regulator: refactor valid_ops_mask checking code
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
139 return false;
140 }
141
142 if (rdev->constraints->valid_ops_mask & ops)
143 return true;
144
145 return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
152
153 return NULL;
154 }
155
156 /**
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
159 */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 int i;
163
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
171 */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 struct regulator *supply;
175
176 while (1) {
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
179
180 if (!rdev->supply)
181 return;
182
183 rdev = supply->rdev;
184 }
185 }
186
187 /**
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
191 *
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
194 * returns NULL.
195 */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
200
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206 if (!regnode) {
207 dev_dbg(dev, "Looking up %s property in node %s failed",
208 prop_name, dev->of_node->full_name);
209 return NULL;
210 }
211 return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
217 {
218 BUG_ON(*min_uV > *max_uV);
219
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
222 return -EPERM;
223 }
224
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
229
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 *min_uV, *max_uV);
233 return -EINVAL;
234 }
235
236 return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
241 */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
244 {
245 struct regulator *regulator;
246
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 /*
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
251 */
252 if (!regulator->min_uV && !regulator->max_uV)
253 continue;
254
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
259 }
260
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 *min_uV, *max_uV);
264 return -EINVAL;
265 }
266
267 return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
273 {
274 BUG_ON(*min_uA > *max_uA);
275
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
278 return -EPERM;
279 }
280
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
285
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 *min_uA, *max_uA);
289 return -EINVAL;
290 }
291
292 return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298 switch (*mode) {
299 case REGULATOR_MODE_FAST:
300 case REGULATOR_MODE_NORMAL:
301 case REGULATOR_MODE_IDLE:
302 case REGULATOR_MODE_STANDBY:
303 break;
304 default:
305 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 return -EINVAL;
307 }
308
309 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310 rdev_err(rdev, "mode operation not allowed\n");
311 return -EPERM;
312 }
313
314 /* The modes are bitmasks, the most power hungry modes having
315 * the lowest values. If the requested mode isn't supported
316 * try higher modes. */
317 while (*mode) {
318 if (rdev->constraints->valid_modes_mask & *mode)
319 return 0;
320 *mode /= 2;
321 }
322
323 return -EINVAL;
324 }
325
326 static ssize_t regulator_uV_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330 ssize_t ret;
331
332 mutex_lock(&rdev->mutex);
333 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334 mutex_unlock(&rdev->mutex);
335
336 return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339
340 static ssize_t regulator_uA_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
342 {
343 struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350 char *buf)
351 {
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354 return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360 switch (mode) {
361 case REGULATOR_MODE_FAST:
362 return sprintf(buf, "fast\n");
363 case REGULATOR_MODE_NORMAL:
364 return sprintf(buf, "normal\n");
365 case REGULATOR_MODE_IDLE:
366 return sprintf(buf, "idle\n");
367 case REGULATOR_MODE_STANDBY:
368 return sprintf(buf, "standby\n");
369 }
370 return sprintf(buf, "unknown\n");
371 }
372
373 static ssize_t regulator_opmode_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
375 {
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384 if (state > 0)
385 return sprintf(buf, "enabled\n");
386 else if (state == 0)
387 return sprintf(buf, "disabled\n");
388 else
389 return sprintf(buf, "unknown\n");
390 }
391
392 static ssize_t regulator_state_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
394 {
395 struct regulator_dev *rdev = dev_get_drvdata(dev);
396 ssize_t ret;
397
398 mutex_lock(&rdev->mutex);
399 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400 mutex_unlock(&rdev->mutex);
401
402 return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405
406 static ssize_t regulator_status_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
408 {
409 struct regulator_dev *rdev = dev_get_drvdata(dev);
410 int status;
411 char *label;
412
413 status = rdev->desc->ops->get_status(rdev);
414 if (status < 0)
415 return status;
416
417 switch (status) {
418 case REGULATOR_STATUS_OFF:
419 label = "off";
420 break;
421 case REGULATOR_STATUS_ON:
422 label = "on";
423 break;
424 case REGULATOR_STATUS_ERROR:
425 label = "error";
426 break;
427 case REGULATOR_STATUS_FAST:
428 label = "fast";
429 break;
430 case REGULATOR_STATUS_NORMAL:
431 label = "normal";
432 break;
433 case REGULATOR_STATUS_IDLE:
434 label = "idle";
435 break;
436 case REGULATOR_STATUS_STANDBY:
437 label = "standby";
438 break;
439 case REGULATOR_STATUS_BYPASS:
440 label = "bypass";
441 break;
442 case REGULATOR_STATUS_UNDEFINED:
443 label = "undefined";
444 break;
445 default:
446 return -ERANGE;
447 }
448
449 return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452
453 static ssize_t regulator_min_uA_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
460
461 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464
465 static ssize_t regulator_max_uA_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
467 {
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
472
473 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476
477 static ssize_t regulator_min_uV_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488
489 static ssize_t regulator_max_uV_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500
501 static ssize_t regulator_total_uA_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 struct regulator *regulator;
506 int uA = 0;
507
508 mutex_lock(&rdev->mutex);
509 list_for_each_entry(regulator, &rdev->consumer_list, list)
510 uA += regulator->uA_load;
511 mutex_unlock(&rdev->mutex);
512 return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517 char *buf)
518 {
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520 return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525 char *buf)
526 {
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529 switch (rdev->desc->type) {
530 case REGULATOR_VOLTAGE:
531 return sprintf(buf, "voltage\n");
532 case REGULATOR_CURRENT:
533 return sprintf(buf, "current\n");
534 }
535 return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540 struct device_attribute *attr, char *buf)
541 {
542 struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547 regulator_suspend_mem_uV_show, NULL);
548
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550 struct device_attribute *attr, char *buf)
551 {
552 struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557 regulator_suspend_disk_uV_show, NULL);
558
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567 regulator_suspend_standby_uV_show, NULL);
568
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578 regulator_suspend_mem_mode_show, NULL);
579
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_opmode(buf,
586 rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589 regulator_suspend_disk_mode_show, NULL);
590
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_opmode(buf,
597 rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600 regulator_suspend_standby_mode_show, NULL);
601
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611 regulator_suspend_mem_state_show, NULL);
612
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617
618 return regulator_print_state(buf,
619 rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622 regulator_suspend_disk_state_show, NULL);
623
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625 struct device_attribute *attr, char *buf)
626 {
627 struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629 return regulator_print_state(buf,
630 rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633 regulator_suspend_standby_state_show, NULL);
634
635 static ssize_t regulator_bypass_show(struct device *dev,
636 struct device_attribute *attr, char *buf)
637 {
638 struct regulator_dev *rdev = dev_get_drvdata(dev);
639 const char *report;
640 bool bypass;
641 int ret;
642
643 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644
645 if (ret != 0)
646 report = "unknown";
647 else if (bypass)
648 report = "enabled";
649 else
650 report = "disabled";
651
652 return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655 regulator_bypass_show, NULL);
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658 * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661 struct regulator *sibling;
662 int current_uA = 0, output_uV, input_uV, err;
663 unsigned int mode;
664
665 lockdep_assert_held_once(&rdev->mutex);
666
667 /*
668 * first check to see if we can set modes at all, otherwise just
669 * tell the consumer everything is OK.
670 */
671 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 return 0;
673
674 if (!rdev->desc->ops->get_optimum_mode &&
675 !rdev->desc->ops->set_load)
676 return 0;
677
678 if (!rdev->desc->ops->set_mode &&
679 !rdev->desc->ops->set_load)
680 return -EINVAL;
681
682 /* get output voltage */
683 output_uV = _regulator_get_voltage(rdev);
684 if (output_uV <= 0) {
685 rdev_err(rdev, "invalid output voltage found\n");
686 return -EINVAL;
687 }
688
689 /* get input voltage */
690 input_uV = 0;
691 if (rdev->supply)
692 input_uV = regulator_get_voltage(rdev->supply);
693 if (input_uV <= 0)
694 input_uV = rdev->constraints->input_uV;
695 if (input_uV <= 0) {
696 rdev_err(rdev, "invalid input voltage found\n");
697 return -EINVAL;
698 }
699
700 /* calc total requested load */
701 list_for_each_entry(sibling, &rdev->consumer_list, list)
702 current_uA += sibling->uA_load;
703
704 current_uA += rdev->constraints->system_load;
705
706 if (rdev->desc->ops->set_load) {
707 /* set the optimum mode for our new total regulator load */
708 err = rdev->desc->ops->set_load(rdev, current_uA);
709 if (err < 0)
710 rdev_err(rdev, "failed to set load %d\n", current_uA);
711 } else {
712 /* now get the optimum mode for our new total regulator load */
713 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714 output_uV, current_uA);
715
716 /* check the new mode is allowed */
717 err = regulator_mode_constrain(rdev, &mode);
718 if (err < 0) {
719 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720 current_uA, input_uV, output_uV);
721 return err;
722 }
723
724 err = rdev->desc->ops->set_mode(rdev, mode);
725 if (err < 0)
726 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727 }
728
729 return err;
730 }
731
732 static int suspend_set_state(struct regulator_dev *rdev,
733 struct regulator_state *rstate)
734 {
735 int ret = 0;
736
737 /* If we have no suspend mode configration don't set anything;
738 * only warn if the driver implements set_suspend_voltage or
739 * set_suspend_mode callback.
740 */
741 if (!rstate->enabled && !rstate->disabled) {
742 if (rdev->desc->ops->set_suspend_voltage ||
743 rdev->desc->ops->set_suspend_mode)
744 rdev_warn(rdev, "No configuration\n");
745 return 0;
746 }
747
748 if (rstate->enabled && rstate->disabled) {
749 rdev_err(rdev, "invalid configuration\n");
750 return -EINVAL;
751 }
752
753 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754 ret = rdev->desc->ops->set_suspend_enable(rdev);
755 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756 ret = rdev->desc->ops->set_suspend_disable(rdev);
757 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758 ret = 0;
759
760 if (ret < 0) {
761 rdev_err(rdev, "failed to enabled/disable\n");
762 return ret;
763 }
764
765 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767 if (ret < 0) {
768 rdev_err(rdev, "failed to set voltage\n");
769 return ret;
770 }
771 }
772
773 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775 if (ret < 0) {
776 rdev_err(rdev, "failed to set mode\n");
777 return ret;
778 }
779 }
780 return ret;
781 }
782
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786 lockdep_assert_held_once(&rdev->mutex);
787
788 if (!rdev->constraints)
789 return -EINVAL;
790
791 switch (state) {
792 case PM_SUSPEND_STANDBY:
793 return suspend_set_state(rdev,
794 &rdev->constraints->state_standby);
795 case PM_SUSPEND_MEM:
796 return suspend_set_state(rdev,
797 &rdev->constraints->state_mem);
798 case PM_SUSPEND_MAX:
799 return suspend_set_state(rdev,
800 &rdev->constraints->state_disk);
801 default:
802 return -EINVAL;
803 }
804 }
805
806 static void print_constraints(struct regulator_dev *rdev)
807 {
808 struct regulation_constraints *constraints = rdev->constraints;
809 char buf[160] = "";
810 size_t len = sizeof(buf) - 1;
811 int count = 0;
812 int ret;
813
814 if (constraints->min_uV && constraints->max_uV) {
815 if (constraints->min_uV == constraints->max_uV)
816 count += scnprintf(buf + count, len - count, "%d mV ",
817 constraints->min_uV / 1000);
818 else
819 count += scnprintf(buf + count, len - count,
820 "%d <--> %d mV ",
821 constraints->min_uV / 1000,
822 constraints->max_uV / 1000);
823 }
824
825 if (!constraints->min_uV ||
826 constraints->min_uV != constraints->max_uV) {
827 ret = _regulator_get_voltage(rdev);
828 if (ret > 0)
829 count += scnprintf(buf + count, len - count,
830 "at %d mV ", ret / 1000);
831 }
832
833 if (constraints->uV_offset)
834 count += scnprintf(buf + count, len - count, "%dmV offset ",
835 constraints->uV_offset / 1000);
836
837 if (constraints->min_uA && constraints->max_uA) {
838 if (constraints->min_uA == constraints->max_uA)
839 count += scnprintf(buf + count, len - count, "%d mA ",
840 constraints->min_uA / 1000);
841 else
842 count += scnprintf(buf + count, len - count,
843 "%d <--> %d mA ",
844 constraints->min_uA / 1000,
845 constraints->max_uA / 1000);
846 }
847
848 if (!constraints->min_uA ||
849 constraints->min_uA != constraints->max_uA) {
850 ret = _regulator_get_current_limit(rdev);
851 if (ret > 0)
852 count += scnprintf(buf + count, len - count,
853 "at %d mA ", ret / 1000);
854 }
855
856 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
857 count += scnprintf(buf + count, len - count, "fast ");
858 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
859 count += scnprintf(buf + count, len - count, "normal ");
860 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
861 count += scnprintf(buf + count, len - count, "idle ");
862 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
863 count += scnprintf(buf + count, len - count, "standby");
864
865 if (!count)
866 scnprintf(buf, len, "no parameters");
867
868 rdev_dbg(rdev, "%s\n", buf);
869
870 if ((constraints->min_uV != constraints->max_uV) &&
871 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
872 rdev_warn(rdev,
873 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
874 }
875
876 static int machine_constraints_voltage(struct regulator_dev *rdev,
877 struct regulation_constraints *constraints)
878 {
879 const struct regulator_ops *ops = rdev->desc->ops;
880 int ret;
881
882 /* do we need to apply the constraint voltage */
883 if (rdev->constraints->apply_uV &&
884 rdev->constraints->min_uV && rdev->constraints->max_uV) {
885 int target_min, target_max;
886 int current_uV = _regulator_get_voltage(rdev);
887 if (current_uV < 0) {
888 rdev_err(rdev,
889 "failed to get the current voltage(%d)\n",
890 current_uV);
891 return current_uV;
892 }
893
894 /*
895 * If we're below the minimum voltage move up to the
896 * minimum voltage, if we're above the maximum voltage
897 * then move down to the maximum.
898 */
899 target_min = current_uV;
900 target_max = current_uV;
901
902 if (current_uV < rdev->constraints->min_uV) {
903 target_min = rdev->constraints->min_uV;
904 target_max = rdev->constraints->min_uV;
905 }
906
907 if (current_uV > rdev->constraints->max_uV) {
908 target_min = rdev->constraints->max_uV;
909 target_max = rdev->constraints->max_uV;
910 }
911
912 if (target_min != current_uV || target_max != current_uV) {
913 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
914 current_uV, target_min, target_max);
915 ret = _regulator_do_set_voltage(
916 rdev, target_min, target_max);
917 if (ret < 0) {
918 rdev_err(rdev,
919 "failed to apply %d-%duV constraint(%d)\n",
920 target_min, target_max, ret);
921 return ret;
922 }
923 }
924 }
925
926 /* constrain machine-level voltage specs to fit
927 * the actual range supported by this regulator.
928 */
929 if (ops->list_voltage && rdev->desc->n_voltages) {
930 int count = rdev->desc->n_voltages;
931 int i;
932 int min_uV = INT_MAX;
933 int max_uV = INT_MIN;
934 int cmin = constraints->min_uV;
935 int cmax = constraints->max_uV;
936
937 /* it's safe to autoconfigure fixed-voltage supplies
938 and the constraints are used by list_voltage. */
939 if (count == 1 && !cmin) {
940 cmin = 1;
941 cmax = INT_MAX;
942 constraints->min_uV = cmin;
943 constraints->max_uV = cmax;
944 }
945
946 /* voltage constraints are optional */
947 if ((cmin == 0) && (cmax == 0))
948 return 0;
949
950 /* else require explicit machine-level constraints */
951 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
952 rdev_err(rdev, "invalid voltage constraints\n");
953 return -EINVAL;
954 }
955
956 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
957 for (i = 0; i < count; i++) {
958 int value;
959
960 value = ops->list_voltage(rdev, i);
961 if (value <= 0)
962 continue;
963
964 /* maybe adjust [min_uV..max_uV] */
965 if (value >= cmin && value < min_uV)
966 min_uV = value;
967 if (value <= cmax && value > max_uV)
968 max_uV = value;
969 }
970
971 /* final: [min_uV..max_uV] valid iff constraints valid */
972 if (max_uV < min_uV) {
973 rdev_err(rdev,
974 "unsupportable voltage constraints %u-%uuV\n",
975 min_uV, max_uV);
976 return -EINVAL;
977 }
978
979 /* use regulator's subset of machine constraints */
980 if (constraints->min_uV < min_uV) {
981 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
982 constraints->min_uV, min_uV);
983 constraints->min_uV = min_uV;
984 }
985 if (constraints->max_uV > max_uV) {
986 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
987 constraints->max_uV, max_uV);
988 constraints->max_uV = max_uV;
989 }
990 }
991
992 return 0;
993 }
994
995 static int machine_constraints_current(struct regulator_dev *rdev,
996 struct regulation_constraints *constraints)
997 {
998 const struct regulator_ops *ops = rdev->desc->ops;
999 int ret;
1000
1001 if (!constraints->min_uA && !constraints->max_uA)
1002 return 0;
1003
1004 if (constraints->min_uA > constraints->max_uA) {
1005 rdev_err(rdev, "Invalid current constraints\n");
1006 return -EINVAL;
1007 }
1008
1009 if (!ops->set_current_limit || !ops->get_current_limit) {
1010 rdev_warn(rdev, "Operation of current configuration missing\n");
1011 return 0;
1012 }
1013
1014 /* Set regulator current in constraints range */
1015 ret = ops->set_current_limit(rdev, constraints->min_uA,
1016 constraints->max_uA);
1017 if (ret < 0) {
1018 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1019 return ret;
1020 }
1021
1022 return 0;
1023 }
1024
1025 static int _regulator_do_enable(struct regulator_dev *rdev);
1026
1027 /**
1028 * set_machine_constraints - sets regulator constraints
1029 * @rdev: regulator source
1030 * @constraints: constraints to apply
1031 *
1032 * Allows platform initialisation code to define and constrain
1033 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1034 * Constraints *must* be set by platform code in order for some
1035 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1036 * set_mode.
1037 */
1038 static int set_machine_constraints(struct regulator_dev *rdev,
1039 const struct regulation_constraints *constraints)
1040 {
1041 int ret = 0;
1042 const struct regulator_ops *ops = rdev->desc->ops;
1043
1044 if (constraints)
1045 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1046 GFP_KERNEL);
1047 else
1048 rdev->constraints = kzalloc(sizeof(*constraints),
1049 GFP_KERNEL);
1050 if (!rdev->constraints)
1051 return -ENOMEM;
1052
1053 ret = machine_constraints_voltage(rdev, rdev->constraints);
1054 if (ret != 0)
1055 return ret;
1056
1057 ret = machine_constraints_current(rdev, rdev->constraints);
1058 if (ret != 0)
1059 return ret;
1060
1061 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1062 ret = ops->set_input_current_limit(rdev,
1063 rdev->constraints->ilim_uA);
1064 if (ret < 0) {
1065 rdev_err(rdev, "failed to set input limit\n");
1066 return ret;
1067 }
1068 }
1069
1070 /* do we need to setup our suspend state */
1071 if (rdev->constraints->initial_state) {
1072 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1073 if (ret < 0) {
1074 rdev_err(rdev, "failed to set suspend state\n");
1075 return ret;
1076 }
1077 }
1078
1079 if (rdev->constraints->initial_mode) {
1080 if (!ops->set_mode) {
1081 rdev_err(rdev, "no set_mode operation\n");
1082 return -EINVAL;
1083 }
1084
1085 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1086 if (ret < 0) {
1087 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1088 return ret;
1089 }
1090 }
1091
1092 /* If the constraints say the regulator should be on at this point
1093 * and we have control then make sure it is enabled.
1094 */
1095 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1096 ret = _regulator_do_enable(rdev);
1097 if (ret < 0 && ret != -EINVAL) {
1098 rdev_err(rdev, "failed to enable\n");
1099 return ret;
1100 }
1101 }
1102
1103 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1104 && ops->set_ramp_delay) {
1105 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1106 if (ret < 0) {
1107 rdev_err(rdev, "failed to set ramp_delay\n");
1108 return ret;
1109 }
1110 }
1111
1112 if (rdev->constraints->pull_down && ops->set_pull_down) {
1113 ret = ops->set_pull_down(rdev);
1114 if (ret < 0) {
1115 rdev_err(rdev, "failed to set pull down\n");
1116 return ret;
1117 }
1118 }
1119
1120 if (rdev->constraints->soft_start && ops->set_soft_start) {
1121 ret = ops->set_soft_start(rdev);
1122 if (ret < 0) {
1123 rdev_err(rdev, "failed to set soft start\n");
1124 return ret;
1125 }
1126 }
1127
1128 if (rdev->constraints->over_current_protection
1129 && ops->set_over_current_protection) {
1130 ret = ops->set_over_current_protection(rdev);
1131 if (ret < 0) {
1132 rdev_err(rdev, "failed to set over current protection\n");
1133 return ret;
1134 }
1135 }
1136
1137 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1138 bool ad_state = (rdev->constraints->active_discharge ==
1139 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1140
1141 ret = ops->set_active_discharge(rdev, ad_state);
1142 if (ret < 0) {
1143 rdev_err(rdev, "failed to set active discharge\n");
1144 return ret;
1145 }
1146 }
1147
1148 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1149 bool ad_state = (rdev->constraints->active_discharge ==
1150 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1151
1152 ret = ops->set_active_discharge(rdev, ad_state);
1153 if (ret < 0) {
1154 rdev_err(rdev, "failed to set active discharge\n");
1155 return ret;
1156 }
1157 }
1158
1159 print_constraints(rdev);
1160 return 0;
1161 }
1162
1163 /**
1164 * set_supply - set regulator supply regulator
1165 * @rdev: regulator name
1166 * @supply_rdev: supply regulator name
1167 *
1168 * Called by platform initialisation code to set the supply regulator for this
1169 * regulator. This ensures that a regulators supply will also be enabled by the
1170 * core if it's child is enabled.
1171 */
1172 static int set_supply(struct regulator_dev *rdev,
1173 struct regulator_dev *supply_rdev)
1174 {
1175 int err;
1176
1177 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1178
1179 if (!try_module_get(supply_rdev->owner))
1180 return -ENODEV;
1181
1182 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1183 if (rdev->supply == NULL) {
1184 err = -ENOMEM;
1185 return err;
1186 }
1187 supply_rdev->open_count++;
1188
1189 return 0;
1190 }
1191
1192 /**
1193 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1194 * @rdev: regulator source
1195 * @consumer_dev_name: dev_name() string for device supply applies to
1196 * @supply: symbolic name for supply
1197 *
1198 * Allows platform initialisation code to map physical regulator
1199 * sources to symbolic names for supplies for use by devices. Devices
1200 * should use these symbolic names to request regulators, avoiding the
1201 * need to provide board-specific regulator names as platform data.
1202 */
1203 static int set_consumer_device_supply(struct regulator_dev *rdev,
1204 const char *consumer_dev_name,
1205 const char *supply)
1206 {
1207 struct regulator_map *node;
1208 int has_dev;
1209
1210 if (supply == NULL)
1211 return -EINVAL;
1212
1213 if (consumer_dev_name != NULL)
1214 has_dev = 1;
1215 else
1216 has_dev = 0;
1217
1218 list_for_each_entry(node, &regulator_map_list, list) {
1219 if (node->dev_name && consumer_dev_name) {
1220 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1221 continue;
1222 } else if (node->dev_name || consumer_dev_name) {
1223 continue;
1224 }
1225
1226 if (strcmp(node->supply, supply) != 0)
1227 continue;
1228
1229 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1230 consumer_dev_name,
1231 dev_name(&node->regulator->dev),
1232 node->regulator->desc->name,
1233 supply,
1234 dev_name(&rdev->dev), rdev_get_name(rdev));
1235 return -EBUSY;
1236 }
1237
1238 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1239 if (node == NULL)
1240 return -ENOMEM;
1241
1242 node->regulator = rdev;
1243 node->supply = supply;
1244
1245 if (has_dev) {
1246 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1247 if (node->dev_name == NULL) {
1248 kfree(node);
1249 return -ENOMEM;
1250 }
1251 }
1252
1253 list_add(&node->list, &regulator_map_list);
1254 return 0;
1255 }
1256
1257 static void unset_regulator_supplies(struct regulator_dev *rdev)
1258 {
1259 struct regulator_map *node, *n;
1260
1261 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1262 if (rdev == node->regulator) {
1263 list_del(&node->list);
1264 kfree(node->dev_name);
1265 kfree(node);
1266 }
1267 }
1268 }
1269
1270 #define REG_STR_SIZE 64
1271
1272 static struct regulator *create_regulator(struct regulator_dev *rdev,
1273 struct device *dev,
1274 const char *supply_name)
1275 {
1276 struct regulator *regulator;
1277 char buf[REG_STR_SIZE];
1278 int err, size;
1279
1280 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1281 if (regulator == NULL)
1282 return NULL;
1283
1284 mutex_lock(&rdev->mutex);
1285 regulator->rdev = rdev;
1286 list_add(&regulator->list, &rdev->consumer_list);
1287
1288 if (dev) {
1289 regulator->dev = dev;
1290
1291 /* Add a link to the device sysfs entry */
1292 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1293 dev->kobj.name, supply_name);
1294 if (size >= REG_STR_SIZE)
1295 goto overflow_err;
1296
1297 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1298 if (regulator->supply_name == NULL)
1299 goto overflow_err;
1300
1301 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1302 buf);
1303 if (err) {
1304 rdev_dbg(rdev, "could not add device link %s err %d\n",
1305 dev->kobj.name, err);
1306 /* non-fatal */
1307 }
1308 } else {
1309 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1310 if (regulator->supply_name == NULL)
1311 goto overflow_err;
1312 }
1313
1314 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1315 rdev->debugfs);
1316 if (!regulator->debugfs) {
1317 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1318 } else {
1319 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1320 &regulator->uA_load);
1321 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1322 &regulator->min_uV);
1323 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1324 &regulator->max_uV);
1325 }
1326
1327 /*
1328 * Check now if the regulator is an always on regulator - if
1329 * it is then we don't need to do nearly so much work for
1330 * enable/disable calls.
1331 */
1332 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1333 _regulator_is_enabled(rdev))
1334 regulator->always_on = true;
1335
1336 mutex_unlock(&rdev->mutex);
1337 return regulator;
1338 overflow_err:
1339 list_del(&regulator->list);
1340 kfree(regulator);
1341 mutex_unlock(&rdev->mutex);
1342 return NULL;
1343 }
1344
1345 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1346 {
1347 if (rdev->constraints && rdev->constraints->enable_time)
1348 return rdev->constraints->enable_time;
1349 if (!rdev->desc->ops->enable_time)
1350 return rdev->desc->enable_time;
1351 return rdev->desc->ops->enable_time(rdev);
1352 }
1353
1354 static struct regulator_supply_alias *regulator_find_supply_alias(
1355 struct device *dev, const char *supply)
1356 {
1357 struct regulator_supply_alias *map;
1358
1359 list_for_each_entry(map, &regulator_supply_alias_list, list)
1360 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1361 return map;
1362
1363 return NULL;
1364 }
1365
1366 static void regulator_supply_alias(struct device **dev, const char **supply)
1367 {
1368 struct regulator_supply_alias *map;
1369
1370 map = regulator_find_supply_alias(*dev, *supply);
1371 if (map) {
1372 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1373 *supply, map->alias_supply,
1374 dev_name(map->alias_dev));
1375 *dev = map->alias_dev;
1376 *supply = map->alias_supply;
1377 }
1378 }
1379
1380 static int of_node_match(struct device *dev, const void *data)
1381 {
1382 return dev->of_node == data;
1383 }
1384
1385 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1386 {
1387 struct device *dev;
1388
1389 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1390
1391 return dev ? dev_to_rdev(dev) : NULL;
1392 }
1393
1394 static int regulator_match(struct device *dev, const void *data)
1395 {
1396 struct regulator_dev *r = dev_to_rdev(dev);
1397
1398 return strcmp(rdev_get_name(r), data) == 0;
1399 }
1400
1401 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1402 {
1403 struct device *dev;
1404
1405 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1406
1407 return dev ? dev_to_rdev(dev) : NULL;
1408 }
1409
1410 /**
1411 * regulator_dev_lookup - lookup a regulator device.
1412 * @dev: device for regulator "consumer".
1413 * @supply: Supply name or regulator ID.
1414 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1415 * lookup could succeed in the future.
1416 *
1417 * If successful, returns a struct regulator_dev that corresponds to the name
1418 * @supply and with the embedded struct device refcount incremented by one,
1419 * or NULL on failure. The refcount must be dropped by calling put_device().
1420 */
1421 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1422 const char *supply,
1423 int *ret)
1424 {
1425 struct regulator_dev *r;
1426 struct device_node *node;
1427 struct regulator_map *map;
1428 const char *devname = NULL;
1429
1430 regulator_supply_alias(&dev, &supply);
1431
1432 /* first do a dt based lookup */
1433 if (dev && dev->of_node) {
1434 node = of_get_regulator(dev, supply);
1435 if (node) {
1436 r = of_find_regulator_by_node(node);
1437 if (r)
1438 return r;
1439 *ret = -EPROBE_DEFER;
1440 return NULL;
1441 } else {
1442 /*
1443 * If we couldn't even get the node then it's
1444 * not just that the device didn't register
1445 * yet, there's no node and we'll never
1446 * succeed.
1447 */
1448 *ret = -ENODEV;
1449 }
1450 }
1451
1452 /* if not found, try doing it non-dt way */
1453 if (dev)
1454 devname = dev_name(dev);
1455
1456 r = regulator_lookup_by_name(supply);
1457 if (r)
1458 return r;
1459
1460 mutex_lock(&regulator_list_mutex);
1461 list_for_each_entry(map, &regulator_map_list, list) {
1462 /* If the mapping has a device set up it must match */
1463 if (map->dev_name &&
1464 (!devname || strcmp(map->dev_name, devname)))
1465 continue;
1466
1467 if (strcmp(map->supply, supply) == 0 &&
1468 get_device(&map->regulator->dev)) {
1469 mutex_unlock(&regulator_list_mutex);
1470 return map->regulator;
1471 }
1472 }
1473 mutex_unlock(&regulator_list_mutex);
1474
1475 return NULL;
1476 }
1477
1478 static int regulator_resolve_supply(struct regulator_dev *rdev)
1479 {
1480 struct regulator_dev *r;
1481 struct device *dev = rdev->dev.parent;
1482 int ret;
1483
1484 /* No supply to resovle? */
1485 if (!rdev->supply_name)
1486 return 0;
1487
1488 /* Supply already resolved? */
1489 if (rdev->supply)
1490 return 0;
1491
1492 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1493 if (!r) {
1494 if (ret == -ENODEV) {
1495 /*
1496 * No supply was specified for this regulator and
1497 * there will never be one.
1498 */
1499 return 0;
1500 }
1501
1502 /* Did the lookup explicitly defer for us? */
1503 if (ret == -EPROBE_DEFER)
1504 return ret;
1505
1506 if (have_full_constraints()) {
1507 r = dummy_regulator_rdev;
1508 get_device(&r->dev);
1509 } else {
1510 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1511 rdev->supply_name, rdev->desc->name);
1512 return -EPROBE_DEFER;
1513 }
1514 }
1515
1516 /* Recursively resolve the supply of the supply */
1517 ret = regulator_resolve_supply(r);
1518 if (ret < 0) {
1519 put_device(&r->dev);
1520 return ret;
1521 }
1522
1523 ret = set_supply(rdev, r);
1524 if (ret < 0) {
1525 put_device(&r->dev);
1526 return ret;
1527 }
1528
1529 /* Cascade always-on state to supply */
1530 if (_regulator_is_enabled(rdev) && rdev->supply) {
1531 ret = regulator_enable(rdev->supply);
1532 if (ret < 0) {
1533 _regulator_put(rdev->supply);
1534 return ret;
1535 }
1536 }
1537
1538 return 0;
1539 }
1540
1541 /* Internal regulator request function */
1542 static struct regulator *_regulator_get(struct device *dev, const char *id,
1543 bool exclusive, bool allow_dummy)
1544 {
1545 struct regulator_dev *rdev;
1546 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1547 const char *devname = NULL;
1548 int ret;
1549
1550 if (id == NULL) {
1551 pr_err("get() with no identifier\n");
1552 return ERR_PTR(-EINVAL);
1553 }
1554
1555 if (dev)
1556 devname = dev_name(dev);
1557
1558 if (have_full_constraints())
1559 ret = -ENODEV;
1560 else
1561 ret = -EPROBE_DEFER;
1562
1563 rdev = regulator_dev_lookup(dev, id, &ret);
1564 if (rdev)
1565 goto found;
1566
1567 regulator = ERR_PTR(ret);
1568
1569 /*
1570 * If we have return value from dev_lookup fail, we do not expect to
1571 * succeed, so, quit with appropriate error value
1572 */
1573 if (ret && ret != -ENODEV)
1574 return regulator;
1575
1576 if (!devname)
1577 devname = "deviceless";
1578
1579 /*
1580 * Assume that a regulator is physically present and enabled
1581 * even if it isn't hooked up and just provide a dummy.
1582 */
1583 if (have_full_constraints() && allow_dummy) {
1584 pr_warn("%s supply %s not found, using dummy regulator\n",
1585 devname, id);
1586
1587 rdev = dummy_regulator_rdev;
1588 get_device(&rdev->dev);
1589 goto found;
1590 /* Don't log an error when called from regulator_get_optional() */
1591 } else if (!have_full_constraints() || exclusive) {
1592 dev_warn(dev, "dummy supplies not allowed\n");
1593 }
1594
1595 return regulator;
1596
1597 found:
1598 if (rdev->exclusive) {
1599 regulator = ERR_PTR(-EPERM);
1600 put_device(&rdev->dev);
1601 return regulator;
1602 }
1603
1604 if (exclusive && rdev->open_count) {
1605 regulator = ERR_PTR(-EBUSY);
1606 put_device(&rdev->dev);
1607 return regulator;
1608 }
1609
1610 ret = regulator_resolve_supply(rdev);
1611 if (ret < 0) {
1612 regulator = ERR_PTR(ret);
1613 put_device(&rdev->dev);
1614 return regulator;
1615 }
1616
1617 if (!try_module_get(rdev->owner)) {
1618 put_device(&rdev->dev);
1619 return regulator;
1620 }
1621
1622 regulator = create_regulator(rdev, dev, id);
1623 if (regulator == NULL) {
1624 regulator = ERR_PTR(-ENOMEM);
1625 put_device(&rdev->dev);
1626 module_put(rdev->owner);
1627 return regulator;
1628 }
1629
1630 rdev->open_count++;
1631 if (exclusive) {
1632 rdev->exclusive = 1;
1633
1634 ret = _regulator_is_enabled(rdev);
1635 if (ret > 0)
1636 rdev->use_count = 1;
1637 else
1638 rdev->use_count = 0;
1639 }
1640
1641 return regulator;
1642 }
1643
1644 /**
1645 * regulator_get - lookup and obtain a reference to a regulator.
1646 * @dev: device for regulator "consumer"
1647 * @id: Supply name or regulator ID.
1648 *
1649 * Returns a struct regulator corresponding to the regulator producer,
1650 * or IS_ERR() condition containing errno.
1651 *
1652 * Use of supply names configured via regulator_set_device_supply() is
1653 * strongly encouraged. It is recommended that the supply name used
1654 * should match the name used for the supply and/or the relevant
1655 * device pins in the datasheet.
1656 */
1657 struct regulator *regulator_get(struct device *dev, const char *id)
1658 {
1659 return _regulator_get(dev, id, false, true);
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_get);
1662
1663 /**
1664 * regulator_get_exclusive - obtain exclusive access to a regulator.
1665 * @dev: device for regulator "consumer"
1666 * @id: Supply name or regulator ID.
1667 *
1668 * Returns a struct regulator corresponding to the regulator producer,
1669 * or IS_ERR() condition containing errno. Other consumers will be
1670 * unable to obtain this regulator while this reference is held and the
1671 * use count for the regulator will be initialised to reflect the current
1672 * state of the regulator.
1673 *
1674 * This is intended for use by consumers which cannot tolerate shared
1675 * use of the regulator such as those which need to force the
1676 * regulator off for correct operation of the hardware they are
1677 * controlling.
1678 *
1679 * Use of supply names configured via regulator_set_device_supply() is
1680 * strongly encouraged. It is recommended that the supply name used
1681 * should match the name used for the supply and/or the relevant
1682 * device pins in the datasheet.
1683 */
1684 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1685 {
1686 return _regulator_get(dev, id, true, false);
1687 }
1688 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1689
1690 /**
1691 * regulator_get_optional - obtain optional access to a regulator.
1692 * @dev: device for regulator "consumer"
1693 * @id: Supply name or regulator ID.
1694 *
1695 * Returns a struct regulator corresponding to the regulator producer,
1696 * or IS_ERR() condition containing errno.
1697 *
1698 * This is intended for use by consumers for devices which can have
1699 * some supplies unconnected in normal use, such as some MMC devices.
1700 * It can allow the regulator core to provide stub supplies for other
1701 * supplies requested using normal regulator_get() calls without
1702 * disrupting the operation of drivers that can handle absent
1703 * supplies.
1704 *
1705 * Use of supply names configured via regulator_set_device_supply() is
1706 * strongly encouraged. It is recommended that the supply name used
1707 * should match the name used for the supply and/or the relevant
1708 * device pins in the datasheet.
1709 */
1710 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1711 {
1712 return _regulator_get(dev, id, false, false);
1713 }
1714 EXPORT_SYMBOL_GPL(regulator_get_optional);
1715
1716 /* regulator_list_mutex lock held by regulator_put() */
1717 static void _regulator_put(struct regulator *regulator)
1718 {
1719 struct regulator_dev *rdev;
1720
1721 if (IS_ERR_OR_NULL(regulator))
1722 return;
1723
1724 lockdep_assert_held_once(&regulator_list_mutex);
1725
1726 rdev = regulator->rdev;
1727
1728 debugfs_remove_recursive(regulator->debugfs);
1729
1730 /* remove any sysfs entries */
1731 if (regulator->dev)
1732 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1733 mutex_lock(&rdev->mutex);
1734 list_del(&regulator->list);
1735
1736 rdev->open_count--;
1737 rdev->exclusive = 0;
1738 put_device(&rdev->dev);
1739 mutex_unlock(&rdev->mutex);
1740
1741 kfree(regulator->supply_name);
1742 kfree(regulator);
1743
1744 module_put(rdev->owner);
1745 }
1746
1747 /**
1748 * regulator_put - "free" the regulator source
1749 * @regulator: regulator source
1750 *
1751 * Note: drivers must ensure that all regulator_enable calls made on this
1752 * regulator source are balanced by regulator_disable calls prior to calling
1753 * this function.
1754 */
1755 void regulator_put(struct regulator *regulator)
1756 {
1757 mutex_lock(&regulator_list_mutex);
1758 _regulator_put(regulator);
1759 mutex_unlock(&regulator_list_mutex);
1760 }
1761 EXPORT_SYMBOL_GPL(regulator_put);
1762
1763 /**
1764 * regulator_register_supply_alias - Provide device alias for supply lookup
1765 *
1766 * @dev: device that will be given as the regulator "consumer"
1767 * @id: Supply name or regulator ID
1768 * @alias_dev: device that should be used to lookup the supply
1769 * @alias_id: Supply name or regulator ID that should be used to lookup the
1770 * supply
1771 *
1772 * All lookups for id on dev will instead be conducted for alias_id on
1773 * alias_dev.
1774 */
1775 int regulator_register_supply_alias(struct device *dev, const char *id,
1776 struct device *alias_dev,
1777 const char *alias_id)
1778 {
1779 struct regulator_supply_alias *map;
1780
1781 map = regulator_find_supply_alias(dev, id);
1782 if (map)
1783 return -EEXIST;
1784
1785 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1786 if (!map)
1787 return -ENOMEM;
1788
1789 map->src_dev = dev;
1790 map->src_supply = id;
1791 map->alias_dev = alias_dev;
1792 map->alias_supply = alias_id;
1793
1794 list_add(&map->list, &regulator_supply_alias_list);
1795
1796 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1797 id, dev_name(dev), alias_id, dev_name(alias_dev));
1798
1799 return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1802
1803 /**
1804 * regulator_unregister_supply_alias - Remove device alias
1805 *
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 *
1809 * Remove a lookup alias if one exists for id on dev.
1810 */
1811 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1812 {
1813 struct regulator_supply_alias *map;
1814
1815 map = regulator_find_supply_alias(dev, id);
1816 if (map) {
1817 list_del(&map->list);
1818 kfree(map);
1819 }
1820 }
1821 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1822
1823 /**
1824 * regulator_bulk_register_supply_alias - register multiple aliases
1825 *
1826 * @dev: device that will be given as the regulator "consumer"
1827 * @id: List of supply names or regulator IDs
1828 * @alias_dev: device that should be used to lookup the supply
1829 * @alias_id: List of supply names or regulator IDs that should be used to
1830 * lookup the supply
1831 * @num_id: Number of aliases to register
1832 *
1833 * @return 0 on success, an errno on failure.
1834 *
1835 * This helper function allows drivers to register several supply
1836 * aliases in one operation. If any of the aliases cannot be
1837 * registered any aliases that were registered will be removed
1838 * before returning to the caller.
1839 */
1840 int regulator_bulk_register_supply_alias(struct device *dev,
1841 const char *const *id,
1842 struct device *alias_dev,
1843 const char *const *alias_id,
1844 int num_id)
1845 {
1846 int i;
1847 int ret;
1848
1849 for (i = 0; i < num_id; ++i) {
1850 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1851 alias_id[i]);
1852 if (ret < 0)
1853 goto err;
1854 }
1855
1856 return 0;
1857
1858 err:
1859 dev_err(dev,
1860 "Failed to create supply alias %s,%s -> %s,%s\n",
1861 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1862
1863 while (--i >= 0)
1864 regulator_unregister_supply_alias(dev, id[i]);
1865
1866 return ret;
1867 }
1868 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1869
1870 /**
1871 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1872 *
1873 * @dev: device that will be given as the regulator "consumer"
1874 * @id: List of supply names or regulator IDs
1875 * @num_id: Number of aliases to unregister
1876 *
1877 * This helper function allows drivers to unregister several supply
1878 * aliases in one operation.
1879 */
1880 void regulator_bulk_unregister_supply_alias(struct device *dev,
1881 const char *const *id,
1882 int num_id)
1883 {
1884 int i;
1885
1886 for (i = 0; i < num_id; ++i)
1887 regulator_unregister_supply_alias(dev, id[i]);
1888 }
1889 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1890
1891
1892 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1893 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1894 const struct regulator_config *config)
1895 {
1896 struct regulator_enable_gpio *pin;
1897 struct gpio_desc *gpiod;
1898 int ret;
1899
1900 gpiod = gpio_to_desc(config->ena_gpio);
1901
1902 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1903 if (pin->gpiod == gpiod) {
1904 rdev_dbg(rdev, "GPIO %d is already used\n",
1905 config->ena_gpio);
1906 goto update_ena_gpio_to_rdev;
1907 }
1908 }
1909
1910 ret = gpio_request_one(config->ena_gpio,
1911 GPIOF_DIR_OUT | config->ena_gpio_flags,
1912 rdev_get_name(rdev));
1913 if (ret)
1914 return ret;
1915
1916 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1917 if (pin == NULL) {
1918 gpio_free(config->ena_gpio);
1919 return -ENOMEM;
1920 }
1921
1922 pin->gpiod = gpiod;
1923 pin->ena_gpio_invert = config->ena_gpio_invert;
1924 list_add(&pin->list, &regulator_ena_gpio_list);
1925
1926 update_ena_gpio_to_rdev:
1927 pin->request_count++;
1928 rdev->ena_pin = pin;
1929 return 0;
1930 }
1931
1932 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1933 {
1934 struct regulator_enable_gpio *pin, *n;
1935
1936 if (!rdev->ena_pin)
1937 return;
1938
1939 /* Free the GPIO only in case of no use */
1940 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1941 if (pin->gpiod == rdev->ena_pin->gpiod) {
1942 if (pin->request_count <= 1) {
1943 pin->request_count = 0;
1944 gpiod_put(pin->gpiod);
1945 list_del(&pin->list);
1946 kfree(pin);
1947 rdev->ena_pin = NULL;
1948 return;
1949 } else {
1950 pin->request_count--;
1951 }
1952 }
1953 }
1954 }
1955
1956 /**
1957 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1958 * @rdev: regulator_dev structure
1959 * @enable: enable GPIO at initial use?
1960 *
1961 * GPIO is enabled in case of initial use. (enable_count is 0)
1962 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1963 */
1964 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1965 {
1966 struct regulator_enable_gpio *pin = rdev->ena_pin;
1967
1968 if (!pin)
1969 return -EINVAL;
1970
1971 if (enable) {
1972 /* Enable GPIO at initial use */
1973 if (pin->enable_count == 0)
1974 gpiod_set_value_cansleep(pin->gpiod,
1975 !pin->ena_gpio_invert);
1976
1977 pin->enable_count++;
1978 } else {
1979 if (pin->enable_count > 1) {
1980 pin->enable_count--;
1981 return 0;
1982 }
1983
1984 /* Disable GPIO if not used */
1985 if (pin->enable_count <= 1) {
1986 gpiod_set_value_cansleep(pin->gpiod,
1987 pin->ena_gpio_invert);
1988 pin->enable_count = 0;
1989 }
1990 }
1991
1992 return 0;
1993 }
1994
1995 /**
1996 * _regulator_enable_delay - a delay helper function
1997 * @delay: time to delay in microseconds
1998 *
1999 * Delay for the requested amount of time as per the guidelines in:
2000 *
2001 * Documentation/timers/timers-howto.txt
2002 *
2003 * The assumption here is that regulators will never be enabled in
2004 * atomic context and therefore sleeping functions can be used.
2005 */
2006 static void _regulator_enable_delay(unsigned int delay)
2007 {
2008 unsigned int ms = delay / 1000;
2009 unsigned int us = delay % 1000;
2010
2011 if (ms > 0) {
2012 /*
2013 * For small enough values, handle super-millisecond
2014 * delays in the usleep_range() call below.
2015 */
2016 if (ms < 20)
2017 us += ms * 1000;
2018 else
2019 msleep(ms);
2020 }
2021
2022 /*
2023 * Give the scheduler some room to coalesce with any other
2024 * wakeup sources. For delays shorter than 10 us, don't even
2025 * bother setting up high-resolution timers and just busy-
2026 * loop.
2027 */
2028 if (us >= 10)
2029 usleep_range(us, us + 100);
2030 else
2031 udelay(us);
2032 }
2033
2034 static int _regulator_do_enable(struct regulator_dev *rdev)
2035 {
2036 int ret, delay;
2037
2038 /* Query before enabling in case configuration dependent. */
2039 ret = _regulator_get_enable_time(rdev);
2040 if (ret >= 0) {
2041 delay = ret;
2042 } else {
2043 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2044 delay = 0;
2045 }
2046
2047 trace_regulator_enable(rdev_get_name(rdev));
2048
2049 if (rdev->desc->off_on_delay) {
2050 /* if needed, keep a distance of off_on_delay from last time
2051 * this regulator was disabled.
2052 */
2053 unsigned long start_jiffy = jiffies;
2054 unsigned long intended, max_delay, remaining;
2055
2056 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2057 intended = rdev->last_off_jiffy + max_delay;
2058
2059 if (time_before(start_jiffy, intended)) {
2060 /* calc remaining jiffies to deal with one-time
2061 * timer wrapping.
2062 * in case of multiple timer wrapping, either it can be
2063 * detected by out-of-range remaining, or it cannot be
2064 * detected and we gets a panelty of
2065 * _regulator_enable_delay().
2066 */
2067 remaining = intended - start_jiffy;
2068 if (remaining <= max_delay)
2069 _regulator_enable_delay(
2070 jiffies_to_usecs(remaining));
2071 }
2072 }
2073
2074 if (rdev->ena_pin) {
2075 if (!rdev->ena_gpio_state) {
2076 ret = regulator_ena_gpio_ctrl(rdev, true);
2077 if (ret < 0)
2078 return ret;
2079 rdev->ena_gpio_state = 1;
2080 }
2081 } else if (rdev->desc->ops->enable) {
2082 ret = rdev->desc->ops->enable(rdev);
2083 if (ret < 0)
2084 return ret;
2085 } else {
2086 return -EINVAL;
2087 }
2088
2089 /* Allow the regulator to ramp; it would be useful to extend
2090 * this for bulk operations so that the regulators can ramp
2091 * together. */
2092 trace_regulator_enable_delay(rdev_get_name(rdev));
2093
2094 _regulator_enable_delay(delay);
2095
2096 trace_regulator_enable_complete(rdev_get_name(rdev));
2097
2098 return 0;
2099 }
2100
2101 /* locks held by regulator_enable() */
2102 static int _regulator_enable(struct regulator_dev *rdev)
2103 {
2104 int ret;
2105
2106 lockdep_assert_held_once(&rdev->mutex);
2107
2108 /* check voltage and requested load before enabling */
2109 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2110 drms_uA_update(rdev);
2111
2112 if (rdev->use_count == 0) {
2113 /* The regulator may on if it's not switchable or left on */
2114 ret = _regulator_is_enabled(rdev);
2115 if (ret == -EINVAL || ret == 0) {
2116 if (!regulator_ops_is_valid(rdev,
2117 REGULATOR_CHANGE_STATUS))
2118 return -EPERM;
2119
2120 ret = _regulator_do_enable(rdev);
2121 if (ret < 0)
2122 return ret;
2123
2124 } else if (ret < 0) {
2125 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2126 return ret;
2127 }
2128 /* Fallthrough on positive return values - already enabled */
2129 }
2130
2131 rdev->use_count++;
2132
2133 return 0;
2134 }
2135
2136 /**
2137 * regulator_enable - enable regulator output
2138 * @regulator: regulator source
2139 *
2140 * Request that the regulator be enabled with the regulator output at
2141 * the predefined voltage or current value. Calls to regulator_enable()
2142 * must be balanced with calls to regulator_disable().
2143 *
2144 * NOTE: the output value can be set by other drivers, boot loader or may be
2145 * hardwired in the regulator.
2146 */
2147 int regulator_enable(struct regulator *regulator)
2148 {
2149 struct regulator_dev *rdev = regulator->rdev;
2150 int ret = 0;
2151
2152 if (regulator->always_on)
2153 return 0;
2154
2155 if (rdev->supply) {
2156 ret = regulator_enable(rdev->supply);
2157 if (ret != 0)
2158 return ret;
2159 }
2160
2161 mutex_lock(&rdev->mutex);
2162 ret = _regulator_enable(rdev);
2163 mutex_unlock(&rdev->mutex);
2164
2165 if (ret != 0 && rdev->supply)
2166 regulator_disable(rdev->supply);
2167
2168 return ret;
2169 }
2170 EXPORT_SYMBOL_GPL(regulator_enable);
2171
2172 static int _regulator_do_disable(struct regulator_dev *rdev)
2173 {
2174 int ret;
2175
2176 trace_regulator_disable(rdev_get_name(rdev));
2177
2178 if (rdev->ena_pin) {
2179 if (rdev->ena_gpio_state) {
2180 ret = regulator_ena_gpio_ctrl(rdev, false);
2181 if (ret < 0)
2182 return ret;
2183 rdev->ena_gpio_state = 0;
2184 }
2185
2186 } else if (rdev->desc->ops->disable) {
2187 ret = rdev->desc->ops->disable(rdev);
2188 if (ret != 0)
2189 return ret;
2190 }
2191
2192 /* cares about last_off_jiffy only if off_on_delay is required by
2193 * device.
2194 */
2195 if (rdev->desc->off_on_delay)
2196 rdev->last_off_jiffy = jiffies;
2197
2198 trace_regulator_disable_complete(rdev_get_name(rdev));
2199
2200 return 0;
2201 }
2202
2203 /* locks held by regulator_disable() */
2204 static int _regulator_disable(struct regulator_dev *rdev)
2205 {
2206 int ret = 0;
2207
2208 lockdep_assert_held_once(&rdev->mutex);
2209
2210 if (WARN(rdev->use_count <= 0,
2211 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2212 return -EIO;
2213
2214 /* are we the last user and permitted to disable ? */
2215 if (rdev->use_count == 1 &&
2216 (rdev->constraints && !rdev->constraints->always_on)) {
2217
2218 /* we are last user */
2219 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2220 ret = _notifier_call_chain(rdev,
2221 REGULATOR_EVENT_PRE_DISABLE,
2222 NULL);
2223 if (ret & NOTIFY_STOP_MASK)
2224 return -EINVAL;
2225
2226 ret = _regulator_do_disable(rdev);
2227 if (ret < 0) {
2228 rdev_err(rdev, "failed to disable\n");
2229 _notifier_call_chain(rdev,
2230 REGULATOR_EVENT_ABORT_DISABLE,
2231 NULL);
2232 return ret;
2233 }
2234 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2235 NULL);
2236 }
2237
2238 rdev->use_count = 0;
2239 } else if (rdev->use_count > 1) {
2240 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2241 drms_uA_update(rdev);
2242
2243 rdev->use_count--;
2244 }
2245
2246 return ret;
2247 }
2248
2249 /**
2250 * regulator_disable - disable regulator output
2251 * @regulator: regulator source
2252 *
2253 * Disable the regulator output voltage or current. Calls to
2254 * regulator_enable() must be balanced with calls to
2255 * regulator_disable().
2256 *
2257 * NOTE: this will only disable the regulator output if no other consumer
2258 * devices have it enabled, the regulator device supports disabling and
2259 * machine constraints permit this operation.
2260 */
2261 int regulator_disable(struct regulator *regulator)
2262 {
2263 struct regulator_dev *rdev = regulator->rdev;
2264 int ret = 0;
2265
2266 if (regulator->always_on)
2267 return 0;
2268
2269 mutex_lock(&rdev->mutex);
2270 ret = _regulator_disable(rdev);
2271 mutex_unlock(&rdev->mutex);
2272
2273 if (ret == 0 && rdev->supply)
2274 regulator_disable(rdev->supply);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(regulator_disable);
2279
2280 /* locks held by regulator_force_disable() */
2281 static int _regulator_force_disable(struct regulator_dev *rdev)
2282 {
2283 int ret = 0;
2284
2285 lockdep_assert_held_once(&rdev->mutex);
2286
2287 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2288 REGULATOR_EVENT_PRE_DISABLE, NULL);
2289 if (ret & NOTIFY_STOP_MASK)
2290 return -EINVAL;
2291
2292 ret = _regulator_do_disable(rdev);
2293 if (ret < 0) {
2294 rdev_err(rdev, "failed to force disable\n");
2295 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2297 return ret;
2298 }
2299
2300 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2301 REGULATOR_EVENT_DISABLE, NULL);
2302
2303 return 0;
2304 }
2305
2306 /**
2307 * regulator_force_disable - force disable regulator output
2308 * @regulator: regulator source
2309 *
2310 * Forcibly disable the regulator output voltage or current.
2311 * NOTE: this *will* disable the regulator output even if other consumer
2312 * devices have it enabled. This should be used for situations when device
2313 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2314 */
2315 int regulator_force_disable(struct regulator *regulator)
2316 {
2317 struct regulator_dev *rdev = regulator->rdev;
2318 int ret;
2319
2320 mutex_lock(&rdev->mutex);
2321 regulator->uA_load = 0;
2322 ret = _regulator_force_disable(regulator->rdev);
2323 mutex_unlock(&rdev->mutex);
2324
2325 if (rdev->supply)
2326 while (rdev->open_count--)
2327 regulator_disable(rdev->supply);
2328
2329 return ret;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_force_disable);
2332
2333 static void regulator_disable_work(struct work_struct *work)
2334 {
2335 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2336 disable_work.work);
2337 int count, i, ret;
2338
2339 mutex_lock(&rdev->mutex);
2340
2341 BUG_ON(!rdev->deferred_disables);
2342
2343 count = rdev->deferred_disables;
2344 rdev->deferred_disables = 0;
2345
2346 for (i = 0; i < count; i++) {
2347 ret = _regulator_disable(rdev);
2348 if (ret != 0)
2349 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2350 }
2351
2352 mutex_unlock(&rdev->mutex);
2353
2354 if (rdev->supply) {
2355 for (i = 0; i < count; i++) {
2356 ret = regulator_disable(rdev->supply);
2357 if (ret != 0) {
2358 rdev_err(rdev,
2359 "Supply disable failed: %d\n", ret);
2360 }
2361 }
2362 }
2363 }
2364
2365 /**
2366 * regulator_disable_deferred - disable regulator output with delay
2367 * @regulator: regulator source
2368 * @ms: miliseconds until the regulator is disabled
2369 *
2370 * Execute regulator_disable() on the regulator after a delay. This
2371 * is intended for use with devices that require some time to quiesce.
2372 *
2373 * NOTE: this will only disable the regulator output if no other consumer
2374 * devices have it enabled, the regulator device supports disabling and
2375 * machine constraints permit this operation.
2376 */
2377 int regulator_disable_deferred(struct regulator *regulator, int ms)
2378 {
2379 struct regulator_dev *rdev = regulator->rdev;
2380
2381 if (regulator->always_on)
2382 return 0;
2383
2384 if (!ms)
2385 return regulator_disable(regulator);
2386
2387 mutex_lock(&rdev->mutex);
2388 rdev->deferred_disables++;
2389 mutex_unlock(&rdev->mutex);
2390
2391 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2392 msecs_to_jiffies(ms));
2393 return 0;
2394 }
2395 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2396
2397 static int _regulator_is_enabled(struct regulator_dev *rdev)
2398 {
2399 /* A GPIO control always takes precedence */
2400 if (rdev->ena_pin)
2401 return rdev->ena_gpio_state;
2402
2403 /* If we don't know then assume that the regulator is always on */
2404 if (!rdev->desc->ops->is_enabled)
2405 return 1;
2406
2407 return rdev->desc->ops->is_enabled(rdev);
2408 }
2409
2410 static int _regulator_list_voltage(struct regulator *regulator,
2411 unsigned selector, int lock)
2412 {
2413 struct regulator_dev *rdev = regulator->rdev;
2414 const struct regulator_ops *ops = rdev->desc->ops;
2415 int ret;
2416
2417 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2418 return rdev->desc->fixed_uV;
2419
2420 if (ops->list_voltage) {
2421 if (selector >= rdev->desc->n_voltages)
2422 return -EINVAL;
2423 if (lock)
2424 mutex_lock(&rdev->mutex);
2425 ret = ops->list_voltage(rdev, selector);
2426 if (lock)
2427 mutex_unlock(&rdev->mutex);
2428 } else if (rdev->supply) {
2429 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2430 } else {
2431 return -EINVAL;
2432 }
2433
2434 if (ret > 0) {
2435 if (ret < rdev->constraints->min_uV)
2436 ret = 0;
2437 else if (ret > rdev->constraints->max_uV)
2438 ret = 0;
2439 }
2440
2441 return ret;
2442 }
2443
2444 /**
2445 * regulator_is_enabled - is the regulator output enabled
2446 * @regulator: regulator source
2447 *
2448 * Returns positive if the regulator driver backing the source/client
2449 * has requested that the device be enabled, zero if it hasn't, else a
2450 * negative errno code.
2451 *
2452 * Note that the device backing this regulator handle can have multiple
2453 * users, so it might be enabled even if regulator_enable() was never
2454 * called for this particular source.
2455 */
2456 int regulator_is_enabled(struct regulator *regulator)
2457 {
2458 int ret;
2459
2460 if (regulator->always_on)
2461 return 1;
2462
2463 mutex_lock(&regulator->rdev->mutex);
2464 ret = _regulator_is_enabled(regulator->rdev);
2465 mutex_unlock(&regulator->rdev->mutex);
2466
2467 return ret;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2470
2471 /**
2472 * regulator_can_change_voltage - check if regulator can change voltage
2473 * @regulator: regulator source
2474 *
2475 * Returns positive if the regulator driver backing the source/client
2476 * can change its voltage, false otherwise. Useful for detecting fixed
2477 * or dummy regulators and disabling voltage change logic in the client
2478 * driver.
2479 */
2480 int regulator_can_change_voltage(struct regulator *regulator)
2481 {
2482 struct regulator_dev *rdev = regulator->rdev;
2483
2484 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2485 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2486 return 1;
2487
2488 if (rdev->desc->continuous_voltage_range &&
2489 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2490 rdev->constraints->min_uV != rdev->constraints->max_uV)
2491 return 1;
2492 }
2493
2494 return 0;
2495 }
2496 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2497
2498 /**
2499 * regulator_count_voltages - count regulator_list_voltage() selectors
2500 * @regulator: regulator source
2501 *
2502 * Returns number of selectors, or negative errno. Selectors are
2503 * numbered starting at zero, and typically correspond to bitfields
2504 * in hardware registers.
2505 */
2506 int regulator_count_voltages(struct regulator *regulator)
2507 {
2508 struct regulator_dev *rdev = regulator->rdev;
2509
2510 if (rdev->desc->n_voltages)
2511 return rdev->desc->n_voltages;
2512
2513 if (!rdev->supply)
2514 return -EINVAL;
2515
2516 return regulator_count_voltages(rdev->supply);
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2519
2520 /**
2521 * regulator_list_voltage - enumerate supported voltages
2522 * @regulator: regulator source
2523 * @selector: identify voltage to list
2524 * Context: can sleep
2525 *
2526 * Returns a voltage that can be passed to @regulator_set_voltage(),
2527 * zero if this selector code can't be used on this system, or a
2528 * negative errno.
2529 */
2530 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2531 {
2532 return _regulator_list_voltage(regulator, selector, 1);
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2535
2536 /**
2537 * regulator_get_regmap - get the regulator's register map
2538 * @regulator: regulator source
2539 *
2540 * Returns the register map for the given regulator, or an ERR_PTR value
2541 * if the regulator doesn't use regmap.
2542 */
2543 struct regmap *regulator_get_regmap(struct regulator *regulator)
2544 {
2545 struct regmap *map = regulator->rdev->regmap;
2546
2547 return map ? map : ERR_PTR(-EOPNOTSUPP);
2548 }
2549
2550 /**
2551 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2552 * @regulator: regulator source
2553 * @vsel_reg: voltage selector register, output parameter
2554 * @vsel_mask: mask for voltage selector bitfield, output parameter
2555 *
2556 * Returns the hardware register offset and bitmask used for setting the
2557 * regulator voltage. This might be useful when configuring voltage-scaling
2558 * hardware or firmware that can make I2C requests behind the kernel's back,
2559 * for example.
2560 *
2561 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2562 * and 0 is returned, otherwise a negative errno is returned.
2563 */
2564 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2565 unsigned *vsel_reg,
2566 unsigned *vsel_mask)
2567 {
2568 struct regulator_dev *rdev = regulator->rdev;
2569 const struct regulator_ops *ops = rdev->desc->ops;
2570
2571 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2572 return -EOPNOTSUPP;
2573
2574 *vsel_reg = rdev->desc->vsel_reg;
2575 *vsel_mask = rdev->desc->vsel_mask;
2576
2577 return 0;
2578 }
2579 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2580
2581 /**
2582 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2583 * @regulator: regulator source
2584 * @selector: identify voltage to list
2585 *
2586 * Converts the selector to a hardware-specific voltage selector that can be
2587 * directly written to the regulator registers. The address of the voltage
2588 * register can be determined by calling @regulator_get_hardware_vsel_register.
2589 *
2590 * On error a negative errno is returned.
2591 */
2592 int regulator_list_hardware_vsel(struct regulator *regulator,
2593 unsigned selector)
2594 {
2595 struct regulator_dev *rdev = regulator->rdev;
2596 const struct regulator_ops *ops = rdev->desc->ops;
2597
2598 if (selector >= rdev->desc->n_voltages)
2599 return -EINVAL;
2600 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2601 return -EOPNOTSUPP;
2602
2603 return selector;
2604 }
2605 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2606
2607 /**
2608 * regulator_get_linear_step - return the voltage step size between VSEL values
2609 * @regulator: regulator source
2610 *
2611 * Returns the voltage step size between VSEL values for linear
2612 * regulators, or return 0 if the regulator isn't a linear regulator.
2613 */
2614 unsigned int regulator_get_linear_step(struct regulator *regulator)
2615 {
2616 struct regulator_dev *rdev = regulator->rdev;
2617
2618 return rdev->desc->uV_step;
2619 }
2620 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2621
2622 /**
2623 * regulator_is_supported_voltage - check if a voltage range can be supported
2624 *
2625 * @regulator: Regulator to check.
2626 * @min_uV: Minimum required voltage in uV.
2627 * @max_uV: Maximum required voltage in uV.
2628 *
2629 * Returns a boolean or a negative error code.
2630 */
2631 int regulator_is_supported_voltage(struct regulator *regulator,
2632 int min_uV, int max_uV)
2633 {
2634 struct regulator_dev *rdev = regulator->rdev;
2635 int i, voltages, ret;
2636
2637 /* If we can't change voltage check the current voltage */
2638 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2639 ret = regulator_get_voltage(regulator);
2640 if (ret >= 0)
2641 return min_uV <= ret && ret <= max_uV;
2642 else
2643 return ret;
2644 }
2645
2646 /* Any voltage within constrains range is fine? */
2647 if (rdev->desc->continuous_voltage_range)
2648 return min_uV >= rdev->constraints->min_uV &&
2649 max_uV <= rdev->constraints->max_uV;
2650
2651 ret = regulator_count_voltages(regulator);
2652 if (ret < 0)
2653 return ret;
2654 voltages = ret;
2655
2656 for (i = 0; i < voltages; i++) {
2657 ret = regulator_list_voltage(regulator, i);
2658
2659 if (ret >= min_uV && ret <= max_uV)
2660 return 1;
2661 }
2662
2663 return 0;
2664 }
2665 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2666
2667 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2668 int max_uV)
2669 {
2670 const struct regulator_desc *desc = rdev->desc;
2671
2672 if (desc->ops->map_voltage)
2673 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2674
2675 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2676 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2677
2678 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2679 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2680
2681 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2682 }
2683
2684 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2685 int min_uV, int max_uV,
2686 unsigned *selector)
2687 {
2688 struct pre_voltage_change_data data;
2689 int ret;
2690
2691 data.old_uV = _regulator_get_voltage(rdev);
2692 data.min_uV = min_uV;
2693 data.max_uV = max_uV;
2694 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2695 &data);
2696 if (ret & NOTIFY_STOP_MASK)
2697 return -EINVAL;
2698
2699 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2700 if (ret >= 0)
2701 return ret;
2702
2703 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2704 (void *)data.old_uV);
2705
2706 return ret;
2707 }
2708
2709 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2710 int uV, unsigned selector)
2711 {
2712 struct pre_voltage_change_data data;
2713 int ret;
2714
2715 data.old_uV = _regulator_get_voltage(rdev);
2716 data.min_uV = uV;
2717 data.max_uV = uV;
2718 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2719 &data);
2720 if (ret & NOTIFY_STOP_MASK)
2721 return -EINVAL;
2722
2723 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2724 if (ret >= 0)
2725 return ret;
2726
2727 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2728 (void *)data.old_uV);
2729
2730 return ret;
2731 }
2732
2733 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2734 int min_uV, int max_uV)
2735 {
2736 int ret;
2737 int delay = 0;
2738 int best_val = 0;
2739 unsigned int selector;
2740 int old_selector = -1;
2741
2742 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2743
2744 min_uV += rdev->constraints->uV_offset;
2745 max_uV += rdev->constraints->uV_offset;
2746
2747 /*
2748 * If we can't obtain the old selector there is not enough
2749 * info to call set_voltage_time_sel().
2750 */
2751 if (_regulator_is_enabled(rdev) &&
2752 rdev->desc->ops->set_voltage_time_sel &&
2753 rdev->desc->ops->get_voltage_sel) {
2754 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2755 if (old_selector < 0)
2756 return old_selector;
2757 }
2758
2759 if (rdev->desc->ops->set_voltage) {
2760 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2761 &selector);
2762
2763 if (ret >= 0) {
2764 if (rdev->desc->ops->list_voltage)
2765 best_val = rdev->desc->ops->list_voltage(rdev,
2766 selector);
2767 else
2768 best_val = _regulator_get_voltage(rdev);
2769 }
2770
2771 } else if (rdev->desc->ops->set_voltage_sel) {
2772 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2773 if (ret >= 0) {
2774 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2775 if (min_uV <= best_val && max_uV >= best_val) {
2776 selector = ret;
2777 if (old_selector == selector)
2778 ret = 0;
2779 else
2780 ret = _regulator_call_set_voltage_sel(
2781 rdev, best_val, selector);
2782 } else {
2783 ret = -EINVAL;
2784 }
2785 }
2786 } else {
2787 ret = -EINVAL;
2788 }
2789
2790 /* Call set_voltage_time_sel if successfully obtained old_selector */
2791 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2792 && old_selector != selector) {
2793
2794 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2795 old_selector, selector);
2796 if (delay < 0) {
2797 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2798 delay);
2799 delay = 0;
2800 }
2801
2802 /* Insert any necessary delays */
2803 if (delay >= 1000) {
2804 mdelay(delay / 1000);
2805 udelay(delay % 1000);
2806 } else if (delay) {
2807 udelay(delay);
2808 }
2809 }
2810
2811 if (ret == 0 && best_val >= 0) {
2812 unsigned long data = best_val;
2813
2814 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2815 (void *)data);
2816 }
2817
2818 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2819
2820 return ret;
2821 }
2822
2823 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2824 int min_uV, int max_uV)
2825 {
2826 struct regulator_dev *rdev = regulator->rdev;
2827 int ret = 0;
2828 int old_min_uV, old_max_uV;
2829 int current_uV;
2830 int best_supply_uV = 0;
2831 int supply_change_uV = 0;
2832
2833 /* If we're setting the same range as last time the change
2834 * should be a noop (some cpufreq implementations use the same
2835 * voltage for multiple frequencies, for example).
2836 */
2837 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2838 goto out;
2839
2840 /* If we're trying to set a range that overlaps the current voltage,
2841 * return successfully even though the regulator does not support
2842 * changing the voltage.
2843 */
2844 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2845 current_uV = _regulator_get_voltage(rdev);
2846 if (min_uV <= current_uV && current_uV <= max_uV) {
2847 regulator->min_uV = min_uV;
2848 regulator->max_uV = max_uV;
2849 goto out;
2850 }
2851 }
2852
2853 /* sanity check */
2854 if (!rdev->desc->ops->set_voltage &&
2855 !rdev->desc->ops->set_voltage_sel) {
2856 ret = -EINVAL;
2857 goto out;
2858 }
2859
2860 /* constraints check */
2861 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2862 if (ret < 0)
2863 goto out;
2864
2865 /* restore original values in case of error */
2866 old_min_uV = regulator->min_uV;
2867 old_max_uV = regulator->max_uV;
2868 regulator->min_uV = min_uV;
2869 regulator->max_uV = max_uV;
2870
2871 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2872 if (ret < 0)
2873 goto out2;
2874
2875 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2876 !rdev->desc->ops->get_voltage)) {
2877 int current_supply_uV;
2878 int selector;
2879
2880 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2881 if (selector < 0) {
2882 ret = selector;
2883 goto out2;
2884 }
2885
2886 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2887 if (best_supply_uV < 0) {
2888 ret = best_supply_uV;
2889 goto out2;
2890 }
2891
2892 best_supply_uV += rdev->desc->min_dropout_uV;
2893
2894 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2895 if (current_supply_uV < 0) {
2896 ret = current_supply_uV;
2897 goto out2;
2898 }
2899
2900 supply_change_uV = best_supply_uV - current_supply_uV;
2901 }
2902
2903 if (supply_change_uV > 0) {
2904 ret = regulator_set_voltage_unlocked(rdev->supply,
2905 best_supply_uV, INT_MAX);
2906 if (ret) {
2907 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2908 ret);
2909 goto out2;
2910 }
2911 }
2912
2913 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2914 if (ret < 0)
2915 goto out2;
2916
2917 if (supply_change_uV < 0) {
2918 ret = regulator_set_voltage_unlocked(rdev->supply,
2919 best_supply_uV, INT_MAX);
2920 if (ret)
2921 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2922 ret);
2923 /* No need to fail here */
2924 ret = 0;
2925 }
2926
2927 out:
2928 return ret;
2929 out2:
2930 regulator->min_uV = old_min_uV;
2931 regulator->max_uV = old_max_uV;
2932
2933 return ret;
2934 }
2935
2936 /**
2937 * regulator_set_voltage - set regulator output voltage
2938 * @regulator: regulator source
2939 * @min_uV: Minimum required voltage in uV
2940 * @max_uV: Maximum acceptable voltage in uV
2941 *
2942 * Sets a voltage regulator to the desired output voltage. This can be set
2943 * during any regulator state. IOW, regulator can be disabled or enabled.
2944 *
2945 * If the regulator is enabled then the voltage will change to the new value
2946 * immediately otherwise if the regulator is disabled the regulator will
2947 * output at the new voltage when enabled.
2948 *
2949 * NOTE: If the regulator is shared between several devices then the lowest
2950 * request voltage that meets the system constraints will be used.
2951 * Regulator system constraints must be set for this regulator before
2952 * calling this function otherwise this call will fail.
2953 */
2954 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2955 {
2956 int ret = 0;
2957
2958 regulator_lock_supply(regulator->rdev);
2959
2960 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2961
2962 regulator_unlock_supply(regulator->rdev);
2963
2964 return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2967
2968 /**
2969 * regulator_set_voltage_time - get raise/fall time
2970 * @regulator: regulator source
2971 * @old_uV: starting voltage in microvolts
2972 * @new_uV: target voltage in microvolts
2973 *
2974 * Provided with the starting and ending voltage, this function attempts to
2975 * calculate the time in microseconds required to rise or fall to this new
2976 * voltage.
2977 */
2978 int regulator_set_voltage_time(struct regulator *regulator,
2979 int old_uV, int new_uV)
2980 {
2981 struct regulator_dev *rdev = regulator->rdev;
2982 const struct regulator_ops *ops = rdev->desc->ops;
2983 int old_sel = -1;
2984 int new_sel = -1;
2985 int voltage;
2986 int i;
2987
2988 /* Currently requires operations to do this */
2989 if (!ops->list_voltage || !ops->set_voltage_time_sel
2990 || !rdev->desc->n_voltages)
2991 return -EINVAL;
2992
2993 for (i = 0; i < rdev->desc->n_voltages; i++) {
2994 /* We only look for exact voltage matches here */
2995 voltage = regulator_list_voltage(regulator, i);
2996 if (voltage < 0)
2997 return -EINVAL;
2998 if (voltage == 0)
2999 continue;
3000 if (voltage == old_uV)
3001 old_sel = i;
3002 if (voltage == new_uV)
3003 new_sel = i;
3004 }
3005
3006 if (old_sel < 0 || new_sel < 0)
3007 return -EINVAL;
3008
3009 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3010 }
3011 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3012
3013 /**
3014 * regulator_set_voltage_time_sel - get raise/fall time
3015 * @rdev: regulator source device
3016 * @old_selector: selector for starting voltage
3017 * @new_selector: selector for target voltage
3018 *
3019 * Provided with the starting and target voltage selectors, this function
3020 * returns time in microseconds required to rise or fall to this new voltage
3021 *
3022 * Drivers providing ramp_delay in regulation_constraints can use this as their
3023 * set_voltage_time_sel() operation.
3024 */
3025 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3026 unsigned int old_selector,
3027 unsigned int new_selector)
3028 {
3029 unsigned int ramp_delay = 0;
3030 int old_volt, new_volt;
3031
3032 if (rdev->constraints->ramp_delay)
3033 ramp_delay = rdev->constraints->ramp_delay;
3034 else if (rdev->desc->ramp_delay)
3035 ramp_delay = rdev->desc->ramp_delay;
3036
3037 if (ramp_delay == 0) {
3038 rdev_warn(rdev, "ramp_delay not set\n");
3039 return 0;
3040 }
3041
3042 /* sanity check */
3043 if (!rdev->desc->ops->list_voltage)
3044 return -EINVAL;
3045
3046 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3047 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3048
3049 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3050 }
3051 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3052
3053 /**
3054 * regulator_sync_voltage - re-apply last regulator output voltage
3055 * @regulator: regulator source
3056 *
3057 * Re-apply the last configured voltage. This is intended to be used
3058 * where some external control source the consumer is cooperating with
3059 * has caused the configured voltage to change.
3060 */
3061 int regulator_sync_voltage(struct regulator *regulator)
3062 {
3063 struct regulator_dev *rdev = regulator->rdev;
3064 int ret, min_uV, max_uV;
3065
3066 mutex_lock(&rdev->mutex);
3067
3068 if (!rdev->desc->ops->set_voltage &&
3069 !rdev->desc->ops->set_voltage_sel) {
3070 ret = -EINVAL;
3071 goto out;
3072 }
3073
3074 /* This is only going to work if we've had a voltage configured. */
3075 if (!regulator->min_uV && !regulator->max_uV) {
3076 ret = -EINVAL;
3077 goto out;
3078 }
3079
3080 min_uV = regulator->min_uV;
3081 max_uV = regulator->max_uV;
3082
3083 /* This should be a paranoia check... */
3084 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3085 if (ret < 0)
3086 goto out;
3087
3088 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3089 if (ret < 0)
3090 goto out;
3091
3092 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3093
3094 out:
3095 mutex_unlock(&rdev->mutex);
3096 return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3099
3100 static int _regulator_get_voltage(struct regulator_dev *rdev)
3101 {
3102 int sel, ret;
3103
3104 if (rdev->desc->ops->get_voltage_sel) {
3105 sel = rdev->desc->ops->get_voltage_sel(rdev);
3106 if (sel < 0)
3107 return sel;
3108 ret = rdev->desc->ops->list_voltage(rdev, sel);
3109 } else if (rdev->desc->ops->get_voltage) {
3110 ret = rdev->desc->ops->get_voltage(rdev);
3111 } else if (rdev->desc->ops->list_voltage) {
3112 ret = rdev->desc->ops->list_voltage(rdev, 0);
3113 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3114 ret = rdev->desc->fixed_uV;
3115 } else if (rdev->supply) {
3116 ret = _regulator_get_voltage(rdev->supply->rdev);
3117 } else {
3118 return -EINVAL;
3119 }
3120
3121 if (ret < 0)
3122 return ret;
3123 return ret - rdev->constraints->uV_offset;
3124 }
3125
3126 /**
3127 * regulator_get_voltage - get regulator output voltage
3128 * @regulator: regulator source
3129 *
3130 * This returns the current regulator voltage in uV.
3131 *
3132 * NOTE: If the regulator is disabled it will return the voltage value. This
3133 * function should not be used to determine regulator state.
3134 */
3135 int regulator_get_voltage(struct regulator *regulator)
3136 {
3137 int ret;
3138
3139 regulator_lock_supply(regulator->rdev);
3140
3141 ret = _regulator_get_voltage(regulator->rdev);
3142
3143 regulator_unlock_supply(regulator->rdev);
3144
3145 return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3148
3149 /**
3150 * regulator_set_current_limit - set regulator output current limit
3151 * @regulator: regulator source
3152 * @min_uA: Minimum supported current in uA
3153 * @max_uA: Maximum supported current in uA
3154 *
3155 * Sets current sink to the desired output current. This can be set during
3156 * any regulator state. IOW, regulator can be disabled or enabled.
3157 *
3158 * If the regulator is enabled then the current will change to the new value
3159 * immediately otherwise if the regulator is disabled the regulator will
3160 * output at the new current when enabled.
3161 *
3162 * NOTE: Regulator system constraints must be set for this regulator before
3163 * calling this function otherwise this call will fail.
3164 */
3165 int regulator_set_current_limit(struct regulator *regulator,
3166 int min_uA, int max_uA)
3167 {
3168 struct regulator_dev *rdev = regulator->rdev;
3169 int ret;
3170
3171 mutex_lock(&rdev->mutex);
3172
3173 /* sanity check */
3174 if (!rdev->desc->ops->set_current_limit) {
3175 ret = -EINVAL;
3176 goto out;
3177 }
3178
3179 /* constraints check */
3180 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3181 if (ret < 0)
3182 goto out;
3183
3184 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3185 out:
3186 mutex_unlock(&rdev->mutex);
3187 return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3190
3191 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3192 {
3193 int ret;
3194
3195 mutex_lock(&rdev->mutex);
3196
3197 /* sanity check */
3198 if (!rdev->desc->ops->get_current_limit) {
3199 ret = -EINVAL;
3200 goto out;
3201 }
3202
3203 ret = rdev->desc->ops->get_current_limit(rdev);
3204 out:
3205 mutex_unlock(&rdev->mutex);
3206 return ret;
3207 }
3208
3209 /**
3210 * regulator_get_current_limit - get regulator output current
3211 * @regulator: regulator source
3212 *
3213 * This returns the current supplied by the specified current sink in uA.
3214 *
3215 * NOTE: If the regulator is disabled it will return the current value. This
3216 * function should not be used to determine regulator state.
3217 */
3218 int regulator_get_current_limit(struct regulator *regulator)
3219 {
3220 return _regulator_get_current_limit(regulator->rdev);
3221 }
3222 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3223
3224 /**
3225 * regulator_set_mode - set regulator operating mode
3226 * @regulator: regulator source
3227 * @mode: operating mode - one of the REGULATOR_MODE constants
3228 *
3229 * Set regulator operating mode to increase regulator efficiency or improve
3230 * regulation performance.
3231 *
3232 * NOTE: Regulator system constraints must be set for this regulator before
3233 * calling this function otherwise this call will fail.
3234 */
3235 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3236 {
3237 struct regulator_dev *rdev = regulator->rdev;
3238 int ret;
3239 int regulator_curr_mode;
3240
3241 mutex_lock(&rdev->mutex);
3242
3243 /* sanity check */
3244 if (!rdev->desc->ops->set_mode) {
3245 ret = -EINVAL;
3246 goto out;
3247 }
3248
3249 /* return if the same mode is requested */
3250 if (rdev->desc->ops->get_mode) {
3251 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3252 if (regulator_curr_mode == mode) {
3253 ret = 0;
3254 goto out;
3255 }
3256 }
3257
3258 /* constraints check */
3259 ret = regulator_mode_constrain(rdev, &mode);
3260 if (ret < 0)
3261 goto out;
3262
3263 ret = rdev->desc->ops->set_mode(rdev, mode);
3264 out:
3265 mutex_unlock(&rdev->mutex);
3266 return ret;
3267 }
3268 EXPORT_SYMBOL_GPL(regulator_set_mode);
3269
3270 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3271 {
3272 int ret;
3273
3274 mutex_lock(&rdev->mutex);
3275
3276 /* sanity check */
3277 if (!rdev->desc->ops->get_mode) {
3278 ret = -EINVAL;
3279 goto out;
3280 }
3281
3282 ret = rdev->desc->ops->get_mode(rdev);
3283 out:
3284 mutex_unlock(&rdev->mutex);
3285 return ret;
3286 }
3287
3288 /**
3289 * regulator_get_mode - get regulator operating mode
3290 * @regulator: regulator source
3291 *
3292 * Get the current regulator operating mode.
3293 */
3294 unsigned int regulator_get_mode(struct regulator *regulator)
3295 {
3296 return _regulator_get_mode(regulator->rdev);
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_get_mode);
3299
3300 /**
3301 * regulator_set_load - set regulator load
3302 * @regulator: regulator source
3303 * @uA_load: load current
3304 *
3305 * Notifies the regulator core of a new device load. This is then used by
3306 * DRMS (if enabled by constraints) to set the most efficient regulator
3307 * operating mode for the new regulator loading.
3308 *
3309 * Consumer devices notify their supply regulator of the maximum power
3310 * they will require (can be taken from device datasheet in the power
3311 * consumption tables) when they change operational status and hence power
3312 * state. Examples of operational state changes that can affect power
3313 * consumption are :-
3314 *
3315 * o Device is opened / closed.
3316 * o Device I/O is about to begin or has just finished.
3317 * o Device is idling in between work.
3318 *
3319 * This information is also exported via sysfs to userspace.
3320 *
3321 * DRMS will sum the total requested load on the regulator and change
3322 * to the most efficient operating mode if platform constraints allow.
3323 *
3324 * On error a negative errno is returned.
3325 */
3326 int regulator_set_load(struct regulator *regulator, int uA_load)
3327 {
3328 struct regulator_dev *rdev = regulator->rdev;
3329 int ret;
3330
3331 mutex_lock(&rdev->mutex);
3332 regulator->uA_load = uA_load;
3333 ret = drms_uA_update(rdev);
3334 mutex_unlock(&rdev->mutex);
3335
3336 return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(regulator_set_load);
3339
3340 /**
3341 * regulator_allow_bypass - allow the regulator to go into bypass mode
3342 *
3343 * @regulator: Regulator to configure
3344 * @enable: enable or disable bypass mode
3345 *
3346 * Allow the regulator to go into bypass mode if all other consumers
3347 * for the regulator also enable bypass mode and the machine
3348 * constraints allow this. Bypass mode means that the regulator is
3349 * simply passing the input directly to the output with no regulation.
3350 */
3351 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3352 {
3353 struct regulator_dev *rdev = regulator->rdev;
3354 int ret = 0;
3355
3356 if (!rdev->desc->ops->set_bypass)
3357 return 0;
3358
3359 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3360 return 0;
3361
3362 mutex_lock(&rdev->mutex);
3363
3364 if (enable && !regulator->bypass) {
3365 rdev->bypass_count++;
3366
3367 if (rdev->bypass_count == rdev->open_count) {
3368 ret = rdev->desc->ops->set_bypass(rdev, enable);
3369 if (ret != 0)
3370 rdev->bypass_count--;
3371 }
3372
3373 } else if (!enable && regulator->bypass) {
3374 rdev->bypass_count--;
3375
3376 if (rdev->bypass_count != rdev->open_count) {
3377 ret = rdev->desc->ops->set_bypass(rdev, enable);
3378 if (ret != 0)
3379 rdev->bypass_count++;
3380 }
3381 }
3382
3383 if (ret == 0)
3384 regulator->bypass = enable;
3385
3386 mutex_unlock(&rdev->mutex);
3387
3388 return ret;
3389 }
3390 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3391
3392 /**
3393 * regulator_register_notifier - register regulator event notifier
3394 * @regulator: regulator source
3395 * @nb: notifier block
3396 *
3397 * Register notifier block to receive regulator events.
3398 */
3399 int regulator_register_notifier(struct regulator *regulator,
3400 struct notifier_block *nb)
3401 {
3402 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3403 nb);
3404 }
3405 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3406
3407 /**
3408 * regulator_unregister_notifier - unregister regulator event notifier
3409 * @regulator: regulator source
3410 * @nb: notifier block
3411 *
3412 * Unregister regulator event notifier block.
3413 */
3414 int regulator_unregister_notifier(struct regulator *regulator,
3415 struct notifier_block *nb)
3416 {
3417 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3418 nb);
3419 }
3420 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3421
3422 /* notify regulator consumers and downstream regulator consumers.
3423 * Note mutex must be held by caller.
3424 */
3425 static int _notifier_call_chain(struct regulator_dev *rdev,
3426 unsigned long event, void *data)
3427 {
3428 /* call rdev chain first */
3429 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3430 }
3431
3432 /**
3433 * regulator_bulk_get - get multiple regulator consumers
3434 *
3435 * @dev: Device to supply
3436 * @num_consumers: Number of consumers to register
3437 * @consumers: Configuration of consumers; clients are stored here.
3438 *
3439 * @return 0 on success, an errno on failure.
3440 *
3441 * This helper function allows drivers to get several regulator
3442 * consumers in one operation. If any of the regulators cannot be
3443 * acquired then any regulators that were allocated will be freed
3444 * before returning to the caller.
3445 */
3446 int regulator_bulk_get(struct device *dev, int num_consumers,
3447 struct regulator_bulk_data *consumers)
3448 {
3449 int i;
3450 int ret;
3451
3452 for (i = 0; i < num_consumers; i++)
3453 consumers[i].consumer = NULL;
3454
3455 for (i = 0; i < num_consumers; i++) {
3456 consumers[i].consumer = _regulator_get(dev,
3457 consumers[i].supply,
3458 false,
3459 !consumers[i].optional);
3460 if (IS_ERR(consumers[i].consumer)) {
3461 ret = PTR_ERR(consumers[i].consumer);
3462 dev_err(dev, "Failed to get supply '%s': %d\n",
3463 consumers[i].supply, ret);
3464 consumers[i].consumer = NULL;
3465 goto err;
3466 }
3467 }
3468
3469 return 0;
3470
3471 err:
3472 while (--i >= 0)
3473 regulator_put(consumers[i].consumer);
3474
3475 return ret;
3476 }
3477 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3478
3479 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3480 {
3481 struct regulator_bulk_data *bulk = data;
3482
3483 bulk->ret = regulator_enable(bulk->consumer);
3484 }
3485
3486 /**
3487 * regulator_bulk_enable - enable multiple regulator consumers
3488 *
3489 * @num_consumers: Number of consumers
3490 * @consumers: Consumer data; clients are stored here.
3491 * @return 0 on success, an errno on failure
3492 *
3493 * This convenience API allows consumers to enable multiple regulator
3494 * clients in a single API call. If any consumers cannot be enabled
3495 * then any others that were enabled will be disabled again prior to
3496 * return.
3497 */
3498 int regulator_bulk_enable(int num_consumers,
3499 struct regulator_bulk_data *consumers)
3500 {
3501 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3502 int i;
3503 int ret = 0;
3504
3505 for (i = 0; i < num_consumers; i++) {
3506 if (consumers[i].consumer->always_on)
3507 consumers[i].ret = 0;
3508 else
3509 async_schedule_domain(regulator_bulk_enable_async,
3510 &consumers[i], &async_domain);
3511 }
3512
3513 async_synchronize_full_domain(&async_domain);
3514
3515 /* If any consumer failed we need to unwind any that succeeded */
3516 for (i = 0; i < num_consumers; i++) {
3517 if (consumers[i].ret != 0) {
3518 ret = consumers[i].ret;
3519 goto err;
3520 }
3521 }
3522
3523 return 0;
3524
3525 err:
3526 for (i = 0; i < num_consumers; i++) {
3527 if (consumers[i].ret < 0)
3528 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3529 consumers[i].ret);
3530 else
3531 regulator_disable(consumers[i].consumer);
3532 }
3533
3534 return ret;
3535 }
3536 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3537
3538 /**
3539 * regulator_bulk_disable - disable multiple regulator consumers
3540 *
3541 * @num_consumers: Number of consumers
3542 * @consumers: Consumer data; clients are stored here.
3543 * @return 0 on success, an errno on failure
3544 *
3545 * This convenience API allows consumers to disable multiple regulator
3546 * clients in a single API call. If any consumers cannot be disabled
3547 * then any others that were disabled will be enabled again prior to
3548 * return.
3549 */
3550 int regulator_bulk_disable(int num_consumers,
3551 struct regulator_bulk_data *consumers)
3552 {
3553 int i;
3554 int ret, r;
3555
3556 for (i = num_consumers - 1; i >= 0; --i) {
3557 ret = regulator_disable(consumers[i].consumer);
3558 if (ret != 0)
3559 goto err;
3560 }
3561
3562 return 0;
3563
3564 err:
3565 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3566 for (++i; i < num_consumers; ++i) {
3567 r = regulator_enable(consumers[i].consumer);
3568 if (r != 0)
3569 pr_err("Failed to reename %s: %d\n",
3570 consumers[i].supply, r);
3571 }
3572
3573 return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3576
3577 /**
3578 * regulator_bulk_force_disable - force disable multiple regulator consumers
3579 *
3580 * @num_consumers: Number of consumers
3581 * @consumers: Consumer data; clients are stored here.
3582 * @return 0 on success, an errno on failure
3583 *
3584 * This convenience API allows consumers to forcibly disable multiple regulator
3585 * clients in a single API call.
3586 * NOTE: This should be used for situations when device damage will
3587 * likely occur if the regulators are not disabled (e.g. over temp).
3588 * Although regulator_force_disable function call for some consumers can
3589 * return error numbers, the function is called for all consumers.
3590 */
3591 int regulator_bulk_force_disable(int num_consumers,
3592 struct regulator_bulk_data *consumers)
3593 {
3594 int i;
3595 int ret;
3596
3597 for (i = 0; i < num_consumers; i++)
3598 consumers[i].ret =
3599 regulator_force_disable(consumers[i].consumer);
3600
3601 for (i = 0; i < num_consumers; i++) {
3602 if (consumers[i].ret != 0) {
3603 ret = consumers[i].ret;
3604 goto out;
3605 }
3606 }
3607
3608 return 0;
3609 out:
3610 return ret;
3611 }
3612 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3613
3614 /**
3615 * regulator_bulk_free - free multiple regulator consumers
3616 *
3617 * @num_consumers: Number of consumers
3618 * @consumers: Consumer data; clients are stored here.
3619 *
3620 * This convenience API allows consumers to free multiple regulator
3621 * clients in a single API call.
3622 */
3623 void regulator_bulk_free(int num_consumers,
3624 struct regulator_bulk_data *consumers)
3625 {
3626 int i;
3627
3628 for (i = 0; i < num_consumers; i++) {
3629 regulator_put(consumers[i].consumer);
3630 consumers[i].consumer = NULL;
3631 }
3632 }
3633 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3634
3635 /**
3636 * regulator_notifier_call_chain - call regulator event notifier
3637 * @rdev: regulator source
3638 * @event: notifier block
3639 * @data: callback-specific data.
3640 *
3641 * Called by regulator drivers to notify clients a regulator event has
3642 * occurred. We also notify regulator clients downstream.
3643 * Note lock must be held by caller.
3644 */
3645 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3646 unsigned long event, void *data)
3647 {
3648 lockdep_assert_held_once(&rdev->mutex);
3649
3650 _notifier_call_chain(rdev, event, data);
3651 return NOTIFY_DONE;
3652
3653 }
3654 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3655
3656 /**
3657 * regulator_mode_to_status - convert a regulator mode into a status
3658 *
3659 * @mode: Mode to convert
3660 *
3661 * Convert a regulator mode into a status.
3662 */
3663 int regulator_mode_to_status(unsigned int mode)
3664 {
3665 switch (mode) {
3666 case REGULATOR_MODE_FAST:
3667 return REGULATOR_STATUS_FAST;
3668 case REGULATOR_MODE_NORMAL:
3669 return REGULATOR_STATUS_NORMAL;
3670 case REGULATOR_MODE_IDLE:
3671 return REGULATOR_STATUS_IDLE;
3672 case REGULATOR_MODE_STANDBY:
3673 return REGULATOR_STATUS_STANDBY;
3674 default:
3675 return REGULATOR_STATUS_UNDEFINED;
3676 }
3677 }
3678 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3679
3680 static struct attribute *regulator_dev_attrs[] = {
3681 &dev_attr_name.attr,
3682 &dev_attr_num_users.attr,
3683 &dev_attr_type.attr,
3684 &dev_attr_microvolts.attr,
3685 &dev_attr_microamps.attr,
3686 &dev_attr_opmode.attr,
3687 &dev_attr_state.attr,
3688 &dev_attr_status.attr,
3689 &dev_attr_bypass.attr,
3690 &dev_attr_requested_microamps.attr,
3691 &dev_attr_min_microvolts.attr,
3692 &dev_attr_max_microvolts.attr,
3693 &dev_attr_min_microamps.attr,
3694 &dev_attr_max_microamps.attr,
3695 &dev_attr_suspend_standby_state.attr,
3696 &dev_attr_suspend_mem_state.attr,
3697 &dev_attr_suspend_disk_state.attr,
3698 &dev_attr_suspend_standby_microvolts.attr,
3699 &dev_attr_suspend_mem_microvolts.attr,
3700 &dev_attr_suspend_disk_microvolts.attr,
3701 &dev_attr_suspend_standby_mode.attr,
3702 &dev_attr_suspend_mem_mode.attr,
3703 &dev_attr_suspend_disk_mode.attr,
3704 NULL
3705 };
3706
3707 /*
3708 * To avoid cluttering sysfs (and memory) with useless state, only
3709 * create attributes that can be meaningfully displayed.
3710 */
3711 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3712 struct attribute *attr, int idx)
3713 {
3714 struct device *dev = kobj_to_dev(kobj);
3715 struct regulator_dev *rdev = dev_to_rdev(dev);
3716 const struct regulator_ops *ops = rdev->desc->ops;
3717 umode_t mode = attr->mode;
3718
3719 /* these three are always present */
3720 if (attr == &dev_attr_name.attr ||
3721 attr == &dev_attr_num_users.attr ||
3722 attr == &dev_attr_type.attr)
3723 return mode;
3724
3725 /* some attributes need specific methods to be displayed */
3726 if (attr == &dev_attr_microvolts.attr) {
3727 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3728 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3729 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3730 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3731 return mode;
3732 return 0;
3733 }
3734
3735 if (attr == &dev_attr_microamps.attr)
3736 return ops->get_current_limit ? mode : 0;
3737
3738 if (attr == &dev_attr_opmode.attr)
3739 return ops->get_mode ? mode : 0;
3740
3741 if (attr == &dev_attr_state.attr)
3742 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3743
3744 if (attr == &dev_attr_status.attr)
3745 return ops->get_status ? mode : 0;
3746
3747 if (attr == &dev_attr_bypass.attr)
3748 return ops->get_bypass ? mode : 0;
3749
3750 /* some attributes are type-specific */
3751 if (attr == &dev_attr_requested_microamps.attr)
3752 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3753
3754 /* constraints need specific supporting methods */
3755 if (attr == &dev_attr_min_microvolts.attr ||
3756 attr == &dev_attr_max_microvolts.attr)
3757 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3758
3759 if (attr == &dev_attr_min_microamps.attr ||
3760 attr == &dev_attr_max_microamps.attr)
3761 return ops->set_current_limit ? mode : 0;
3762
3763 if (attr == &dev_attr_suspend_standby_state.attr ||
3764 attr == &dev_attr_suspend_mem_state.attr ||
3765 attr == &dev_attr_suspend_disk_state.attr)
3766 return mode;
3767
3768 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3769 attr == &dev_attr_suspend_mem_microvolts.attr ||
3770 attr == &dev_attr_suspend_disk_microvolts.attr)
3771 return ops->set_suspend_voltage ? mode : 0;
3772
3773 if (attr == &dev_attr_suspend_standby_mode.attr ||
3774 attr == &dev_attr_suspend_mem_mode.attr ||
3775 attr == &dev_attr_suspend_disk_mode.attr)
3776 return ops->set_suspend_mode ? mode : 0;
3777
3778 return mode;
3779 }
3780
3781 static const struct attribute_group regulator_dev_group = {
3782 .attrs = regulator_dev_attrs,
3783 .is_visible = regulator_attr_is_visible,
3784 };
3785
3786 static const struct attribute_group *regulator_dev_groups[] = {
3787 &regulator_dev_group,
3788 NULL
3789 };
3790
3791 static void regulator_dev_release(struct device *dev)
3792 {
3793 struct regulator_dev *rdev = dev_get_drvdata(dev);
3794
3795 kfree(rdev->constraints);
3796 of_node_put(rdev->dev.of_node);
3797 kfree(rdev);
3798 }
3799
3800 static struct class regulator_class = {
3801 .name = "regulator",
3802 .dev_release = regulator_dev_release,
3803 .dev_groups = regulator_dev_groups,
3804 };
3805
3806 static void rdev_init_debugfs(struct regulator_dev *rdev)
3807 {
3808 struct device *parent = rdev->dev.parent;
3809 const char *rname = rdev_get_name(rdev);
3810 char name[NAME_MAX];
3811
3812 /* Avoid duplicate debugfs directory names */
3813 if (parent && rname == rdev->desc->name) {
3814 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3815 rname);
3816 rname = name;
3817 }
3818
3819 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3820 if (!rdev->debugfs) {
3821 rdev_warn(rdev, "Failed to create debugfs directory\n");
3822 return;
3823 }
3824
3825 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3826 &rdev->use_count);
3827 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3828 &rdev->open_count);
3829 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3830 &rdev->bypass_count);
3831 }
3832
3833 /**
3834 * regulator_register - register regulator
3835 * @regulator_desc: regulator to register
3836 * @cfg: runtime configuration for regulator
3837 *
3838 * Called by regulator drivers to register a regulator.
3839 * Returns a valid pointer to struct regulator_dev on success
3840 * or an ERR_PTR() on error.
3841 */
3842 struct regulator_dev *
3843 regulator_register(const struct regulator_desc *regulator_desc,
3844 const struct regulator_config *cfg)
3845 {
3846 const struct regulation_constraints *constraints = NULL;
3847 const struct regulator_init_data *init_data;
3848 struct regulator_config *config = NULL;
3849 static atomic_t regulator_no = ATOMIC_INIT(-1);
3850 struct regulator_dev *rdev;
3851 struct device *dev;
3852 int ret, i;
3853
3854 if (regulator_desc == NULL || cfg == NULL)
3855 return ERR_PTR(-EINVAL);
3856
3857 dev = cfg->dev;
3858 WARN_ON(!dev);
3859
3860 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3861 return ERR_PTR(-EINVAL);
3862
3863 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3864 regulator_desc->type != REGULATOR_CURRENT)
3865 return ERR_PTR(-EINVAL);
3866
3867 /* Only one of each should be implemented */
3868 WARN_ON(regulator_desc->ops->get_voltage &&
3869 regulator_desc->ops->get_voltage_sel);
3870 WARN_ON(regulator_desc->ops->set_voltage &&
3871 regulator_desc->ops->set_voltage_sel);
3872
3873 /* If we're using selectors we must implement list_voltage. */
3874 if (regulator_desc->ops->get_voltage_sel &&
3875 !regulator_desc->ops->list_voltage) {
3876 return ERR_PTR(-EINVAL);
3877 }
3878 if (regulator_desc->ops->set_voltage_sel &&
3879 !regulator_desc->ops->list_voltage) {
3880 return ERR_PTR(-EINVAL);
3881 }
3882
3883 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3884 if (rdev == NULL)
3885 return ERR_PTR(-ENOMEM);
3886
3887 /*
3888 * Duplicate the config so the driver could override it after
3889 * parsing init data.
3890 */
3891 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3892 if (config == NULL) {
3893 kfree(rdev);
3894 return ERR_PTR(-ENOMEM);
3895 }
3896
3897 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3898 &rdev->dev.of_node);
3899 if (!init_data) {
3900 init_data = config->init_data;
3901 rdev->dev.of_node = of_node_get(config->of_node);
3902 }
3903
3904 mutex_lock(&regulator_list_mutex);
3905
3906 mutex_init(&rdev->mutex);
3907 rdev->reg_data = config->driver_data;
3908 rdev->owner = regulator_desc->owner;
3909 rdev->desc = regulator_desc;
3910 if (config->regmap)
3911 rdev->regmap = config->regmap;
3912 else if (dev_get_regmap(dev, NULL))
3913 rdev->regmap = dev_get_regmap(dev, NULL);
3914 else if (dev->parent)
3915 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3916 INIT_LIST_HEAD(&rdev->consumer_list);
3917 INIT_LIST_HEAD(&rdev->list);
3918 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3919 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3920
3921 /* preform any regulator specific init */
3922 if (init_data && init_data->regulator_init) {
3923 ret = init_data->regulator_init(rdev->reg_data);
3924 if (ret < 0)
3925 goto clean;
3926 }
3927
3928 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3929 gpio_is_valid(config->ena_gpio)) {
3930 ret = regulator_ena_gpio_request(rdev, config);
3931 if (ret != 0) {
3932 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3933 config->ena_gpio, ret);
3934 goto clean;
3935 }
3936 }
3937
3938 /* register with sysfs */
3939 rdev->dev.class = &regulator_class;
3940 rdev->dev.parent = dev;
3941 dev_set_name(&rdev->dev, "regulator.%lu",
3942 (unsigned long) atomic_inc_return(&regulator_no));
3943 ret = device_register(&rdev->dev);
3944 if (ret != 0) {
3945 put_device(&rdev->dev);
3946 goto wash;
3947 }
3948
3949 dev_set_drvdata(&rdev->dev, rdev);
3950
3951 /* set regulator constraints */
3952 if (init_data)
3953 constraints = &init_data->constraints;
3954
3955 ret = set_machine_constraints(rdev, constraints);
3956 if (ret < 0)
3957 goto scrub;
3958
3959 if (init_data && init_data->supply_regulator)
3960 rdev->supply_name = init_data->supply_regulator;
3961 else if (regulator_desc->supply_name)
3962 rdev->supply_name = regulator_desc->supply_name;
3963
3964 /* add consumers devices */
3965 if (init_data) {
3966 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3967 ret = set_consumer_device_supply(rdev,
3968 init_data->consumer_supplies[i].dev_name,
3969 init_data->consumer_supplies[i].supply);
3970 if (ret < 0) {
3971 dev_err(dev, "Failed to set supply %s\n",
3972 init_data->consumer_supplies[i].supply);
3973 goto unset_supplies;
3974 }
3975 }
3976 }
3977
3978 rdev_init_debugfs(rdev);
3979 out:
3980 mutex_unlock(&regulator_list_mutex);
3981 kfree(config);
3982 return rdev;
3983
3984 unset_supplies:
3985 unset_regulator_supplies(rdev);
3986
3987 scrub:
3988 regulator_ena_gpio_free(rdev);
3989 device_unregister(&rdev->dev);
3990 /* device core frees rdev */
3991 rdev = ERR_PTR(ret);
3992 goto out;
3993
3994 wash:
3995 regulator_ena_gpio_free(rdev);
3996 clean:
3997 kfree(rdev);
3998 rdev = ERR_PTR(ret);
3999 goto out;
4000 }
4001 EXPORT_SYMBOL_GPL(regulator_register);
4002
4003 /**
4004 * regulator_unregister - unregister regulator
4005 * @rdev: regulator to unregister
4006 *
4007 * Called by regulator drivers to unregister a regulator.
4008 */
4009 void regulator_unregister(struct regulator_dev *rdev)
4010 {
4011 if (rdev == NULL)
4012 return;
4013
4014 if (rdev->supply) {
4015 while (rdev->use_count--)
4016 regulator_disable(rdev->supply);
4017 regulator_put(rdev->supply);
4018 }
4019 mutex_lock(&regulator_list_mutex);
4020 debugfs_remove_recursive(rdev->debugfs);
4021 flush_work(&rdev->disable_work.work);
4022 WARN_ON(rdev->open_count);
4023 unset_regulator_supplies(rdev);
4024 list_del(&rdev->list);
4025 mutex_unlock(&regulator_list_mutex);
4026 regulator_ena_gpio_free(rdev);
4027 device_unregister(&rdev->dev);
4028 }
4029 EXPORT_SYMBOL_GPL(regulator_unregister);
4030
4031 static int _regulator_suspend_prepare(struct device *dev, void *data)
4032 {
4033 struct regulator_dev *rdev = dev_to_rdev(dev);
4034 const suspend_state_t *state = data;
4035 int ret;
4036
4037 mutex_lock(&rdev->mutex);
4038 ret = suspend_prepare(rdev, *state);
4039 mutex_unlock(&rdev->mutex);
4040
4041 return ret;
4042 }
4043
4044 /**
4045 * regulator_suspend_prepare - prepare regulators for system wide suspend
4046 * @state: system suspend state
4047 *
4048 * Configure each regulator with it's suspend operating parameters for state.
4049 * This will usually be called by machine suspend code prior to supending.
4050 */
4051 int regulator_suspend_prepare(suspend_state_t state)
4052 {
4053 /* ON is handled by regulator active state */
4054 if (state == PM_SUSPEND_ON)
4055 return -EINVAL;
4056
4057 return class_for_each_device(&regulator_class, NULL, &state,
4058 _regulator_suspend_prepare);
4059 }
4060 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4061
4062 static int _regulator_suspend_finish(struct device *dev, void *data)
4063 {
4064 struct regulator_dev *rdev = dev_to_rdev(dev);
4065 int ret;
4066
4067 mutex_lock(&rdev->mutex);
4068 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4069 if (!_regulator_is_enabled(rdev)) {
4070 ret = _regulator_do_enable(rdev);
4071 if (ret)
4072 dev_err(dev,
4073 "Failed to resume regulator %d\n",
4074 ret);
4075 }
4076 } else {
4077 if (!have_full_constraints())
4078 goto unlock;
4079 if (!_regulator_is_enabled(rdev))
4080 goto unlock;
4081
4082 ret = _regulator_do_disable(rdev);
4083 if (ret)
4084 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4085 }
4086 unlock:
4087 mutex_unlock(&rdev->mutex);
4088
4089 /* Keep processing regulators in spite of any errors */
4090 return 0;
4091 }
4092
4093 /**
4094 * regulator_suspend_finish - resume regulators from system wide suspend
4095 *
4096 * Turn on regulators that might be turned off by regulator_suspend_prepare
4097 * and that should be turned on according to the regulators properties.
4098 */
4099 int regulator_suspend_finish(void)
4100 {
4101 return class_for_each_device(&regulator_class, NULL, NULL,
4102 _regulator_suspend_finish);
4103 }
4104 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4105
4106 /**
4107 * regulator_has_full_constraints - the system has fully specified constraints
4108 *
4109 * Calling this function will cause the regulator API to disable all
4110 * regulators which have a zero use count and don't have an always_on
4111 * constraint in a late_initcall.
4112 *
4113 * The intention is that this will become the default behaviour in a
4114 * future kernel release so users are encouraged to use this facility
4115 * now.
4116 */
4117 void regulator_has_full_constraints(void)
4118 {
4119 has_full_constraints = 1;
4120 }
4121 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4122
4123 /**
4124 * rdev_get_drvdata - get rdev regulator driver data
4125 * @rdev: regulator
4126 *
4127 * Get rdev regulator driver private data. This call can be used in the
4128 * regulator driver context.
4129 */
4130 void *rdev_get_drvdata(struct regulator_dev *rdev)
4131 {
4132 return rdev->reg_data;
4133 }
4134 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4135
4136 /**
4137 * regulator_get_drvdata - get regulator driver data
4138 * @regulator: regulator
4139 *
4140 * Get regulator driver private data. This call can be used in the consumer
4141 * driver context when non API regulator specific functions need to be called.
4142 */
4143 void *regulator_get_drvdata(struct regulator *regulator)
4144 {
4145 return regulator->rdev->reg_data;
4146 }
4147 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4148
4149 /**
4150 * regulator_set_drvdata - set regulator driver data
4151 * @regulator: regulator
4152 * @data: data
4153 */
4154 void regulator_set_drvdata(struct regulator *regulator, void *data)
4155 {
4156 regulator->rdev->reg_data = data;
4157 }
4158 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4159
4160 /**
4161 * regulator_get_id - get regulator ID
4162 * @rdev: regulator
4163 */
4164 int rdev_get_id(struct regulator_dev *rdev)
4165 {
4166 return rdev->desc->id;
4167 }
4168 EXPORT_SYMBOL_GPL(rdev_get_id);
4169
4170 struct device *rdev_get_dev(struct regulator_dev *rdev)
4171 {
4172 return &rdev->dev;
4173 }
4174 EXPORT_SYMBOL_GPL(rdev_get_dev);
4175
4176 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4177 {
4178 return reg_init_data->driver_data;
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4181
4182 #ifdef CONFIG_DEBUG_FS
4183 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4184 size_t count, loff_t *ppos)
4185 {
4186 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4187 ssize_t len, ret = 0;
4188 struct regulator_map *map;
4189
4190 if (!buf)
4191 return -ENOMEM;
4192
4193 list_for_each_entry(map, &regulator_map_list, list) {
4194 len = snprintf(buf + ret, PAGE_SIZE - ret,
4195 "%s -> %s.%s\n",
4196 rdev_get_name(map->regulator), map->dev_name,
4197 map->supply);
4198 if (len >= 0)
4199 ret += len;
4200 if (ret > PAGE_SIZE) {
4201 ret = PAGE_SIZE;
4202 break;
4203 }
4204 }
4205
4206 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4207
4208 kfree(buf);
4209
4210 return ret;
4211 }
4212 #endif
4213
4214 static const struct file_operations supply_map_fops = {
4215 #ifdef CONFIG_DEBUG_FS
4216 .read = supply_map_read_file,
4217 .llseek = default_llseek,
4218 #endif
4219 };
4220
4221 #ifdef CONFIG_DEBUG_FS
4222 struct summary_data {
4223 struct seq_file *s;
4224 struct regulator_dev *parent;
4225 int level;
4226 };
4227
4228 static void regulator_summary_show_subtree(struct seq_file *s,
4229 struct regulator_dev *rdev,
4230 int level);
4231
4232 static int regulator_summary_show_children(struct device *dev, void *data)
4233 {
4234 struct regulator_dev *rdev = dev_to_rdev(dev);
4235 struct summary_data *summary_data = data;
4236
4237 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4238 regulator_summary_show_subtree(summary_data->s, rdev,
4239 summary_data->level + 1);
4240
4241 return 0;
4242 }
4243
4244 static void regulator_summary_show_subtree(struct seq_file *s,
4245 struct regulator_dev *rdev,
4246 int level)
4247 {
4248 struct regulation_constraints *c;
4249 struct regulator *consumer;
4250 struct summary_data summary_data;
4251
4252 if (!rdev)
4253 return;
4254
4255 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4256 level * 3 + 1, "",
4257 30 - level * 3, rdev_get_name(rdev),
4258 rdev->use_count, rdev->open_count, rdev->bypass_count);
4259
4260 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4261 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4262
4263 c = rdev->constraints;
4264 if (c) {
4265 switch (rdev->desc->type) {
4266 case REGULATOR_VOLTAGE:
4267 seq_printf(s, "%5dmV %5dmV ",
4268 c->min_uV / 1000, c->max_uV / 1000);
4269 break;
4270 case REGULATOR_CURRENT:
4271 seq_printf(s, "%5dmA %5dmA ",
4272 c->min_uA / 1000, c->max_uA / 1000);
4273 break;
4274 }
4275 }
4276
4277 seq_puts(s, "\n");
4278
4279 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4280 if (consumer->dev->class == &regulator_class)
4281 continue;
4282
4283 seq_printf(s, "%*s%-*s ",
4284 (level + 1) * 3 + 1, "",
4285 30 - (level + 1) * 3, dev_name(consumer->dev));
4286
4287 switch (rdev->desc->type) {
4288 case REGULATOR_VOLTAGE:
4289 seq_printf(s, "%37dmV %5dmV",
4290 consumer->min_uV / 1000,
4291 consumer->max_uV / 1000);
4292 break;
4293 case REGULATOR_CURRENT:
4294 break;
4295 }
4296
4297 seq_puts(s, "\n");
4298 }
4299
4300 summary_data.s = s;
4301 summary_data.level = level;
4302 summary_data.parent = rdev;
4303
4304 class_for_each_device(&regulator_class, NULL, &summary_data,
4305 regulator_summary_show_children);
4306 }
4307
4308 static int regulator_summary_show_roots(struct device *dev, void *data)
4309 {
4310 struct regulator_dev *rdev = dev_to_rdev(dev);
4311 struct seq_file *s = data;
4312
4313 if (!rdev->supply)
4314 regulator_summary_show_subtree(s, rdev, 0);
4315
4316 return 0;
4317 }
4318
4319 static int regulator_summary_show(struct seq_file *s, void *data)
4320 {
4321 seq_puts(s, " regulator use open bypass voltage current min max\n");
4322 seq_puts(s, "-------------------------------------------------------------------------------\n");
4323
4324 class_for_each_device(&regulator_class, NULL, s,
4325 regulator_summary_show_roots);
4326
4327 return 0;
4328 }
4329
4330 static int regulator_summary_open(struct inode *inode, struct file *file)
4331 {
4332 return single_open(file, regulator_summary_show, inode->i_private);
4333 }
4334 #endif
4335
4336 static const struct file_operations regulator_summary_fops = {
4337 #ifdef CONFIG_DEBUG_FS
4338 .open = regulator_summary_open,
4339 .read = seq_read,
4340 .llseek = seq_lseek,
4341 .release = single_release,
4342 #endif
4343 };
4344
4345 static int __init regulator_init(void)
4346 {
4347 int ret;
4348
4349 ret = class_register(&regulator_class);
4350
4351 debugfs_root = debugfs_create_dir("regulator", NULL);
4352 if (!debugfs_root)
4353 pr_warn("regulator: Failed to create debugfs directory\n");
4354
4355 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4356 &supply_map_fops);
4357
4358 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4359 NULL, &regulator_summary_fops);
4360
4361 regulator_dummy_init();
4362
4363 return ret;
4364 }
4365
4366 /* init early to allow our consumers to complete system booting */
4367 core_initcall(regulator_init);
4368
4369 static int __init regulator_late_cleanup(struct device *dev, void *data)
4370 {
4371 struct regulator_dev *rdev = dev_to_rdev(dev);
4372 const struct regulator_ops *ops = rdev->desc->ops;
4373 struct regulation_constraints *c = rdev->constraints;
4374 int enabled, ret;
4375
4376 if (c && c->always_on)
4377 return 0;
4378
4379 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4380 return 0;
4381
4382 mutex_lock(&rdev->mutex);
4383
4384 if (rdev->use_count)
4385 goto unlock;
4386
4387 /* If we can't read the status assume it's on. */
4388 if (ops->is_enabled)
4389 enabled = ops->is_enabled(rdev);
4390 else
4391 enabled = 1;
4392
4393 if (!enabled)
4394 goto unlock;
4395
4396 if (have_full_constraints()) {
4397 /* We log since this may kill the system if it goes
4398 * wrong. */
4399 rdev_info(rdev, "disabling\n");
4400 ret = _regulator_do_disable(rdev);
4401 if (ret != 0)
4402 rdev_err(rdev, "couldn't disable: %d\n", ret);
4403 } else {
4404 /* The intention is that in future we will
4405 * assume that full constraints are provided
4406 * so warn even if we aren't going to do
4407 * anything here.
4408 */
4409 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4410 }
4411
4412 unlock:
4413 mutex_unlock(&rdev->mutex);
4414
4415 return 0;
4416 }
4417
4418 static int __init regulator_init_complete(void)
4419 {
4420 /*
4421 * Since DT doesn't provide an idiomatic mechanism for
4422 * enabling full constraints and since it's much more natural
4423 * with DT to provide them just assume that a DT enabled
4424 * system has full constraints.
4425 */
4426 if (of_have_populated_dt())
4427 has_full_constraints = true;
4428
4429 /* If we have a full configuration then disable any regulators
4430 * we have permission to change the status for and which are
4431 * not in use or always_on. This is effectively the default
4432 * for DT and ACPI as they have full constraints.
4433 */
4434 class_for_each_device(&regulator_class, NULL, NULL,
4435 regulator_late_cleanup);
4436
4437 return 0;
4438 }
4439 late_initcall_sync(regulator_init_complete);
This page took 0.126184 seconds and 5 git commands to generate.