Merge remote-tracking branch 'usb-chipidea-next/ci-for-usb-next'
[deliverable/linux.git] / drivers / staging / lustre / lnet / libcfs / linux / linux-crypto.c
1 /* GPL HEADER START
2 *
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License version 2 for more details (a copy is included
13 * in the LICENSE file that accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License
16 * version 2 along with this program; If not, see http://www.gnu.org/licenses
17 *
18 * Please visit http://www.xyratex.com/contact if you need additional
19 * information or have any questions.
20 *
21 * GPL HEADER END
22 */
23
24 /*
25 * Copyright 2012 Xyratex Technology Limited
26 *
27 * Copyright (c) 2012, Intel Corporation.
28 */
29
30 #include <crypto/hash.h>
31 #include <linux/scatterlist.h>
32 #include "../../../include/linux/libcfs/libcfs.h"
33 #include "../../../include/linux/libcfs/libcfs_crypto.h"
34 #include "linux-crypto.h"
35
36 /**
37 * Array of hash algorithm speed in MByte per second
38 */
39 static int cfs_crypto_hash_speeds[CFS_HASH_ALG_MAX];
40
41 /**
42 * Initialize the state descriptor for the specified hash algorithm.
43 *
44 * An internal routine to allocate the hash-specific state in \a hdesc for
45 * use with cfs_crypto_hash_digest() to compute the hash of a single message,
46 * though possibly in multiple chunks. The descriptor internal state should
47 * be freed with cfs_crypto_hash_final().
48 *
49 * \param[in] hash_alg hash algorithm id (CFS_HASH_ALG_*)
50 * \param[out] type pointer to the hash description in hash_types[]
51 * array
52 * \param[in,out] hdesc hash state descriptor to be initialized
53 * \param[in] key initial hash value/state, NULL to use default
54 * value
55 * \param[in] key_len length of \a key
56 *
57 * \retval 0 on success
58 * \retval negative errno on failure
59 */
60 static int cfs_crypto_hash_alloc(enum cfs_crypto_hash_alg hash_alg,
61 const struct cfs_crypto_hash_type **type,
62 struct ahash_request **req,
63 unsigned char *key,
64 unsigned int key_len)
65 {
66 struct crypto_ahash *tfm;
67 int err = 0;
68
69 *type = cfs_crypto_hash_type(hash_alg);
70
71 if (!*type) {
72 CWARN("Unsupported hash algorithm id = %d, max id is %d\n",
73 hash_alg, CFS_HASH_ALG_MAX);
74 return -EINVAL;
75 }
76 tfm = crypto_alloc_ahash((*type)->cht_name, 0, CRYPTO_ALG_ASYNC);
77
78 if (IS_ERR(tfm)) {
79 CDEBUG(D_INFO, "Failed to alloc crypto hash %s\n",
80 (*type)->cht_name);
81 return PTR_ERR(tfm);
82 }
83
84 *req = ahash_request_alloc(tfm, GFP_KERNEL);
85 if (!*req) {
86 CDEBUG(D_INFO, "Failed to alloc ahash_request for %s\n",
87 (*type)->cht_name);
88 crypto_free_ahash(tfm);
89 return -ENOMEM;
90 }
91
92 ahash_request_set_callback(*req, 0, NULL, NULL);
93
94 if (key)
95 err = crypto_ahash_setkey(tfm, key, key_len);
96 else if ((*type)->cht_key != 0)
97 err = crypto_ahash_setkey(tfm,
98 (unsigned char *)&((*type)->cht_key),
99 (*type)->cht_size);
100
101 if (err != 0) {
102 ahash_request_free(*req);
103 crypto_free_ahash(tfm);
104 return err;
105 }
106
107 CDEBUG(D_INFO, "Using crypto hash: %s (%s) speed %d MB/s\n",
108 crypto_ahash_alg_name(tfm), crypto_ahash_driver_name(tfm),
109 cfs_crypto_hash_speeds[hash_alg]);
110
111 err = crypto_ahash_init(*req);
112 if (err) {
113 ahash_request_free(*req);
114 crypto_free_ahash(tfm);
115 }
116 return err;
117 }
118
119 /**
120 * Calculate hash digest for the passed buffer.
121 *
122 * This should be used when computing the hash on a single contiguous buffer.
123 * It combines the hash initialization, computation, and cleanup.
124 *
125 * \param[in] hash_alg id of hash algorithm (CFS_HASH_ALG_*)
126 * \param[in] buf data buffer on which to compute hash
127 * \param[in] buf_len length of \a buf in bytes
128 * \param[in] key initial value/state for algorithm,
129 * if \a key = NULL use default initial value
130 * \param[in] key_len length of \a key in bytes
131 * \param[out] hash pointer to computed hash value,
132 * if \a hash = NULL then \a hash_len is to digest
133 * size in bytes, retval -ENOSPC
134 * \param[in,out] hash_len size of \a hash buffer
135 *
136 * \retval -EINVAL \a buf, \a buf_len, \a hash_len,
137 * \a hash_alg invalid
138 * \retval -ENOENT \a hash_alg is unsupported
139 * \retval -ENOSPC \a hash is NULL, or \a hash_len less than
140 * digest size
141 * \retval 0 for success
142 * \retval negative errno for other errors from lower
143 * layers.
144 */
145 int cfs_crypto_hash_digest(enum cfs_crypto_hash_alg hash_alg,
146 const void *buf, unsigned int buf_len,
147 unsigned char *key, unsigned int key_len,
148 unsigned char *hash, unsigned int *hash_len)
149 {
150 struct scatterlist sl;
151 struct ahash_request *req;
152 int err;
153 const struct cfs_crypto_hash_type *type;
154
155 if (!buf || buf_len == 0 || !hash_len)
156 return -EINVAL;
157
158 err = cfs_crypto_hash_alloc(hash_alg, &type, &req, key, key_len);
159 if (err != 0)
160 return err;
161
162 if (!hash || *hash_len < type->cht_size) {
163 *hash_len = type->cht_size;
164 crypto_free_ahash(crypto_ahash_reqtfm(req));
165 ahash_request_free(req);
166 return -ENOSPC;
167 }
168 sg_init_one(&sl, buf, buf_len);
169
170 ahash_request_set_crypt(req, &sl, hash, sl.length);
171 err = crypto_ahash_digest(req);
172 crypto_free_ahash(crypto_ahash_reqtfm(req));
173 ahash_request_free(req);
174
175 return err;
176 }
177 EXPORT_SYMBOL(cfs_crypto_hash_digest);
178
179 /**
180 * Allocate and initialize desriptor for hash algorithm.
181 *
182 * This should be used to initialize a hash descriptor for multiple calls
183 * to a single hash function when computing the hash across multiple
184 * separate buffers or pages using cfs_crypto_hash_update{,_page}().
185 *
186 * The hash descriptor should be freed with cfs_crypto_hash_final().
187 *
188 * \param[in] hash_alg algorithm id (CFS_HASH_ALG_*)
189 * \param[in] key initial value/state for algorithm, if \a key = NULL
190 * use default initial value
191 * \param[in] key_len length of \a key in bytes
192 *
193 * \retval pointer to descriptor of hash instance
194 * \retval ERR_PTR(errno) in case of error
195 */
196 struct cfs_crypto_hash_desc *
197 cfs_crypto_hash_init(enum cfs_crypto_hash_alg hash_alg,
198 unsigned char *key, unsigned int key_len)
199 {
200 struct ahash_request *req;
201 int err;
202 const struct cfs_crypto_hash_type *type;
203
204 err = cfs_crypto_hash_alloc(hash_alg, &type, &req, key, key_len);
205
206 if (err)
207 return ERR_PTR(err);
208 return (struct cfs_crypto_hash_desc *)req;
209 }
210 EXPORT_SYMBOL(cfs_crypto_hash_init);
211
212 /**
213 * Update hash digest computed on data within the given \a page
214 *
215 * \param[in] hdesc hash state descriptor
216 * \param[in] page data page on which to compute the hash
217 * \param[in] offset offset within \a page at which to start hash
218 * \param[in] len length of data on which to compute hash
219 *
220 * \retval 0 for success
221 * \retval negative errno on failure
222 */
223 int cfs_crypto_hash_update_page(struct cfs_crypto_hash_desc *hdesc,
224 struct page *page, unsigned int offset,
225 unsigned int len)
226 {
227 struct ahash_request *req = (void *)hdesc;
228 struct scatterlist sl;
229
230 sg_init_table(&sl, 1);
231 sg_set_page(&sl, page, len, offset & ~PAGE_MASK);
232
233 ahash_request_set_crypt(req, &sl, NULL, sl.length);
234 return crypto_ahash_update(req);
235 }
236 EXPORT_SYMBOL(cfs_crypto_hash_update_page);
237
238 /**
239 * Update hash digest computed on the specified data
240 *
241 * \param[in] hdesc hash state descriptor
242 * \param[in] buf data buffer on which to compute the hash
243 * \param[in] buf_len length of \buf on which to compute hash
244 *
245 * \retval 0 for success
246 * \retval negative errno on failure
247 */
248 int cfs_crypto_hash_update(struct cfs_crypto_hash_desc *hdesc,
249 const void *buf, unsigned int buf_len)
250 {
251 struct ahash_request *req = (void *)hdesc;
252 struct scatterlist sl;
253
254 sg_init_one(&sl, buf, buf_len);
255
256 ahash_request_set_crypt(req, &sl, NULL, sl.length);
257 return crypto_ahash_update(req);
258 }
259 EXPORT_SYMBOL(cfs_crypto_hash_update);
260
261 /**
262 * Finish hash calculation, copy hash digest to buffer, clean up hash descriptor
263 *
264 * \param[in] hdesc hash descriptor
265 * \param[out] hash pointer to hash buffer to store hash digest
266 * \param[in,out] hash_len pointer to hash buffer size, if \a hdesc = NULL
267 * only free \a hdesc instead of computing the hash
268 *
269 * \retval 0 for success
270 * \retval -EOVERFLOW if hash_len is too small for the hash digest
271 * \retval negative errno for other errors from lower layers
272 */
273 int cfs_crypto_hash_final(struct cfs_crypto_hash_desc *hdesc,
274 unsigned char *hash, unsigned int *hash_len)
275 {
276 int err;
277 struct ahash_request *req = (void *)hdesc;
278 int size = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
279
280 if (!hash || !hash_len) {
281 err = 0;
282 goto free_ahash;
283 }
284 if (*hash_len < size) {
285 err = -EOVERFLOW;
286 goto free_ahash;
287 }
288
289 ahash_request_set_crypt(req, NULL, hash, 0);
290 err = crypto_ahash_final(req);
291 if (!err)
292 *hash_len = size;
293 free_ahash:
294 crypto_free_ahash(crypto_ahash_reqtfm(req));
295 ahash_request_free(req);
296 return err;
297 }
298 EXPORT_SYMBOL(cfs_crypto_hash_final);
299
300 /**
301 * Compute the speed of specified hash function
302 *
303 * Run a speed test on the given hash algorithm on buffer of the given size.
304 * The speed is stored internally in the cfs_crypto_hash_speeds[] array, and
305 * is available through the cfs_crypto_hash_speed() function.
306 *
307 * \param[in] hash_alg hash algorithm id (CFS_HASH_ALG_*)
308 * \param[in] buf data buffer on which to compute the hash
309 * \param[in] buf_len length of \buf on which to compute hash
310 */
311 static void cfs_crypto_performance_test(enum cfs_crypto_hash_alg hash_alg)
312 {
313 int buf_len = max(PAGE_SIZE, 1048576UL);
314 void *buf;
315 unsigned long start, end;
316 int bcount, err = 0;
317 struct page *page;
318 unsigned char hash[CFS_CRYPTO_HASH_DIGESTSIZE_MAX];
319 unsigned int hash_len = sizeof(hash);
320
321 page = alloc_page(GFP_KERNEL);
322 if (!page) {
323 err = -ENOMEM;
324 goto out_err;
325 }
326
327 buf = kmap(page);
328 memset(buf, 0xAD, PAGE_SIZE);
329 kunmap(page);
330
331 for (start = jiffies, end = start + msecs_to_jiffies(MSEC_PER_SEC),
332 bcount = 0; time_before(jiffies, end); bcount++) {
333 struct cfs_crypto_hash_desc *hdesc;
334 int i;
335
336 hdesc = cfs_crypto_hash_init(hash_alg, NULL, 0);
337 if (IS_ERR(hdesc)) {
338 err = PTR_ERR(hdesc);
339 break;
340 }
341
342 for (i = 0; i < buf_len / PAGE_SIZE; i++) {
343 err = cfs_crypto_hash_update_page(hdesc, page, 0,
344 PAGE_SIZE);
345 if (err)
346 break;
347 }
348
349 err = cfs_crypto_hash_final(hdesc, hash, &hash_len);
350 if (err)
351 break;
352 }
353 end = jiffies;
354 __free_page(page);
355 out_err:
356 if (err) {
357 cfs_crypto_hash_speeds[hash_alg] = err;
358 CDEBUG(D_INFO, "Crypto hash algorithm %s test error: rc = %d\n",
359 cfs_crypto_hash_name(hash_alg), err);
360 } else {
361 unsigned long tmp;
362
363 tmp = ((bcount * buf_len / jiffies_to_msecs(end - start)) *
364 1000) / (1024 * 1024);
365 cfs_crypto_hash_speeds[hash_alg] = (int)tmp;
366 CDEBUG(D_CONFIG, "Crypto hash algorithm %s speed = %d MB/s\n",
367 cfs_crypto_hash_name(hash_alg),
368 cfs_crypto_hash_speeds[hash_alg]);
369 }
370 }
371
372 /**
373 * hash speed in Mbytes per second for valid hash algorithm
374 *
375 * Return the performance of the specified \a hash_alg that was previously
376 * computed using cfs_crypto_performance_test().
377 *
378 * \param[in] hash_alg hash algorithm id (CFS_HASH_ALG_*)
379 *
380 * \retval positive speed of the hash function in MB/s
381 * \retval -ENOENT if \a hash_alg is unsupported
382 * \retval negative errno if \a hash_alg speed is unavailable
383 */
384 int cfs_crypto_hash_speed(enum cfs_crypto_hash_alg hash_alg)
385 {
386 if (hash_alg < CFS_HASH_ALG_MAX)
387 return cfs_crypto_hash_speeds[hash_alg];
388 return -ENOENT;
389 }
390 EXPORT_SYMBOL(cfs_crypto_hash_speed);
391
392 /**
393 * Run the performance test for all hash algorithms.
394 *
395 * Run the cfs_crypto_performance_test() benchmark for all of the available
396 * hash functions using a 1MB buffer size. This is a reasonable buffer size
397 * for Lustre RPCs, even if the actual RPC size is larger or smaller.
398 *
399 * Since the setup cost and computation speed of various hash algorithms is
400 * a function of the buffer size (and possibly internal contention of offload
401 * engines), this speed only represents an estimate of the actual speed under
402 * actual usage, but is reasonable for comparing available algorithms.
403 *
404 * The actual speeds are available via cfs_crypto_hash_speed() for later
405 * comparison.
406 *
407 * \retval 0 on success
408 * \retval -ENOMEM if no memory is available for test buffer
409 */
410 static int cfs_crypto_test_hashes(void)
411 {
412 enum cfs_crypto_hash_alg hash_alg;
413
414 for (hash_alg = 0; hash_alg < CFS_HASH_ALG_MAX; hash_alg++)
415 cfs_crypto_performance_test(hash_alg);
416
417 return 0;
418 }
419
420 static int adler32;
421
422 /**
423 * Register available hash functions
424 *
425 * \retval 0
426 */
427 int cfs_crypto_register(void)
428 {
429 request_module("crc32c");
430
431 adler32 = cfs_crypto_adler32_register();
432
433 /* check all algorithms and do performance test */
434 cfs_crypto_test_hashes();
435 return 0;
436 }
437
438 /**
439 * Unregister previously registered hash functions
440 */
441 void cfs_crypto_unregister(void)
442 {
443 if (adler32 == 0)
444 cfs_crypto_adler32_unregister();
445 }
This page took 0.046931 seconds and 5 git commands to generate.