Staging: panel: Use u8 type
[deliverable/linux.git] / drivers / staging / panel / panel.c
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ / 50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 /* LCD commands */
134 #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */
135
136 #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */
137 #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */
138
139 #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */
140 #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */
141 #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */
142 #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */
143
144 #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */
145 #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */
146 #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */
147
148 #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */
149 #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */
150 #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */
151 #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */
152
153 #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */
154
155 #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */
156
157 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
158 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
159
160 #define NOT_SET -1
161
162 /* macros to simplify use of the parallel port */
163 #define r_ctr(x) (parport_read_control((x)->port))
164 #define r_dtr(x) (parport_read_data((x)->port))
165 #define r_str(x) (parport_read_status((x)->port))
166 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
167 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
168
169 /* this defines which bits are to be used and which ones to be ignored */
170 /* logical or of the output bits involved in the scan matrix */
171 static __u8 scan_mask_o;
172 /* logical or of the input bits involved in the scan matrix */
173 static __u8 scan_mask_i;
174
175 typedef __u64 pmask_t;
176
177 enum input_type {
178 INPUT_TYPE_STD,
179 INPUT_TYPE_KBD,
180 };
181
182 enum input_state {
183 INPUT_ST_LOW,
184 INPUT_ST_RISING,
185 INPUT_ST_HIGH,
186 INPUT_ST_FALLING,
187 };
188
189 struct logical_input {
190 struct list_head list;
191 pmask_t mask;
192 pmask_t value;
193 enum input_type type;
194 enum input_state state;
195 __u8 rise_time, fall_time;
196 __u8 rise_timer, fall_timer, high_timer;
197
198 union {
199 struct { /* valid when type == INPUT_TYPE_STD */
200 void (*press_fct)(int);
201 void (*release_fct)(int);
202 int press_data;
203 int release_data;
204 } std;
205 struct { /* valid when type == INPUT_TYPE_KBD */
206 /* strings can be non null-terminated */
207 char press_str[sizeof(void *) + sizeof(int)];
208 char repeat_str[sizeof(void *) + sizeof(int)];
209 char release_str[sizeof(void *) + sizeof(int)];
210 } kbd;
211 } u;
212 };
213
214 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
215
216 /* physical contacts history
217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
219 * corresponds to the ground.
220 * Within each group, bits are stored in the same order as read on the port :
221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
222 * So, each __u64 (or pmask_t) is represented like this :
223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
225 */
226
227 /* what has just been read from the I/O ports */
228 static pmask_t phys_read;
229 /* previous phys_read */
230 static pmask_t phys_read_prev;
231 /* stabilized phys_read (phys_read|phys_read_prev) */
232 static pmask_t phys_curr;
233 /* previous phys_curr */
234 static pmask_t phys_prev;
235 /* 0 means that at least one logical signal needs be computed */
236 static char inputs_stable;
237
238 /* these variables are specific to the keypad */
239 static struct {
240 bool enabled;
241 } keypad;
242
243 static char keypad_buffer[KEYPAD_BUFFER];
244 static int keypad_buflen;
245 static int keypad_start;
246 static char keypressed;
247 static wait_queue_head_t keypad_read_wait;
248
249 /* lcd-specific variables */
250 static struct {
251 bool enabled;
252 bool initialized;
253 bool must_clear;
254
255 int height;
256 int width;
257 int bwidth;
258 int hwidth;
259 int charset;
260 int proto;
261 int light_tempo;
262
263 /* TODO: use union here? */
264 struct {
265 int e;
266 int rs;
267 int rw;
268 int cl;
269 int da;
270 int bl;
271 } pins;
272
273 /* contains the LCD config state */
274 unsigned long int flags;
275
276 /* Contains the LCD X and Y offset */
277 struct {
278 unsigned long int x;
279 unsigned long int y;
280 } addr;
281
282 /* Current escape sequence and it's length or -1 if outside */
283 struct {
284 char buf[LCD_ESCAPE_LEN + 1];
285 int len;
286 } esc_seq;
287 } lcd;
288
289 /* Needed only for init */
290 static int selected_lcd_type = NOT_SET;
291
292 /*
293 * Bit masks to convert LCD signals to parallel port outputs.
294 * _d_ are values for data port, _c_ are for control port.
295 * [0] = signal OFF, [1] = signal ON, [2] = mask
296 */
297 #define BIT_CLR 0
298 #define BIT_SET 1
299 #define BIT_MSK 2
300 #define BIT_STATES 3
301 /*
302 * one entry for each bit on the LCD
303 */
304 #define LCD_BIT_E 0
305 #define LCD_BIT_RS 1
306 #define LCD_BIT_RW 2
307 #define LCD_BIT_BL 3
308 #define LCD_BIT_CL 4
309 #define LCD_BIT_DA 5
310 #define LCD_BITS 6
311
312 /*
313 * each bit can be either connected to a DATA or CTRL port
314 */
315 #define LCD_PORT_C 0
316 #define LCD_PORT_D 1
317 #define LCD_PORTS 2
318
319 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320
321 /*
322 * LCD protocols
323 */
324 #define LCD_PROTO_PARALLEL 0
325 #define LCD_PROTO_SERIAL 1
326 #define LCD_PROTO_TI_DA8XX_LCD 2
327
328 /*
329 * LCD character sets
330 */
331 #define LCD_CHARSET_NORMAL 0
332 #define LCD_CHARSET_KS0074 1
333
334 /*
335 * LCD types
336 */
337 #define LCD_TYPE_NONE 0
338 #define LCD_TYPE_CUSTOM 1
339 #define LCD_TYPE_OLD 2
340 #define LCD_TYPE_KS0074 3
341 #define LCD_TYPE_HANTRONIX 4
342 #define LCD_TYPE_NEXCOM 5
343
344 /*
345 * keypad types
346 */
347 #define KEYPAD_TYPE_NONE 0
348 #define KEYPAD_TYPE_OLD 1
349 #define KEYPAD_TYPE_NEW 2
350 #define KEYPAD_TYPE_NEXCOM 3
351
352 /*
353 * panel profiles
354 */
355 #define PANEL_PROFILE_CUSTOM 0
356 #define PANEL_PROFILE_OLD 1
357 #define PANEL_PROFILE_NEW 2
358 #define PANEL_PROFILE_HANTRONIX 3
359 #define PANEL_PROFILE_NEXCOM 4
360 #define PANEL_PROFILE_LARGE 5
361
362 /*
363 * Construct custom config from the kernel's configuration
364 */
365 #define DEFAULT_PARPORT 0
366 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
367 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
368 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
369 #define DEFAULT_LCD_HEIGHT 2
370 #define DEFAULT_LCD_WIDTH 40
371 #define DEFAULT_LCD_BWIDTH 40
372 #define DEFAULT_LCD_HWIDTH 64
373 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
374 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
375
376 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
377 #define DEFAULT_LCD_PIN_RS PIN_SELECP
378 #define DEFAULT_LCD_PIN_RW PIN_INITP
379 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
380 #define DEFAULT_LCD_PIN_SDA PIN_D0
381 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
382
383 #ifdef CONFIG_PANEL_PARPORT
384 #undef DEFAULT_PARPORT
385 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
386 #endif
387
388 #ifdef CONFIG_PANEL_PROFILE
389 #undef DEFAULT_PROFILE
390 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
391 #endif
392
393 #if DEFAULT_PROFILE == 0 /* custom */
394 #ifdef CONFIG_PANEL_KEYPAD
395 #undef DEFAULT_KEYPAD_TYPE
396 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
397 #endif
398
399 #ifdef CONFIG_PANEL_LCD
400 #undef DEFAULT_LCD_TYPE
401 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
402 #endif
403
404 #ifdef CONFIG_PANEL_LCD_HEIGHT
405 #undef DEFAULT_LCD_HEIGHT
406 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
407 #endif
408
409 #ifdef CONFIG_PANEL_LCD_WIDTH
410 #undef DEFAULT_LCD_WIDTH
411 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
412 #endif
413
414 #ifdef CONFIG_PANEL_LCD_BWIDTH
415 #undef DEFAULT_LCD_BWIDTH
416 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
417 #endif
418
419 #ifdef CONFIG_PANEL_LCD_HWIDTH
420 #undef DEFAULT_LCD_HWIDTH
421 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
422 #endif
423
424 #ifdef CONFIG_PANEL_LCD_CHARSET
425 #undef DEFAULT_LCD_CHARSET
426 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
427 #endif
428
429 #ifdef CONFIG_PANEL_LCD_PROTO
430 #undef DEFAULT_LCD_PROTO
431 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
432 #endif
433
434 #ifdef CONFIG_PANEL_LCD_PIN_E
435 #undef DEFAULT_LCD_PIN_E
436 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
437 #endif
438
439 #ifdef CONFIG_PANEL_LCD_PIN_RS
440 #undef DEFAULT_LCD_PIN_RS
441 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
442 #endif
443
444 #ifdef CONFIG_PANEL_LCD_PIN_RW
445 #undef DEFAULT_LCD_PIN_RW
446 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
447 #endif
448
449 #ifdef CONFIG_PANEL_LCD_PIN_SCL
450 #undef DEFAULT_LCD_PIN_SCL
451 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
452 #endif
453
454 #ifdef CONFIG_PANEL_LCD_PIN_SDA
455 #undef DEFAULT_LCD_PIN_SDA
456 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
457 #endif
458
459 #ifdef CONFIG_PANEL_LCD_PIN_BL
460 #undef DEFAULT_LCD_PIN_BL
461 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
462 #endif
463
464 #endif /* DEFAULT_PROFILE == 0 */
465
466 /* global variables */
467
468 /* Device single-open policy control */
469 static atomic_t lcd_available = ATOMIC_INIT(1);
470 static atomic_t keypad_available = ATOMIC_INIT(1);
471
472 static struct pardevice *pprt;
473
474 static int keypad_initialized;
475
476 static void (*lcd_write_cmd)(int);
477 static void (*lcd_write_data)(int);
478 static void (*lcd_clear_fast)(void);
479
480 static DEFINE_SPINLOCK(pprt_lock);
481 static struct timer_list scan_timer;
482
483 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
484
485 static int parport = DEFAULT_PARPORT;
486 module_param(parport, int, 0000);
487 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
488
489 static int profile = DEFAULT_PROFILE;
490 module_param(profile, int, 0000);
491 MODULE_PARM_DESC(profile,
492 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
493 "4=16x2 nexcom; default=40x2, old kp");
494
495 static int keypad_type = NOT_SET;
496 module_param(keypad_type, int, 0000);
497 MODULE_PARM_DESC(keypad_type,
498 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
499
500 static int lcd_type = NOT_SET;
501 module_param(lcd_type, int, 0000);
502 MODULE_PARM_DESC(lcd_type,
503 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
504
505 static int lcd_height = NOT_SET;
506 module_param(lcd_height, int, 0000);
507 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
508
509 static int lcd_width = NOT_SET;
510 module_param(lcd_width, int, 0000);
511 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
512
513 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
514 module_param(lcd_bwidth, int, 0000);
515 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
516
517 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
518 module_param(lcd_hwidth, int, 0000);
519 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
520
521 static int lcd_charset = NOT_SET;
522 module_param(lcd_charset, int, 0000);
523 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
524
525 static int lcd_proto = NOT_SET;
526 module_param(lcd_proto, int, 0000);
527 MODULE_PARM_DESC(lcd_proto,
528 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529
530 /*
531 * These are the parallel port pins the LCD control signals are connected to.
532 * Set this to 0 if the signal is not used. Set it to its opposite value
533 * (negative) if the signal is negated. -MAXINT is used to indicate that the
534 * pin has not been explicitly specified.
535 *
536 * WARNING! no check will be performed about collisions with keypad !
537 */
538
539 static int lcd_e_pin = PIN_NOT_SET;
540 module_param(lcd_e_pin, int, 0000);
541 MODULE_PARM_DESC(lcd_e_pin,
542 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
543
544 static int lcd_rs_pin = PIN_NOT_SET;
545 module_param(lcd_rs_pin, int, 0000);
546 MODULE_PARM_DESC(lcd_rs_pin,
547 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
548
549 static int lcd_rw_pin = PIN_NOT_SET;
550 module_param(lcd_rw_pin, int, 0000);
551 MODULE_PARM_DESC(lcd_rw_pin,
552 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
553
554 static int lcd_cl_pin = PIN_NOT_SET;
555 module_param(lcd_cl_pin, int, 0000);
556 MODULE_PARM_DESC(lcd_cl_pin,
557 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
558
559 static int lcd_da_pin = PIN_NOT_SET;
560 module_param(lcd_da_pin, int, 0000);
561 MODULE_PARM_DESC(lcd_da_pin,
562 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
563
564 static int lcd_bl_pin = PIN_NOT_SET;
565 module_param(lcd_bl_pin, int, 0000);
566 MODULE_PARM_DESC(lcd_bl_pin,
567 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
568
569 /* Deprecated module parameters - consider not using them anymore */
570
571 static int lcd_enabled = NOT_SET;
572 module_param(lcd_enabled, int, 0000);
573 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
574
575 static int keypad_enabled = NOT_SET;
576 module_param(keypad_enabled, int, 0000);
577 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
578
579 static const unsigned char *lcd_char_conv;
580
581 /* for some LCD drivers (ks0074) we need a charset conversion table. */
582 static const unsigned char lcd_char_conv_ks0074[256] = {
583 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
584 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
585 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
586 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
587 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
588 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
589 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
590 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
591 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
592 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
593 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
594 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
595 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
596 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
597 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
598 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
599 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
600 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
601 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
602 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
603 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
604 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
605 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
606 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
607 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
608 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
609 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
610 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
611 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
612 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
613 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
614 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
615 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
616 };
617
618 static const char old_keypad_profile[][4][9] = {
619 {"S0", "Left\n", "Left\n", ""},
620 {"S1", "Down\n", "Down\n", ""},
621 {"S2", "Up\n", "Up\n", ""},
622 {"S3", "Right\n", "Right\n", ""},
623 {"S4", "Esc\n", "Esc\n", ""},
624 {"S5", "Ret\n", "Ret\n", ""},
625 {"", "", "", ""}
626 };
627
628 /* signals, press, repeat, release */
629 static const char new_keypad_profile[][4][9] = {
630 {"S0", "Left\n", "Left\n", ""},
631 {"S1", "Down\n", "Down\n", ""},
632 {"S2", "Up\n", "Up\n", ""},
633 {"S3", "Right\n", "Right\n", ""},
634 {"S4s5", "", "Esc\n", "Esc\n"},
635 {"s4S5", "", "Ret\n", "Ret\n"},
636 {"S4S5", "Help\n", "", ""},
637 /* add new signals above this line */
638 {"", "", "", ""}
639 };
640
641 /* signals, press, repeat, release */
642 static const char nexcom_keypad_profile[][4][9] = {
643 {"a-p-e-", "Down\n", "Down\n", ""},
644 {"a-p-E-", "Ret\n", "Ret\n", ""},
645 {"a-P-E-", "Esc\n", "Esc\n", ""},
646 {"a-P-e-", "Up\n", "Up\n", ""},
647 /* add new signals above this line */
648 {"", "", "", ""}
649 };
650
651 static const char (*keypad_profile)[4][9] = old_keypad_profile;
652
653 /* FIXME: this should be converted to a bit array containing signals states */
654 static struct {
655 unsigned char e; /* parallel LCD E (data latch on falling edge) */
656 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
657 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
658 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
659 unsigned char cl; /* serial LCD clock (latch on rising edge) */
660 unsigned char da; /* serial LCD data */
661 } bits;
662
663 static void init_scan_timer(void);
664
665 /* sets data port bits according to current signals values */
666 static int set_data_bits(void)
667 {
668 int val, bit;
669
670 val = r_dtr(pprt);
671 for (bit = 0; bit < LCD_BITS; bit++)
672 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
673
674 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
675 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
676 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
677 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
678 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
679 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
680
681 w_dtr(pprt, val);
682 return val;
683 }
684
685 /* sets ctrl port bits according to current signals values */
686 static int set_ctrl_bits(void)
687 {
688 int val, bit;
689
690 val = r_ctr(pprt);
691 for (bit = 0; bit < LCD_BITS; bit++)
692 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
693
694 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
695 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
696 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
697 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
698 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
699 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
700
701 w_ctr(pprt, val);
702 return val;
703 }
704
705 /* sets ctrl & data port bits according to current signals values */
706 static void panel_set_bits(void)
707 {
708 set_data_bits();
709 set_ctrl_bits();
710 }
711
712 /*
713 * Converts a parallel port pin (from -25 to 25) to data and control ports
714 * masks, and data and control port bits. The signal will be considered
715 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
716 *
717 * Result will be used this way :
718 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
719 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
720 */
721 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
722 {
723 int d_bit, c_bit, inv;
724
725 d_val[0] = 0;
726 c_val[0] = 0;
727 d_val[1] = 0;
728 c_val[1] = 0;
729 d_val[2] = 0xFF;
730 c_val[2] = 0xFF;
731
732 if (pin == 0)
733 return;
734
735 inv = (pin < 0);
736 if (inv)
737 pin = -pin;
738
739 d_bit = 0;
740 c_bit = 0;
741
742 switch (pin) {
743 case PIN_STROBE: /* strobe, inverted */
744 c_bit = PNL_PSTROBE;
745 inv = !inv;
746 break;
747 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
748 d_bit = 1 << (pin - 2);
749 break;
750 case PIN_AUTOLF: /* autofeed, inverted */
751 c_bit = PNL_PAUTOLF;
752 inv = !inv;
753 break;
754 case PIN_INITP: /* init, direct */
755 c_bit = PNL_PINITP;
756 break;
757 case PIN_SELECP: /* select_in, inverted */
758 c_bit = PNL_PSELECP;
759 inv = !inv;
760 break;
761 default: /* unknown pin, ignore */
762 break;
763 }
764
765 if (c_bit) {
766 c_val[2] &= ~c_bit;
767 c_val[!inv] = c_bit;
768 } else if (d_bit) {
769 d_val[2] &= ~d_bit;
770 d_val[!inv] = d_bit;
771 }
772 }
773
774 /* sleeps that many milliseconds with a reschedule */
775 static void long_sleep(int ms)
776 {
777 if (in_interrupt())
778 mdelay(ms);
779 else
780 schedule_timeout_interruptible(msecs_to_jiffies(ms));
781 }
782
783 /*
784 * send a serial byte to the LCD panel. The caller is responsible for locking
785 * if needed.
786 */
787 static void lcd_send_serial(int byte)
788 {
789 int bit;
790
791 /*
792 * the data bit is set on D0, and the clock on STROBE.
793 * LCD reads D0 on STROBE's rising edge.
794 */
795 for (bit = 0; bit < 8; bit++) {
796 bits.cl = BIT_CLR; /* CLK low */
797 panel_set_bits();
798 bits.da = byte & 1;
799 panel_set_bits();
800 udelay(2); /* maintain the data during 2 us before CLK up */
801 bits.cl = BIT_SET; /* CLK high */
802 panel_set_bits();
803 udelay(1); /* maintain the strobe during 1 us */
804 byte >>= 1;
805 }
806 }
807
808 /* turn the backlight on or off */
809 static void lcd_backlight(int on)
810 {
811 if (lcd.pins.bl == PIN_NONE)
812 return;
813
814 /* The backlight is activated by setting the AUTOFEED line to +5V */
815 spin_lock_irq(&pprt_lock);
816 bits.bl = on;
817 panel_set_bits();
818 spin_unlock_irq(&pprt_lock);
819 }
820
821 /* send a command to the LCD panel in serial mode */
822 static void lcd_write_cmd_s(int cmd)
823 {
824 spin_lock_irq(&pprt_lock);
825 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
826 lcd_send_serial(cmd & 0x0F);
827 lcd_send_serial((cmd >> 4) & 0x0F);
828 /* the shortest command takes at least 40 us */
829 usleep_range(40, 100);
830 spin_unlock_irq(&pprt_lock);
831 }
832
833 /* send data to the LCD panel in serial mode */
834 static void lcd_write_data_s(int data)
835 {
836 spin_lock_irq(&pprt_lock);
837 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
838 lcd_send_serial(data & 0x0F);
839 lcd_send_serial((data >> 4) & 0x0F);
840 /* the shortest data takes at least 40 us */
841 usleep_range(40, 100);
842 spin_unlock_irq(&pprt_lock);
843 }
844
845 /* send a command to the LCD panel in 8 bits parallel mode */
846 static void lcd_write_cmd_p8(int cmd)
847 {
848 spin_lock_irq(&pprt_lock);
849 /* present the data to the data port */
850 w_dtr(pprt, cmd);
851 /* maintain the data during 20 us before the strobe */
852 usleep_range(20, 100);
853
854 bits.e = BIT_SET;
855 bits.rs = BIT_CLR;
856 bits.rw = BIT_CLR;
857 set_ctrl_bits();
858
859 usleep_range(40, 100); /* maintain the strobe during 40 us */
860
861 bits.e = BIT_CLR;
862 set_ctrl_bits();
863
864 usleep_range(120, 500); /* the shortest command takes at least 120 us */
865 spin_unlock_irq(&pprt_lock);
866 }
867
868 /* send data to the LCD panel in 8 bits parallel mode */
869 static void lcd_write_data_p8(int data)
870 {
871 spin_lock_irq(&pprt_lock);
872 /* present the data to the data port */
873 w_dtr(pprt, data);
874 /* maintain the data during 20 us before the strobe */
875 usleep_range(20, 100);
876
877 bits.e = BIT_SET;
878 bits.rs = BIT_SET;
879 bits.rw = BIT_CLR;
880 set_ctrl_bits();
881
882 usleep_range(40, 100); /* maintain the strobe during 40 us */
883
884 bits.e = BIT_CLR;
885 set_ctrl_bits();
886
887 usleep_range(45, 100); /* the shortest data takes at least 45 us */
888 spin_unlock_irq(&pprt_lock);
889 }
890
891 /* send a command to the TI LCD panel */
892 static void lcd_write_cmd_tilcd(int cmd)
893 {
894 spin_lock_irq(&pprt_lock);
895 /* present the data to the control port */
896 w_ctr(pprt, cmd);
897 usleep_range(60, 120);
898 spin_unlock_irq(&pprt_lock);
899 }
900
901 /* send data to the TI LCD panel */
902 static void lcd_write_data_tilcd(int data)
903 {
904 spin_lock_irq(&pprt_lock);
905 /* present the data to the data port */
906 w_dtr(pprt, data);
907 usleep_range(60, 120);
908 spin_unlock_irq(&pprt_lock);
909 }
910
911 static void lcd_gotoxy(void)
912 {
913 lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
914 | (lcd.addr.y ? lcd.hwidth : 0)
915 /*
916 * we force the cursor to stay at the end of the
917 * line if it wants to go farther
918 */
919 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
920 (lcd.hwidth - 1) : lcd.bwidth - 1));
921 }
922
923 static void lcd_print(char c)
924 {
925 if (lcd.addr.x < lcd.bwidth) {
926 if (lcd_char_conv)
927 c = lcd_char_conv[(unsigned char)c];
928 lcd_write_data(c);
929 lcd.addr.x++;
930 }
931 /* prevents the cursor from wrapping onto the next line */
932 if (lcd.addr.x == lcd.bwidth)
933 lcd_gotoxy();
934 }
935
936 /* fills the display with spaces and resets X/Y */
937 static void lcd_clear_fast_s(void)
938 {
939 int pos;
940
941 lcd.addr.x = 0;
942 lcd.addr.y = 0;
943 lcd_gotoxy();
944
945 spin_lock_irq(&pprt_lock);
946 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
947 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
948 lcd_send_serial(' ' & 0x0F);
949 lcd_send_serial((' ' >> 4) & 0x0F);
950 /* the shortest data takes at least 40 us */
951 usleep_range(40, 100);
952 }
953 spin_unlock_irq(&pprt_lock);
954
955 lcd.addr.x = 0;
956 lcd.addr.y = 0;
957 lcd_gotoxy();
958 }
959
960 /* fills the display with spaces and resets X/Y */
961 static void lcd_clear_fast_p8(void)
962 {
963 int pos;
964
965 lcd.addr.x = 0;
966 lcd.addr.y = 0;
967 lcd_gotoxy();
968
969 spin_lock_irq(&pprt_lock);
970 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
971 /* present the data to the data port */
972 w_dtr(pprt, ' ');
973
974 /* maintain the data during 20 us before the strobe */
975 usleep_range(20, 100);
976
977 bits.e = BIT_SET;
978 bits.rs = BIT_SET;
979 bits.rw = BIT_CLR;
980 set_ctrl_bits();
981
982 /* maintain the strobe during 40 us */
983 usleep_range(40, 100);
984
985 bits.e = BIT_CLR;
986 set_ctrl_bits();
987
988 /* the shortest data takes at least 45 us */
989 usleep_range(45, 100);
990 }
991 spin_unlock_irq(&pprt_lock);
992
993 lcd.addr.x = 0;
994 lcd.addr.y = 0;
995 lcd_gotoxy();
996 }
997
998 /* fills the display with spaces and resets X/Y */
999 static void lcd_clear_fast_tilcd(void)
1000 {
1001 int pos;
1002
1003 lcd.addr.x = 0;
1004 lcd.addr.y = 0;
1005 lcd_gotoxy();
1006
1007 spin_lock_irq(&pprt_lock);
1008 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1009 /* present the data to the data port */
1010 w_dtr(pprt, ' ');
1011 usleep_range(60, 120);
1012 }
1013
1014 spin_unlock_irq(&pprt_lock);
1015
1016 lcd.addr.x = 0;
1017 lcd.addr.y = 0;
1018 lcd_gotoxy();
1019 }
1020
1021 /* clears the display and resets X/Y */
1022 static void lcd_clear_display(void)
1023 {
1024 lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1025 lcd.addr.x = 0;
1026 lcd.addr.y = 0;
1027 /* we must wait a few milliseconds (15) */
1028 long_sleep(15);
1029 }
1030
1031 static void lcd_init_display(void)
1032 {
1033 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1034 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1035
1036 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1037
1038 /* 8bits, 1 line, small fonts; let's do it 3 times */
1039 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1040 long_sleep(10);
1041 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1042 long_sleep(10);
1043 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1044 long_sleep(10);
1045
1046 /* set font height and lines number */
1047 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1048 | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1049 | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1050 );
1051 long_sleep(10);
1052
1053 /* display off, cursor off, blink off */
1054 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1055 long_sleep(10);
1056
1057 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */
1058 | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1059 | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1060 | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1061 );
1062
1063 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1064
1065 long_sleep(10);
1066
1067 /* entry mode set : increment, cursor shifting */
1068 lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1069
1070 lcd_clear_display();
1071 }
1072
1073 /*
1074 * These are the file operation function for user access to /dev/lcd
1075 * This function can also be called from inside the kernel, by
1076 * setting file and ppos to NULL.
1077 *
1078 */
1079
1080 static inline int handle_lcd_special_code(void)
1081 {
1082 /* LCD special codes */
1083
1084 int processed = 0;
1085
1086 char *esc = lcd.esc_seq.buf + 2;
1087 int oldflags = lcd.flags;
1088
1089 /* check for display mode flags */
1090 switch (*esc) {
1091 case 'D': /* Display ON */
1092 lcd.flags |= LCD_FLAG_D;
1093 processed = 1;
1094 break;
1095 case 'd': /* Display OFF */
1096 lcd.flags &= ~LCD_FLAG_D;
1097 processed = 1;
1098 break;
1099 case 'C': /* Cursor ON */
1100 lcd.flags |= LCD_FLAG_C;
1101 processed = 1;
1102 break;
1103 case 'c': /* Cursor OFF */
1104 lcd.flags &= ~LCD_FLAG_C;
1105 processed = 1;
1106 break;
1107 case 'B': /* Blink ON */
1108 lcd.flags |= LCD_FLAG_B;
1109 processed = 1;
1110 break;
1111 case 'b': /* Blink OFF */
1112 lcd.flags &= ~LCD_FLAG_B;
1113 processed = 1;
1114 break;
1115 case '+': /* Back light ON */
1116 lcd.flags |= LCD_FLAG_L;
1117 processed = 1;
1118 break;
1119 case '-': /* Back light OFF */
1120 lcd.flags &= ~LCD_FLAG_L;
1121 processed = 1;
1122 break;
1123 case '*':
1124 /* flash back light using the keypad timer */
1125 if (scan_timer.function) {
1126 if (lcd.light_tempo == 0 &&
1127 ((lcd.flags & LCD_FLAG_L) == 0))
1128 lcd_backlight(1);
1129 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1130 }
1131 processed = 1;
1132 break;
1133 case 'f': /* Small Font */
1134 lcd.flags &= ~LCD_FLAG_F;
1135 processed = 1;
1136 break;
1137 case 'F': /* Large Font */
1138 lcd.flags |= LCD_FLAG_F;
1139 processed = 1;
1140 break;
1141 case 'n': /* One Line */
1142 lcd.flags &= ~LCD_FLAG_N;
1143 processed = 1;
1144 break;
1145 case 'N': /* Two Lines */
1146 lcd.flags |= LCD_FLAG_N;
1147 break;
1148 case 'l': /* Shift Cursor Left */
1149 if (lcd.addr.x > 0) {
1150 /* back one char if not at end of line */
1151 if (lcd.addr.x < lcd.bwidth)
1152 lcd_write_cmd(LCD_CMD_SHIFT);
1153 lcd.addr.x--;
1154 }
1155 processed = 1;
1156 break;
1157 case 'r': /* shift cursor right */
1158 if (lcd.addr.x < lcd.width) {
1159 /* allow the cursor to pass the end of the line */
1160 if (lcd.addr.x < (lcd.bwidth - 1))
1161 lcd_write_cmd(LCD_CMD_SHIFT |
1162 LCD_CMD_SHIFT_RIGHT);
1163 lcd.addr.x++;
1164 }
1165 processed = 1;
1166 break;
1167 case 'L': /* shift display left */
1168 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1169 processed = 1;
1170 break;
1171 case 'R': /* shift display right */
1172 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1173 LCD_CMD_SHIFT_RIGHT);
1174 processed = 1;
1175 break;
1176 case 'k': { /* kill end of line */
1177 int x;
1178
1179 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1180 lcd_write_data(' ');
1181
1182 /* restore cursor position */
1183 lcd_gotoxy();
1184 processed = 1;
1185 break;
1186 }
1187 case 'I': /* reinitialize display */
1188 lcd_init_display();
1189 processed = 1;
1190 break;
1191 case 'G': {
1192 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1193 * and '7', representing the numerical ASCII code of the
1194 * redefined character, and <xx...xx> a sequence of 16
1195 * hex digits representing 8 bytes for each character.
1196 * Most LCDs will only use 5 lower bits of the 7 first
1197 * bytes.
1198 */
1199
1200 unsigned char cgbytes[8];
1201 unsigned char cgaddr;
1202 int cgoffset;
1203 int shift;
1204 char value;
1205 int addr;
1206
1207 if (!strchr(esc, ';'))
1208 break;
1209
1210 esc++;
1211
1212 cgaddr = *(esc++) - '0';
1213 if (cgaddr > 7) {
1214 processed = 1;
1215 break;
1216 }
1217
1218 cgoffset = 0;
1219 shift = 0;
1220 value = 0;
1221 while (*esc && cgoffset < 8) {
1222 shift ^= 4;
1223 if (*esc >= '0' && *esc <= '9') {
1224 value |= (*esc - '0') << shift;
1225 } else if (*esc >= 'A' && *esc <= 'Z') {
1226 value |= (*esc - 'A' + 10) << shift;
1227 } else if (*esc >= 'a' && *esc <= 'z') {
1228 value |= (*esc - 'a' + 10) << shift;
1229 } else {
1230 esc++;
1231 continue;
1232 }
1233
1234 if (shift == 0) {
1235 cgbytes[cgoffset++] = value;
1236 value = 0;
1237 }
1238
1239 esc++;
1240 }
1241
1242 lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1243 for (addr = 0; addr < cgoffset; addr++)
1244 lcd_write_data(cgbytes[addr]);
1245
1246 /* ensures that we stop writing to CGRAM */
1247 lcd_gotoxy();
1248 processed = 1;
1249 break;
1250 }
1251 case 'x': /* gotoxy : LxXXX[yYYY]; */
1252 case 'y': /* gotoxy : LyYYY[xXXX]; */
1253 if (!strchr(esc, ';'))
1254 break;
1255
1256 while (*esc) {
1257 if (*esc == 'x') {
1258 esc++;
1259 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1260 break;
1261 } else if (*esc == 'y') {
1262 esc++;
1263 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1264 break;
1265 } else {
1266 break;
1267 }
1268 }
1269
1270 lcd_gotoxy();
1271 processed = 1;
1272 break;
1273 }
1274
1275 /* TODO: This indent party here got ugly, clean it! */
1276 /* Check whether one flag was changed */
1277 if (oldflags != lcd.flags) {
1278 /* check whether one of B,C,D flags were changed */
1279 if ((oldflags ^ lcd.flags) &
1280 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1281 /* set display mode */
1282 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1283 | ((lcd.flags & LCD_FLAG_D)
1284 ? LCD_CMD_DISPLAY_ON : 0)
1285 | ((lcd.flags & LCD_FLAG_C)
1286 ? LCD_CMD_CURSOR_ON : 0)
1287 | ((lcd.flags & LCD_FLAG_B)
1288 ? LCD_CMD_BLINK_ON : 0));
1289 /* check whether one of F,N flags was changed */
1290 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1291 lcd_write_cmd(LCD_CMD_FUNCTION_SET
1292 | LCD_CMD_DATA_LEN_8BITS
1293 | ((lcd.flags & LCD_FLAG_F)
1294 ? LCD_CMD_TWO_LINES : 0)
1295 | ((lcd.flags & LCD_FLAG_N)
1296 ? LCD_CMD_FONT_5X10_DOTS
1297 : 0));
1298 /* check whether L flag was changed */
1299 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1300 if (lcd.flags & (LCD_FLAG_L))
1301 lcd_backlight(1);
1302 else if (lcd.light_tempo == 0)
1303 /*
1304 * switch off the light only when the tempo
1305 * lighting is gone
1306 */
1307 lcd_backlight(0);
1308 }
1309 }
1310
1311 return processed;
1312 }
1313
1314 static void lcd_write_char(char c)
1315 {
1316 /* first, we'll test if we're in escape mode */
1317 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1318 /* yes, let's add this char to the buffer */
1319 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1320 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1321 } else {
1322 /* aborts any previous escape sequence */
1323 lcd.esc_seq.len = -1;
1324
1325 switch (c) {
1326 case LCD_ESCAPE_CHAR:
1327 /* start of an escape sequence */
1328 lcd.esc_seq.len = 0;
1329 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1330 break;
1331 case '\b':
1332 /* go back one char and clear it */
1333 if (lcd.addr.x > 0) {
1334 /*
1335 * check if we're not at the
1336 * end of the line
1337 */
1338 if (lcd.addr.x < lcd.bwidth)
1339 /* back one char */
1340 lcd_write_cmd(LCD_CMD_SHIFT);
1341 lcd.addr.x--;
1342 }
1343 /* replace with a space */
1344 lcd_write_data(' ');
1345 /* back one char again */
1346 lcd_write_cmd(LCD_CMD_SHIFT);
1347 break;
1348 case '\014':
1349 /* quickly clear the display */
1350 lcd_clear_fast();
1351 break;
1352 case '\n':
1353 /*
1354 * flush the remainder of the current line and
1355 * go to the beginning of the next line
1356 */
1357 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1358 lcd_write_data(' ');
1359 lcd.addr.x = 0;
1360 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1361 lcd_gotoxy();
1362 break;
1363 case '\r':
1364 /* go to the beginning of the same line */
1365 lcd.addr.x = 0;
1366 lcd_gotoxy();
1367 break;
1368 case '\t':
1369 /* print a space instead of the tab */
1370 lcd_print(' ');
1371 break;
1372 default:
1373 /* simply print this char */
1374 lcd_print(c);
1375 break;
1376 }
1377 }
1378
1379 /*
1380 * now we'll see if we're in an escape mode and if the current
1381 * escape sequence can be understood.
1382 */
1383 if (lcd.esc_seq.len >= 2) {
1384 int processed = 0;
1385
1386 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1387 /* clear the display */
1388 lcd_clear_fast();
1389 processed = 1;
1390 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1391 /* cursor to home */
1392 lcd.addr.x = 0;
1393 lcd.addr.y = 0;
1394 lcd_gotoxy();
1395 processed = 1;
1396 }
1397 /* codes starting with ^[[L */
1398 else if ((lcd.esc_seq.len >= 3) &&
1399 (lcd.esc_seq.buf[0] == '[') &&
1400 (lcd.esc_seq.buf[1] == 'L')) {
1401 processed = handle_lcd_special_code();
1402 }
1403
1404 /* LCD special escape codes */
1405 /*
1406 * flush the escape sequence if it's been processed
1407 * or if it is getting too long.
1408 */
1409 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1410 lcd.esc_seq.len = -1;
1411 } /* escape codes */
1412 }
1413
1414 static ssize_t lcd_write(struct file *file,
1415 const char __user *buf, size_t count, loff_t *ppos)
1416 {
1417 const char __user *tmp = buf;
1418 char c;
1419
1420 for (; count-- > 0; (*ppos)++, tmp++) {
1421 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1422 /*
1423 * let's be a little nice with other processes
1424 * that need some CPU
1425 */
1426 schedule();
1427
1428 if (get_user(c, tmp))
1429 return -EFAULT;
1430
1431 lcd_write_char(c);
1432 }
1433
1434 return tmp - buf;
1435 }
1436
1437 static int lcd_open(struct inode *inode, struct file *file)
1438 {
1439 if (!atomic_dec_and_test(&lcd_available))
1440 return -EBUSY; /* open only once at a time */
1441
1442 if (file->f_mode & FMODE_READ) /* device is write-only */
1443 return -EPERM;
1444
1445 if (lcd.must_clear) {
1446 lcd_clear_display();
1447 lcd.must_clear = false;
1448 }
1449 return nonseekable_open(inode, file);
1450 }
1451
1452 static int lcd_release(struct inode *inode, struct file *file)
1453 {
1454 atomic_inc(&lcd_available);
1455 return 0;
1456 }
1457
1458 static const struct file_operations lcd_fops = {
1459 .write = lcd_write,
1460 .open = lcd_open,
1461 .release = lcd_release,
1462 .llseek = no_llseek,
1463 };
1464
1465 static struct miscdevice lcd_dev = {
1466 .minor = LCD_MINOR,
1467 .name = "lcd",
1468 .fops = &lcd_fops,
1469 };
1470
1471 /* public function usable from the kernel for any purpose */
1472 static void panel_lcd_print(const char *s)
1473 {
1474 const char *tmp = s;
1475 int count = strlen(s);
1476
1477 if (lcd.enabled && lcd.initialized) {
1478 for (; count-- > 0; tmp++) {
1479 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1480 /*
1481 * let's be a little nice with other processes
1482 * that need some CPU
1483 */
1484 schedule();
1485
1486 lcd_write_char(*tmp);
1487 }
1488 }
1489 }
1490
1491 /* initialize the LCD driver */
1492 static void lcd_init(void)
1493 {
1494 switch (selected_lcd_type) {
1495 case LCD_TYPE_OLD:
1496 /* parallel mode, 8 bits */
1497 lcd.proto = LCD_PROTO_PARALLEL;
1498 lcd.charset = LCD_CHARSET_NORMAL;
1499 lcd.pins.e = PIN_STROBE;
1500 lcd.pins.rs = PIN_AUTOLF;
1501
1502 lcd.width = 40;
1503 lcd.bwidth = 40;
1504 lcd.hwidth = 64;
1505 lcd.height = 2;
1506 break;
1507 case LCD_TYPE_KS0074:
1508 /* serial mode, ks0074 */
1509 lcd.proto = LCD_PROTO_SERIAL;
1510 lcd.charset = LCD_CHARSET_KS0074;
1511 lcd.pins.bl = PIN_AUTOLF;
1512 lcd.pins.cl = PIN_STROBE;
1513 lcd.pins.da = PIN_D0;
1514
1515 lcd.width = 16;
1516 lcd.bwidth = 40;
1517 lcd.hwidth = 16;
1518 lcd.height = 2;
1519 break;
1520 case LCD_TYPE_NEXCOM:
1521 /* parallel mode, 8 bits, generic */
1522 lcd.proto = LCD_PROTO_PARALLEL;
1523 lcd.charset = LCD_CHARSET_NORMAL;
1524 lcd.pins.e = PIN_AUTOLF;
1525 lcd.pins.rs = PIN_SELECP;
1526 lcd.pins.rw = PIN_INITP;
1527
1528 lcd.width = 16;
1529 lcd.bwidth = 40;
1530 lcd.hwidth = 64;
1531 lcd.height = 2;
1532 break;
1533 case LCD_TYPE_CUSTOM:
1534 /* customer-defined */
1535 lcd.proto = DEFAULT_LCD_PROTO;
1536 lcd.charset = DEFAULT_LCD_CHARSET;
1537 /* default geometry will be set later */
1538 break;
1539 case LCD_TYPE_HANTRONIX:
1540 /* parallel mode, 8 bits, hantronix-like */
1541 default:
1542 lcd.proto = LCD_PROTO_PARALLEL;
1543 lcd.charset = LCD_CHARSET_NORMAL;
1544 lcd.pins.e = PIN_STROBE;
1545 lcd.pins.rs = PIN_SELECP;
1546
1547 lcd.width = 16;
1548 lcd.bwidth = 40;
1549 lcd.hwidth = 64;
1550 lcd.height = 2;
1551 break;
1552 }
1553
1554 /* Overwrite with module params set on loading */
1555 if (lcd_height != NOT_SET)
1556 lcd.height = lcd_height;
1557 if (lcd_width != NOT_SET)
1558 lcd.width = lcd_width;
1559 if (lcd_bwidth != NOT_SET)
1560 lcd.bwidth = lcd_bwidth;
1561 if (lcd_hwidth != NOT_SET)
1562 lcd.hwidth = lcd_hwidth;
1563 if (lcd_charset != NOT_SET)
1564 lcd.charset = lcd_charset;
1565 if (lcd_proto != NOT_SET)
1566 lcd.proto = lcd_proto;
1567 if (lcd_e_pin != PIN_NOT_SET)
1568 lcd.pins.e = lcd_e_pin;
1569 if (lcd_rs_pin != PIN_NOT_SET)
1570 lcd.pins.rs = lcd_rs_pin;
1571 if (lcd_rw_pin != PIN_NOT_SET)
1572 lcd.pins.rw = lcd_rw_pin;
1573 if (lcd_cl_pin != PIN_NOT_SET)
1574 lcd.pins.cl = lcd_cl_pin;
1575 if (lcd_da_pin != PIN_NOT_SET)
1576 lcd.pins.da = lcd_da_pin;
1577 if (lcd_bl_pin != PIN_NOT_SET)
1578 lcd.pins.bl = lcd_bl_pin;
1579
1580 /* this is used to catch wrong and default values */
1581 if (lcd.width <= 0)
1582 lcd.width = DEFAULT_LCD_WIDTH;
1583 if (lcd.bwidth <= 0)
1584 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1585 if (lcd.hwidth <= 0)
1586 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1587 if (lcd.height <= 0)
1588 lcd.height = DEFAULT_LCD_HEIGHT;
1589
1590 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1591 lcd_write_cmd = lcd_write_cmd_s;
1592 lcd_write_data = lcd_write_data_s;
1593 lcd_clear_fast = lcd_clear_fast_s;
1594
1595 if (lcd.pins.cl == PIN_NOT_SET)
1596 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1597 if (lcd.pins.da == PIN_NOT_SET)
1598 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1599
1600 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1601 lcd_write_cmd = lcd_write_cmd_p8;
1602 lcd_write_data = lcd_write_data_p8;
1603 lcd_clear_fast = lcd_clear_fast_p8;
1604
1605 if (lcd.pins.e == PIN_NOT_SET)
1606 lcd.pins.e = DEFAULT_LCD_PIN_E;
1607 if (lcd.pins.rs == PIN_NOT_SET)
1608 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1609 if (lcd.pins.rw == PIN_NOT_SET)
1610 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1611 } else {
1612 lcd_write_cmd = lcd_write_cmd_tilcd;
1613 lcd_write_data = lcd_write_data_tilcd;
1614 lcd_clear_fast = lcd_clear_fast_tilcd;
1615 }
1616
1617 if (lcd.pins.bl == PIN_NOT_SET)
1618 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1619
1620 if (lcd.pins.e == PIN_NOT_SET)
1621 lcd.pins.e = PIN_NONE;
1622 if (lcd.pins.rs == PIN_NOT_SET)
1623 lcd.pins.rs = PIN_NONE;
1624 if (lcd.pins.rw == PIN_NOT_SET)
1625 lcd.pins.rw = PIN_NONE;
1626 if (lcd.pins.bl == PIN_NOT_SET)
1627 lcd.pins.bl = PIN_NONE;
1628 if (lcd.pins.cl == PIN_NOT_SET)
1629 lcd.pins.cl = PIN_NONE;
1630 if (lcd.pins.da == PIN_NOT_SET)
1631 lcd.pins.da = PIN_NONE;
1632
1633 if (lcd.charset == NOT_SET)
1634 lcd.charset = DEFAULT_LCD_CHARSET;
1635
1636 if (lcd.charset == LCD_CHARSET_KS0074)
1637 lcd_char_conv = lcd_char_conv_ks0074;
1638 else
1639 lcd_char_conv = NULL;
1640
1641 if (lcd.pins.bl != PIN_NONE)
1642 init_scan_timer();
1643
1644 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1645 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1646 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1647 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1648 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1649 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1650 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1651 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1652 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1653 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1654 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1655 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1656
1657 /*
1658 * before this line, we must NOT send anything to the display.
1659 * Since lcd_init_display() needs to write data, we have to
1660 * enable mark the LCD initialized just before.
1661 */
1662 lcd.initialized = true;
1663 lcd_init_display();
1664
1665 /* display a short message */
1666 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1667 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1668 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1669 #endif
1670 #else
1671 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1672 PANEL_VERSION);
1673 #endif
1674 lcd.addr.x = 0;
1675 lcd.addr.y = 0;
1676 /* clear the display on the next device opening */
1677 lcd.must_clear = true;
1678 lcd_gotoxy();
1679 }
1680
1681 /*
1682 * These are the file operation function for user access to /dev/keypad
1683 */
1684
1685 static ssize_t keypad_read(struct file *file,
1686 char __user *buf, size_t count, loff_t *ppos)
1687 {
1688 unsigned i = *ppos;
1689 char __user *tmp = buf;
1690
1691 if (keypad_buflen == 0) {
1692 if (file->f_flags & O_NONBLOCK)
1693 return -EAGAIN;
1694
1695 if (wait_event_interruptible(keypad_read_wait,
1696 keypad_buflen != 0))
1697 return -EINTR;
1698 }
1699
1700 for (; count-- > 0 && (keypad_buflen > 0);
1701 ++i, ++tmp, --keypad_buflen) {
1702 put_user(keypad_buffer[keypad_start], tmp);
1703 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1704 }
1705 *ppos = i;
1706
1707 return tmp - buf;
1708 }
1709
1710 static int keypad_open(struct inode *inode, struct file *file)
1711 {
1712 if (!atomic_dec_and_test(&keypad_available))
1713 return -EBUSY; /* open only once at a time */
1714
1715 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1716 return -EPERM;
1717
1718 keypad_buflen = 0; /* flush the buffer on opening */
1719 return 0;
1720 }
1721
1722 static int keypad_release(struct inode *inode, struct file *file)
1723 {
1724 atomic_inc(&keypad_available);
1725 return 0;
1726 }
1727
1728 static const struct file_operations keypad_fops = {
1729 .read = keypad_read, /* read */
1730 .open = keypad_open, /* open */
1731 .release = keypad_release, /* close */
1732 .llseek = default_llseek,
1733 };
1734
1735 static struct miscdevice keypad_dev = {
1736 .minor = KEYPAD_MINOR,
1737 .name = "keypad",
1738 .fops = &keypad_fops,
1739 };
1740
1741 static void keypad_send_key(const char *string, int max_len)
1742 {
1743 /* send the key to the device only if a process is attached to it. */
1744 if (!atomic_read(&keypad_available)) {
1745 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1746 keypad_buffer[(keypad_start + keypad_buflen++) %
1747 KEYPAD_BUFFER] = *string++;
1748 }
1749 wake_up_interruptible(&keypad_read_wait);
1750 }
1751 }
1752
1753 /* this function scans all the bits involving at least one logical signal,
1754 * and puts the results in the bitfield "phys_read" (one bit per established
1755 * contact), and sets "phys_read_prev" to "phys_read".
1756 *
1757 * Note: to debounce input signals, we will only consider as switched a signal
1758 * which is stable across 2 measures. Signals which are different between two
1759 * reads will be kept as they previously were in their logical form (phys_prev).
1760 * A signal which has just switched will have a 1 in
1761 * (phys_read ^ phys_read_prev).
1762 */
1763 static void phys_scan_contacts(void)
1764 {
1765 int bit, bitval;
1766 char oldval;
1767 char bitmask;
1768 char gndmask;
1769
1770 phys_prev = phys_curr;
1771 phys_read_prev = phys_read;
1772 phys_read = 0; /* flush all signals */
1773
1774 /* keep track of old value, with all outputs disabled */
1775 oldval = r_dtr(pprt) | scan_mask_o;
1776 /* activate all keyboard outputs (active low) */
1777 w_dtr(pprt, oldval & ~scan_mask_o);
1778
1779 /* will have a 1 for each bit set to gnd */
1780 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1781 /* disable all matrix signals */
1782 w_dtr(pprt, oldval);
1783
1784 /* now that all outputs are cleared, the only active input bits are
1785 * directly connected to the ground
1786 */
1787
1788 /* 1 for each grounded input */
1789 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1790
1791 /* grounded inputs are signals 40-44 */
1792 phys_read |= (pmask_t)gndmask << 40;
1793
1794 if (bitmask != gndmask) {
1795 /*
1796 * since clearing the outputs changed some inputs, we know
1797 * that some input signals are currently tied to some outputs.
1798 * So we'll scan them.
1799 */
1800 for (bit = 0; bit < 8; bit++) {
1801 bitval = BIT(bit);
1802
1803 if (!(scan_mask_o & bitval)) /* skip unused bits */
1804 continue;
1805
1806 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1807 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1808 phys_read |= (pmask_t)bitmask << (5 * bit);
1809 }
1810 w_dtr(pprt, oldval); /* disable all outputs */
1811 }
1812 /*
1813 * this is easy: use old bits when they are flapping,
1814 * use new ones when stable
1815 */
1816 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1817 (phys_read & ~(phys_read ^ phys_read_prev));
1818 }
1819
1820 static inline int input_state_high(struct logical_input *input)
1821 {
1822 #if 0
1823 /* FIXME:
1824 * this is an invalid test. It tries to catch
1825 * transitions from single-key to multiple-key, but
1826 * doesn't take into account the contacts polarity.
1827 * The only solution to the problem is to parse keys
1828 * from the most complex to the simplest combinations,
1829 * and mark them as 'caught' once a combination
1830 * matches, then unmatch it for all other ones.
1831 */
1832
1833 /* try to catch dangerous transitions cases :
1834 * someone adds a bit, so this signal was a false
1835 * positive resulting from a transition. We should
1836 * invalidate the signal immediately and not call the
1837 * release function.
1838 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1839 */
1840 if (((phys_prev & input->mask) == input->value) &&
1841 ((phys_curr & input->mask) > input->value)) {
1842 input->state = INPUT_ST_LOW; /* invalidate */
1843 return 1;
1844 }
1845 #endif
1846
1847 if ((phys_curr & input->mask) == input->value) {
1848 if ((input->type == INPUT_TYPE_STD) &&
1849 (input->high_timer == 0)) {
1850 input->high_timer++;
1851 if (input->u.std.press_fct)
1852 input->u.std.press_fct(input->u.std.press_data);
1853 } else if (input->type == INPUT_TYPE_KBD) {
1854 /* will turn on the light */
1855 keypressed = 1;
1856
1857 if (input->high_timer == 0) {
1858 char *press_str = input->u.kbd.press_str;
1859
1860 if (press_str[0]) {
1861 int s = sizeof(input->u.kbd.press_str);
1862
1863 keypad_send_key(press_str, s);
1864 }
1865 }
1866
1867 if (input->u.kbd.repeat_str[0]) {
1868 char *repeat_str = input->u.kbd.repeat_str;
1869
1870 if (input->high_timer >= KEYPAD_REP_START) {
1871 int s = sizeof(input->u.kbd.repeat_str);
1872
1873 input->high_timer -= KEYPAD_REP_DELAY;
1874 keypad_send_key(repeat_str, s);
1875 }
1876 /* we will need to come back here soon */
1877 inputs_stable = 0;
1878 }
1879
1880 if (input->high_timer < 255)
1881 input->high_timer++;
1882 }
1883 return 1;
1884 }
1885
1886 /* else signal falling down. Let's fall through. */
1887 input->state = INPUT_ST_FALLING;
1888 input->fall_timer = 0;
1889
1890 return 0;
1891 }
1892
1893 static inline void input_state_falling(struct logical_input *input)
1894 {
1895 #if 0
1896 /* FIXME !!! same comment as in input_state_high */
1897 if (((phys_prev & input->mask) == input->value) &&
1898 ((phys_curr & input->mask) > input->value)) {
1899 input->state = INPUT_ST_LOW; /* invalidate */
1900 return;
1901 }
1902 #endif
1903
1904 if ((phys_curr & input->mask) == input->value) {
1905 if (input->type == INPUT_TYPE_KBD) {
1906 /* will turn on the light */
1907 keypressed = 1;
1908
1909 if (input->u.kbd.repeat_str[0]) {
1910 char *repeat_str = input->u.kbd.repeat_str;
1911
1912 if (input->high_timer >= KEYPAD_REP_START) {
1913 int s = sizeof(input->u.kbd.repeat_str);
1914
1915 input->high_timer -= KEYPAD_REP_DELAY;
1916 keypad_send_key(repeat_str, s);
1917 }
1918 /* we will need to come back here soon */
1919 inputs_stable = 0;
1920 }
1921
1922 if (input->high_timer < 255)
1923 input->high_timer++;
1924 }
1925 input->state = INPUT_ST_HIGH;
1926 } else if (input->fall_timer >= input->fall_time) {
1927 /* call release event */
1928 if (input->type == INPUT_TYPE_STD) {
1929 void (*release_fct)(int) = input->u.std.release_fct;
1930
1931 if (release_fct)
1932 release_fct(input->u.std.release_data);
1933 } else if (input->type == INPUT_TYPE_KBD) {
1934 char *release_str = input->u.kbd.release_str;
1935
1936 if (release_str[0]) {
1937 int s = sizeof(input->u.kbd.release_str);
1938
1939 keypad_send_key(release_str, s);
1940 }
1941 }
1942
1943 input->state = INPUT_ST_LOW;
1944 } else {
1945 input->fall_timer++;
1946 inputs_stable = 0;
1947 }
1948 }
1949
1950 static void panel_process_inputs(void)
1951 {
1952 struct list_head *item;
1953 struct logical_input *input;
1954
1955 keypressed = 0;
1956 inputs_stable = 1;
1957 list_for_each(item, &logical_inputs) {
1958 input = list_entry(item, struct logical_input, list);
1959
1960 switch (input->state) {
1961 case INPUT_ST_LOW:
1962 if ((phys_curr & input->mask) != input->value)
1963 break;
1964 /* if all needed ones were already set previously,
1965 * this means that this logical signal has been
1966 * activated by the releasing of another combined
1967 * signal, so we don't want to match.
1968 * eg: AB -(release B)-> A -(release A)-> 0 :
1969 * don't match A.
1970 */
1971 if ((phys_prev & input->mask) == input->value)
1972 break;
1973 input->rise_timer = 0;
1974 input->state = INPUT_ST_RISING;
1975 /* no break here, fall through */
1976 case INPUT_ST_RISING:
1977 if ((phys_curr & input->mask) != input->value) {
1978 input->state = INPUT_ST_LOW;
1979 break;
1980 }
1981 if (input->rise_timer < input->rise_time) {
1982 inputs_stable = 0;
1983 input->rise_timer++;
1984 break;
1985 }
1986 input->high_timer = 0;
1987 input->state = INPUT_ST_HIGH;
1988 /* no break here, fall through */
1989 case INPUT_ST_HIGH:
1990 if (input_state_high(input))
1991 break;
1992 /* no break here, fall through */
1993 case INPUT_ST_FALLING:
1994 input_state_falling(input);
1995 }
1996 }
1997 }
1998
1999 static void panel_scan_timer(void)
2000 {
2001 if (keypad.enabled && keypad_initialized) {
2002 if (spin_trylock_irq(&pprt_lock)) {
2003 phys_scan_contacts();
2004
2005 /* no need for the parport anymore */
2006 spin_unlock_irq(&pprt_lock);
2007 }
2008
2009 if (!inputs_stable || phys_curr != phys_prev)
2010 panel_process_inputs();
2011 }
2012
2013 if (lcd.enabled && lcd.initialized) {
2014 if (keypressed) {
2015 if (lcd.light_tempo == 0 &&
2016 ((lcd.flags & LCD_FLAG_L) == 0))
2017 lcd_backlight(1);
2018 lcd.light_tempo = FLASH_LIGHT_TEMPO;
2019 } else if (lcd.light_tempo > 0) {
2020 lcd.light_tempo--;
2021 if (lcd.light_tempo == 0 &&
2022 ((lcd.flags & LCD_FLAG_L) == 0))
2023 lcd_backlight(0);
2024 }
2025 }
2026
2027 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2028 }
2029
2030 static void init_scan_timer(void)
2031 {
2032 if (scan_timer.function)
2033 return; /* already started */
2034
2035 setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2036 scan_timer.expires = jiffies + INPUT_POLL_TIME;
2037 add_timer(&scan_timer);
2038 }
2039
2040 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2041 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2042 * corresponding to out and in bits respectively.
2043 * returns 1 if ok, 0 if error (in which case, nothing is written).
2044 */
2045 static u8 input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2046 u8 *imask, u8 *omask)
2047 {
2048 static char sigtab[10] = "EeSsPpAaBb";
2049 u8 im, om;
2050 pmask_t m, v;
2051
2052 om = 0ULL;
2053 im = 0ULL;
2054 m = 0ULL;
2055 v = 0ULL;
2056 while (*name) {
2057 int in, out, bit, neg;
2058
2059 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2060 in++)
2061 ;
2062
2063 if (in >= sizeof(sigtab))
2064 return 0; /* input name not found */
2065 neg = (in & 1); /* odd (lower) names are negated */
2066 in >>= 1;
2067 im |= BIT(in);
2068
2069 name++;
2070 if (isdigit(*name)) {
2071 out = *name - '0';
2072 om |= BIT(out);
2073 } else if (*name == '-') {
2074 out = 8;
2075 } else {
2076 return 0; /* unknown bit name */
2077 }
2078
2079 bit = (out * 5) + in;
2080
2081 m |= 1ULL << bit;
2082 if (!neg)
2083 v |= 1ULL << bit;
2084 name++;
2085 }
2086 *mask = m;
2087 *value = v;
2088 if (imask)
2089 *imask |= im;
2090 if (omask)
2091 *omask |= om;
2092 return 1;
2093 }
2094
2095 /* tries to bind a key to the signal name <name>. The key will send the
2096 * strings <press>, <repeat>, <release> for these respective events.
2097 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2098 */
2099 static struct logical_input *panel_bind_key(const char *name, const char *press,
2100 const char *repeat,
2101 const char *release)
2102 {
2103 struct logical_input *key;
2104
2105 key = kzalloc(sizeof(*key), GFP_KERNEL);
2106 if (!key)
2107 return NULL;
2108
2109 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2110 &scan_mask_o)) {
2111 kfree(key);
2112 return NULL;
2113 }
2114
2115 key->type = INPUT_TYPE_KBD;
2116 key->state = INPUT_ST_LOW;
2117 key->rise_time = 1;
2118 key->fall_time = 1;
2119
2120 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2121 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2122 strncpy(key->u.kbd.release_str, release,
2123 sizeof(key->u.kbd.release_str));
2124 list_add(&key->list, &logical_inputs);
2125 return key;
2126 }
2127
2128 #if 0
2129 /* tries to bind a callback function to the signal name <name>. The function
2130 * <press_fct> will be called with the <press_data> arg when the signal is
2131 * activated, and so on for <release_fct>/<release_data>
2132 * Returns the pointer to the new signal if ok, NULL if the signal could not
2133 * be bound.
2134 */
2135 static struct logical_input *panel_bind_callback(char *name,
2136 void (*press_fct)(int),
2137 int press_data,
2138 void (*release_fct)(int),
2139 int release_data)
2140 {
2141 struct logical_input *callback;
2142
2143 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2144 if (!callback)
2145 return NULL;
2146
2147 memset(callback, 0, sizeof(struct logical_input));
2148 if (!input_name2mask(name, &callback->mask, &callback->value,
2149 &scan_mask_i, &scan_mask_o))
2150 return NULL;
2151
2152 callback->type = INPUT_TYPE_STD;
2153 callback->state = INPUT_ST_LOW;
2154 callback->rise_time = 1;
2155 callback->fall_time = 1;
2156 callback->u.std.press_fct = press_fct;
2157 callback->u.std.press_data = press_data;
2158 callback->u.std.release_fct = release_fct;
2159 callback->u.std.release_data = release_data;
2160 list_add(&callback->list, &logical_inputs);
2161 return callback;
2162 }
2163 #endif
2164
2165 static void keypad_init(void)
2166 {
2167 int keynum;
2168
2169 init_waitqueue_head(&keypad_read_wait);
2170 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2171
2172 /* Let's create all known keys */
2173
2174 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2175 panel_bind_key(keypad_profile[keynum][0],
2176 keypad_profile[keynum][1],
2177 keypad_profile[keynum][2],
2178 keypad_profile[keynum][3]);
2179 }
2180
2181 init_scan_timer();
2182 keypad_initialized = 1;
2183 }
2184
2185 /**************************************************/
2186 /* device initialization */
2187 /**************************************************/
2188
2189 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2190 void *unused)
2191 {
2192 if (lcd.enabled && lcd.initialized) {
2193 switch (code) {
2194 case SYS_DOWN:
2195 panel_lcd_print
2196 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2197 break;
2198 case SYS_HALT:
2199 panel_lcd_print
2200 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2201 break;
2202 case SYS_POWER_OFF:
2203 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2204 break;
2205 default:
2206 break;
2207 }
2208 }
2209 return NOTIFY_DONE;
2210 }
2211
2212 static struct notifier_block panel_notifier = {
2213 panel_notify_sys,
2214 NULL,
2215 0
2216 };
2217
2218 static void panel_attach(struct parport *port)
2219 {
2220 struct pardev_cb panel_cb;
2221
2222 if (port->number != parport)
2223 return;
2224
2225 if (pprt) {
2226 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2227 __func__, port->number, parport);
2228 return;
2229 }
2230
2231 memset(&panel_cb, 0, sizeof(panel_cb));
2232 panel_cb.private = &pprt;
2233 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2234
2235 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2236 if (!pprt) {
2237 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2238 __func__, port->number, parport);
2239 return;
2240 }
2241
2242 if (parport_claim(pprt)) {
2243 pr_err("could not claim access to parport%d. Aborting.\n",
2244 parport);
2245 goto err_unreg_device;
2246 }
2247
2248 /* must init LCD first, just in case an IRQ from the keypad is
2249 * generated at keypad init
2250 */
2251 if (lcd.enabled) {
2252 lcd_init();
2253 if (misc_register(&lcd_dev))
2254 goto err_unreg_device;
2255 }
2256
2257 if (keypad.enabled) {
2258 keypad_init();
2259 if (misc_register(&keypad_dev))
2260 goto err_lcd_unreg;
2261 }
2262 register_reboot_notifier(&panel_notifier);
2263 return;
2264
2265 err_lcd_unreg:
2266 if (lcd.enabled)
2267 misc_deregister(&lcd_dev);
2268 err_unreg_device:
2269 parport_unregister_device(pprt);
2270 pprt = NULL;
2271 }
2272
2273 static void panel_detach(struct parport *port)
2274 {
2275 if (port->number != parport)
2276 return;
2277
2278 if (!pprt) {
2279 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2280 __func__, port->number, parport);
2281 return;
2282 }
2283 if (scan_timer.function)
2284 del_timer_sync(&scan_timer);
2285
2286 if (pprt) {
2287 if (keypad.enabled) {
2288 misc_deregister(&keypad_dev);
2289 keypad_initialized = 0;
2290 }
2291
2292 if (lcd.enabled) {
2293 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2294 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2295 misc_deregister(&lcd_dev);
2296 lcd.initialized = false;
2297 }
2298
2299 /* TODO: free all input signals */
2300 parport_release(pprt);
2301 parport_unregister_device(pprt);
2302 pprt = NULL;
2303 unregister_reboot_notifier(&panel_notifier);
2304 }
2305 }
2306
2307 static struct parport_driver panel_driver = {
2308 .name = "panel",
2309 .match_port = panel_attach,
2310 .detach = panel_detach,
2311 .devmodel = true,
2312 };
2313
2314 /* init function */
2315 static int __init panel_init_module(void)
2316 {
2317 int selected_keypad_type = NOT_SET, err;
2318
2319 /* take care of an eventual profile */
2320 switch (profile) {
2321 case PANEL_PROFILE_CUSTOM:
2322 /* custom profile */
2323 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2324 selected_lcd_type = DEFAULT_LCD_TYPE;
2325 break;
2326 case PANEL_PROFILE_OLD:
2327 /* 8 bits, 2*16, old keypad */
2328 selected_keypad_type = KEYPAD_TYPE_OLD;
2329 selected_lcd_type = LCD_TYPE_OLD;
2330
2331 /* TODO: This two are a little hacky, sort it out later */
2332 if (lcd_width == NOT_SET)
2333 lcd_width = 16;
2334 if (lcd_hwidth == NOT_SET)
2335 lcd_hwidth = 16;
2336 break;
2337 case PANEL_PROFILE_NEW:
2338 /* serial, 2*16, new keypad */
2339 selected_keypad_type = KEYPAD_TYPE_NEW;
2340 selected_lcd_type = LCD_TYPE_KS0074;
2341 break;
2342 case PANEL_PROFILE_HANTRONIX:
2343 /* 8 bits, 2*16 hantronix-like, no keypad */
2344 selected_keypad_type = KEYPAD_TYPE_NONE;
2345 selected_lcd_type = LCD_TYPE_HANTRONIX;
2346 break;
2347 case PANEL_PROFILE_NEXCOM:
2348 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2349 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2350 selected_lcd_type = LCD_TYPE_NEXCOM;
2351 break;
2352 case PANEL_PROFILE_LARGE:
2353 /* 8 bits, 2*40, old keypad */
2354 selected_keypad_type = KEYPAD_TYPE_OLD;
2355 selected_lcd_type = LCD_TYPE_OLD;
2356 break;
2357 }
2358
2359 /*
2360 * Overwrite selection with module param values (both keypad and lcd),
2361 * where the deprecated params have lower prio.
2362 */
2363 if (keypad_enabled != NOT_SET)
2364 selected_keypad_type = keypad_enabled;
2365 if (keypad_type != NOT_SET)
2366 selected_keypad_type = keypad_type;
2367
2368 keypad.enabled = (selected_keypad_type > 0);
2369
2370 if (lcd_enabled != NOT_SET)
2371 selected_lcd_type = lcd_enabled;
2372 if (lcd_type != NOT_SET)
2373 selected_lcd_type = lcd_type;
2374
2375 lcd.enabled = (selected_lcd_type > 0);
2376
2377 if (lcd.enabled) {
2378 /*
2379 * Init lcd struct with load-time values to preserve exact
2380 * current functionality (at least for now).
2381 */
2382 lcd.height = lcd_height;
2383 lcd.width = lcd_width;
2384 lcd.bwidth = lcd_bwidth;
2385 lcd.hwidth = lcd_hwidth;
2386 lcd.charset = lcd_charset;
2387 lcd.proto = lcd_proto;
2388 lcd.pins.e = lcd_e_pin;
2389 lcd.pins.rs = lcd_rs_pin;
2390 lcd.pins.rw = lcd_rw_pin;
2391 lcd.pins.cl = lcd_cl_pin;
2392 lcd.pins.da = lcd_da_pin;
2393 lcd.pins.bl = lcd_bl_pin;
2394
2395 /* Leave it for now, just in case */
2396 lcd.esc_seq.len = -1;
2397 }
2398
2399 switch (selected_keypad_type) {
2400 case KEYPAD_TYPE_OLD:
2401 keypad_profile = old_keypad_profile;
2402 break;
2403 case KEYPAD_TYPE_NEW:
2404 keypad_profile = new_keypad_profile;
2405 break;
2406 case KEYPAD_TYPE_NEXCOM:
2407 keypad_profile = nexcom_keypad_profile;
2408 break;
2409 default:
2410 keypad_profile = NULL;
2411 break;
2412 }
2413
2414 if (!lcd.enabled && !keypad.enabled) {
2415 /* no device enabled, let's exit */
2416 pr_err("driver version " PANEL_VERSION " disabled.\n");
2417 return -ENODEV;
2418 }
2419
2420 err = parport_register_driver(&panel_driver);
2421 if (err) {
2422 pr_err("could not register with parport. Aborting.\n");
2423 return err;
2424 }
2425
2426 if (pprt)
2427 pr_info("driver version " PANEL_VERSION
2428 " registered on parport%d (io=0x%lx).\n", parport,
2429 pprt->port->base);
2430 else
2431 pr_info("driver version " PANEL_VERSION
2432 " not yet registered\n");
2433 return 0;
2434 }
2435
2436 static void __exit panel_cleanup_module(void)
2437 {
2438 parport_unregister_driver(&panel_driver);
2439 }
2440
2441 module_init(panel_init_module);
2442 module_exit(panel_cleanup_module);
2443 MODULE_AUTHOR("Willy Tarreau");
2444 MODULE_LICENSE("GPL");
2445
2446 /*
2447 * Local variables:
2448 * c-indent-level: 4
2449 * tab-width: 8
2450 * End:
2451 */
This page took 0.083597 seconds and 5 git commands to generate.