Merge remote-tracking branch 'staging/staging-next'
[deliverable/linux.git] / drivers / staging / lustre / lustre / lov / lov_cl_internal.h
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2012, 2015 Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * Internal interfaces of LOV layer.
37 *
38 * Author: Nikita Danilov <nikita.danilov@sun.com>
39 * Author: Jinshan Xiong <jinshan.xiong@intel.com>
40 */
41
42 #ifndef LOV_CL_INTERNAL_H
43 #define LOV_CL_INTERNAL_H
44
45 #include "../../include/linux/libcfs/libcfs.h"
46
47 #include "../include/obd.h"
48 #include "../include/cl_object.h"
49 #include "lov_internal.h"
50
51 /** \defgroup lov lov
52 * Logical object volume layer. This layer implements data striping (raid0).
53 *
54 * At the lov layer top-entity (object, page, lock, io) is connected to one or
55 * more sub-entities: top-object, representing a file is connected to a set of
56 * sub-objects, each representing a stripe, file-level top-lock is connected
57 * to a set of per-stripe sub-locks, top-page is connected to a (single)
58 * sub-page, and a top-level IO is connected to a set of (potentially
59 * concurrent) sub-IO's.
60 *
61 * Sub-object, sub-page, and sub-io have well-defined top-object and top-page
62 * respectively, while a single sub-lock can be part of multiple top-locks.
63 *
64 * Reference counting models are different for different types of entities:
65 *
66 * - top-object keeps a reference to its sub-objects, and destroys them
67 * when it is destroyed.
68 *
69 * - top-page keeps a reference to its sub-page, and destroys it when it
70 * is destroyed.
71 *
72 * - IO's are not reference counted.
73 *
74 * To implement a connection between top and sub entities, lov layer is split
75 * into two pieces: lov ("upper half"), and lovsub ("bottom half"), both
76 * implementing full set of cl-interfaces. For example, top-object has vvp and
77 * lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is
78 * used to track child-parent relationship.
79 *
80 * @{
81 */
82
83 struct lovsub_device;
84 struct lovsub_object;
85 struct lovsub_lock;
86
87 enum lov_device_flags {
88 LOV_DEV_INITIALIZED = 1 << 0
89 };
90
91 /*
92 * Upper half.
93 */
94
95 /**
96 * Resources that are used in memory-cleaning path, and whose allocation
97 * cannot fail even when memory is tight. They are preallocated in sufficient
98 * quantities in lov_device::ld_emerg[], and access to them is serialized
99 * lov_device::ld_mutex.
100 */
101 struct lov_device_emerg {
102 /**
103 * Page list used to submit IO when memory is in pressure.
104 */
105 struct cl_page_list emrg_page_list;
106 /**
107 * sub-io's shared by all threads accessing this device when memory is
108 * too low to allocate sub-io's dynamically.
109 */
110 struct cl_io emrg_subio;
111 /**
112 * Environments used by sub-io's in
113 * lov_device_emerg::emrg_subio.
114 */
115 struct lu_env *emrg_env;
116 /**
117 * Refchecks for lov_device_emerg::emrg_env.
118 *
119 * \see cl_env_get()
120 */
121 int emrg_refcheck;
122 };
123
124 struct lov_device {
125 /*
126 * XXX Locking of lov-private data is missing.
127 */
128 struct cl_device ld_cl;
129 struct lov_obd *ld_lov;
130 /** size of lov_device::ld_target[] array */
131 __u32 ld_target_nr;
132 struct lovsub_device **ld_target;
133 __u32 ld_flags;
134
135 /** Emergency resources used in memory-cleansing paths. */
136 struct lov_device_emerg **ld_emrg;
137 /**
138 * Serializes access to lov_device::ld_emrg in low-memory
139 * conditions.
140 */
141 struct mutex ld_mutex;
142 };
143
144 /**
145 * Layout type.
146 */
147 enum lov_layout_type {
148 LLT_EMPTY, /** empty file without body (mknod + truncate) */
149 LLT_RAID0, /** striped file */
150 LLT_RELEASED, /** file with no objects (data in HSM) */
151 LLT_NR
152 };
153
154 static inline char *llt2str(enum lov_layout_type llt)
155 {
156 switch (llt) {
157 case LLT_EMPTY:
158 return "EMPTY";
159 case LLT_RAID0:
160 return "RAID0";
161 case LLT_RELEASED:
162 return "RELEASED";
163 case LLT_NR:
164 LBUG();
165 }
166 LBUG();
167 return "";
168 }
169
170 /**
171 * lov-specific file state.
172 *
173 * lov object has particular layout type, determining how top-object is built
174 * on top of sub-objects. Layout type can change dynamically. When this
175 * happens, lov_object::lo_type_guard semaphore is taken in exclusive mode,
176 * all state pertaining to the old layout type is destroyed, and new state is
177 * constructed. All object methods take said semaphore in the shared mode,
178 * providing serialization against transition between layout types.
179 *
180 * To avoid multiple `if' or `switch' statements, selecting behavior for the
181 * current layout type, object methods perform double-dispatch, invoking
182 * function corresponding to the current layout type.
183 */
184 struct lov_object {
185 struct cl_object lo_cl;
186 /**
187 * Serializes object operations with transitions between layout types.
188 *
189 * This semaphore is taken in shared mode by all object methods, and
190 * is taken in exclusive mode when object type is changed.
191 *
192 * \see lov_object::lo_type
193 */
194 struct rw_semaphore lo_type_guard;
195 /**
196 * Type of an object. Protected by lov_object::lo_type_guard.
197 */
198 enum lov_layout_type lo_type;
199 /**
200 * True if layout is invalid. This bit is cleared when layout lock
201 * is lost.
202 */
203 bool lo_layout_invalid;
204 /**
205 * How many IOs are on going on this object. Layout can be changed
206 * only if there is no active IO.
207 */
208 atomic_t lo_active_ios;
209 /**
210 * Waitq - wait for no one else is using lo_lsm
211 */
212 wait_queue_head_t lo_waitq;
213 /**
214 * Layout metadata. NULL if empty layout.
215 */
216 struct lov_stripe_md *lo_lsm;
217
218 union lov_layout_state {
219 struct lov_layout_raid0 {
220 unsigned lo_nr;
221 /**
222 * When this is true, lov_object::lo_attr contains
223 * valid up to date attributes for a top-level
224 * object. This field is reset to 0 when attributes of
225 * any sub-object change.
226 */
227 int lo_attr_valid;
228 /**
229 * Array of sub-objects. Allocated when top-object is
230 * created (lov_init_raid0()).
231 *
232 * Top-object is a strict master of its sub-objects:
233 * it is created before them, and outlives its
234 * children (this later is necessary so that basic
235 * functions like cl_object_top() always
236 * work). Top-object keeps a reference on every
237 * sub-object.
238 *
239 * When top-object is destroyed (lov_delete_raid0())
240 * it releases its reference to a sub-object and waits
241 * until the latter is finally destroyed.
242 */
243 struct lovsub_object **lo_sub;
244 /**
245 * protect lo_sub
246 */
247 spinlock_t lo_sub_lock;
248 /**
249 * Cached object attribute, built from sub-object
250 * attributes.
251 */
252 struct cl_attr lo_attr;
253 } raid0;
254 struct lov_layout_state_empty {
255 } empty;
256 struct lov_layout_state_released {
257 } released;
258 } u;
259 /**
260 * Thread that acquired lov_object::lo_type_guard in an exclusive
261 * mode.
262 */
263 struct task_struct *lo_owner;
264 };
265
266 /**
267 * State lov_lock keeps for each sub-lock.
268 */
269 struct lov_lock_sub {
270 /** sub-lock itself */
271 struct cl_lock sub_lock;
272 /** Set if the sublock has ever been enqueued, meaning it may
273 * hold resources of underlying layers
274 */
275 unsigned int sub_is_enqueued:1,
276 sub_initialized:1;
277 int sub_stripe;
278 };
279
280 /**
281 * lov-specific lock state.
282 */
283 struct lov_lock {
284 struct cl_lock_slice lls_cl;
285 /** Number of sub-locks in this lock */
286 int lls_nr;
287 /** sublock array */
288 struct lov_lock_sub lls_sub[0];
289 };
290
291 struct lov_page {
292 struct cl_page_slice lps_cl;
293 unsigned int lps_stripe; /* stripe index */
294 };
295
296 /*
297 * Bottom half.
298 */
299
300 struct lovsub_device {
301 struct cl_device acid_cl;
302 struct lov_device *acid_super;
303 int acid_idx;
304 struct cl_device *acid_next;
305 };
306
307 struct lovsub_object {
308 struct cl_object_header lso_header;
309 struct cl_object lso_cl;
310 struct lov_object *lso_super;
311 int lso_index;
312 };
313
314 /**
315 * A link between a top-lock and a sub-lock. Separate data-structure is
316 * necessary, because top-locks and sub-locks are in M:N relationship.
317 *
318 * \todo This can be optimized for a (by far) most frequent case of a single
319 * top-lock per sub-lock.
320 */
321 struct lov_lock_link {
322 struct lov_lock *lll_super;
323 /** An index within parent lock. */
324 int lll_idx;
325 /**
326 * A linkage into per sub-lock list of all corresponding top-locks,
327 * hanging off lovsub_lock::lss_parents.
328 */
329 struct list_head lll_list;
330 };
331
332 /**
333 * Lock state at lovsub layer.
334 */
335 struct lovsub_lock {
336 struct cl_lock_slice lss_cl;
337 /**
338 * List of top-locks that have given sub-lock as their part. Protected
339 * by cl_lock::cll_guard mutex.
340 */
341 struct list_head lss_parents;
342 /**
343 * Top-lock that initiated current operation on this sub-lock. This is
344 * only set during top-to-bottom lock operations like enqueue, and is
345 * used to optimize state change notification. Protected by
346 * cl_lock::cll_guard mutex.
347 *
348 * \see lovsub_lock_state_one().
349 */
350 struct cl_lock *lss_active;
351 };
352
353 /**
354 * Describe the environment settings for sublocks.
355 */
356 struct lov_sublock_env {
357 const struct lu_env *lse_env;
358 struct cl_io *lse_io;
359 struct lov_io_sub *lse_sub;
360 };
361
362 struct lovsub_page {
363 struct cl_page_slice lsb_cl;
364 };
365
366 struct lov_thread_info {
367 struct cl_object_conf lti_stripe_conf;
368 struct lu_fid lti_fid;
369 struct cl_lock_descr lti_ldescr;
370 struct ost_lvb lti_lvb;
371 struct cl_2queue lti_cl2q;
372 struct cl_page_list lti_plist;
373 wait_queue_t lti_waiter;
374 struct cl_attr lti_attr;
375 };
376
377 /**
378 * State that lov_io maintains for every sub-io.
379 */
380 struct lov_io_sub {
381 int sub_stripe;
382 /**
383 * sub-io for a stripe. Ideally sub-io's can be stopped and resumed
384 * independently, with lov acting as a scheduler to maximize overall
385 * throughput.
386 */
387 struct cl_io *sub_io;
388 /**
389 * Linkage into a list (hanging off lov_io::lis_active) of all
390 * sub-io's active for the current IO iteration.
391 */
392 struct list_head sub_linkage;
393 /**
394 * true, iff cl_io_init() was successfully executed against
395 * lov_io_sub::sub_io.
396 */
397 int sub_io_initialized;
398 /**
399 * True, iff lov_io_sub::sub_io and lov_io_sub::sub_env weren't
400 * allocated, but borrowed from a per-device emergency pool.
401 */
402 int sub_borrowed;
403 /**
404 * environment, in which sub-io executes.
405 */
406 struct lu_env *sub_env;
407 /**
408 * environment's refcheck.
409 *
410 * \see cl_env_get()
411 */
412 int sub_refcheck;
413 int sub_refcheck2;
414 int sub_reenter;
415 void *sub_cookie;
416 };
417
418 /**
419 * IO state private for LOV.
420 */
421 struct lov_io {
422 /** super-class */
423 struct cl_io_slice lis_cl;
424 /**
425 * Pointer to the object slice. This is a duplicate of
426 * lov_io::lis_cl::cis_object.
427 */
428 struct lov_object *lis_object;
429 /**
430 * Original end-of-io position for this IO, set by the upper layer as
431 * cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this,
432 * changes pos and count to fit IO into a single stripe and uses saved
433 * value to determine when IO iterations have to stop.
434 *
435 * This is used only for CIT_READ and CIT_WRITE io's.
436 */
437 loff_t lis_io_endpos;
438
439 /**
440 * starting position within a file, for the current io loop iteration
441 * (stripe), used by ci_io_loop().
442 */
443 u64 lis_pos;
444 /**
445 * end position with in a file, for the current stripe io. This is
446 * exclusive (i.e., next offset after last byte affected by io).
447 */
448 u64 lis_endpos;
449
450 int lis_mem_frozen;
451 int lis_stripe_count;
452 int lis_active_subios;
453
454 /**
455 * the index of ls_single_subio in ls_subios array
456 */
457 int lis_single_subio_index;
458 struct cl_io lis_single_subio;
459
460 /**
461 * size of ls_subios array, actually the highest stripe #
462 */
463 int lis_nr_subios;
464 struct lov_io_sub *lis_subs;
465 /**
466 * List of active sub-io's.
467 */
468 struct list_head lis_active;
469 };
470
471 struct lov_session {
472 struct lov_io ls_io;
473 struct lov_sublock_env ls_subenv;
474 };
475
476 /**
477 * State of transfer for lov.
478 */
479 struct lov_req {
480 struct cl_req_slice lr_cl;
481 };
482
483 /**
484 * State of transfer for lovsub.
485 */
486 struct lovsub_req {
487 struct cl_req_slice lsrq_cl;
488 };
489
490 extern struct lu_device_type lov_device_type;
491 extern struct lu_device_type lovsub_device_type;
492
493 extern struct lu_context_key lov_key;
494 extern struct lu_context_key lov_session_key;
495
496 extern struct kmem_cache *lov_lock_kmem;
497 extern struct kmem_cache *lov_object_kmem;
498 extern struct kmem_cache *lov_thread_kmem;
499 extern struct kmem_cache *lov_session_kmem;
500 extern struct kmem_cache *lov_req_kmem;
501
502 extern struct kmem_cache *lovsub_lock_kmem;
503 extern struct kmem_cache *lovsub_object_kmem;
504 extern struct kmem_cache *lovsub_req_kmem;
505
506 extern struct kmem_cache *lov_lock_link_kmem;
507
508 int lov_object_init(const struct lu_env *env, struct lu_object *obj,
509 const struct lu_object_conf *conf);
510 int lovsub_object_init(const struct lu_env *env, struct lu_object *obj,
511 const struct lu_object_conf *conf);
512 int lov_lock_init(const struct lu_env *env, struct cl_object *obj,
513 struct cl_lock *lock, const struct cl_io *io);
514 int lov_io_init(const struct lu_env *env, struct cl_object *obj,
515 struct cl_io *io);
516 int lovsub_lock_init(const struct lu_env *env, struct cl_object *obj,
517 struct cl_lock *lock, const struct cl_io *io);
518
519 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
520 struct cl_lock *lock, const struct cl_io *io);
521 int lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
522 struct cl_lock *lock, const struct cl_io *io);
523 int lov_io_init_raid0(const struct lu_env *env, struct cl_object *obj,
524 struct cl_io *io);
525 int lov_io_init_empty(const struct lu_env *env, struct cl_object *obj,
526 struct cl_io *io);
527 int lov_io_init_released(const struct lu_env *env, struct cl_object *obj,
528 struct cl_io *io);
529 void lov_lock_unlink(const struct lu_env *env, struct lov_lock_link *link,
530 struct lovsub_lock *sub);
531
532 struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio,
533 int stripe);
534 void lov_sub_put(struct lov_io_sub *sub);
535 int lov_sublock_modify(const struct lu_env *env, struct lov_lock *lov,
536 struct lovsub_lock *sublock,
537 const struct cl_lock_descr *d, int idx);
538
539 int lov_page_init(const struct lu_env *env, struct cl_object *ob,
540 struct cl_page *page, pgoff_t index);
541 int lovsub_page_init(const struct lu_env *env, struct cl_object *ob,
542 struct cl_page *page, pgoff_t index);
543 int lov_page_init_empty(const struct lu_env *env, struct cl_object *obj,
544 struct cl_page *page, pgoff_t index);
545 int lov_page_init_raid0(const struct lu_env *env, struct cl_object *obj,
546 struct cl_page *page, pgoff_t index);
547 struct lu_object *lov_object_alloc(const struct lu_env *env,
548 const struct lu_object_header *hdr,
549 struct lu_device *dev);
550 struct lu_object *lovsub_object_alloc(const struct lu_env *env,
551 const struct lu_object_header *hdr,
552 struct lu_device *dev);
553
554 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
555 struct lov_lock *lck,
556 struct lovsub_lock *sub);
557 struct lov_io_sub *lov_page_subio(const struct lu_env *env, struct lov_io *lio,
558 const struct cl_page_slice *slice);
559 int lov_page_stripe(const struct cl_page *page);
560
561 #define lov_foreach_target(lov, var) \
562 for (var = 0; var < lov_targets_nr(lov); ++var)
563
564 /*****************************************************************************
565 *
566 * Type conversions.
567 *
568 * Accessors.
569 *
570 */
571
572 static inline struct lov_session *lov_env_session(const struct lu_env *env)
573 {
574 struct lov_session *ses;
575
576 ses = lu_context_key_get(env->le_ses, &lov_session_key);
577 LASSERT(ses);
578 return ses;
579 }
580
581 static inline struct lov_io *lov_env_io(const struct lu_env *env)
582 {
583 return &lov_env_session(env)->ls_io;
584 }
585
586 static inline int lov_is_object(const struct lu_object *obj)
587 {
588 return obj->lo_dev->ld_type == &lov_device_type;
589 }
590
591 static inline int lovsub_is_object(const struct lu_object *obj)
592 {
593 return obj->lo_dev->ld_type == &lovsub_device_type;
594 }
595
596 static inline struct lu_device *lov2lu_dev(struct lov_device *lov)
597 {
598 return &lov->ld_cl.cd_lu_dev;
599 }
600
601 static inline struct lov_device *lu2lov_dev(const struct lu_device *d)
602 {
603 LINVRNT(d->ld_type == &lov_device_type);
604 return container_of0(d, struct lov_device, ld_cl.cd_lu_dev);
605 }
606
607 static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub)
608 {
609 return &lovsub->acid_cl;
610 }
611
612 static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub)
613 {
614 return &lovsub2cl_dev(lovsub)->cd_lu_dev;
615 }
616
617 static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d)
618 {
619 LINVRNT(d->ld_type == &lovsub_device_type);
620 return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev);
621 }
622
623 static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d)
624 {
625 LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type);
626 return container_of0(d, struct lovsub_device, acid_cl);
627 }
628
629 static inline struct lu_object *lov2lu(struct lov_object *lov)
630 {
631 return &lov->lo_cl.co_lu;
632 }
633
634 static inline struct cl_object *lov2cl(struct lov_object *lov)
635 {
636 return &lov->lo_cl;
637 }
638
639 static inline struct lov_object *lu2lov(const struct lu_object *obj)
640 {
641 LINVRNT(lov_is_object(obj));
642 return container_of0(obj, struct lov_object, lo_cl.co_lu);
643 }
644
645 static inline struct lov_object *cl2lov(const struct cl_object *obj)
646 {
647 LINVRNT(lov_is_object(&obj->co_lu));
648 return container_of0(obj, struct lov_object, lo_cl);
649 }
650
651 static inline struct lu_object *lovsub2lu(struct lovsub_object *los)
652 {
653 return &los->lso_cl.co_lu;
654 }
655
656 static inline struct cl_object *lovsub2cl(struct lovsub_object *los)
657 {
658 return &los->lso_cl;
659 }
660
661 static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj)
662 {
663 LINVRNT(lovsub_is_object(&obj->co_lu));
664 return container_of0(obj, struct lovsub_object, lso_cl);
665 }
666
667 static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj)
668 {
669 LINVRNT(lovsub_is_object(obj));
670 return container_of0(obj, struct lovsub_object, lso_cl.co_lu);
671 }
672
673 static inline struct lovsub_lock *
674 cl2lovsub_lock(const struct cl_lock_slice *slice)
675 {
676 LINVRNT(lovsub_is_object(&slice->cls_obj->co_lu));
677 return container_of(slice, struct lovsub_lock, lss_cl);
678 }
679
680 static inline struct lovsub_lock *cl2sub_lock(const struct cl_lock *lock)
681 {
682 const struct cl_lock_slice *slice;
683
684 slice = cl_lock_at(lock, &lovsub_device_type);
685 LASSERT(slice);
686 return cl2lovsub_lock(slice);
687 }
688
689 static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice)
690 {
691 LINVRNT(lov_is_object(&slice->cls_obj->co_lu));
692 return container_of(slice, struct lov_lock, lls_cl);
693 }
694
695 static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice)
696 {
697 LINVRNT(lov_is_object(&slice->cpl_obj->co_lu));
698 return container_of0(slice, struct lov_page, lps_cl);
699 }
700
701 static inline struct lov_req *cl2lov_req(const struct cl_req_slice *slice)
702 {
703 return container_of0(slice, struct lov_req, lr_cl);
704 }
705
706 static inline struct lovsub_page *
707 cl2lovsub_page(const struct cl_page_slice *slice)
708 {
709 LINVRNT(lovsub_is_object(&slice->cpl_obj->co_lu));
710 return container_of0(slice, struct lovsub_page, lsb_cl);
711 }
712
713 static inline struct lovsub_req *cl2lovsub_req(const struct cl_req_slice *slice)
714 {
715 return container_of0(slice, struct lovsub_req, lsrq_cl);
716 }
717
718 static inline struct lov_io *cl2lov_io(const struct lu_env *env,
719 const struct cl_io_slice *ios)
720 {
721 struct lov_io *lio;
722
723 lio = container_of(ios, struct lov_io, lis_cl);
724 LASSERT(lio == lov_env_io(env));
725 return lio;
726 }
727
728 static inline int lov_targets_nr(const struct lov_device *lov)
729 {
730 return lov->ld_lov->desc.ld_tgt_count;
731 }
732
733 static inline struct lov_thread_info *lov_env_info(const struct lu_env *env)
734 {
735 struct lov_thread_info *info;
736
737 info = lu_context_key_get(&env->le_ctx, &lov_key);
738 LASSERT(info);
739 return info;
740 }
741
742 static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov)
743 {
744 LASSERT(lov->lo_type == LLT_RAID0);
745 LASSERT(lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC ||
746 lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC_V3);
747 return &lov->u.raid0;
748 }
749
750 /** @} lov */
751
752 #endif
This page took 0.048441 seconds and 5 git commands to generate.