;
2911 }
2912
2913 supply_change_uV = best_supply_uV - current_supply_uV;
2914 }
2915
2916 if (supply_change_uV > 0) {
2917 ret = regulator_set_voltage_unlocked(rdev->supply,
2918 best_supply_uV, INT_MAX);
2919 if (ret) {
2920 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2921 ret);
2922 goto out2;
2923 }
2924 }
2925
2926 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2927 if (ret < 0)
2928 goto out2;
2929
2930 if (supply_change_uV < 0) {
2931 ret = regulator_set_voltage_unlocked(rdev->supply,
2932 best_supply_uV, INT_MAX);
2933 if (ret)
2934 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2935 ret);
2936 /* No need to fail here */
2937 ret = 0;
2938 }
2939
2940 out:
2941 return ret;
2942 out2:
2943 regulator->min_uV = old_min_uV;
2944 regulator->max_uV = old_max_uV;
2945
2946 return ret;
2947 }
2948
2949 /**
2950 * regulator_set_voltage - set regulator output voltage
2951 * @regulator: regulator source
2952 * @min_uV: Minimum required voltage in uV
2953 * @max_uV: Maximum acceptable voltage in uV
2954 *
2955 * Sets a voltage regulator to the desired output voltage. This can be set
2956 * during any regulator state. IOW, regulator can be disabled or enabled.
2957 *
2958 * If the regulator is enabled then the voltage will change to the new value
2959 * immediately otherwise if the regulator is disabled the regulator will
2960 * output at the new voltage when enabled.
2961 *
2962 * NOTE: If the regulator is shared between several devices then the lowest
2963 * request voltage that meets the system constraints will be used.
2964 * Regulator system constraints must be set for this regulator before
2965 * calling this function otherwise this call will fail.
2966 */
2967 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2968 {
2969 int ret = 0;
2970
2971 regulator_lock_supply(regulator->rdev);
2972
2973 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2974
2975 regulator_unlock_supply(regulator->rdev);
2976
2977 return ret;
2978 }
2979 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2980
2981 /**
2982 * regulator_set_voltage_time - get raise/fall time
2983 * @regulator: regulator source
2984 * @old_uV: starting voltage in microvolts
2985 * @new_uV: target voltage in microvolts
2986 *
2987 * Provided with the starting and ending voltage, this function attempts to
2988 * calculate the time in microseconds required to rise or fall to this new
2989 * voltage.
2990 */
2991 int regulator_set_voltage_time(struct regulator *regulator,
2992 int old_uV, int new_uV)
2993 {
2994 struct regulator_dev *rdev = regulator->rdev;
2995 const struct regulator_ops *ops = rdev->desc->ops;
2996 int old_sel = -1;
2997 int new_sel = -1;
2998 int voltage;
2999 int i;
3000
3001 /* Currently requires operations to do this */
3002 if (!ops->list_voltage || !ops->set_voltage_time_sel
3003 || !rdev->desc->n_voltages)
3004 return -EINVAL;
3005
3006 for (i = 0; i < rdev->desc->n_voltages; i++) {
3007 /* We only look for exact voltage matches here */
3008 voltage = regulator_list_voltage(regulator, i);
3009 if (voltage < 0)
3010 return -EINVAL;
3011 if (voltage == 0)
3012 continue;
3013 if (voltage == old_uV)
3014 old_sel = i;
3015 if (voltage == new_uV)
3016 new_sel = i;
3017 }
3018
3019 if (old_sel < 0 || new_sel < 0)
3020 return -EINVAL;
3021
3022 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3023 }
3024 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3025
3026 /**
3027 * regulator_set_voltage_time_sel - get raise/fall time
3028 * @rdev: regulator source device
3029 * @old_selector: selector for starting voltage
3030 * @new_selector: selector for target voltage
3031 *
3032 * Provided with the starting and target voltage selectors, this function
3033 * returns time in microseconds required to rise or fall to this new voltage
3034 *
3035 * Drivers providing ramp_delay in regulation_constraints can use this as their
3036 * set_voltage_time_sel() operation.
3037 */
3038 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3039 unsigned int old_selector,
3040 unsigned int new_selector)
3041 {
3042 unsigned int ramp_delay = 0;
3043 int old_volt, new_volt;
3044
3045 if (rdev->constraints->ramp_delay)
3046 ramp_delay = rdev->constraints->ramp_delay;
3047 else if (rdev->desc->ramp_delay)
3048 ramp_delay = rdev->desc->ramp_delay;
3049
3050 if (ramp_delay == 0) {
3051 rdev_warn(rdev, "ramp_delay not set\n");
3052 return 0;
3053 }
3054
3055 /* sanity check */
3056 if (!rdev->desc->ops->list_voltage)
3057 return -EINVAL;
3058
3059 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3060 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3061
3062 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3065
3066 /**
3067 * regulator_sync_voltage - re-apply last regulator output voltage
3068 * @regulator: regulator source
3069 *
3070 * Re-apply the last configured voltage. This is intended to be used
3071 * where some external control source the consumer is cooperating with
3072 * has caused the configured voltage to change.
3073 */
3074 int regulator_sync_voltage(struct regulator *regulator)
3075 {
3076 struct regulator_dev *rdev = regulator->rdev;
3077 int ret, min_uV, max_uV;
3078
3079 mutex_lock(&rdev->mutex);
3080
3081 if (!rdev->desc->ops->set_voltage &&
3082 !rdev->desc->ops->set_voltage_sel) {
3083 ret = -EINVAL;
3084 goto out;
3085 }
3086
3087 /* This is only going to work if we've had a voltage configured. */
3088 if (!regulator->min_uV && !regulator->max_uV) {
3089 ret = -EINVAL;
3090 goto out;
3091 }
3092
3093 min_uV = regulator->min_uV;
3094 max_uV = regulator->max_uV;
3095
3096 /* This should be a paranoia check... */
3097 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3098 if (ret < 0)
3099 goto out;
3100
3101 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3102 if (ret < 0)
3103 goto out;
3104
3105 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3106
3107 out:
3108 mutex_unlock(&rdev->mutex);
3109 return ret;
3110 }
3111 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3112
3113 static int _regulator_get_voltage(struct regulator_dev *rdev)
3114 {
3115 int sel, ret;
3116 bool bypassed;
3117
3118 if (rdev->desc->ops->get_bypass) {
3119 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3120 if (ret < 0)
3121 return ret;
3122 if (bypassed) {
3123 /* if bypassed the regulator must have a supply */
3124 if (!rdev->supply) {
3125 rdev_err(rdev,
3126 "bypassed regulator has no supply!\n");
3127 return -EPROBE_DEFER;
3128 }
3129
3130 return _regulator_get_voltage(rdev->supply->rdev);
3131 }
3132 }
3133
3134 if (rdev->desc->ops->get_voltage_sel) {
3135 sel = rdev->desc->ops->get_voltage_sel(rdev);
3136 if (sel < 0)
3137 return sel;
3138 ret = rdev->desc->ops->list_voltage(rdev, sel);
3139 } else if (rdev->desc->ops->get_voltage) {
3140 ret = rdev->desc->ops->get_voltage(rdev);
3141 } else if (rdev->desc->ops->list_voltage) {
3142 ret = rdev->desc->ops->list_voltage(rdev, 0);
3143 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3144 ret = rdev->desc->fixed_uV;
3145 } else if (rdev->supply) {
3146 ret = _regulator_get_voltage(rdev->supply->rdev);
3147 } else {
3148 return -EINVAL;
3149 }
3150
3151 if (ret < 0)
3152 return ret;
3153 return ret - rdev->constraints->uV_offset;
3154 }
3155
3156 /**
3157 * regulator_get_voltage - get regulator output voltage
3158 * @regulator: regulator source
3159 *
3160 * This returns the current regulator voltage in uV.
3161 *
3162 * NOTE: If the regulator is disabled it will return the voltage value. This
3163 * function should not be used to determine regulator state.
3164 */
3165 int regulator_get_voltage(struct regulator *regulator)
3166 {
3167 int ret;
3168
3169 regulator_lock_supply(regulator->rdev);
3170
3171 ret = _regulator_get_voltage(regulator->rdev);
3172
3173 regulator_unlock_supply(regulator->rdev);
3174
3175 return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3178
3179 /**
3180 * regulator_set_current_limit - set regulator output current limit
3181 * @regulator: regulator source
3182 * @min_uA: Minimum supported current in uA
3183 * @max_uA: Maximum supported current in uA
3184 *
3185 * Sets current sink to the desired output current. This can be set during
3186 * any regulator state. IOW, regulator can be disabled or enabled.
3187 *
3188 * If the regulator is enabled then the current will change to the new value
3189 * immediately otherwise if the regulator is disabled the regulator will
3190 * output at the new current when enabled.
3191 *
3192 * NOTE: Regulator system constraints must be set for this regulator before
3193 * calling this function otherwise this call will fail.
3194 */
3195 int regulator_set_current_limit(struct regulator *regulator,
3196 int min_uA, int max_uA)
3197 {
3198 struct regulator_dev *rdev = regulator->rdev;
3199 int ret;
3200
3201 mutex_lock(&rdev->mutex);
3202
3203 /* sanity check */
3204 if (!rdev->desc->ops->set_current_limit) {
3205 ret = -EINVAL;
3206 goto out;
3207 }
3208
3209 /* constraints check */
3210 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3211 if (ret < 0)
3212 goto out;
3213
3214 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3215 out:
3216 mutex_unlock(&rdev->mutex);
3217 return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3220
3221 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3222 {
3223 int ret;
3224
3225 mutex_lock(&rdev->mutex);
3226
3227 /* sanity check */
3228 if (!rdev->desc->ops->get_current_limit) {
3229 ret = -EINVAL;
3230 goto out;
3231 }
3232
3233 ret = rdev->desc->ops->get_current_limit(rdev);
3234 out:
3235 mutex_unlock(&rdev->mutex);
3236 return ret;
3237 }
3238
3239 /**
3240 * regulator_get_current_limit - get regulator output current
3241 * @regulator: regulator source
3242 *
3243 * This returns the current supplied by the specified current sink in uA.
3244 *
3245 * NOTE: If the regulator is disabled it will return the current value. This
3246 * function should not be used to determine regulator state.
3247 */
3248 int regulator_get_current_limit(struct regulator *regulator)
3249 {
3250 return _regulator_get_current_limit(regulator->rdev);
3251 }
3252 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3253
3254 /**
3255 * regulator_set_mode - set regulator operating mode
3256 * @regulator: regulator source
3257 * @mode: operating mode - one of the REGULATOR_MODE constants
3258 *
3259 * Set regulator operating mode to increase regulator efficiency or improve
3260 * regulation performance.
3261 *
3262 * NOTE: Regulator system constraints must be set for this regulator before
3263 * calling this function otherwise this call will fail.
3264 */
3265 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3266 {
3267 struct regulator_dev *rdev = regulator->rdev;
3268 int ret;
3269 int regulator_curr_mode;
3270
3271 mutex_lock(&rdev->mutex);
3272
3273 /* sanity check */
3274 if (!rdev->desc->ops->set_mode) {
3275 ret = -EINVAL;
3276 goto out;
3277 }
3278
3279 /* return if the same mode is requested */
3280 if (rdev->desc->ops->get_mode) {
3281 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3282 if (regulator_curr_mode == mode) {
3283 ret = 0;
3284 goto out;
3285 }
3286 }
3287
3288 /* constraints check */
3289 ret = regulator_mode_constrain(rdev, &mode);
3290 if (ret < 0)
3291 goto out;
3292
3293 ret = rdev->desc->ops->set_mode(rdev, mode);
3294 out:
3295 mutex_unlock(&rdev->mutex);
3296 return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_set_mode);
3299
3300 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3301 {
3302 int ret;
3303
3304 mutex_lock(&rdev->mutex);
3305
3306 /* sanity check */
3307 if (!rdev->desc->ops->get_mode) {
3308 ret = -EINVAL;
3309 goto out;
3310 }
3311
3312 ret = rdev->desc->ops->get_mode(rdev);
3313 out:
3314 mutex_unlock(&rdev->mutex);
3315 return ret;
3316 }
3317
3318 /**
3319 * regulator_get_mode - get regulator operating mode
3320 * @regulator: regulator source
3321 *
3322 * Get the current regulator operating mode.
3323 */
3324 unsigned int regulator_get_mode(struct regulator *regulator)
3325 {
3326 return _regulator_get_mode(regulator->rdev);
3327 }
3328 EXPORT_SYMBOL_GPL(regulator_get_mode);
3329
3330 /**
3331 * regulator_set_load - set regulator load
3332 * @regulator: regulator source
3333 * @uA_load: load current
3334 *
3335 * Notifies the regulator core of a new device load. This is then used by
3336 * DRMS (if enabled by constraints) to set the most efficient regulator
3337 * operating mode for the new regulator loading.
3338 *
3339 * Consumer devices notify their supply regulator of the maximum power
3340 * they will require (can be taken from device datasheet in the power
3341 * consumption tables) when they change operational status and hence power
3342 * state. Examples of operational state changes that can affect power
3343 * consumption are :-
3344 *
3345 * o Device is opened / closed.
3346 * o Device I/O is about to begin or has just finished.
3347 * o Device is idling in between work.
3348 *
3349 * This information is also exported via sysfs to userspace.
3350 *
3351 * DRMS will sum the total requested load on the regulator and change
3352 * to the most efficient operating mode if platform constraints allow.
3353 *
3354 * On error a negative errno is returned.
3355 */
3356 int regulator_set_load(struct regulator *regulator, int uA_load)
3357 {
3358 struct regulator_dev *rdev = regulator->rdev;
3359 int ret;
3360
3361 mutex_lock(&rdev->mutex);
3362 regulator->uA_load = uA_load;
3363 ret = drms_uA_update(rdev);
3364 mutex_unlock(&rdev->mutex);
3365
3366 return ret;
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_set_load);
3369
3370 /**
3371 * regulator_allow_bypass - allow the regulator to go into bypass mode
3372 *
3373 * @regulator: Regulator to configure
3374 * @enable: enable or disable bypass mode
3375 *
3376 * Allow the regulator to go into bypass mode if all other consumers
3377 * for the regulator also enable bypass mode and the machine
3378 * constraints allow this. Bypass mode means that the regulator is
3379 * simply passing the input directly to the output with no regulation.
3380 */
3381 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3382 {
3383 struct regulator_dev *rdev = regulator->rdev;
3384 int ret = 0;
3385
3386 if (!rdev->desc->ops->set_bypass)
3387 return 0;
3388
3389 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3390 return 0;
3391
3392 mutex_lock(&rdev->mutex);
3393
3394 if (enable && !regulator->bypass) {
3395 rdev->bypass_count++;
3396
3397 if (rdev->bypass_count == rdev->open_count) {
3398 ret = rdev->desc->ops->set_bypass(rdev, enable);
3399 if (ret != 0)
3400 rdev->bypass_count--;
3401 }
3402
3403 } else if (!enable && regulator->bypass) {
3404 rdev->bypass_count--;
3405
3406 if (rdev->bypass_count != rdev->open_count) {
3407 ret = rdev->desc->ops->set_bypass(rdev, enable);
3408 if (ret != 0)
3409 rdev->bypass_count++;
3410 }
3411 }
3412
3413 if (ret == 0)
3414 regulator->bypass = enable;
3415
3416 mutex_unlock(&rdev->mutex);
3417
3418 return ret;
3419 }
3420 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3421
3422 /**
3423 * regulator_register_notifier - register regulator event notifier
3424 * @regulator: regulator source
3425 * @nb: notifier block
3426 *
3427 * Register notifier block to receive regulator events.
3428 */
3429 int regulator_register_notifier(struct regulator *regulator,
3430 struct notifier_block *nb)
3431 {
3432 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3433 nb);
3434 }
3435 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3436
3437 /**
3438 * regulator_unregister_notifier - unregister regulator event notifier
3439 * @regulator: regulator source
3440 * @nb: notifier block
3441 *
3442 * Unregister regulator event notifier block.
3443 */
3444 int regulator_unregister_notifier(struct regulator *regulator,
3445 struct notifier_block *nb)
3446 {
3447 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3448 nb);
3449 }
3450 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3451
3452 /* notify regulator consumers and downstream regulator consumers.
3453 * Note mutex must be held by caller.
3454 */
3455 static int _notifier_call_chain(struct regulator_dev *rdev,
3456 unsigned long event, void *data)
3457 {
3458 /* call rdev chain first */
3459 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3460 }
3461
3462 /**
3463 * regulator_bulk_get - get multiple regulator consumers
3464 *
3465 * @dev: Device to supply
3466 * @num_consumers: Number of consumers to register
3467 * @consumers: Configuration of consumers; clients are stored here.
3468 *
3469 * @return 0 on success, an errno on failure.
3470 *
3471 * This helper function allows drivers to get several regulator
3472 * consumers in one operation. If any of the regulators cannot be
3473 * acquired then any regulators that were allocated will be freed
3474 * before returning to the caller.
3475 */
3476 int regulator_bulk_get(struct device *dev, int num_consumers,
3477 struct regulator_bulk_data *consumers)
3478 {
3479 int i;
3480 int ret;
3481
3482 for (i = 0; i < num_consumers; i++)
3483 consumers[i].consumer = NULL;
3484
3485 for (i = 0; i < num_consumers; i++) {
3486 consumers[i].consumer = regulator_get(dev,
3487 consumers[i].supply);
3488 if (IS_ERR(consumers[i].consumer)) {
3489 ret = PTR_ERR(consumers[i].consumer);
3490 dev_err(dev, "Failed to get supply '%s': %d\n",
3491 consumers[i].supply, ret);
3492 consumers[i].consumer = NULL;
3493 goto err;
3494 }
3495 }
3496
3497 return 0;
3498
3499 err:
3500 while (--i >= 0)
3501 regulator_put(consumers[i].consumer);
3502
3503 return ret;
3504 }
3505 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3506
3507 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3508 {
3509 struct regulator_bulk_data *bulk = data;
3510
3511 bulk->ret = regulator_enable(bulk->consumer);
3512 }
3513
3514 /**
3515 * regulator_bulk_enable - enable multiple regulator consumers
3516 *
3517 * @num_consumers: Number of consumers
3518 * @consumers: Consumer data; clients are stored here.
3519 * @return 0 on success, an errno on failure
3520 *
3521 * This convenience API allows consumers to enable multiple regulator
3522 * clients in a single API call. If any consumers cannot be enabled
3523 * then any others that were enabled will be disabled again prior to
3524 * return.
3525 */
3526 int regulator_bulk_enable(int num_consumers,
3527 struct regulator_bulk_data *consumers)
3528 {
3529 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3530 int i;
3531 int ret = 0;
3532
3533 for (i = 0; i < num_consumers; i++) {
3534 if (consumers[i].consumer->always_on)
3535 consumers[i].ret = 0;
3536 else
3537 async_schedule_domain(regulator_bulk_enable_async,
3538 &consumers[i], &async_domain);
3539 }
3540
3541 async_synchronize_full_domain(&async_domain);
3542
3543 /* If any consumer failed we need to unwind any that succeeded */
3544 for (i = 0; i < num_consumers; i++) {
3545 if (consumers[i].ret != 0) {
3546 ret = consumers[i].ret;
3547 goto err;
3548 }
3549 }
3550
3551 return 0;
3552
3553 err:
3554 for (i = 0; i < num_consumers; i++) {
3555 if (consumers[i].ret < 0)
3556 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3557 consumers[i].ret);
3558 else
3559 regulator_disable(consumers[i].consumer);
3560 }
3561
3562 return ret;
3563 }
3564 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3565
3566 /**
3567 * regulator_bulk_disable - disable multiple regulator consumers
3568 *
3569 * @num_consumers: Number of consumers
3570 * @consumers: Consumer data; clients are stored here.
3571 * @return 0 on success, an errno on failure
3572 *
3573 * This convenience API allows consumers to disable multiple regulator
3574 * clients in a single API call. If any consumers cannot be disabled
3575 * then any others that were disabled will be enabled again prior to
3576 * return.
3577 */
3578 int regulator_bulk_disable(int num_consumers,
3579 struct regulator_bulk_data *consumers)
3580 {
3581 int i;
3582 int ret, r;
3583
3584 for (i = num_consumers - 1; i >= 0; --i) {
3585 ret = regulator_disable(consumers[i].consumer);
3586 if (ret != 0)
3587 goto err;
3588 }
3589
3590 return 0;
3591
3592 err:
3593 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3594 for (++i; i < num_consumers; ++i) {
3595 r = regulator_enable(consumers[i].consumer);
3596 if (r != 0)
3597 pr_err("Failed to reename %s: %d\n",
3598 consumers[i].supply, r);
3599 }
3600
3601 return ret;
3602 }
3603 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3604
3605 /**
3606 * regulator_bulk_force_disable - force disable multiple regulator consumers
3607 *
3608 * @num_consumers: Number of consumers
3609 * @consumers: Consumer data; clients are stored here.
3610 * @return 0 on success, an errno on failure
3611 *
3612 * This convenience API allows consumers to forcibly disable multiple regulator
3613 * clients in a single API call.
3614 * NOTE: This should be used for situations when device damage will
3615 * likely occur if the regulators are not disabled (e.g. over temp).
3616 * Although regulator_force_disable function call for some consumers can
3617 * return error numbers, the function is called for all consumers.
3618 */
3619 int regulator_bulk_force_disable(int num_consumers,
3620 struct regulator_bulk_data *consumers)
3621 {
3622 int i;
3623 int ret;
3624
3625 for (i = 0; i < num_consumers; i++)
3626 consumers[i].ret =
3627 regulator_force_disable(consumers[i].consumer);
3628
3629 for (i = 0; i < num_consumers; i++) {
3630 if (consumers[i].ret != 0) {
3631 ret = consumers[i].ret;
3632 goto out;
3633 }
3634 }
3635
3636 return 0;
3637 out:
3638 return ret;
3639 }
3640 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3641
3642 /**
3643 * regulator_bulk_free - free multiple regulator consumers
3644 *
3645 * @num_consumers: Number of consumers
3646 * @consumers: Consumer data; clients are stored here.
3647 *
3648 * This convenience API allows consumers to free multiple regulator
3649 * clients in a single API call.
3650 */
3651 void regulator_bulk_free(int num_consumers,
3652 struct regulator_bulk_data *consumers)
3653 {
3654 int i;
3655
3656 for (i = 0; i < num_consumers; i++) {
3657 regulator_put(consumers[i].consumer);
3658 consumers[i].consumer = NULL;
3659 }
3660 }
3661 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3662
3663 /**
3664 * regulator_notifier_call_chain - call regulator event notifier
3665 * @rdev: regulator source
3666 * @event: notifier block
3667 * @data: callback-specific data.
3668 *
3669 * Called by regulator drivers to notify clients a regulator event has
3670 * occurred. We also notify regulator clients downstream.
3671 * Note lock must be held by caller.
3672 */
3673 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3674 unsigned long event, void *data)
3675 {
3676 lockdep_assert_held_once(&rdev->mutex);
3677
3678 _notifier_call_chain(rdev, event, data);
3679 return NOTIFY_DONE;
3680
3681 }
3682 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3683
3684 /**
3685 * regulator_mode_to_status - convert a regulator mode into a status
3686 *
3687 * @mode: Mode to convert
3688 *
3689 * Convert a regulator mode into a status.
3690 */
3691 int regulator_mode_to_status(unsigned int mode)
3692 {
3693 switch (mode) {
3694 case REGULATOR_MODE_FAST:
3695 return REGULATOR_STATUS_FAST;
3696 case REGULATOR_MODE_NORMAL:
3697 return REGULATOR_STATUS_NORMAL;
3698 case REGULATOR_MODE_IDLE:
3699 return REGULATOR_STATUS_IDLE;
3700 case REGULATOR_MODE_STANDBY:
3701 return REGULATOR_STATUS_STANDBY;
3702 default:
3703 return REGULATOR_STATUS_UNDEFINED;
3704 }
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3707
3708 static struct attribute *regulator_dev_attrs[] = {
3709 &dev_attr_name.attr,
3710 &dev_attr_num_users.attr,
3711 &dev_attr_type.attr,
3712 &dev_attr_microvolts.attr,
3713 &dev_attr_microamps.attr,
3714 &dev_attr_opmode.attr,
3715 &dev_attr_state.attr,
3716 &dev_attr_status.attr,
3717 &dev_attr_bypass.attr,
3718 &dev_attr_requested_microamps.attr,
3719 &dev_attr_min_microvolts.attr,
3720 &dev_attr_max_microvolts.attr,
3721 &dev_attr_min_microamps.attr,
3722 &dev_attr_max_microamps.attr,
3723 &dev_attr_suspend_standby_state.attr,
3724 &dev_attr_suspend_mem_state.attr,
3725 &dev_attr_suspend_disk_state.attr,
3726 &dev_attr_suspend_standby_microvolts.attr,
3727 &dev_attr_suspend_mem_microvolts.attr,
3728 &dev_attr_suspend_disk_microvolts.attr,
3729 &dev_attr_suspend_standby_mode.attr,
3730 &dev_attr_suspend_mem_mode.attr,
3731 &dev_attr_suspend_disk_mode.attr,
3732 NULL
3733 };
3734
3735 /*
3736 * To avoid cluttering sysfs (and memory) with useless state, only
3737 * create attributes that can be meaningfully displayed.
3738 */
3739 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3740 struct attribute *attr, int idx)
3741 {
3742 struct device *dev = kobj_to_dev(kobj);
3743 struct regulator_dev *rdev = dev_to_rdev(dev);
3744 const struct regulator_ops *ops = rdev->desc->ops;
3745 umode_t mode = attr->mode;
3746
3747 /* these three are always present */
3748 if (attr == &dev_attr_name.attr ||
3749 attr == &dev_attr_num_users.attr ||
3750 attr == &dev_attr_type.attr)
3751 return mode;
3752
3753 /* some attributes need specific methods to be displayed */
3754 if (attr == &dev_attr_microvolts.attr) {
3755 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3756 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3757 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3758 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3759 return mode;
3760 return 0;
3761 }
3762
3763 if (attr == &dev_attr_microamps.attr)
3764 return ops->get_current_limit ? mode : 0;
3765
3766 if (attr == &dev_attr_opmode.attr)
3767 return ops->get_mode ? mode : 0;
3768
3769 if (attr == &dev_attr_state.attr)
3770 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3771
3772 if (attr == &dev_attr_status.attr)
3773 return ops->get_status ? mode : 0;
3774
3775 if (attr == &dev_attr_bypass.attr)
3776 return ops->get_bypass ? mode : 0;
3777
3778 /* some attributes are type-specific */
3779 if (attr == &dev_attr_requested_microamps.attr)
3780 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3781
3782 /* constraints need specific supporting methods */
3783 if (attr == &dev_attr_min_microvolts.attr ||
3784 attr == &dev_attr_max_microvolts.attr)
3785 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3786
3787 if (attr == &dev_attr_min_microamps.attr ||
3788 attr == &dev_attr_max_microamps.attr)
3789 return ops->set_current_limit ? mode : 0;
3790
3791 if (attr == &dev_attr_suspend_standby_state.attr ||
3792 attr == &dev_attr_suspend_mem_state.attr ||
3793 attr == &dev_attr_suspend_disk_state.attr)
3794 return mode;
3795
3796 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3797 attr == &dev_attr_suspend_mem_microvolts.attr ||
3798 attr == &dev_attr_suspend_disk_microvolts.attr)
3799 return ops->set_suspend_voltage ? mode : 0;
3800
3801 if (attr == &dev_attr_suspend_standby_mode.attr ||
3802 attr == &dev_attr_suspend_mem_mode.attr ||
3803 attr == &dev_attr_suspend_disk_mode.attr)
3804 return ops->set_suspend_mode ? mode : 0;
3805
3806 return mode;
3807 }
3808
3809 static const struct attribute_group regulator_dev_group = {
3810 .attrs = regulator_dev_attrs,
3811 .is_visible = regulator_attr_is_visible,
3812 };
3813
3814 static const struct attribute_group *regulator_dev_groups[] = {
3815 &regulator_dev_group,
3816 NULL
3817 };
3818
3819 static void regulator_dev_release(struct device *dev)
3820 {
3821 struct regulator_dev *rdev = dev_get_drvdata(dev);
3822
3823 kfree(rdev->constraints);
3824 of_node_put(rdev->dev.of_node);
3825 kfree(rdev);
3826 }
3827
3828 static struct class regulator_class = {
3829 .name = "regulator",
3830 .dev_release = regulator_dev_release,
3831 .dev_groups = regulator_dev_groups,
3832 };
3833
3834 static void rdev_init_debugfs(struct regulator_dev *rdev)
3835 {
3836 struct device *parent = rdev->dev.parent;
3837 const char *rname = rdev_get_name(rdev);
3838 char name[NAME_MAX];
3839
3840 /* Avoid duplicate debugfs directory names */
3841 if (parent && rname == rdev->desc->name) {
3842 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3843 rname);
3844 rname = name;
3845 }
3846
3847 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3848 if (!rdev->debugfs) {
3849 rdev_warn(rdev, "Failed to create debugfs directory\n");
3850 return;
3851 }
3852
3853 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3854 &rdev->use_count);
3855 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3856 &rdev->open_count);
3857 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3858 &rdev->bypass_count);
3859 }
3860
3861 static int regulator_register_resolve_supply(struct device *dev, void *data)
3862 {
3863 struct regulator_dev *rdev = dev_to_rdev(dev);
3864
3865 if (regulator_resolve_supply(rdev))
3866 rdev_dbg(rdev, "unable to resolve supply\n");
3867
3868 return 0;
3869 }
3870
3871 /**
3872 * regulator_register - register regulator
3873 * @regulator_desc: regulator to register
3874 * @cfg: runtime configuration for regulator
3875 *
3876 * Called by regulator drivers to register a regulator.
3877 * Returns a valid pointer to struct regulator_dev on success
3878 * or an ERR_PTR() on error.
3879 */
3880 struct regulator_dev *
3881 regulator_register(const struct regulator_desc *regulator_desc,
3882 const struct regulator_config *cfg)
3883 {
3884 const struct regulation_constraints *constraints = NULL;
3885 const struct regulator_init_data *init_data;
3886 struct regulator_config *config = NULL;
3887 static atomic_t regulator_no = ATOMIC_INIT(-1);
3888 struct regulator_dev *rdev;
3889 struct device *dev;
3890 int ret, i;
3891
3892 if (regulator_desc == NULL || cfg == NULL)
3893 return ERR_PTR(-EINVAL);
3894
3895 dev = cfg->dev;
3896 WARN_ON(!dev);
3897
3898 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3899 return ERR_PTR(-EINVAL);
3900
3901 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3902 regulator_desc->type != REGULATOR_CURRENT)
3903 return ERR_PTR(-EINVAL);
3904
3905 /* Only one of each should be implemented */
3906 WARN_ON(regulator_desc->ops->get_voltage &&
3907 regulator_desc->ops->get_voltage_sel);
3908 WARN_ON(regulator_desc->ops->set_voltage &&
3909 regulator_desc->ops->set_voltage_sel);
3910
3911 /* If we're using selectors we must implement list_voltage. */
3912 if (regulator_desc->ops->get_voltage_sel &&
3913 !regulator_desc->ops->list_voltage) {
3914 return ERR_PTR(-EINVAL);
3915 }
3916 if (regulator_desc->ops->set_voltage_sel &&
3917 !regulator_desc->ops->list_voltage) {
3918 return ERR_PTR(-EINVAL);
3919 }
3920
3921 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3922 if (rdev == NULL)
3923 return ERR_PTR(-ENOMEM);
3924
3925 /*
3926 * Duplicate the config so the driver could override it after
3927 * parsing init data.
3928 */
3929 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3930 if (config == NULL) {
3931 kfree(rdev);
3932 return ERR_PTR(-ENOMEM);
3933 }
3934
3935 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3936 &rdev->dev.of_node);
3937 if (!init_data) {
3938 init_data = config->init_data;
3939 rdev->dev.of_node = of_node_get(config->of_node);
3940 }
3941
3942 mutex_init(&rdev->mutex);
3943 rdev->reg_data = config->driver_data;
3944 rdev->owner = regulator_desc->owner;
3945 rdev->desc = regulator_desc;
3946 if (config->regmap)
3947 rdev->regmap = config->regmap;
3948 else if (dev_get_regmap(dev, NULL))
3949 rdev->regmap = dev_get_regmap(dev, NULL);
3950 else if (dev->parent)
3951 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3952 INIT_LIST_HEAD(&rdev->consumer_list);
3953 INIT_LIST_HEAD(&rdev->list);
3954 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3955 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3956
3957 /* preform any regulator specific init */
3958 if (init_data && init_data->regulator_init) {
3959 ret = init_data->regulator_init(rdev->reg_data);
3960 if (ret < 0)
3961 goto clean;
3962 }
3963
3964 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3965 gpio_is_valid(config->ena_gpio)) {
3966 mutex_lock(&regulator_list_mutex);
3967 ret = regulator_ena_gpio_request(rdev, config);
3968 mutex_unlock(&regulator_list_mutex);
3969 if (ret != 0) {
3970 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3971 config->ena_gpio, ret);
3972 goto clean;
3973 }
3974 }
3975
3976 /* register with sysfs */
3977 rdev->dev.class = &regulator_class;
3978 rdev->dev.parent = dev;
3979 dev_set_name(&rdev->dev, "regulator.%lu",
3980 (unsigned long) atomic_inc_return(&regulator_no));
3981
3982 /* set regulator constraints */
3983 if (init_data)
3984 constraints = &init_data->constraints;
3985
3986 if (init_data && init_data->supply_regulator)
3987 rdev->supply_name = init_data->supply_regulator;
3988 else if (regulator_desc->supply_name)
3989 rdev->supply_name = regulator_desc->supply_name;
3990
3991 /*
3992 * Attempt to resolve the regulator supply, if specified,
3993 * but don't return an error if we fail because we will try
3994 * to resolve it again later as more regulators are added.
3995 */
3996 if (regulator_resolve_supply(rdev))
3997 rdev_dbg(rdev, "unable to resolve supply\n");
3998
3999 ret = set_machine_constraints(rdev, constraints);
4000 if (ret < 0)
4001 goto wash;
4002
4003 /* add consumers devices */
4004 if (init_data) {
4005 mutex_lock(&regulator_list_mutex);
4006 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4007 ret = set_consumer_device_supply(rdev,
4008 init_data->consumer_supplies[i].dev_name,
4009 init_data->consumer_supplies[i].supply);
4010 if (ret < 0) {
4011 mutex_unlock(&regulator_list_mutex);
4012 dev_err(dev, "Failed to set supply %s\n",
4013 init_data->consumer_supplies[i].supply);
4014 goto unset_supplies;
4015 }
4016 }
4017 mutex_unlock(&regulator_list_mutex);
4018 }
4019
4020 ret = device_register(&rdev->dev);
4021 if (ret != 0) {
4022 put_device(&rdev->dev);
4023 goto unset_supplies;
4024 }
4025
4026 dev_set_drvdata(&rdev->dev, rdev);
4027 rdev_init_debugfs(rdev);
4028
4029 /* try to resolve regulators supply since a new one was registered */
4030 class_for_each_device(&regulator_class, NULL, NULL,
4031 regulator_register_resolve_supply);
4032 kfree(config);
4033 return rdev;
4034
4035 unset_supplies:
4036 mutex_lock(&regulator_list_mutex);
4037 unset_regulator_supplies(rdev);
4038 mutex_unlock(&regulator_list_mutex);
4039 wash:
4040 kfree(rdev->constraints);
4041 mutex_lock(&regulator_list_mutex);
4042 regulator_ena_gpio_free(rdev);
4043 mutex_unlock(&regulator_list_mutex);
4044 clean:
4045 kfree(rdev);
4046 kfree(config);
4047 return ERR_PTR(ret);
4048 }
4049 EXPORT_SYMBOL_GPL(regulator_register);
4050
4051 /**
4052 * regulator_unregister - unregister regulator
4053 * @rdev: regulator to unregister
4054 *
4055 * Called by regulator drivers to unregister a regulator.
4056 */
4057 void regulator_unregister(struct regulator_dev *rdev)
4058 {
4059 if (rdev == NULL)
4060 return;
4061
4062 if (rdev->supply) {
4063 while (rdev->use_count--)
4064 regulator_disable(rdev->supply);
4065 regulator_put(rdev->supply);
4066 }
4067 mutex_lock(&regulator_list_mutex);
4068 debugfs_remove_recursive(rdev->debugfs);
4069 flush_work(&rdev->disable_work.work);
4070 WARN_ON(rdev->open_count);
4071 unset_regulator_supplies(rdev);
4072 list_del(&rdev->list);
4073 regulator_ena_gpio_free(rdev);
4074 mutex_unlock(&regulator_list_mutex);
4075 device_unregister(&rdev->dev);
4076 }
4077 EXPORT_SYMBOL_GPL(regulator_unregister);
4078
4079 static int _regulator_suspend_prepare(struct device *dev, void *data)
4080 {
4081 struct regulator_dev *rdev = dev_to_rdev(dev);
4082 const suspend_state_t *state = data;
4083 int ret;
4084
4085 mutex_lock(&rdev->mutex);
4086 ret = suspend_prepare(rdev, *state);
4087 mutex_unlock(&rdev->mutex);
4088
4089 return ret;
4090 }
4091
4092 /**
4093 * regulator_suspend_prepare - prepare regulators for system wide suspend
4094 * @state: system suspend state
4095 *
4096 * Configure each regulator with it's suspend operating parameters for state.
4097 * This will usually be called by machine suspend code prior to supending.
4098 */
4099 int regulator_suspend_prepare(suspend_state_t state)
4100 {
4101 /* ON is handled by regulator active state */
4102 if (state == PM_SUSPEND_ON)
4103 return -EINVAL;
4104
4105 return class_for_each_device(&regulator_class, NULL, &state,
4106 _regulator_suspend_prepare);
4107 }
4108 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4109
4110 static int _regulator_suspend_finish(struct device *dev, void *data)
4111 {
4112 struct regulator_dev *rdev = dev_to_rdev(dev);
4113 int ret;
4114
4115 mutex_lock(&rdev->mutex);
4116 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4117 if (!_regulator_is_enabled(rdev)) {
4118 ret = _regulator_do_enable(rdev);
4119 if (ret)
4120 dev_err(dev,
4121 "Failed to resume regulator %d\n",
4122 ret);
4123 }
4124 } else {
4125 if (!have_full_constraints())
4126 goto unlock;
4127 if (!_regulator_is_enabled(rdev))
4128 goto unlock;
4129
4130 ret = _regulator_do_disable(rdev);
4131 if (ret)
4132 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4133 }
4134 unlock:
4135 mutex_unlock(&rdev->mutex);
4136
4137 /* Keep processing regulators in spite of any errors */
4138 return 0;
4139 }
4140
4141 /**
4142 * regulator_suspend_finish - resume regulators from system wide suspend
4143 *
4144 * Turn on regulators that might be turned off by regulator_suspend_prepare
4145 * and that should be turned on according to the regulators properties.
4146 */
4147 int regulator_suspend_finish(void)
4148 {
4149 return class_for_each_device(&regulator_class, NULL, NULL,
4150 _regulator_suspend_finish);
4151 }
4152 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4153
4154 /**
4155 * regulator_has_full_constraints - the system has fully specified constraints
4156 *
4157 * Calling this function will cause the regulator API to disable all
4158 * regulators which have a zero use count and don't have an always_on
4159 * constraint in a late_initcall.
4160 *
4161 * The intention is that this will become the default behaviour in a
4162 * future kernel release so users are encouraged to use this facility
4163 * now.
4164 */
4165 void regulator_has_full_constraints(void)
4166 {
4167 has_full_constraints = 1;
4168 }
4169 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4170
4171 /**
4172 * rdev_get_drvdata - get rdev regulator driver data
4173 * @rdev: regulator
4174 *
4175 * Get rdev regulator driver private data. This call can be used in the
4176 * regulator driver context.
4177 */
4178 void *rdev_get_drvdata(struct regulator_dev *rdev)
4179 {
4180 return rdev->reg_data;
4181 }
4182 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4183
4184 /**
4185 * regulator_get_drvdata - get regulator driver data
4186 * @regulator: regulator
4187 *
4188 * Get regulator driver private data. This call can be used in the consumer
4189 * driver context when non API regulator specific functions need to be called.
4190 */
4191 void *regulator_get_drvdata(struct regulator *regulator)
4192 {
4193 return regulator->rdev->reg_data;
4194 }
4195 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4196
4197 /**
4198 * regulator_set_drvdata - set regulator driver data
4199 * @regulator: regulator
4200 * @data: data
4201 */
4202 void regulator_set_drvdata(struct regulator *regulator, void *data)
4203 {
4204 regulator->rdev->reg_data = data;
4205 }
4206 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4207
4208 /**
4209 * regulator_get_id - get regulator ID
4210 * @rdev: regulator
4211 */
4212 int rdev_get_id(struct regulator_dev *rdev)
4213 {
4214 return rdev->desc->id;
4215 }
4216 EXPORT_SYMBOL_GPL(rdev_get_id);
4217
4218 struct device *rdev_get_dev(struct regulator_dev *rdev)
4219 {
4220 return &rdev->dev;
4221 }
4222 EXPORT_SYMBOL_GPL(rdev_get_dev);
4223
4224 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4225 {
4226 return reg_init_data->driver_data;
4227 }
4228 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4229
4230 #ifdef CONFIG_DEBUG_FS
4231 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4232 size_t count, loff_t *ppos)
4233 {
4234 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4235 ssize_t len, ret = 0;
4236 struct regulator_map *map;
4237
4238 if (!buf)
4239 return -ENOMEM;
4240
4241 list_for_each_entry(map, &regulator_map_list, list) {
4242 len = snprintf(buf + ret, PAGE_SIZE - ret,
4243 "%s -> %s.%s\n",
4244 rdev_get_name(map->regulator), map->dev_name,
4245 map->supply);
4246 if (len >= 0)
4247 ret += len;
4248 if (ret > PAGE_SIZE) {
4249 ret = PAGE_SIZE;
4250 break;
4251 }
4252 }
4253
4254 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4255
4256 kfree(buf);
4257
4258 return ret;
4259 }
4260 #endif
4261
4262 static const struct file_operations supply_map_fops = {
4263 #ifdef CONFIG_DEBUG_FS
4264 .read = supply_map_read_file,
4265 .llseek = default_llseek,
4266 #endif
4267 };
4268
4269 #ifdef CONFIG_DEBUG_FS
4270 struct summary_data {
4271 struct seq_file *s;
4272 struct regulator_dev *parent;
4273 int level;
4274 };
4275
4276 static void regulator_summary_show_subtree(struct seq_file *s,
4277 struct regulator_dev *rdev,
4278 int level);
4279
4280 static int regulator_summary_show_children(struct device *dev, void *data)
4281 {
4282 struct regulator_dev *rdev = dev_to_rdev(dev);
4283 struct summary_data *summary_data = data;
4284
4285 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4286 regulator_summary_show_subtree(summary_data->s, rdev,
4287 summary_data->level + 1);
4288
4289 return 0;
4290 }
4291
4292 static void regulator_summary_show_subtree(struct seq_file *s,
4293 struct regulator_dev *rdev,
4294 int level)
4295 {
4296 struct regulation_constraints *c;
4297 struct regulator *consumer;
4298 struct summary_data summary_data;
4299
4300 if (!rdev)
4301 return;
4302
4303 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4304 level * 3 + 1, "",
4305 30 - level * 3, rdev_get_name(rdev),
4306 rdev->use_count, rdev->open_count, rdev->bypass_count);
4307
4308 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4309 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4310
4311 c = rdev->constraints;
4312 if (c) {
4313 switch (rdev->desc->type) {
4314 case REGULATOR_VOLTAGE:
4315 seq_printf(s, "%5dmV %5dmV ",
4316 c->min_uV / 1000, c->max_uV / 1000);
4317 break;
4318 case REGULATOR_CURRENT:
4319 seq_printf(s, "%5dmA %5dmA ",
4320 c->min_uA / 1000, c->max_uA / 1000);
4321 break;
4322 }
4323 }
4324
4325 seq_puts(s, "\n");
4326
4327 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4328 if (consumer->dev->class == &regulator_class)
4329 continue;
4330
4331 seq_printf(s, "%*s%-*s ",
4332 (level + 1) * 3 + 1, "",
4333 30 - (level + 1) * 3, dev_name(consumer->dev));
4334
4335 switch (rdev->desc->type) {
4336 case REGULATOR_VOLTAGE:
4337 seq_printf(s, "%37dmV %5dmV",
4338 consumer->min_uV / 1000,
4339 consumer->max_uV / 1000);
4340 break;
4341 case REGULATOR_CURRENT:
4342 break;
4343 }
4344
4345 seq_puts(s, "\n");
4346 }
4347
4348 summary_data.s = s;
4349 summary_data.level = level;
4350 summary_data.parent = rdev;
4351
4352 class_for_each_device(&regulator_class, NULL, &summary_data,
4353 regulator_summary_show_children);
4354 }
4355
4356 static int regulator_summary_show_roots(struct device *dev, void *data)
4357 {
4358 struct regulator_dev *rdev = dev_to_rdev(dev);
4359 struct seq_file *s = data;
4360
4361 if (!rdev->supply)
4362 regulator_summary_show_subtree(s, rdev, 0);
4363
4364 return 0;
4365 }
4366
4367 static int regulator_summary_show(struct seq_file *s, void *data)
4368 {
4369 seq_puts(s, " regulator use open bypass voltage current min max\n");
4370 seq_puts(s, "-------------------------------------------------------------------------------\n");
4371
4372 class_for_each_device(&regulator_class, NULL, s,
4373 regulator_summary_show_roots);
4374
4375 return 0;
4376 }
4377
4378 static int regulator_summary_open(struct inode *inode, struct file *file)
4379 {
4380 return single_open(file, regulator_summary_show, inode->i_private);
4381 }
4382 #endif
4383
4384 static const struct file_operations regulator_summary_fops = {
4385 #ifdef CONFIG_DEBUG_FS
4386 .open = regulator_summary_open,
4387 .read = seq_read,
4388 .llseek = seq_lseek,
4389 .release = single_release,
4390 #endif
4391 };
4392
4393 static int __init regulator_init(void)
4394 {
4395 int ret;
4396
4397 ret = class_register(&regulator_class);
4398
4399 debugfs_root = debugfs_create_dir("regulator", NULL);
4400 if (!debugfs_root)
4401 pr_warn("regulator: Failed to create debugfs directory\n");
4402
4403 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4404 &supply_map_fops);
4405
4406 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4407 NULL, &regulator_summary_fops);
4408
4409 regulator_dummy_init();
4410
4411 return ret;
4412 }
4413
4414 /* init early to allow our consumers to complete system booting */
4415 core_initcall(regulator_init);
4416
4417 static int __init regulator_late_cleanup(struct device *dev, void *data)
4418 {
4419 struct regulator_dev *rdev = dev_to_rdev(dev);
4420 const struct regulator_ops *ops = rdev->desc->ops;
4421 struct regulation_constraints *c = rdev->constraints;
4422 int enabled, ret;
4423
4424 if (c && c->always_on)
4425 return 0;
4426
4427 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4428 return 0;
4429
4430 mutex_lock(&rdev->mutex);
4431
4432 if (rdev->use_count)
4433 goto unlock;
4434
4435 /* If we can't read the status assume it's on. */
4436 if (ops->is_enabled)
4437 enabled = ops->is_enabled(rdev);
4438 else
4439 enabled = 1;
4440
4441 if (!enabled)
4442 goto unlock;
4443
4444 if (have_full_constraints()) {
4445 /* We log since this may kill the system if it goes
4446 * wrong. */
4447 rdev_info(rdev, "disabling\n");
4448 ret = _regulator_do_disable(rdev);
4449 if (ret != 0)
4450 rdev_err(rdev, "couldn't disable: %d\n", ret);
4451 } else {
4452 /* The intention is that in future we will
4453 * assume that full constraints are provided
4454 * so warn even if we aren't going to do
4455 * anything here.
4456 */
4457 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4458 }
4459
4460 unlock:
4461 mutex_unlock(&rdev->mutex);
4462
4463 return 0;
4464 }
4465
4466 static int __init regulator_init_complete(void)
4467 {
4468 /*
4469 * Since DT doesn't provide an idiomatic mechanism for
4470 * enabling full constraints and since it's much more natural
4471 * with DT to provide them just assume that a DT enabled
4472 * system has full constraints.
4473 */
4474 if (of_have_populated_dt())
4475 has_full_constraints = true;
4476
4477 /* If we have a full configuration then disable any regulators
4478 * we have permission to change the status for and which are
4479 * not in use or always_on. This is effectively the default
4480 * for DT and ACPI as they have full constraints.
4481 */
4482 class_for_each_device(&regulator_class, NULL, NULL,
4483 regulator_late_cleanup);
4484
4485 return 0;
4486 }
4487 late_initcall_sync(regulator_init_complete);
This page took 0.158547 seconds and 5 git commands to generate.