Merge remote-tracking branch 'staging/staging-next'
[deliverable/linux.git] / drivers / staging / lustre / lustre / ptlrpc / client.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.gnu.org/licenses/gpl-2.0.html
19 *
20 * GPL HEADER END
21 */
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2011, 2015, Intel Corporation.
27 */
28 /*
29 * This file is part of Lustre, http://www.lustre.org/
30 * Lustre is a trademark of Sun Microsystems, Inc.
31 */
32
33 /** Implementation of client-side PortalRPC interfaces */
34
35 #define DEBUG_SUBSYSTEM S_RPC
36
37 #include "../include/obd_support.h"
38 #include "../include/obd_class.h"
39 #include "../include/lustre_lib.h"
40 #include "../include/lustre_ha.h"
41 #include "../include/lustre_import.h"
42 #include "../include/lustre_req_layout.h"
43
44 #include "ptlrpc_internal.h"
45
46 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
47 static int ptlrpcd_check_work(struct ptlrpc_request *req);
48
49 /**
50 * Initialize passed in client structure \a cl.
51 */
52 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
53 struct ptlrpc_client *cl)
54 {
55 cl->cli_request_portal = req_portal;
56 cl->cli_reply_portal = rep_portal;
57 cl->cli_name = name;
58 }
59 EXPORT_SYMBOL(ptlrpc_init_client);
60
61 /**
62 * Return PortalRPC connection for remote uud \a uuid
63 */
64 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
65 {
66 struct ptlrpc_connection *c;
67 lnet_nid_t self;
68 lnet_process_id_t peer;
69 int err;
70
71 /*
72 * ptlrpc_uuid_to_peer() initializes its 2nd parameter
73 * before accessing its values.
74 * coverity[uninit_use_in_call]
75 */
76 err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
77 if (err != 0) {
78 CNETERR("cannot find peer %s!\n", uuid->uuid);
79 return NULL;
80 }
81
82 c = ptlrpc_connection_get(peer, self, uuid);
83 if (c) {
84 memcpy(c->c_remote_uuid.uuid,
85 uuid->uuid, sizeof(c->c_remote_uuid.uuid));
86 }
87
88 CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
89
90 return c;
91 }
92 EXPORT_SYMBOL(ptlrpc_uuid_to_connection);
93
94 /**
95 * Allocate and initialize new bulk descriptor on the sender.
96 * Returns pointer to the descriptor or NULL on error.
97 */
98 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
99 unsigned type, unsigned portal)
100 {
101 struct ptlrpc_bulk_desc *desc;
102 int i;
103
104 desc = kzalloc(offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]),
105 GFP_NOFS);
106 if (!desc)
107 return NULL;
108
109 spin_lock_init(&desc->bd_lock);
110 init_waitqueue_head(&desc->bd_waitq);
111 desc->bd_max_iov = npages;
112 desc->bd_iov_count = 0;
113 desc->bd_portal = portal;
114 desc->bd_type = type;
115 desc->bd_md_count = 0;
116 LASSERT(max_brw > 0);
117 desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
118 /*
119 * PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
120 * node. Negotiated ocd_brw_size will always be <= this number.
121 */
122 for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
123 LNetInvalidateHandle(&desc->bd_mds[i]);
124
125 return desc;
126 }
127
128 /**
129 * Prepare bulk descriptor for specified outgoing request \a req that
130 * can fit \a npages * pages. \a type is bulk type. \a portal is where
131 * the bulk to be sent. Used on client-side.
132 * Returns pointer to newly allocated initialized bulk descriptor or NULL on
133 * error.
134 */
135 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
136 unsigned npages, unsigned max_brw,
137 unsigned type, unsigned portal)
138 {
139 struct obd_import *imp = req->rq_import;
140 struct ptlrpc_bulk_desc *desc;
141
142 LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
143 desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
144 if (!desc)
145 return NULL;
146
147 desc->bd_import_generation = req->rq_import_generation;
148 desc->bd_import = class_import_get(imp);
149 desc->bd_req = req;
150
151 desc->bd_cbid.cbid_fn = client_bulk_callback;
152 desc->bd_cbid.cbid_arg = desc;
153
154 /* This makes req own desc, and free it when she frees herself */
155 req->rq_bulk = desc;
156
157 return desc;
158 }
159 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
160
161 /**
162 * Add a page \a page to the bulk descriptor \a desc.
163 * Data to transfer in the page starts at offset \a pageoffset and
164 * amount of data to transfer from the page is \a len
165 */
166 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
167 struct page *page, int pageoffset, int len, int pin)
168 {
169 LASSERT(desc->bd_iov_count < desc->bd_max_iov);
170 LASSERT(page);
171 LASSERT(pageoffset >= 0);
172 LASSERT(len > 0);
173 LASSERT(pageoffset + len <= PAGE_SIZE);
174
175 desc->bd_nob += len;
176
177 if (pin)
178 get_page(page);
179
180 ptlrpc_add_bulk_page(desc, page, pageoffset, len);
181 }
182 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
183
184 /**
185 * Uninitialize and free bulk descriptor \a desc.
186 * Works on bulk descriptors both from server and client side.
187 */
188 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
189 {
190 int i;
191
192 LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
193 LASSERT(desc->bd_md_count == 0); /* network hands off */
194 LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
195
196 sptlrpc_enc_pool_put_pages(desc);
197
198 if (desc->bd_export)
199 class_export_put(desc->bd_export);
200 else
201 class_import_put(desc->bd_import);
202
203 if (unpin) {
204 for (i = 0; i < desc->bd_iov_count; i++)
205 put_page(desc->bd_iov[i].bv_page);
206 }
207
208 kfree(desc);
209 }
210 EXPORT_SYMBOL(__ptlrpc_free_bulk);
211
212 /**
213 * Set server timelimit for this req, i.e. how long are we willing to wait
214 * for reply before timing out this request.
215 */
216 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
217 {
218 __u32 serv_est;
219 int idx;
220 struct imp_at *at;
221
222 LASSERT(req->rq_import);
223
224 if (AT_OFF) {
225 /*
226 * non-AT settings
227 *
228 * \a imp_server_timeout means this is reverse import and
229 * we send (currently only) ASTs to the client and cannot afford
230 * to wait too long for the reply, otherwise the other client
231 * (because of which we are sending this request) would
232 * timeout waiting for us
233 */
234 req->rq_timeout = req->rq_import->imp_server_timeout ?
235 obd_timeout / 2 : obd_timeout;
236 } else {
237 at = &req->rq_import->imp_at;
238 idx = import_at_get_index(req->rq_import,
239 req->rq_request_portal);
240 serv_est = at_get(&at->iat_service_estimate[idx]);
241 req->rq_timeout = at_est2timeout(serv_est);
242 }
243 /*
244 * We could get even fancier here, using history to predict increased
245 * loading...
246 */
247
248 /*
249 * Let the server know what this RPC timeout is by putting it in the
250 * reqmsg
251 */
252 lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
253 }
254 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
255
256 /* Adjust max service estimate based on server value */
257 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
258 unsigned int serv_est)
259 {
260 int idx;
261 unsigned int oldse;
262 struct imp_at *at;
263
264 LASSERT(req->rq_import);
265 at = &req->rq_import->imp_at;
266
267 idx = import_at_get_index(req->rq_import, req->rq_request_portal);
268 /*
269 * max service estimates are tracked on the server side,
270 * so just keep minimal history here
271 */
272 oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
273 if (oldse != 0)
274 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
275 req->rq_import->imp_obd->obd_name, req->rq_request_portal,
276 oldse, at_get(&at->iat_service_estimate[idx]));
277 }
278
279 /* Expected network latency per remote node (secs) */
280 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
281 {
282 return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
283 }
284
285 /* Adjust expected network latency */
286 static void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
287 unsigned int service_time)
288 {
289 unsigned int nl, oldnl;
290 struct imp_at *at;
291 time64_t now = ktime_get_real_seconds();
292
293 LASSERT(req->rq_import);
294
295 if (service_time > now - req->rq_sent + 3) {
296 /*
297 * bz16408, however, this can also happen if early reply
298 * is lost and client RPC is expired and resent, early reply
299 * or reply of original RPC can still be fit in reply buffer
300 * of resent RPC, now client is measuring time from the
301 * resent time, but server sent back service time of original
302 * RPC.
303 */
304 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
305 D_ADAPTTO : D_WARNING,
306 "Reported service time %u > total measured time "
307 CFS_DURATION_T"\n", service_time,
308 (long)(now - req->rq_sent));
309 return;
310 }
311
312 /* Network latency is total time less server processing time */
313 nl = max_t(int, now - req->rq_sent -
314 service_time, 0) + 1; /* st rounding */
315 at = &req->rq_import->imp_at;
316
317 oldnl = at_measured(&at->iat_net_latency, nl);
318 if (oldnl != 0)
319 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) has changed from %d to %d\n",
320 req->rq_import->imp_obd->obd_name,
321 obd_uuid2str(
322 &req->rq_import->imp_connection->c_remote_uuid),
323 oldnl, at_get(&at->iat_net_latency));
324 }
325
326 static int unpack_reply(struct ptlrpc_request *req)
327 {
328 int rc;
329
330 if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
331 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
332 if (rc) {
333 DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
334 return -EPROTO;
335 }
336 }
337
338 rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
339 if (rc) {
340 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
341 return -EPROTO;
342 }
343 return 0;
344 }
345
346 /**
347 * Handle an early reply message, called with the rq_lock held.
348 * If anything goes wrong just ignore it - same as if it never happened
349 */
350 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
351 __must_hold(&req->rq_lock)
352 {
353 struct ptlrpc_request *early_req;
354 time64_t olddl;
355 int rc;
356
357 req->rq_early = 0;
358 spin_unlock(&req->rq_lock);
359
360 rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
361 if (rc) {
362 spin_lock(&req->rq_lock);
363 return rc;
364 }
365
366 rc = unpack_reply(early_req);
367 if (rc == 0) {
368 /* Expecting to increase the service time estimate here */
369 ptlrpc_at_adj_service(req,
370 lustre_msg_get_timeout(early_req->rq_repmsg));
371 ptlrpc_at_adj_net_latency(req,
372 lustre_msg_get_service_time(early_req->rq_repmsg));
373 }
374
375 sptlrpc_cli_finish_early_reply(early_req);
376
377 if (rc != 0) {
378 spin_lock(&req->rq_lock);
379 return rc;
380 }
381
382 /* Adjust the local timeout for this req */
383 ptlrpc_at_set_req_timeout(req);
384
385 spin_lock(&req->rq_lock);
386 olddl = req->rq_deadline;
387 /*
388 * server assumes it now has rq_timeout from when the request
389 * arrived, so the client should give it at least that long.
390 * since we don't know the arrival time we'll use the original
391 * sent time
392 */
393 req->rq_deadline = req->rq_sent + req->rq_timeout +
394 ptlrpc_at_get_net_latency(req);
395
396 DEBUG_REQ(D_ADAPTTO, req,
397 "Early reply #%d, new deadline in %lds (%lds)",
398 req->rq_early_count,
399 (long)(req->rq_deadline - ktime_get_real_seconds()),
400 (long)(req->rq_deadline - olddl));
401
402 return rc;
403 }
404
405 static struct kmem_cache *request_cache;
406
407 int ptlrpc_request_cache_init(void)
408 {
409 request_cache = kmem_cache_create("ptlrpc_cache",
410 sizeof(struct ptlrpc_request),
411 0, SLAB_HWCACHE_ALIGN, NULL);
412 return !request_cache ? -ENOMEM : 0;
413 }
414
415 void ptlrpc_request_cache_fini(void)
416 {
417 kmem_cache_destroy(request_cache);
418 }
419
420 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
421 {
422 struct ptlrpc_request *req;
423
424 req = kmem_cache_zalloc(request_cache, flags);
425 return req;
426 }
427
428 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
429 {
430 kmem_cache_free(request_cache, req);
431 }
432
433 /**
434 * Wind down request pool \a pool.
435 * Frees all requests from the pool too
436 */
437 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
438 {
439 struct list_head *l, *tmp;
440 struct ptlrpc_request *req;
441
442 spin_lock(&pool->prp_lock);
443 list_for_each_safe(l, tmp, &pool->prp_req_list) {
444 req = list_entry(l, struct ptlrpc_request, rq_list);
445 list_del(&req->rq_list);
446 LASSERT(req->rq_reqbuf);
447 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
448 kvfree(req->rq_reqbuf);
449 ptlrpc_request_cache_free(req);
450 }
451 spin_unlock(&pool->prp_lock);
452 kfree(pool);
453 }
454 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
455
456 /**
457 * Allocates, initializes and adds \a num_rq requests to the pool \a pool
458 */
459 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
460 {
461 int i;
462 int size = 1;
463
464 while (size < pool->prp_rq_size)
465 size <<= 1;
466
467 LASSERTF(list_empty(&pool->prp_req_list) ||
468 size == pool->prp_rq_size,
469 "Trying to change pool size with nonempty pool from %d to %d bytes\n",
470 pool->prp_rq_size, size);
471
472 spin_lock(&pool->prp_lock);
473 pool->prp_rq_size = size;
474 for (i = 0; i < num_rq; i++) {
475 struct ptlrpc_request *req;
476 struct lustre_msg *msg;
477
478 spin_unlock(&pool->prp_lock);
479 req = ptlrpc_request_cache_alloc(GFP_NOFS);
480 if (!req)
481 return i;
482 msg = libcfs_kvzalloc(size, GFP_NOFS);
483 if (!msg) {
484 ptlrpc_request_cache_free(req);
485 return i;
486 }
487 req->rq_reqbuf = msg;
488 req->rq_reqbuf_len = size;
489 req->rq_pool = pool;
490 spin_lock(&pool->prp_lock);
491 list_add_tail(&req->rq_list, &pool->prp_req_list);
492 }
493 spin_unlock(&pool->prp_lock);
494 return num_rq;
495 }
496 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
497
498 /**
499 * Create and initialize new request pool with given attributes:
500 * \a num_rq - initial number of requests to create for the pool
501 * \a msgsize - maximum message size possible for requests in thid pool
502 * \a populate_pool - function to be called when more requests need to be added
503 * to the pool
504 * Returns pointer to newly created pool or NULL on error.
505 */
506 struct ptlrpc_request_pool *
507 ptlrpc_init_rq_pool(int num_rq, int msgsize,
508 int (*populate_pool)(struct ptlrpc_request_pool *, int))
509 {
510 struct ptlrpc_request_pool *pool;
511
512 pool = kzalloc(sizeof(struct ptlrpc_request_pool), GFP_NOFS);
513 if (!pool)
514 return NULL;
515
516 /*
517 * Request next power of two for the allocation, because internally
518 * kernel would do exactly this
519 */
520
521 spin_lock_init(&pool->prp_lock);
522 INIT_LIST_HEAD(&pool->prp_req_list);
523 pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
524 pool->prp_populate = populate_pool;
525
526 populate_pool(pool, num_rq);
527
528 return pool;
529 }
530 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
531
532 /**
533 * Fetches one request from pool \a pool
534 */
535 static struct ptlrpc_request *
536 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
537 {
538 struct ptlrpc_request *request;
539 struct lustre_msg *reqbuf;
540
541 if (!pool)
542 return NULL;
543
544 spin_lock(&pool->prp_lock);
545
546 /*
547 * See if we have anything in a pool, and bail out if nothing,
548 * in writeout path, where this matters, this is safe to do, because
549 * nothing is lost in this case, and when some in-flight requests
550 * complete, this code will be called again.
551 */
552 if (unlikely(list_empty(&pool->prp_req_list))) {
553 spin_unlock(&pool->prp_lock);
554 return NULL;
555 }
556
557 request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
558 rq_list);
559 list_del_init(&request->rq_list);
560 spin_unlock(&pool->prp_lock);
561
562 LASSERT(request->rq_reqbuf);
563 LASSERT(request->rq_pool);
564
565 reqbuf = request->rq_reqbuf;
566 memset(request, 0, sizeof(*request));
567 request->rq_reqbuf = reqbuf;
568 request->rq_reqbuf_len = pool->prp_rq_size;
569 request->rq_pool = pool;
570
571 return request;
572 }
573
574 /**
575 * Returns freed \a request to pool.
576 */
577 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
578 {
579 struct ptlrpc_request_pool *pool = request->rq_pool;
580
581 spin_lock(&pool->prp_lock);
582 LASSERT(list_empty(&request->rq_list));
583 LASSERT(!request->rq_receiving_reply);
584 list_add_tail(&request->rq_list, &pool->prp_req_list);
585 spin_unlock(&pool->prp_lock);
586 }
587
588 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
589 __u32 version, int opcode, char **bufs,
590 struct ptlrpc_cli_ctx *ctx)
591 {
592 int count;
593 struct obd_import *imp;
594 __u32 *lengths;
595 int rc;
596
597 count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
598 imp = request->rq_import;
599 lengths = request->rq_pill.rc_area[RCL_CLIENT];
600
601 if (unlikely(ctx)) {
602 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
603 } else {
604 rc = sptlrpc_req_get_ctx(request);
605 if (rc)
606 goto out_free;
607 }
608 sptlrpc_req_set_flavor(request, opcode);
609
610 rc = lustre_pack_request(request, imp->imp_msg_magic, count,
611 lengths, bufs);
612 if (rc)
613 goto out_ctx;
614
615 lustre_msg_add_version(request->rq_reqmsg, version);
616 request->rq_send_state = LUSTRE_IMP_FULL;
617 request->rq_type = PTL_RPC_MSG_REQUEST;
618
619 request->rq_req_cbid.cbid_fn = request_out_callback;
620 request->rq_req_cbid.cbid_arg = request;
621
622 request->rq_reply_cbid.cbid_fn = reply_in_callback;
623 request->rq_reply_cbid.cbid_arg = request;
624
625 request->rq_reply_deadline = 0;
626 request->rq_bulk_deadline = 0;
627 request->rq_req_deadline = 0;
628 request->rq_phase = RQ_PHASE_NEW;
629 request->rq_next_phase = RQ_PHASE_UNDEFINED;
630
631 request->rq_request_portal = imp->imp_client->cli_request_portal;
632 request->rq_reply_portal = imp->imp_client->cli_reply_portal;
633
634 ptlrpc_at_set_req_timeout(request);
635
636 request->rq_xid = ptlrpc_next_xid();
637 lustre_msg_set_opc(request->rq_reqmsg, opcode);
638
639 /* Let's setup deadline for req/reply/bulk unlink for opcode. */
640 if (cfs_fail_val == opcode) {
641 time_t *fail_t = NULL, *fail2_t = NULL;
642
643 if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
644 fail_t = &request->rq_bulk_deadline;
645 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
646 fail_t = &request->rq_reply_deadline;
647 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) {
648 fail_t = &request->rq_req_deadline;
649 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
650 fail_t = &request->rq_reply_deadline;
651 fail2_t = &request->rq_bulk_deadline;
652 }
653
654 if (fail_t) {
655 *fail_t = ktime_get_real_seconds() + LONG_UNLINK;
656
657 if (fail2_t)
658 *fail2_t = ktime_get_real_seconds() +
659 LONG_UNLINK;
660
661 /* The RPC is infected, let the test change the
662 * fail_loc
663 */
664 set_current_state(TASK_UNINTERRUPTIBLE);
665 schedule_timeout(cfs_time_seconds(2));
666 set_current_state(TASK_RUNNING);
667 }
668 }
669
670 return 0;
671
672 out_ctx:
673 LASSERT(!request->rq_pool);
674 sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
675 out_free:
676 class_import_put(imp);
677 return rc;
678 }
679 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
680
681 /**
682 * Pack request buffers for network transfer, performing necessary encryption
683 * steps if necessary.
684 */
685 int ptlrpc_request_pack(struct ptlrpc_request *request,
686 __u32 version, int opcode)
687 {
688 int rc;
689
690 rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
691 if (rc)
692 return rc;
693
694 /*
695 * For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
696 * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
697 * have to send old ptlrpc_body to keep interoperability with these
698 * clients.
699 *
700 * Only three kinds of server->client RPCs so far:
701 * - LDLM_BL_CALLBACK
702 * - LDLM_CP_CALLBACK
703 * - LDLM_GL_CALLBACK
704 *
705 * XXX This should be removed whenever we drop the interoperability with
706 * the these old clients.
707 */
708 if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
709 opcode == LDLM_GL_CALLBACK)
710 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
711 sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
712
713 return rc;
714 }
715 EXPORT_SYMBOL(ptlrpc_request_pack);
716
717 /**
718 * Helper function to allocate new request on import \a imp
719 * and possibly using existing request from pool \a pool if provided.
720 * Returns allocated request structure with import field filled or
721 * NULL on error.
722 */
723 static inline
724 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
725 struct ptlrpc_request_pool *pool)
726 {
727 struct ptlrpc_request *request;
728
729 request = ptlrpc_request_cache_alloc(GFP_NOFS);
730
731 if (!request && pool)
732 request = ptlrpc_prep_req_from_pool(pool);
733
734 if (request) {
735 ptlrpc_cli_req_init(request);
736
737 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
738 LASSERT(imp != LP_POISON);
739 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
740 imp->imp_client);
741 LASSERT(imp->imp_client != LP_POISON);
742
743 request->rq_import = class_import_get(imp);
744 } else {
745 CERROR("request allocation out of memory\n");
746 }
747
748 return request;
749 }
750
751 /**
752 * Helper function for creating a request.
753 * Calls __ptlrpc_request_alloc to allocate new request structure and inits
754 * buffer structures according to capsule template \a format.
755 * Returns allocated request structure pointer or NULL on error.
756 */
757 static struct ptlrpc_request *
758 ptlrpc_request_alloc_internal(struct obd_import *imp,
759 struct ptlrpc_request_pool *pool,
760 const struct req_format *format)
761 {
762 struct ptlrpc_request *request;
763
764 request = __ptlrpc_request_alloc(imp, pool);
765 if (!request)
766 return NULL;
767
768 req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
769 req_capsule_set(&request->rq_pill, format);
770 return request;
771 }
772
773 /**
774 * Allocate new request structure for import \a imp and initialize its
775 * buffer structure according to capsule template \a format.
776 */
777 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
778 const struct req_format *format)
779 {
780 return ptlrpc_request_alloc_internal(imp, NULL, format);
781 }
782 EXPORT_SYMBOL(ptlrpc_request_alloc);
783
784 /**
785 * Allocate new request structure for import \a imp from pool \a pool and
786 * initialize its buffer structure according to capsule template \a format.
787 */
788 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
789 struct ptlrpc_request_pool *pool,
790 const struct req_format *format)
791 {
792 return ptlrpc_request_alloc_internal(imp, pool, format);
793 }
794 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
795
796 /**
797 * For requests not from pool, free memory of the request structure.
798 * For requests obtained from a pool earlier, return request back to pool.
799 */
800 void ptlrpc_request_free(struct ptlrpc_request *request)
801 {
802 if (request->rq_pool)
803 __ptlrpc_free_req_to_pool(request);
804 else
805 ptlrpc_request_cache_free(request);
806 }
807 EXPORT_SYMBOL(ptlrpc_request_free);
808
809 /**
810 * Allocate new request for operation \a opcode and immediately pack it for
811 * network transfer.
812 * Only used for simple requests like OBD_PING where the only important
813 * part of the request is operation itself.
814 * Returns allocated request or NULL on error.
815 */
816 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
817 const struct req_format *format,
818 __u32 version, int opcode)
819 {
820 struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
821 int rc;
822
823 if (req) {
824 rc = ptlrpc_request_pack(req, version, opcode);
825 if (rc) {
826 ptlrpc_request_free(req);
827 req = NULL;
828 }
829 }
830 return req;
831 }
832 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
833
834 /**
835 * Allocate and initialize new request set structure on the current CPT.
836 * Returns a pointer to the newly allocated set structure or NULL on error.
837 */
838 struct ptlrpc_request_set *ptlrpc_prep_set(void)
839 {
840 struct ptlrpc_request_set *set;
841 int cpt;
842
843 cpt = cfs_cpt_current(cfs_cpt_table, 0);
844 set = kzalloc_node(sizeof(*set), GFP_NOFS,
845 cfs_cpt_spread_node(cfs_cpt_table, cpt));
846 if (!set)
847 return NULL;
848 atomic_set(&set->set_refcount, 1);
849 INIT_LIST_HEAD(&set->set_requests);
850 init_waitqueue_head(&set->set_waitq);
851 atomic_set(&set->set_new_count, 0);
852 atomic_set(&set->set_remaining, 0);
853 spin_lock_init(&set->set_new_req_lock);
854 INIT_LIST_HEAD(&set->set_new_requests);
855 INIT_LIST_HEAD(&set->set_cblist);
856 set->set_max_inflight = UINT_MAX;
857 set->set_producer = NULL;
858 set->set_producer_arg = NULL;
859 set->set_rc = 0;
860
861 return set;
862 }
863 EXPORT_SYMBOL(ptlrpc_prep_set);
864
865 /**
866 * Allocate and initialize new request set structure with flow control
867 * extension. This extension allows to control the number of requests in-flight
868 * for the whole set. A callback function to generate requests must be provided
869 * and the request set will keep the number of requests sent over the wire to
870 * @max_inflight.
871 * Returns a pointer to the newly allocated set structure or NULL on error.
872 */
873 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
874 void *arg)
875
876 {
877 struct ptlrpc_request_set *set;
878
879 set = ptlrpc_prep_set();
880 if (!set)
881 return NULL;
882
883 set->set_max_inflight = max;
884 set->set_producer = func;
885 set->set_producer_arg = arg;
886
887 return set;
888 }
889 EXPORT_SYMBOL(ptlrpc_prep_fcset);
890
891 /**
892 * Wind down and free request set structure previously allocated with
893 * ptlrpc_prep_set.
894 * Ensures that all requests on the set have completed and removes
895 * all requests from the request list in a set.
896 * If any unsent request happen to be on the list, pretends that they got
897 * an error in flight and calls their completion handler.
898 */
899 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
900 {
901 struct list_head *tmp;
902 struct list_head *next;
903 int expected_phase;
904 int n = 0;
905
906 /* Requests on the set should either all be completed, or all be new */
907 expected_phase = (atomic_read(&set->set_remaining) == 0) ?
908 RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
909 list_for_each(tmp, &set->set_requests) {
910 struct ptlrpc_request *req =
911 list_entry(tmp, struct ptlrpc_request, rq_set_chain);
912
913 LASSERT(req->rq_phase == expected_phase);
914 n++;
915 }
916
917 LASSERTF(atomic_read(&set->set_remaining) == 0 ||
918 atomic_read(&set->set_remaining) == n, "%d / %d\n",
919 atomic_read(&set->set_remaining), n);
920
921 list_for_each_safe(tmp, next, &set->set_requests) {
922 struct ptlrpc_request *req =
923 list_entry(tmp, struct ptlrpc_request, rq_set_chain);
924 list_del_init(&req->rq_set_chain);
925
926 LASSERT(req->rq_phase == expected_phase);
927
928 if (req->rq_phase == RQ_PHASE_NEW) {
929 ptlrpc_req_interpret(NULL, req, -EBADR);
930 atomic_dec(&set->set_remaining);
931 }
932
933 spin_lock(&req->rq_lock);
934 req->rq_set = NULL;
935 req->rq_invalid_rqset = 0;
936 spin_unlock(&req->rq_lock);
937
938 ptlrpc_req_finished(req);
939 }
940
941 LASSERT(atomic_read(&set->set_remaining) == 0);
942
943 ptlrpc_reqset_put(set);
944 }
945 EXPORT_SYMBOL(ptlrpc_set_destroy);
946
947 /**
948 * Add a new request to the general purpose request set.
949 * Assumes request reference from the caller.
950 */
951 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
952 struct ptlrpc_request *req)
953 {
954 LASSERT(list_empty(&req->rq_set_chain));
955
956 /* The set takes over the caller's request reference */
957 list_add_tail(&req->rq_set_chain, &set->set_requests);
958 req->rq_set = set;
959 atomic_inc(&set->set_remaining);
960 req->rq_queued_time = cfs_time_current();
961
962 if (req->rq_reqmsg)
963 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
964
965 if (set->set_producer)
966 /*
967 * If the request set has a producer callback, the RPC must be
968 * sent straight away
969 */
970 ptlrpc_send_new_req(req);
971 }
972 EXPORT_SYMBOL(ptlrpc_set_add_req);
973
974 /**
975 * Add a request to a request with dedicated server thread
976 * and wake the thread to make any necessary processing.
977 * Currently only used for ptlrpcd.
978 */
979 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
980 struct ptlrpc_request *req)
981 {
982 struct ptlrpc_request_set *set = pc->pc_set;
983 int count, i;
984
985 LASSERT(!req->rq_set);
986 LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
987
988 spin_lock(&set->set_new_req_lock);
989 /* The set takes over the caller's request reference. */
990 req->rq_set = set;
991 req->rq_queued_time = cfs_time_current();
992 list_add_tail(&req->rq_set_chain, &set->set_new_requests);
993 count = atomic_inc_return(&set->set_new_count);
994 spin_unlock(&set->set_new_req_lock);
995
996 /* Only need to call wakeup once for the first entry. */
997 if (count == 1) {
998 wake_up(&set->set_waitq);
999
1000 /*
1001 * XXX: It maybe unnecessary to wakeup all the partners. But to
1002 * guarantee the async RPC can be processed ASAP, we have
1003 * no other better choice. It maybe fixed in future.
1004 */
1005 for (i = 0; i < pc->pc_npartners; i++)
1006 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1007 }
1008 }
1009 EXPORT_SYMBOL(ptlrpc_set_add_new_req);
1010
1011 /**
1012 * Based on the current state of the import, determine if the request
1013 * can be sent, is an error, or should be delayed.
1014 *
1015 * Returns true if this request should be delayed. If false, and
1016 * *status is set, then the request can not be sent and *status is the
1017 * error code. If false and status is 0, then request can be sent.
1018 *
1019 * The imp->imp_lock must be held.
1020 */
1021 static int ptlrpc_import_delay_req(struct obd_import *imp,
1022 struct ptlrpc_request *req, int *status)
1023 {
1024 int delay = 0;
1025
1026 *status = 0;
1027
1028 if (req->rq_ctx_init || req->rq_ctx_fini) {
1029 /* always allow ctx init/fini rpc go through */
1030 } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1031 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1032 *status = -EIO;
1033 } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1034 /* pings may safely race with umount */
1035 DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
1036 D_HA : D_ERROR, req, "IMP_CLOSED ");
1037 *status = -EIO;
1038 } else if (ptlrpc_send_limit_expired(req)) {
1039 /* probably doesn't need to be a D_ERROR after initial testing */
1040 DEBUG_REQ(D_ERROR, req, "send limit expired ");
1041 *status = -EIO;
1042 } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1043 imp->imp_state == LUSTRE_IMP_CONNECTING) {
1044 /* allow CONNECT even if import is invalid */
1045 if (atomic_read(&imp->imp_inval_count) != 0) {
1046 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1047 *status = -EIO;
1048 }
1049 } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1050 if (!imp->imp_deactive)
1051 DEBUG_REQ(D_NET, req, "IMP_INVALID");
1052 *status = -ESHUTDOWN; /* bz 12940 */
1053 } else if (req->rq_import_generation != imp->imp_generation) {
1054 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1055 *status = -EIO;
1056 } else if (req->rq_send_state != imp->imp_state) {
1057 /* invalidate in progress - any requests should be drop */
1058 if (atomic_read(&imp->imp_inval_count) != 0) {
1059 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1060 *status = -EIO;
1061 } else if (imp->imp_dlm_fake || req->rq_no_delay) {
1062 *status = -EWOULDBLOCK;
1063 } else if (req->rq_allow_replay &&
1064 (imp->imp_state == LUSTRE_IMP_REPLAY ||
1065 imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1066 imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1067 imp->imp_state == LUSTRE_IMP_RECOVER)) {
1068 DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1069 } else {
1070 delay = 1;
1071 }
1072 }
1073
1074 return delay;
1075 }
1076
1077 /**
1078 * Decide if the error message regarding provided request \a req
1079 * should be printed to the console or not.
1080 * Makes it's decision on request status and other properties.
1081 * Returns 1 to print error on the system console or 0 if not.
1082 */
1083 static int ptlrpc_console_allow(struct ptlrpc_request *req)
1084 {
1085 __u32 opc;
1086 int err;
1087
1088 LASSERT(req->rq_reqmsg);
1089 opc = lustre_msg_get_opc(req->rq_reqmsg);
1090
1091 /*
1092 * Suppress particular reconnect errors which are to be expected. No
1093 * errors are suppressed for the initial connection on an import
1094 */
1095 if ((lustre_handle_is_used(&req->rq_import->imp_remote_handle)) &&
1096 (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT)) {
1097 /* Suppress timed out reconnect requests */
1098 if (req->rq_timedout)
1099 return 0;
1100
1101 /* Suppress unavailable/again reconnect requests */
1102 err = lustre_msg_get_status(req->rq_repmsg);
1103 if (err == -ENODEV || err == -EAGAIN)
1104 return 0;
1105 }
1106
1107 return 1;
1108 }
1109
1110 /**
1111 * Check request processing status.
1112 * Returns the status.
1113 */
1114 static int ptlrpc_check_status(struct ptlrpc_request *req)
1115 {
1116 int err;
1117
1118 err = lustre_msg_get_status(req->rq_repmsg);
1119 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1120 struct obd_import *imp = req->rq_import;
1121 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1122
1123 if (ptlrpc_console_allow(req))
1124 LCONSOLE_ERROR_MSG(0x011, "%s: Communicating with %s, operation %s failed with %d.\n",
1125 imp->imp_obd->obd_name,
1126 libcfs_nid2str(
1127 imp->imp_connection->c_peer.nid),
1128 ll_opcode2str(opc), err);
1129 return err < 0 ? err : -EINVAL;
1130 }
1131
1132 if (err < 0)
1133 DEBUG_REQ(D_INFO, req, "status is %d", err);
1134 else if (err > 0)
1135 /* XXX: translate this error from net to host */
1136 DEBUG_REQ(D_INFO, req, "status is %d", err);
1137
1138 return err;
1139 }
1140
1141 /**
1142 * save pre-versions of objects into request for replay.
1143 * Versions are obtained from server reply.
1144 * used for VBR.
1145 */
1146 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1147 {
1148 struct lustre_msg *repmsg = req->rq_repmsg;
1149 struct lustre_msg *reqmsg = req->rq_reqmsg;
1150 __u64 *versions = lustre_msg_get_versions(repmsg);
1151
1152 if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1153 return;
1154
1155 LASSERT(versions);
1156 lustre_msg_set_versions(reqmsg, versions);
1157 CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1158 versions[0], versions[1]);
1159 }
1160
1161 /**
1162 * Callback function called when client receives RPC reply for \a req.
1163 * Returns 0 on success or error code.
1164 * The return value would be assigned to req->rq_status by the caller
1165 * as request processing status.
1166 * This function also decides if the request needs to be saved for later replay.
1167 */
1168 static int after_reply(struct ptlrpc_request *req)
1169 {
1170 struct obd_import *imp = req->rq_import;
1171 struct obd_device *obd = req->rq_import->imp_obd;
1172 int rc;
1173 struct timespec64 work_start;
1174 long timediff;
1175
1176 LASSERT(obd);
1177 /* repbuf must be unlinked */
1178 LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
1179
1180 if (req->rq_reply_truncated) {
1181 if (ptlrpc_no_resend(req)) {
1182 DEBUG_REQ(D_ERROR, req, "reply buffer overflow, expected: %d, actual size: %d",
1183 req->rq_nob_received, req->rq_repbuf_len);
1184 return -EOVERFLOW;
1185 }
1186
1187 sptlrpc_cli_free_repbuf(req);
1188 /*
1189 * Pass the required reply buffer size (include space for early
1190 * reply). NB: no need to round up because alloc_repbuf will
1191 * round it up
1192 */
1193 req->rq_replen = req->rq_nob_received;
1194 req->rq_nob_received = 0;
1195 spin_lock(&req->rq_lock);
1196 req->rq_resend = 1;
1197 spin_unlock(&req->rq_lock);
1198 return 0;
1199 }
1200
1201 /*
1202 * NB Until this point, the whole of the incoming message,
1203 * including buflens, status etc is in the sender's byte order.
1204 */
1205 rc = sptlrpc_cli_unwrap_reply(req);
1206 if (rc) {
1207 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1208 return rc;
1209 }
1210
1211 /* Security layer unwrap might ask resend this request. */
1212 if (req->rq_resend)
1213 return 0;
1214
1215 rc = unpack_reply(req);
1216 if (rc)
1217 return rc;
1218
1219 /* retry indefinitely on EINPROGRESS */
1220 if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1221 ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1222 time64_t now = ktime_get_real_seconds();
1223
1224 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1225 spin_lock(&req->rq_lock);
1226 req->rq_resend = 1;
1227 spin_unlock(&req->rq_lock);
1228 req->rq_nr_resend++;
1229
1230 /* allocate new xid to avoid reply reconstruction */
1231 if (!req->rq_bulk) {
1232 /* new xid is already allocated for bulk in ptlrpc_check_set() */
1233 req->rq_xid = ptlrpc_next_xid();
1234 DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for resend on EINPROGRESS");
1235 }
1236
1237 /* Readjust the timeout for current conditions */
1238 ptlrpc_at_set_req_timeout(req);
1239 /*
1240 * delay resend to give a chance to the server to get ready.
1241 * The delay is increased by 1s on every resend and is capped to
1242 * the current request timeout (i.e. obd_timeout if AT is off,
1243 * or AT service time x 125% + 5s, see at_est2timeout)
1244 */
1245 if (req->rq_nr_resend > req->rq_timeout)
1246 req->rq_sent = now + req->rq_timeout;
1247 else
1248 req->rq_sent = now + req->rq_nr_resend;
1249
1250 return 0;
1251 }
1252
1253 ktime_get_real_ts64(&work_start);
1254 timediff = (work_start.tv_sec - req->rq_sent_tv.tv_sec) * USEC_PER_SEC +
1255 (work_start.tv_nsec - req->rq_sent_tv.tv_nsec) /
1256 NSEC_PER_USEC;
1257 if (obd->obd_svc_stats) {
1258 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1259 timediff);
1260 ptlrpc_lprocfs_rpc_sent(req, timediff);
1261 }
1262
1263 if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1264 lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1265 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1266 lustre_msg_get_type(req->rq_repmsg));
1267 return -EPROTO;
1268 }
1269
1270 if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1271 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1272 ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1273 ptlrpc_at_adj_net_latency(req,
1274 lustre_msg_get_service_time(req->rq_repmsg));
1275
1276 rc = ptlrpc_check_status(req);
1277 imp->imp_connect_error = rc;
1278
1279 if (rc) {
1280 /*
1281 * Either we've been evicted, or the server has failed for
1282 * some reason. Try to reconnect, and if that fails, punt to
1283 * the upcall.
1284 */
1285 if (ll_rpc_recoverable_error(rc)) {
1286 if (req->rq_send_state != LUSTRE_IMP_FULL ||
1287 imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1288 return rc;
1289 }
1290 ptlrpc_request_handle_notconn(req);
1291 return rc;
1292 }
1293 } else {
1294 /*
1295 * Let's look if server sent slv. Do it only for RPC with
1296 * rc == 0.
1297 */
1298 ldlm_cli_update_pool(req);
1299 }
1300
1301 /* Store transno in reqmsg for replay. */
1302 if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1303 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1304 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1305 }
1306
1307 if (imp->imp_replayable) {
1308 spin_lock(&imp->imp_lock);
1309 /*
1310 * No point in adding already-committed requests to the replay
1311 * list, we will just remove them immediately. b=9829
1312 */
1313 if (req->rq_transno != 0 &&
1314 (req->rq_transno >
1315 lustre_msg_get_last_committed(req->rq_repmsg) ||
1316 req->rq_replay)) {
1317 /* version recovery */
1318 ptlrpc_save_versions(req);
1319 ptlrpc_retain_replayable_request(req, imp);
1320 } else if (req->rq_commit_cb &&
1321 list_empty(&req->rq_replay_list)) {
1322 /*
1323 * NB: don't call rq_commit_cb if it's already on
1324 * rq_replay_list, ptlrpc_free_committed() will call
1325 * it later, see LU-3618 for details
1326 */
1327 spin_unlock(&imp->imp_lock);
1328 req->rq_commit_cb(req);
1329 spin_lock(&imp->imp_lock);
1330 }
1331
1332 /* Replay-enabled imports return commit-status information. */
1333 if (lustre_msg_get_last_committed(req->rq_repmsg)) {
1334 imp->imp_peer_committed_transno =
1335 lustre_msg_get_last_committed(req->rq_repmsg);
1336 }
1337
1338 ptlrpc_free_committed(imp);
1339
1340 if (!list_empty(&imp->imp_replay_list)) {
1341 struct ptlrpc_request *last;
1342
1343 last = list_entry(imp->imp_replay_list.prev,
1344 struct ptlrpc_request,
1345 rq_replay_list);
1346 /*
1347 * Requests with rq_replay stay on the list even if no
1348 * commit is expected.
1349 */
1350 if (last->rq_transno > imp->imp_peer_committed_transno)
1351 ptlrpc_pinger_commit_expected(imp);
1352 }
1353
1354 spin_unlock(&imp->imp_lock);
1355 }
1356
1357 return rc;
1358 }
1359
1360 /**
1361 * Helper function to send request \a req over the network for the first time
1362 * Also adjusts request phase.
1363 * Returns 0 on success or error code.
1364 */
1365 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1366 {
1367 struct obd_import *imp = req->rq_import;
1368 int rc;
1369
1370 LASSERT(req->rq_phase == RQ_PHASE_NEW);
1371 if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1372 (!req->rq_generation_set ||
1373 req->rq_import_generation == imp->imp_generation))
1374 return 0;
1375
1376 ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1377
1378 spin_lock(&imp->imp_lock);
1379
1380 if (!req->rq_generation_set)
1381 req->rq_import_generation = imp->imp_generation;
1382
1383 if (ptlrpc_import_delay_req(imp, req, &rc)) {
1384 spin_lock(&req->rq_lock);
1385 req->rq_waiting = 1;
1386 spin_unlock(&req->rq_lock);
1387
1388 DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: (%s != %s)",
1389 lustre_msg_get_status(req->rq_reqmsg),
1390 ptlrpc_import_state_name(req->rq_send_state),
1391 ptlrpc_import_state_name(imp->imp_state));
1392 LASSERT(list_empty(&req->rq_list));
1393 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1394 atomic_inc(&req->rq_import->imp_inflight);
1395 spin_unlock(&imp->imp_lock);
1396 return 0;
1397 }
1398
1399 if (rc != 0) {
1400 spin_unlock(&imp->imp_lock);
1401 req->rq_status = rc;
1402 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1403 return rc;
1404 }
1405
1406 LASSERT(list_empty(&req->rq_list));
1407 list_add_tail(&req->rq_list, &imp->imp_sending_list);
1408 atomic_inc(&req->rq_import->imp_inflight);
1409 spin_unlock(&imp->imp_lock);
1410
1411 lustre_msg_set_status(req->rq_reqmsg, current_pid());
1412
1413 rc = sptlrpc_req_refresh_ctx(req, -1);
1414 if (rc) {
1415 if (req->rq_err) {
1416 req->rq_status = rc;
1417 return 1;
1418 }
1419 spin_lock(&req->rq_lock);
1420 req->rq_wait_ctx = 1;
1421 spin_unlock(&req->rq_lock);
1422 return 0;
1423 }
1424
1425 CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1426 current_comm(),
1427 imp->imp_obd->obd_uuid.uuid,
1428 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1429 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1430 lustre_msg_get_opc(req->rq_reqmsg));
1431
1432 rc = ptl_send_rpc(req, 0);
1433 if (rc) {
1434 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1435 spin_lock(&req->rq_lock);
1436 req->rq_net_err = 1;
1437 spin_unlock(&req->rq_lock);
1438 return rc;
1439 }
1440 return 0;
1441 }
1442
1443 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1444 {
1445 int remaining, rc;
1446
1447 LASSERT(set->set_producer);
1448
1449 remaining = atomic_read(&set->set_remaining);
1450
1451 /*
1452 * populate the ->set_requests list with requests until we
1453 * reach the maximum number of RPCs in flight for this set
1454 */
1455 while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1456 rc = set->set_producer(set, set->set_producer_arg);
1457 if (rc == -ENOENT) {
1458 /* no more RPC to produce */
1459 set->set_producer = NULL;
1460 set->set_producer_arg = NULL;
1461 return 0;
1462 }
1463 }
1464
1465 return (atomic_read(&set->set_remaining) - remaining);
1466 }
1467
1468 /**
1469 * this sends any unsent RPCs in \a set and returns 1 if all are sent
1470 * and no more replies are expected.
1471 * (it is possible to get less replies than requests sent e.g. due to timed out
1472 * requests or requests that we had trouble to send out)
1473 *
1474 * NOTE: This function contains a potential schedule point (cond_resched()).
1475 */
1476 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1477 {
1478 struct list_head *tmp, *next;
1479 struct list_head comp_reqs;
1480 int force_timer_recalc = 0;
1481
1482 if (atomic_read(&set->set_remaining) == 0)
1483 return 1;
1484
1485 INIT_LIST_HEAD(&comp_reqs);
1486 list_for_each_safe(tmp, next, &set->set_requests) {
1487 struct ptlrpc_request *req =
1488 list_entry(tmp, struct ptlrpc_request, rq_set_chain);
1489 struct obd_import *imp = req->rq_import;
1490 int unregistered = 0;
1491 int rc = 0;
1492
1493 /*
1494 * This schedule point is mainly for the ptlrpcd caller of this
1495 * function. Most ptlrpc sets are not long-lived and unbounded
1496 * in length, but at the least the set used by the ptlrpcd is.
1497 * Since the processing time is unbounded, we need to insert an
1498 * explicit schedule point to make the thread well-behaved.
1499 */
1500 cond_resched();
1501
1502 if (req->rq_phase == RQ_PHASE_NEW &&
1503 ptlrpc_send_new_req(req)) {
1504 force_timer_recalc = 1;
1505 }
1506
1507 /* delayed send - skip */
1508 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1509 continue;
1510
1511 /* delayed resend - skip */
1512 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1513 req->rq_sent > ktime_get_real_seconds())
1514 continue;
1515
1516 if (!(req->rq_phase == RQ_PHASE_RPC ||
1517 req->rq_phase == RQ_PHASE_BULK ||
1518 req->rq_phase == RQ_PHASE_INTERPRET ||
1519 req->rq_phase == RQ_PHASE_UNREG_RPC ||
1520 req->rq_phase == RQ_PHASE_UNREG_BULK ||
1521 req->rq_phase == RQ_PHASE_COMPLETE)) {
1522 DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1523 LBUG();
1524 }
1525
1526 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
1527 req->rq_phase == RQ_PHASE_UNREG_BULK) {
1528 LASSERT(req->rq_next_phase != req->rq_phase);
1529 LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1530
1531 if (req->rq_req_deadline &&
1532 !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
1533 req->rq_req_deadline = 0;
1534 if (req->rq_reply_deadline &&
1535 !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
1536 req->rq_reply_deadline = 0;
1537 if (req->rq_bulk_deadline &&
1538 !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
1539 req->rq_bulk_deadline = 0;
1540
1541 /*
1542 * Skip processing until reply is unlinked. We
1543 * can't return to pool before that and we can't
1544 * call interpret before that. We need to make
1545 * sure that all rdma transfers finished and will
1546 * not corrupt any data.
1547 */
1548 if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
1549 ptlrpc_client_recv_or_unlink(req))
1550 continue;
1551 if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
1552 ptlrpc_client_bulk_active(req))
1553 continue;
1554
1555 /*
1556 * Turn fail_loc off to prevent it from looping
1557 * forever.
1558 */
1559 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1560 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1561 OBD_FAIL_ONCE);
1562 }
1563 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1564 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1565 OBD_FAIL_ONCE);
1566 }
1567
1568 /* Move to next phase if reply was successfully
1569 * unlinked.
1570 */
1571 ptlrpc_rqphase_move(req, req->rq_next_phase);
1572 }
1573
1574 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1575 list_move_tail(&req->rq_set_chain, &comp_reqs);
1576 continue;
1577 }
1578
1579 if (req->rq_phase == RQ_PHASE_INTERPRET)
1580 goto interpret;
1581
1582 /* Note that this also will start async reply unlink. */
1583 if (req->rq_net_err && !req->rq_timedout) {
1584 ptlrpc_expire_one_request(req, 1);
1585
1586 /* Check if we still need to wait for unlink. */
1587 if (ptlrpc_client_recv_or_unlink(req) ||
1588 ptlrpc_client_bulk_active(req))
1589 continue;
1590 /* If there is no need to resend, fail it now. */
1591 if (req->rq_no_resend) {
1592 if (req->rq_status == 0)
1593 req->rq_status = -EIO;
1594 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1595 goto interpret;
1596 } else {
1597 continue;
1598 }
1599 }
1600
1601 if (req->rq_err) {
1602 spin_lock(&req->rq_lock);
1603 req->rq_replied = 0;
1604 spin_unlock(&req->rq_lock);
1605 if (req->rq_status == 0)
1606 req->rq_status = -EIO;
1607 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1608 goto interpret;
1609 }
1610
1611 /*
1612 * ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1613 * so it sets rq_intr regardless of individual rpc
1614 * timeouts. The synchronous IO waiting path sets
1615 * rq_intr irrespective of whether ptlrpcd
1616 * has seen a timeout. Our policy is to only interpret
1617 * interrupted rpcs after they have timed out, so we
1618 * need to enforce that here.
1619 */
1620
1621 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1622 req->rq_wait_ctx)) {
1623 req->rq_status = -EINTR;
1624 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1625 goto interpret;
1626 }
1627
1628 if (req->rq_phase == RQ_PHASE_RPC) {
1629 if (req->rq_timedout || req->rq_resend ||
1630 req->rq_waiting || req->rq_wait_ctx) {
1631 int status;
1632
1633 if (!ptlrpc_unregister_reply(req, 1)) {
1634 ptlrpc_unregister_bulk(req, 1);
1635 continue;
1636 }
1637
1638 spin_lock(&imp->imp_lock);
1639 if (ptlrpc_import_delay_req(imp, req,
1640 &status)) {
1641 /*
1642 * put on delay list - only if we wait
1643 * recovery finished - before send
1644 */
1645 list_del_init(&req->rq_list);
1646 list_add_tail(&req->rq_list,
1647 &imp->imp_delayed_list);
1648 spin_unlock(&imp->imp_lock);
1649 continue;
1650 }
1651
1652 if (status != 0) {
1653 req->rq_status = status;
1654 ptlrpc_rqphase_move(req,
1655 RQ_PHASE_INTERPRET);
1656 spin_unlock(&imp->imp_lock);
1657 goto interpret;
1658 }
1659 if (ptlrpc_no_resend(req) &&
1660 !req->rq_wait_ctx) {
1661 req->rq_status = -ENOTCONN;
1662 ptlrpc_rqphase_move(req,
1663 RQ_PHASE_INTERPRET);
1664 spin_unlock(&imp->imp_lock);
1665 goto interpret;
1666 }
1667
1668 list_del_init(&req->rq_list);
1669 list_add_tail(&req->rq_list,
1670 &imp->imp_sending_list);
1671
1672 spin_unlock(&imp->imp_lock);
1673
1674 spin_lock(&req->rq_lock);
1675 req->rq_waiting = 0;
1676 spin_unlock(&req->rq_lock);
1677
1678 if (req->rq_timedout || req->rq_resend) {
1679 /* This is re-sending anyway, let's mark req as resend. */
1680 spin_lock(&req->rq_lock);
1681 req->rq_resend = 1;
1682 spin_unlock(&req->rq_lock);
1683 if (req->rq_bulk) {
1684 __u64 old_xid;
1685
1686 if (!ptlrpc_unregister_bulk(req, 1))
1687 continue;
1688
1689 /* ensure previous bulk fails */
1690 old_xid = req->rq_xid;
1691 req->rq_xid = ptlrpc_next_xid();
1692 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
1693 old_xid, req->rq_xid);
1694 }
1695 }
1696 /*
1697 * rq_wait_ctx is only touched by ptlrpcd,
1698 * so no lock is needed here.
1699 */
1700 status = sptlrpc_req_refresh_ctx(req, -1);
1701 if (status) {
1702 if (req->rq_err) {
1703 req->rq_status = status;
1704 spin_lock(&req->rq_lock);
1705 req->rq_wait_ctx = 0;
1706 spin_unlock(&req->rq_lock);
1707 force_timer_recalc = 1;
1708 } else {
1709 spin_lock(&req->rq_lock);
1710 req->rq_wait_ctx = 1;
1711 spin_unlock(&req->rq_lock);
1712 }
1713
1714 continue;
1715 } else {
1716 spin_lock(&req->rq_lock);
1717 req->rq_wait_ctx = 0;
1718 spin_unlock(&req->rq_lock);
1719 }
1720
1721 rc = ptl_send_rpc(req, 0);
1722 if (rc) {
1723 DEBUG_REQ(D_HA, req,
1724 "send failed: rc = %d", rc);
1725 force_timer_recalc = 1;
1726 spin_lock(&req->rq_lock);
1727 req->rq_net_err = 1;
1728 spin_unlock(&req->rq_lock);
1729 continue;
1730 }
1731 /* need to reset the timeout */
1732 force_timer_recalc = 1;
1733 }
1734
1735 spin_lock(&req->rq_lock);
1736
1737 if (ptlrpc_client_early(req)) {
1738 ptlrpc_at_recv_early_reply(req);
1739 spin_unlock(&req->rq_lock);
1740 continue;
1741 }
1742
1743 /* Still waiting for a reply? */
1744 if (ptlrpc_client_recv(req)) {
1745 spin_unlock(&req->rq_lock);
1746 continue;
1747 }
1748
1749 /* Did we actually receive a reply? */
1750 if (!ptlrpc_client_replied(req)) {
1751 spin_unlock(&req->rq_lock);
1752 continue;
1753 }
1754
1755 spin_unlock(&req->rq_lock);
1756
1757 /*
1758 * unlink from net because we are going to
1759 * swab in-place of reply buffer
1760 */
1761 unregistered = ptlrpc_unregister_reply(req, 1);
1762 if (!unregistered)
1763 continue;
1764
1765 req->rq_status = after_reply(req);
1766 if (req->rq_resend)
1767 continue;
1768
1769 /*
1770 * If there is no bulk associated with this request,
1771 * then we're done and should let the interpreter
1772 * process the reply. Similarly if the RPC returned
1773 * an error, and therefore the bulk will never arrive.
1774 */
1775 if (!req->rq_bulk || req->rq_status < 0) {
1776 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1777 goto interpret;
1778 }
1779
1780 ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1781 }
1782
1783 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1784 if (ptlrpc_client_bulk_active(req))
1785 continue;
1786
1787 if (req->rq_bulk->bd_failure) {
1788 /*
1789 * The RPC reply arrived OK, but the bulk screwed
1790 * up! Dead weird since the server told us the RPC
1791 * was good after getting the REPLY for her GET or
1792 * the ACK for her PUT.
1793 */
1794 DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1795 req->rq_status = -EIO;
1796 }
1797
1798 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1799
1800 interpret:
1801 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1802
1803 /*
1804 * This moves to "unregistering" phase we need to wait for
1805 * reply unlink.
1806 */
1807 if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
1808 /* start async bulk unlink too */
1809 ptlrpc_unregister_bulk(req, 1);
1810 continue;
1811 }
1812
1813 if (!ptlrpc_unregister_bulk(req, 1))
1814 continue;
1815
1816 /* When calling interpret receive should already be finished. */
1817 LASSERT(!req->rq_receiving_reply);
1818
1819 ptlrpc_req_interpret(env, req, req->rq_status);
1820
1821 if (ptlrpcd_check_work(req)) {
1822 atomic_dec(&set->set_remaining);
1823 continue;
1824 }
1825 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
1826
1827 CDEBUG(req->rq_reqmsg ? D_RPCTRACE : 0,
1828 "Completed RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1829 current_comm(), imp->imp_obd->obd_uuid.uuid,
1830 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1831 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1832 lustre_msg_get_opc(req->rq_reqmsg));
1833
1834 spin_lock(&imp->imp_lock);
1835 /*
1836 * Request already may be not on sending or delaying list. This
1837 * may happen in the case of marking it erroneous for the case
1838 * ptlrpc_import_delay_req(req, status) find it impossible to
1839 * allow sending this rpc and returns *status != 0.
1840 */
1841 if (!list_empty(&req->rq_list)) {
1842 list_del_init(&req->rq_list);
1843 atomic_dec(&imp->imp_inflight);
1844 }
1845 spin_unlock(&imp->imp_lock);
1846
1847 atomic_dec(&set->set_remaining);
1848 wake_up_all(&imp->imp_recovery_waitq);
1849
1850 if (set->set_producer) {
1851 /* produce a new request if possible */
1852 if (ptlrpc_set_producer(set) > 0)
1853 force_timer_recalc = 1;
1854
1855 /*
1856 * free the request that has just been completed
1857 * in order not to pollute set->set_requests
1858 */
1859 list_del_init(&req->rq_set_chain);
1860 spin_lock(&req->rq_lock);
1861 req->rq_set = NULL;
1862 req->rq_invalid_rqset = 0;
1863 spin_unlock(&req->rq_lock);
1864
1865 /* record rq_status to compute the final status later */
1866 if (req->rq_status != 0)
1867 set->set_rc = req->rq_status;
1868 ptlrpc_req_finished(req);
1869 } else {
1870 list_move_tail(&req->rq_set_chain, &comp_reqs);
1871 }
1872 }
1873
1874 /*
1875 * move completed request at the head of list so it's easier for
1876 * caller to find them
1877 */
1878 list_splice(&comp_reqs, &set->set_requests);
1879
1880 /* If we hit an error, we want to recover promptly. */
1881 return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
1882 }
1883 EXPORT_SYMBOL(ptlrpc_check_set);
1884
1885 /**
1886 * Time out request \a req. is \a async_unlink is set, that means do not wait
1887 * until LNet actually confirms network buffer unlinking.
1888 * Return 1 if we should give up further retrying attempts or 0 otherwise.
1889 */
1890 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
1891 {
1892 struct obd_import *imp = req->rq_import;
1893 int rc = 0;
1894
1895 spin_lock(&req->rq_lock);
1896 req->rq_timedout = 1;
1897 spin_unlock(&req->rq_lock);
1898
1899 DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent %lld/real %lld]",
1900 req->rq_net_err ? "failed due to network error" :
1901 ((req->rq_real_sent == 0 ||
1902 req->rq_real_sent < req->rq_sent ||
1903 req->rq_real_sent >= req->rq_deadline) ?
1904 "timed out for sent delay" : "timed out for slow reply"),
1905 (s64)req->rq_sent, (s64)req->rq_real_sent);
1906
1907 if (imp && obd_debug_peer_on_timeout)
1908 LNetDebugPeer(imp->imp_connection->c_peer);
1909
1910 ptlrpc_unregister_reply(req, async_unlink);
1911 ptlrpc_unregister_bulk(req, async_unlink);
1912
1913 if (obd_dump_on_timeout)
1914 libcfs_debug_dumplog();
1915
1916 if (!imp) {
1917 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
1918 return 1;
1919 }
1920
1921 atomic_inc(&imp->imp_timeouts);
1922
1923 /* The DLM server doesn't want recovery run on its imports. */
1924 if (imp->imp_dlm_fake)
1925 return 1;
1926
1927 /*
1928 * If this request is for recovery or other primordial tasks,
1929 * then error it out here.
1930 */
1931 if (req->rq_ctx_init || req->rq_ctx_fini ||
1932 req->rq_send_state != LUSTRE_IMP_FULL ||
1933 imp->imp_obd->obd_no_recov) {
1934 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
1935 ptlrpc_import_state_name(req->rq_send_state),
1936 ptlrpc_import_state_name(imp->imp_state));
1937 spin_lock(&req->rq_lock);
1938 req->rq_status = -ETIMEDOUT;
1939 req->rq_err = 1;
1940 spin_unlock(&req->rq_lock);
1941 return 1;
1942 }
1943
1944 /*
1945 * if a request can't be resent we can't wait for an answer after
1946 * the timeout
1947 */
1948 if (ptlrpc_no_resend(req)) {
1949 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
1950 rc = 1;
1951 }
1952
1953 ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
1954
1955 return rc;
1956 }
1957
1958 /**
1959 * Time out all uncompleted requests in request set pointed by \a data
1960 * Callback used when waiting on sets with l_wait_event.
1961 * Always returns 1.
1962 */
1963 int ptlrpc_expired_set(void *data)
1964 {
1965 struct ptlrpc_request_set *set = data;
1966 struct list_head *tmp;
1967 time64_t now = ktime_get_real_seconds();
1968
1969 /* A timeout expired. See which reqs it applies to... */
1970 list_for_each(tmp, &set->set_requests) {
1971 struct ptlrpc_request *req =
1972 list_entry(tmp, struct ptlrpc_request, rq_set_chain);
1973
1974 /* don't expire request waiting for context */
1975 if (req->rq_wait_ctx)
1976 continue;
1977
1978 /* Request in-flight? */
1979 if (!((req->rq_phase == RQ_PHASE_RPC &&
1980 !req->rq_waiting && !req->rq_resend) ||
1981 (req->rq_phase == RQ_PHASE_BULK)))
1982 continue;
1983
1984 if (req->rq_timedout || /* already dealt with */
1985 req->rq_deadline > now) /* not expired */
1986 continue;
1987
1988 /*
1989 * Deal with this guy. Do it asynchronously to not block
1990 * ptlrpcd thread.
1991 */
1992 ptlrpc_expire_one_request(req, 1);
1993 }
1994
1995 /*
1996 * When waiting for a whole set, we always break out of the
1997 * sleep so we can recalculate the timeout, or enable interrupts
1998 * if everyone's timed out.
1999 */
2000 return 1;
2001 }
2002 EXPORT_SYMBOL(ptlrpc_expired_set);
2003
2004 /**
2005 * Sets rq_intr flag in \a req under spinlock.
2006 */
2007 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2008 {
2009 spin_lock(&req->rq_lock);
2010 req->rq_intr = 1;
2011 spin_unlock(&req->rq_lock);
2012 }
2013 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2014
2015 /**
2016 * Interrupts (sets interrupted flag) all uncompleted requests in
2017 * a set \a data. Callback for l_wait_event for interruptible waits.
2018 */
2019 void ptlrpc_interrupted_set(void *data)
2020 {
2021 struct ptlrpc_request_set *set = data;
2022 struct list_head *tmp;
2023
2024 CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2025
2026 list_for_each(tmp, &set->set_requests) {
2027 struct ptlrpc_request *req =
2028 list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2029
2030 if (req->rq_phase != RQ_PHASE_RPC &&
2031 req->rq_phase != RQ_PHASE_UNREG_RPC)
2032 continue;
2033
2034 ptlrpc_mark_interrupted(req);
2035 }
2036 }
2037 EXPORT_SYMBOL(ptlrpc_interrupted_set);
2038
2039 /**
2040 * Get the smallest timeout in the set; this does NOT set a timeout.
2041 */
2042 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2043 {
2044 struct list_head *tmp;
2045 time64_t now = ktime_get_real_seconds();
2046 int timeout = 0;
2047 struct ptlrpc_request *req;
2048 time64_t deadline;
2049
2050 list_for_each(tmp, &set->set_requests) {
2051 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2052
2053 /* Request in-flight? */
2054 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2055 (req->rq_phase == RQ_PHASE_BULK) ||
2056 (req->rq_phase == RQ_PHASE_NEW)))
2057 continue;
2058
2059 /* Already timed out. */
2060 if (req->rq_timedout)
2061 continue;
2062
2063 /* Waiting for ctx. */
2064 if (req->rq_wait_ctx)
2065 continue;
2066
2067 if (req->rq_phase == RQ_PHASE_NEW)
2068 deadline = req->rq_sent;
2069 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2070 deadline = req->rq_sent;
2071 else
2072 deadline = req->rq_sent + req->rq_timeout;
2073
2074 if (deadline <= now) /* actually expired already */
2075 timeout = 1; /* ASAP */
2076 else if (timeout == 0 || timeout > deadline - now)
2077 timeout = deadline - now;
2078 }
2079 return timeout;
2080 }
2081 EXPORT_SYMBOL(ptlrpc_set_next_timeout);
2082
2083 /**
2084 * Send all unset request from the set and then wait until all
2085 * requests in the set complete (either get a reply, timeout, get an
2086 * error or otherwise be interrupted).
2087 * Returns 0 on success or error code otherwise.
2088 */
2089 int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2090 {
2091 struct list_head *tmp;
2092 struct ptlrpc_request *req;
2093 struct l_wait_info lwi;
2094 int rc, timeout;
2095
2096 if (set->set_producer)
2097 (void)ptlrpc_set_producer(set);
2098 else
2099 list_for_each(tmp, &set->set_requests) {
2100 req = list_entry(tmp, struct ptlrpc_request,
2101 rq_set_chain);
2102 if (req->rq_phase == RQ_PHASE_NEW)
2103 (void)ptlrpc_send_new_req(req);
2104 }
2105
2106 if (list_empty(&set->set_requests))
2107 return 0;
2108
2109 do {
2110 timeout = ptlrpc_set_next_timeout(set);
2111
2112 /*
2113 * wait until all complete, interrupted, or an in-flight
2114 * req times out
2115 */
2116 CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
2117 set, timeout);
2118
2119 if (timeout == 0 && !signal_pending(current))
2120 /*
2121 * No requests are in-flight (ether timed out
2122 * or delayed), so we can allow interrupts.
2123 * We still want to block for a limited time,
2124 * so we allow interrupts during the timeout.
2125 */
2126 lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
2127 ptlrpc_expired_set,
2128 ptlrpc_interrupted_set, set);
2129 else
2130 /*
2131 * At least one request is in flight, so no
2132 * interrupts are allowed. Wait until all
2133 * complete, or an in-flight req times out.
2134 */
2135 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2136 ptlrpc_expired_set, set);
2137
2138 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2139
2140 /*
2141 * LU-769 - if we ignored the signal because it was already
2142 * pending when we started, we need to handle it now or we risk
2143 * it being ignored forever
2144 */
2145 if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
2146 signal_pending(current)) {
2147 sigset_t blocked_sigs =
2148 cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2149
2150 /*
2151 * In fact we only interrupt for the "fatal" signals
2152 * like SIGINT or SIGKILL. We still ignore less
2153 * important signals since ptlrpc set is not easily
2154 * reentrant from userspace again
2155 */
2156 if (signal_pending(current))
2157 ptlrpc_interrupted_set(set);
2158 cfs_restore_sigs(blocked_sigs);
2159 }
2160
2161 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2162
2163 /*
2164 * -EINTR => all requests have been flagged rq_intr so next
2165 * check completes.
2166 * -ETIMEDOUT => someone timed out. When all reqs have
2167 * timed out, signals are enabled allowing completion with
2168 * EINTR.
2169 * I don't really care if we go once more round the loop in
2170 * the error cases -eeb.
2171 */
2172 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2173 list_for_each(tmp, &set->set_requests) {
2174 req = list_entry(tmp, struct ptlrpc_request,
2175 rq_set_chain);
2176 spin_lock(&req->rq_lock);
2177 req->rq_invalid_rqset = 1;
2178 spin_unlock(&req->rq_lock);
2179 }
2180 }
2181 } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2182
2183 LASSERT(atomic_read(&set->set_remaining) == 0);
2184
2185 rc = set->set_rc; /* rq_status of already freed requests if any */
2186 list_for_each(tmp, &set->set_requests) {
2187 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2188
2189 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2190 if (req->rq_status != 0)
2191 rc = req->rq_status;
2192 }
2193
2194 if (set->set_interpret) {
2195 int (*interpreter)(struct ptlrpc_request_set *set, void *, int) =
2196 set->set_interpret;
2197 rc = interpreter(set, set->set_arg, rc);
2198 } else {
2199 struct ptlrpc_set_cbdata *cbdata, *n;
2200 int err;
2201
2202 list_for_each_entry_safe(cbdata, n,
2203 &set->set_cblist, psc_item) {
2204 list_del_init(&cbdata->psc_item);
2205 err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
2206 if (err && !rc)
2207 rc = err;
2208 kfree(cbdata);
2209 }
2210 }
2211
2212 return rc;
2213 }
2214 EXPORT_SYMBOL(ptlrpc_set_wait);
2215
2216 /**
2217 * Helper function for request freeing.
2218 * Called when request count reached zero and request needs to be freed.
2219 * Removes request from all sorts of sending/replay lists it might be on,
2220 * frees network buffers if any are present.
2221 * If \a locked is set, that means caller is already holding import imp_lock
2222 * and so we no longer need to reobtain it (for certain lists manipulations)
2223 */
2224 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2225 {
2226 if (!request)
2227 return;
2228 LASSERT(!request->rq_srv_req);
2229 LASSERT(!request->rq_export);
2230 LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2231 LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2232 LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2233 LASSERTF(!request->rq_replay, "req %p\n", request);
2234
2235 req_capsule_fini(&request->rq_pill);
2236
2237 /*
2238 * We must take it off the imp_replay_list first. Otherwise, we'll set
2239 * request->rq_reqmsg to NULL while osc_close is dereferencing it.
2240 */
2241 if (request->rq_import) {
2242 if (!locked)
2243 spin_lock(&request->rq_import->imp_lock);
2244 list_del_init(&request->rq_replay_list);
2245 if (!locked)
2246 spin_unlock(&request->rq_import->imp_lock);
2247 }
2248 LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2249
2250 if (atomic_read(&request->rq_refcount) != 0) {
2251 DEBUG_REQ(D_ERROR, request,
2252 "freeing request with nonzero refcount");
2253 LBUG();
2254 }
2255
2256 if (request->rq_repbuf)
2257 sptlrpc_cli_free_repbuf(request);
2258
2259 if (request->rq_import) {
2260 class_import_put(request->rq_import);
2261 request->rq_import = NULL;
2262 }
2263 if (request->rq_bulk)
2264 ptlrpc_free_bulk_pin(request->rq_bulk);
2265
2266 if (request->rq_reqbuf || request->rq_clrbuf)
2267 sptlrpc_cli_free_reqbuf(request);
2268
2269 if (request->rq_cli_ctx)
2270 sptlrpc_req_put_ctx(request, !locked);
2271
2272 if (request->rq_pool)
2273 __ptlrpc_free_req_to_pool(request);
2274 else
2275 ptlrpc_request_cache_free(request);
2276 }
2277
2278 /**
2279 * Helper function
2280 * Drops one reference count for request \a request.
2281 * \a locked set indicates that caller holds import imp_lock.
2282 * Frees the request when reference count reaches zero.
2283 */
2284 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2285 {
2286 if (!request)
2287 return 1;
2288
2289 if (request == LP_POISON ||
2290 request->rq_reqmsg == LP_POISON) {
2291 CERROR("dereferencing freed request (bug 575)\n");
2292 LBUG();
2293 return 1;
2294 }
2295
2296 DEBUG_REQ(D_INFO, request, "refcount now %u",
2297 atomic_read(&request->rq_refcount) - 1);
2298
2299 if (atomic_dec_and_test(&request->rq_refcount)) {
2300 __ptlrpc_free_req(request, locked);
2301 return 1;
2302 }
2303
2304 return 0;
2305 }
2306
2307 /**
2308 * Drops one reference count for a request.
2309 */
2310 void ptlrpc_req_finished(struct ptlrpc_request *request)
2311 {
2312 __ptlrpc_req_finished(request, 0);
2313 }
2314 EXPORT_SYMBOL(ptlrpc_req_finished);
2315
2316 /**
2317 * Returns xid of a \a request
2318 */
2319 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2320 {
2321 return request->rq_xid;
2322 }
2323 EXPORT_SYMBOL(ptlrpc_req_xid);
2324
2325 /**
2326 * Disengage the client's reply buffer from the network
2327 * NB does _NOT_ unregister any client-side bulk.
2328 * IDEMPOTENT, but _not_ safe against concurrent callers.
2329 * The request owner (i.e. the thread doing the I/O) must call...
2330 * Returns 0 on success or 1 if unregistering cannot be made.
2331 */
2332 int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2333 {
2334 int rc;
2335 wait_queue_head_t *wq;
2336 struct l_wait_info lwi;
2337
2338 /* Might sleep. */
2339 LASSERT(!in_interrupt());
2340
2341 /* Let's setup deadline for reply unlink. */
2342 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2343 async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
2344 request->rq_reply_deadline =
2345 ktime_get_real_seconds() + LONG_UNLINK;
2346
2347 /* Nothing left to do. */
2348 if (!ptlrpc_client_recv_or_unlink(request))
2349 return 1;
2350
2351 LNetMDUnlink(request->rq_reply_md_h);
2352
2353 /* Let's check it once again. */
2354 if (!ptlrpc_client_recv_or_unlink(request))
2355 return 1;
2356
2357 /* Move to "Unregistering" phase as reply was not unlinked yet. */
2358 ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
2359
2360 /* Do not wait for unlink to finish. */
2361 if (async)
2362 return 0;
2363
2364 /*
2365 * We have to l_wait_event() whatever the result, to give liblustre
2366 * a chance to run reply_in_callback(), and to make sure we've
2367 * unlinked before returning a req to the pool.
2368 */
2369 if (request->rq_set)
2370 wq = &request->rq_set->set_waitq;
2371 else
2372 wq = &request->rq_reply_waitq;
2373
2374 for (;;) {
2375 /*
2376 * Network access will complete in finite time but the HUGE
2377 * timeout lets us CWARN for visibility of sluggish NALs
2378 */
2379 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2380 cfs_time_seconds(1), NULL, NULL);
2381 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2382 &lwi);
2383 if (rc == 0) {
2384 ptlrpc_rqphase_move(request, request->rq_next_phase);
2385 return 1;
2386 }
2387
2388 LASSERT(rc == -ETIMEDOUT);
2389 DEBUG_REQ(D_WARNING, request,
2390 "Unexpectedly long timeout receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
2391 request->rq_receiving_reply,
2392 request->rq_req_unlinked,
2393 request->rq_reply_unlinked);
2394 }
2395 return 0;
2396 }
2397 EXPORT_SYMBOL(ptlrpc_unregister_reply);
2398
2399 static void ptlrpc_free_request(struct ptlrpc_request *req)
2400 {
2401 spin_lock(&req->rq_lock);
2402 req->rq_replay = 0;
2403 spin_unlock(&req->rq_lock);
2404
2405 if (req->rq_commit_cb)
2406 req->rq_commit_cb(req);
2407 list_del_init(&req->rq_replay_list);
2408
2409 __ptlrpc_req_finished(req, 1);
2410 }
2411
2412 /**
2413 * the request is committed and dropped from the replay list of its import
2414 */
2415 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2416 {
2417 struct obd_import *imp = req->rq_import;
2418
2419 spin_lock(&imp->imp_lock);
2420 if (list_empty(&req->rq_replay_list)) {
2421 spin_unlock(&imp->imp_lock);
2422 return;
2423 }
2424
2425 if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2426 ptlrpc_free_request(req);
2427
2428 spin_unlock(&imp->imp_lock);
2429 }
2430 EXPORT_SYMBOL(ptlrpc_request_committed);
2431
2432 /**
2433 * Iterates through replay_list on import and prunes
2434 * all requests have transno smaller than last_committed for the
2435 * import and don't have rq_replay set.
2436 * Since requests are sorted in transno order, stops when meeting first
2437 * transno bigger than last_committed.
2438 * caller must hold imp->imp_lock
2439 */
2440 void ptlrpc_free_committed(struct obd_import *imp)
2441 {
2442 struct ptlrpc_request *req, *saved;
2443 struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2444 bool skip_committed_list = true;
2445
2446 assert_spin_locked(&imp->imp_lock);
2447
2448 if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2449 imp->imp_generation == imp->imp_last_generation_checked) {
2450 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2451 imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2452 return;
2453 }
2454 CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2455 imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2456 imp->imp_generation);
2457
2458 if (imp->imp_generation != imp->imp_last_generation_checked)
2459 skip_committed_list = false;
2460
2461 imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2462 imp->imp_last_generation_checked = imp->imp_generation;
2463
2464 list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2465 rq_replay_list) {
2466 /* XXX ok to remove when 1357 resolved - rread 05/29/03 */
2467 LASSERT(req != last_req);
2468 last_req = req;
2469
2470 if (req->rq_transno == 0) {
2471 DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2472 LBUG();
2473 }
2474 if (req->rq_import_generation < imp->imp_generation) {
2475 DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2476 goto free_req;
2477 }
2478
2479 /* not yet committed */
2480 if (req->rq_transno > imp->imp_peer_committed_transno) {
2481 DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2482 break;
2483 }
2484
2485 if (req->rq_replay) {
2486 DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2487 list_move_tail(&req->rq_replay_list,
2488 &imp->imp_committed_list);
2489 continue;
2490 }
2491
2492 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2493 imp->imp_peer_committed_transno);
2494 free_req:
2495 ptlrpc_free_request(req);
2496 }
2497 if (skip_committed_list)
2498 return;
2499
2500 list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2501 rq_replay_list) {
2502 LASSERT(req->rq_transno != 0);
2503 if (req->rq_import_generation < imp->imp_generation) {
2504 DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
2505 ptlrpc_free_request(req);
2506 }
2507 }
2508 }
2509
2510 /**
2511 * Schedule previously sent request for resend.
2512 * For bulk requests we assign new xid (to avoid problems with
2513 * lost replies and therefore several transfers landing into same buffer
2514 * from different sending attempts).
2515 */
2516 void ptlrpc_resend_req(struct ptlrpc_request *req)
2517 {
2518 DEBUG_REQ(D_HA, req, "going to resend");
2519 spin_lock(&req->rq_lock);
2520
2521 /*
2522 * Request got reply but linked to the import list still.
2523 * Let ptlrpc_check_set() to process it.
2524 */
2525 if (ptlrpc_client_replied(req)) {
2526 spin_unlock(&req->rq_lock);
2527 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2528 return;
2529 }
2530
2531 lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2532 req->rq_status = -EAGAIN;
2533
2534 req->rq_resend = 1;
2535 req->rq_net_err = 0;
2536 req->rq_timedout = 0;
2537 if (req->rq_bulk) {
2538 __u64 old_xid = req->rq_xid;
2539
2540 /* ensure previous bulk fails */
2541 req->rq_xid = ptlrpc_next_xid();
2542 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
2543 old_xid, req->rq_xid);
2544 }
2545 ptlrpc_client_wake_req(req);
2546 spin_unlock(&req->rq_lock);
2547 }
2548 EXPORT_SYMBOL(ptlrpc_resend_req);
2549
2550 /**
2551 * Grab additional reference on a request \a req
2552 */
2553 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2554 {
2555 atomic_inc(&req->rq_refcount);
2556 return req;
2557 }
2558 EXPORT_SYMBOL(ptlrpc_request_addref);
2559
2560 /**
2561 * Add a request to import replay_list.
2562 * Must be called under imp_lock
2563 */
2564 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2565 struct obd_import *imp)
2566 {
2567 struct list_head *tmp;
2568
2569 assert_spin_locked(&imp->imp_lock);
2570
2571 if (req->rq_transno == 0) {
2572 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2573 LBUG();
2574 }
2575
2576 /*
2577 * clear this for new requests that were resent as well
2578 * as resent replayed requests.
2579 */
2580 lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2581
2582 /* don't re-add requests that have been replayed */
2583 if (!list_empty(&req->rq_replay_list))
2584 return;
2585
2586 lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2587
2588 LASSERT(imp->imp_replayable);
2589 /* Balanced in ptlrpc_free_committed, usually. */
2590 ptlrpc_request_addref(req);
2591 list_for_each_prev(tmp, &imp->imp_replay_list) {
2592 struct ptlrpc_request *iter =
2593 list_entry(tmp, struct ptlrpc_request, rq_replay_list);
2594
2595 /*
2596 * We may have duplicate transnos if we create and then
2597 * open a file, or for closes retained if to match creating
2598 * opens, so use req->rq_xid as a secondary key.
2599 * (See bugs 684, 685, and 428.)
2600 * XXX no longer needed, but all opens need transnos!
2601 */
2602 if (iter->rq_transno > req->rq_transno)
2603 continue;
2604
2605 if (iter->rq_transno == req->rq_transno) {
2606 LASSERT(iter->rq_xid != req->rq_xid);
2607 if (iter->rq_xid > req->rq_xid)
2608 continue;
2609 }
2610
2611 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2612 return;
2613 }
2614
2615 list_add(&req->rq_replay_list, &imp->imp_replay_list);
2616 }
2617 EXPORT_SYMBOL(ptlrpc_retain_replayable_request);
2618
2619 /**
2620 * Send request and wait until it completes.
2621 * Returns request processing status.
2622 */
2623 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2624 {
2625 struct ptlrpc_request_set *set;
2626 int rc;
2627
2628 LASSERT(!req->rq_set);
2629 LASSERT(!req->rq_receiving_reply);
2630
2631 set = ptlrpc_prep_set();
2632 if (!set) {
2633 CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
2634 return -ENOMEM;
2635 }
2636
2637 /* for distributed debugging */
2638 lustre_msg_set_status(req->rq_reqmsg, current_pid());
2639
2640 /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2641 ptlrpc_request_addref(req);
2642 ptlrpc_set_add_req(set, req);
2643 rc = ptlrpc_set_wait(set);
2644 ptlrpc_set_destroy(set);
2645
2646 return rc;
2647 }
2648 EXPORT_SYMBOL(ptlrpc_queue_wait);
2649
2650 /**
2651 * Callback used for replayed requests reply processing.
2652 * In case of successful reply calls registered request replay callback.
2653 * In case of error restart replay process.
2654 */
2655 static int ptlrpc_replay_interpret(const struct lu_env *env,
2656 struct ptlrpc_request *req,
2657 void *data, int rc)
2658 {
2659 struct ptlrpc_replay_async_args *aa = data;
2660 struct obd_import *imp = req->rq_import;
2661
2662 atomic_dec(&imp->imp_replay_inflight);
2663
2664 if (!ptlrpc_client_replied(req)) {
2665 CERROR("request replay timed out, restarting recovery\n");
2666 rc = -ETIMEDOUT;
2667 goto out;
2668 }
2669
2670 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2671 (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2672 lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) {
2673 rc = lustre_msg_get_status(req->rq_repmsg);
2674 goto out;
2675 }
2676
2677 /** VBR: check version failure */
2678 if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2679 /** replay was failed due to version mismatch */
2680 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2681 spin_lock(&imp->imp_lock);
2682 imp->imp_vbr_failed = 1;
2683 imp->imp_no_lock_replay = 1;
2684 spin_unlock(&imp->imp_lock);
2685 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2686 } else {
2687 /** The transno had better not change over replay. */
2688 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2689 lustre_msg_get_transno(req->rq_repmsg) ||
2690 lustre_msg_get_transno(req->rq_repmsg) == 0,
2691 "%#llx/%#llx\n",
2692 lustre_msg_get_transno(req->rq_reqmsg),
2693 lustre_msg_get_transno(req->rq_repmsg));
2694 }
2695
2696 spin_lock(&imp->imp_lock);
2697 /** if replays by version then gap occur on server, no trust to locks */
2698 if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
2699 imp->imp_no_lock_replay = 1;
2700 imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2701 spin_unlock(&imp->imp_lock);
2702 LASSERT(imp->imp_last_replay_transno);
2703
2704 /* transaction number shouldn't be bigger than the latest replayed */
2705 if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2706 DEBUG_REQ(D_ERROR, req,
2707 "Reported transno %llu is bigger than the replayed one: %llu",
2708 req->rq_transno,
2709 lustre_msg_get_transno(req->rq_reqmsg));
2710 rc = -EINVAL;
2711 goto out;
2712 }
2713
2714 DEBUG_REQ(D_HA, req, "got rep");
2715
2716 /* let the callback do fixups, possibly including in the request */
2717 if (req->rq_replay_cb)
2718 req->rq_replay_cb(req);
2719
2720 if (ptlrpc_client_replied(req) &&
2721 lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2722 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2723 lustre_msg_get_status(req->rq_repmsg),
2724 aa->praa_old_status);
2725 } else {
2726 /* Put it back for re-replay. */
2727 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2728 }
2729
2730 /*
2731 * Errors while replay can set transno to 0, but
2732 * imp_last_replay_transno shouldn't be set to 0 anyway
2733 */
2734 if (req->rq_transno == 0)
2735 CERROR("Transno is 0 during replay!\n");
2736
2737 /* continue with recovery */
2738 rc = ptlrpc_import_recovery_state_machine(imp);
2739 out:
2740 req->rq_send_state = aa->praa_old_state;
2741
2742 if (rc != 0)
2743 /* this replay failed, so restart recovery */
2744 ptlrpc_connect_import(imp);
2745
2746 return rc;
2747 }
2748
2749 /**
2750 * Prepares and queues request for replay.
2751 * Adds it to ptlrpcd queue for actual sending.
2752 * Returns 0 on success.
2753 */
2754 int ptlrpc_replay_req(struct ptlrpc_request *req)
2755 {
2756 struct ptlrpc_replay_async_args *aa;
2757
2758 LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
2759
2760 LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
2761 aa = ptlrpc_req_async_args(req);
2762 memset(aa, 0, sizeof(*aa));
2763
2764 /* Prepare request to be resent with ptlrpcd */
2765 aa->praa_old_state = req->rq_send_state;
2766 req->rq_send_state = LUSTRE_IMP_REPLAY;
2767 req->rq_phase = RQ_PHASE_NEW;
2768 req->rq_next_phase = RQ_PHASE_UNDEFINED;
2769 if (req->rq_repmsg)
2770 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
2771 req->rq_status = 0;
2772 req->rq_interpret_reply = ptlrpc_replay_interpret;
2773 /* Readjust the timeout for current conditions */
2774 ptlrpc_at_set_req_timeout(req);
2775
2776 /*
2777 * Tell server the net_latency, so the server can calculate how long
2778 * it should wait for next replay
2779 */
2780 lustre_msg_set_service_time(req->rq_reqmsg,
2781 ptlrpc_at_get_net_latency(req));
2782 DEBUG_REQ(D_HA, req, "REPLAY");
2783
2784 atomic_inc(&req->rq_import->imp_replay_inflight);
2785 ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
2786
2787 ptlrpcd_add_req(req);
2788 return 0;
2789 }
2790 EXPORT_SYMBOL(ptlrpc_replay_req);
2791
2792 /**
2793 * Aborts all in-flight request on import \a imp sending and delayed lists
2794 */
2795 void ptlrpc_abort_inflight(struct obd_import *imp)
2796 {
2797 struct list_head *tmp, *n;
2798
2799 /*
2800 * Make sure that no new requests get processed for this import.
2801 * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
2802 * this flag and then putting requests on sending_list or delayed_list.
2803 */
2804 spin_lock(&imp->imp_lock);
2805
2806 /*
2807 * XXX locking? Maybe we should remove each request with the list
2808 * locked? Also, how do we know if the requests on the list are
2809 * being freed at this time?
2810 */
2811 list_for_each_safe(tmp, n, &imp->imp_sending_list) {
2812 struct ptlrpc_request *req =
2813 list_entry(tmp, struct ptlrpc_request, rq_list);
2814
2815 DEBUG_REQ(D_RPCTRACE, req, "inflight");
2816
2817 spin_lock(&req->rq_lock);
2818 if (req->rq_import_generation < imp->imp_generation) {
2819 req->rq_err = 1;
2820 req->rq_status = -EIO;
2821 ptlrpc_client_wake_req(req);
2822 }
2823 spin_unlock(&req->rq_lock);
2824 }
2825
2826 list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
2827 struct ptlrpc_request *req =
2828 list_entry(tmp, struct ptlrpc_request, rq_list);
2829
2830 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
2831
2832 spin_lock(&req->rq_lock);
2833 if (req->rq_import_generation < imp->imp_generation) {
2834 req->rq_err = 1;
2835 req->rq_status = -EIO;
2836 ptlrpc_client_wake_req(req);
2837 }
2838 spin_unlock(&req->rq_lock);
2839 }
2840
2841 /*
2842 * Last chance to free reqs left on the replay list, but we
2843 * will still leak reqs that haven't committed.
2844 */
2845 if (imp->imp_replayable)
2846 ptlrpc_free_committed(imp);
2847
2848 spin_unlock(&imp->imp_lock);
2849 }
2850 EXPORT_SYMBOL(ptlrpc_abort_inflight);
2851
2852 /**
2853 * Abort all uncompleted requests in request set \a set
2854 */
2855 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
2856 {
2857 struct list_head *tmp, *pos;
2858
2859 list_for_each_safe(pos, tmp, &set->set_requests) {
2860 struct ptlrpc_request *req =
2861 list_entry(pos, struct ptlrpc_request, rq_set_chain);
2862
2863 spin_lock(&req->rq_lock);
2864 if (req->rq_phase != RQ_PHASE_RPC) {
2865 spin_unlock(&req->rq_lock);
2866 continue;
2867 }
2868
2869 req->rq_err = 1;
2870 req->rq_status = -EINTR;
2871 ptlrpc_client_wake_req(req);
2872 spin_unlock(&req->rq_lock);
2873 }
2874 }
2875
2876 static __u64 ptlrpc_last_xid;
2877 static spinlock_t ptlrpc_last_xid_lock;
2878
2879 /**
2880 * Initialize the XID for the node. This is common among all requests on
2881 * this node, and only requires the property that it is monotonically
2882 * increasing. It does not need to be sequential. Since this is also used
2883 * as the RDMA match bits, it is important that a single client NOT have
2884 * the same match bits for two different in-flight requests, hence we do
2885 * NOT want to have an XID per target or similar.
2886 *
2887 * To avoid an unlikely collision between match bits after a client reboot
2888 * (which would deliver old data into the wrong RDMA buffer) initialize
2889 * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
2890 * If the time is clearly incorrect, we instead use a 62-bit random number.
2891 * In the worst case the random number will overflow 1M RPCs per second in
2892 * 9133 years, or permutations thereof.
2893 */
2894 #define YEAR_2004 (1ULL << 30)
2895 void ptlrpc_init_xid(void)
2896 {
2897 time64_t now = ktime_get_real_seconds();
2898
2899 spin_lock_init(&ptlrpc_last_xid_lock);
2900 if (now < YEAR_2004) {
2901 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
2902 ptlrpc_last_xid >>= 2;
2903 ptlrpc_last_xid |= (1ULL << 61);
2904 } else {
2905 ptlrpc_last_xid = (__u64)now << 20;
2906 }
2907
2908 /* Always need to be aligned to a power-of-two for multi-bulk BRW */
2909 CLASSERT(((PTLRPC_BULK_OPS_COUNT - 1) & PTLRPC_BULK_OPS_COUNT) == 0);
2910 ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
2911 }
2912
2913 /**
2914 * Increase xid and returns resulting new value to the caller.
2915 *
2916 * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
2917 * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
2918 * itself uses the last bulk xid needed, so the server can determine the
2919 * the number of bulk transfers from the RPC XID and a bitmask. The starting
2920 * xid must align to a power-of-two value.
2921 *
2922 * This is assumed to be true due to the initial ptlrpc_last_xid
2923 * value also being initialized to a power-of-two value. LU-1431
2924 */
2925 __u64 ptlrpc_next_xid(void)
2926 {
2927 __u64 next;
2928
2929 spin_lock(&ptlrpc_last_xid_lock);
2930 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2931 ptlrpc_last_xid = next;
2932 spin_unlock(&ptlrpc_last_xid_lock);
2933
2934 return next;
2935 }
2936 EXPORT_SYMBOL(ptlrpc_next_xid);
2937
2938 /**
2939 * Get a glimpse at what next xid value might have been.
2940 * Returns possible next xid.
2941 */
2942 __u64 ptlrpc_sample_next_xid(void)
2943 {
2944 #if BITS_PER_LONG == 32
2945 /* need to avoid possible word tearing on 32-bit systems */
2946 __u64 next;
2947
2948 spin_lock(&ptlrpc_last_xid_lock);
2949 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2950 spin_unlock(&ptlrpc_last_xid_lock);
2951
2952 return next;
2953 #else
2954 /* No need to lock, since returned value is racy anyways */
2955 return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2956 #endif
2957 }
2958 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
2959
2960 /**
2961 * Functions for operating ptlrpc workers.
2962 *
2963 * A ptlrpc work is a function which will be running inside ptlrpc context.
2964 * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
2965 *
2966 * 1. after a work is created, it can be used many times, that is:
2967 * handler = ptlrpcd_alloc_work();
2968 * ptlrpcd_queue_work();
2969 *
2970 * queue it again when necessary:
2971 * ptlrpcd_queue_work();
2972 * ptlrpcd_destroy_work();
2973 * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
2974 * it will only be queued once in any time. Also as its name implies, it may
2975 * have delay before it really runs by ptlrpcd thread.
2976 */
2977 struct ptlrpc_work_async_args {
2978 int (*cb)(const struct lu_env *, void *);
2979 void *cbdata;
2980 };
2981
2982 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
2983 {
2984 /* re-initialize the req */
2985 req->rq_timeout = obd_timeout;
2986 req->rq_sent = ktime_get_real_seconds();
2987 req->rq_deadline = req->rq_sent + req->rq_timeout;
2988 req->rq_phase = RQ_PHASE_INTERPRET;
2989 req->rq_next_phase = RQ_PHASE_COMPLETE;
2990 req->rq_xid = ptlrpc_next_xid();
2991 req->rq_import_generation = req->rq_import->imp_generation;
2992
2993 ptlrpcd_add_req(req);
2994 }
2995
2996 static int work_interpreter(const struct lu_env *env,
2997 struct ptlrpc_request *req, void *data, int rc)
2998 {
2999 struct ptlrpc_work_async_args *arg = data;
3000
3001 LASSERT(ptlrpcd_check_work(req));
3002
3003 rc = arg->cb(env, arg->cbdata);
3004
3005 list_del_init(&req->rq_set_chain);
3006 req->rq_set = NULL;
3007
3008 if (atomic_dec_return(&req->rq_refcount) > 1) {
3009 atomic_set(&req->rq_refcount, 2);
3010 ptlrpcd_add_work_req(req);
3011 }
3012 return rc;
3013 }
3014
3015 static int worker_format;
3016
3017 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3018 {
3019 return req->rq_pill.rc_fmt == (void *)&worker_format;
3020 }
3021
3022 /**
3023 * Create a work for ptlrpc.
3024 */
3025 void *ptlrpcd_alloc_work(struct obd_import *imp,
3026 int (*cb)(const struct lu_env *, void *), void *cbdata)
3027 {
3028 struct ptlrpc_request *req = NULL;
3029 struct ptlrpc_work_async_args *args;
3030
3031 might_sleep();
3032
3033 if (!cb)
3034 return ERR_PTR(-EINVAL);
3035
3036 /* copy some code from deprecated fakereq. */
3037 req = ptlrpc_request_cache_alloc(GFP_NOFS);
3038 if (!req) {
3039 CERROR("ptlrpc: run out of memory!\n");
3040 return ERR_PTR(-ENOMEM);
3041 }
3042
3043 ptlrpc_cli_req_init(req);
3044
3045 req->rq_send_state = LUSTRE_IMP_FULL;
3046 req->rq_type = PTL_RPC_MSG_REQUEST;
3047 req->rq_import = class_import_get(imp);
3048 req->rq_interpret_reply = work_interpreter;
3049 /* don't want reply */
3050 req->rq_no_delay = 1;
3051 req->rq_no_resend = 1;
3052 req->rq_pill.rc_fmt = (void *)&worker_format;
3053
3054 CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3055 args = ptlrpc_req_async_args(req);
3056 args->cb = cb;
3057 args->cbdata = cbdata;
3058
3059 return req;
3060 }
3061 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3062
3063 void ptlrpcd_destroy_work(void *handler)
3064 {
3065 struct ptlrpc_request *req = handler;
3066
3067 if (req)
3068 ptlrpc_req_finished(req);
3069 }
3070 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3071
3072 int ptlrpcd_queue_work(void *handler)
3073 {
3074 struct ptlrpc_request *req = handler;
3075
3076 /*
3077 * Check if the req is already being queued.
3078 *
3079 * Here comes a trick: it lacks a way of checking if a req is being
3080 * processed reliably in ptlrpc. Here I have to use refcount of req
3081 * for this purpose. This is okay because the caller should use this
3082 * req as opaque data. - Jinshan
3083 */
3084 LASSERT(atomic_read(&req->rq_refcount) > 0);
3085 if (atomic_inc_return(&req->rq_refcount) == 2)
3086 ptlrpcd_add_work_req(req);
3087 return 0;
3088 }
3089 EXPORT_SYMBOL(ptlrpcd_queue_work);
This page took 0.098049 seconds and 5 git commands to generate.