Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / user_exp_rcv.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <asm/page.h>
48
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52
53 struct tid_group {
54 struct list_head list;
55 unsigned base;
56 u8 size;
57 u8 used;
58 u8 map;
59 };
60
61 struct tid_rb_node {
62 struct mmu_rb_node mmu;
63 unsigned long phys;
64 struct tid_group *grp;
65 u32 rcventry;
66 dma_addr_t dma_addr;
67 bool freed;
68 unsigned npages;
69 struct page *pages[0];
70 };
71
72 struct tid_pageset {
73 u16 idx;
74 u16 count;
75 };
76
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
79 #define num_user_pages(vaddr, len) \
80 (1 + (((((unsigned long)(vaddr) + \
81 (unsigned long)(len) - 1) & PAGE_MASK) - \
82 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85 struct rb_root *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88 struct tid_group *, struct page **, unsigned);
89 static int mmu_rb_insert(struct rb_root *, struct mmu_rb_node *);
90 static void mmu_rb_remove(struct rb_root *, struct mmu_rb_node *, bool);
91 static int mmu_rb_invalidate(struct rb_root *, struct mmu_rb_node *);
92 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
93 struct tid_pageset *, unsigned, u16, struct page **,
94 u32 *, unsigned *, unsigned *);
95 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
96 static void clear_tid_node(struct hfi1_filedata *, u16, struct tid_rb_node *);
97
98 static struct mmu_rb_ops tid_rb_ops = {
99 .insert = mmu_rb_insert,
100 .remove = mmu_rb_remove,
101 .invalidate = mmu_rb_invalidate
102 };
103
104 static inline u32 rcventry2tidinfo(u32 rcventry)
105 {
106 u32 pair = rcventry & ~0x1;
107
108 return EXP_TID_SET(IDX, pair >> 1) |
109 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
110 }
111
112 static inline void exp_tid_group_init(struct exp_tid_set *set)
113 {
114 INIT_LIST_HEAD(&set->list);
115 set->count = 0;
116 }
117
118 static inline void tid_group_remove(struct tid_group *grp,
119 struct exp_tid_set *set)
120 {
121 list_del_init(&grp->list);
122 set->count--;
123 }
124
125 static inline void tid_group_add_tail(struct tid_group *grp,
126 struct exp_tid_set *set)
127 {
128 list_add_tail(&grp->list, &set->list);
129 set->count++;
130 }
131
132 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
133 {
134 struct tid_group *grp =
135 list_first_entry(&set->list, struct tid_group, list);
136 list_del_init(&grp->list);
137 set->count--;
138 return grp;
139 }
140
141 static inline void tid_group_move(struct tid_group *group,
142 struct exp_tid_set *s1,
143 struct exp_tid_set *s2)
144 {
145 tid_group_remove(group, s1);
146 tid_group_add_tail(group, s2);
147 }
148
149 /*
150 * Initialize context and file private data needed for Expected
151 * receive caching. This needs to be done after the context has
152 * been configured with the eager/expected RcvEntry counts.
153 */
154 int hfi1_user_exp_rcv_init(struct file *fp)
155 {
156 struct hfi1_filedata *fd = fp->private_data;
157 struct hfi1_ctxtdata *uctxt = fd->uctxt;
158 struct hfi1_devdata *dd = uctxt->dd;
159 unsigned tidbase;
160 int i, ret = 0;
161
162 spin_lock_init(&fd->tid_lock);
163 spin_lock_init(&fd->invalid_lock);
164 fd->tid_rb_root = RB_ROOT;
165
166 if (!uctxt->subctxt_cnt || !fd->subctxt) {
167 exp_tid_group_init(&uctxt->tid_group_list);
168 exp_tid_group_init(&uctxt->tid_used_list);
169 exp_tid_group_init(&uctxt->tid_full_list);
170
171 tidbase = uctxt->expected_base;
172 for (i = 0; i < uctxt->expected_count /
173 dd->rcv_entries.group_size; i++) {
174 struct tid_group *grp;
175
176 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
177 if (!grp) {
178 /*
179 * If we fail here, the groups already
180 * allocated will be freed by the close
181 * call.
182 */
183 ret = -ENOMEM;
184 goto done;
185 }
186 grp->size = dd->rcv_entries.group_size;
187 grp->base = tidbase;
188 tid_group_add_tail(grp, &uctxt->tid_group_list);
189 tidbase += dd->rcv_entries.group_size;
190 }
191 }
192
193 fd->entry_to_rb = kcalloc(uctxt->expected_count,
194 sizeof(struct rb_node *),
195 GFP_KERNEL);
196 if (!fd->entry_to_rb)
197 return -ENOMEM;
198
199 if (!HFI1_CAP_IS_USET(TID_UNMAP)) {
200 fd->invalid_tid_idx = 0;
201 fd->invalid_tids = kzalloc(uctxt->expected_count *
202 sizeof(u32), GFP_KERNEL);
203 if (!fd->invalid_tids) {
204 ret = -ENOMEM;
205 goto done;
206 }
207
208 /*
209 * Register MMU notifier callbacks. If the registration
210 * fails, continue but turn off the TID caching for
211 * all user contexts.
212 */
213 ret = hfi1_mmu_rb_register(&fd->tid_rb_root, &tid_rb_ops);
214 if (ret) {
215 dd_dev_info(dd,
216 "Failed MMU notifier registration %d\n",
217 ret);
218 HFI1_CAP_USET(TID_UNMAP);
219 ret = 0;
220 }
221 }
222
223 /*
224 * PSM does not have a good way to separate, count, and
225 * effectively enforce a limit on RcvArray entries used by
226 * subctxts (when context sharing is used) when TID caching
227 * is enabled. To help with that, we calculate a per-process
228 * RcvArray entry share and enforce that.
229 * If TID caching is not in use, PSM deals with usage on its
230 * own. In that case, we allow any subctxt to take all of the
231 * entries.
232 *
233 * Make sure that we set the tid counts only after successful
234 * init.
235 */
236 spin_lock(&fd->tid_lock);
237 if (uctxt->subctxt_cnt && !HFI1_CAP_IS_USET(TID_UNMAP)) {
238 u16 remainder;
239
240 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
241 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
242 if (remainder && fd->subctxt < remainder)
243 fd->tid_limit++;
244 } else {
245 fd->tid_limit = uctxt->expected_count;
246 }
247 spin_unlock(&fd->tid_lock);
248 done:
249 return ret;
250 }
251
252 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
253 {
254 struct hfi1_ctxtdata *uctxt = fd->uctxt;
255 struct tid_group *grp, *gptr;
256
257 /*
258 * The notifier would have been removed when the process'es mm
259 * was freed.
260 */
261 if (!HFI1_CAP_IS_USET(TID_UNMAP))
262 hfi1_mmu_rb_unregister(&fd->tid_rb_root);
263
264 kfree(fd->invalid_tids);
265
266 if (!uctxt->cnt) {
267 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
268 unlock_exp_tids(uctxt, &uctxt->tid_full_list,
269 &fd->tid_rb_root);
270 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
271 unlock_exp_tids(uctxt, &uctxt->tid_used_list,
272 &fd->tid_rb_root);
273 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
274 list) {
275 list_del_init(&grp->list);
276 kfree(grp);
277 }
278 hfi1_clear_tids(uctxt);
279 }
280
281 kfree(fd->entry_to_rb);
282 return 0;
283 }
284
285 /*
286 * Write an "empty" RcvArray entry.
287 * This function exists so the TID registaration code can use it
288 * to write to unused/unneeded entries and still take advantage
289 * of the WC performance improvements. The HFI will ignore this
290 * write to the RcvArray entry.
291 */
292 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
293 {
294 /*
295 * Doing the WC fill writes only makes sense if the device is
296 * present and the RcvArray has been mapped as WC memory.
297 */
298 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
299 writeq(0, dd->rcvarray_wc + (index * 8));
300 }
301
302 /*
303 * RcvArray entry allocation for Expected Receives is done by the
304 * following algorithm:
305 *
306 * The context keeps 3 lists of groups of RcvArray entries:
307 * 1. List of empty groups - tid_group_list
308 * This list is created during user context creation and
309 * contains elements which describe sets (of 8) of empty
310 * RcvArray entries.
311 * 2. List of partially used groups - tid_used_list
312 * This list contains sets of RcvArray entries which are
313 * not completely used up. Another mapping request could
314 * use some of all of the remaining entries.
315 * 3. List of full groups - tid_full_list
316 * This is the list where sets that are completely used
317 * up go.
318 *
319 * An attempt to optimize the usage of RcvArray entries is
320 * made by finding all sets of physically contiguous pages in a
321 * user's buffer.
322 * These physically contiguous sets are further split into
323 * sizes supported by the receive engine of the HFI. The
324 * resulting sets of pages are stored in struct tid_pageset,
325 * which describes the sets as:
326 * * .count - number of pages in this set
327 * * .idx - starting index into struct page ** array
328 * of this set
329 *
330 * From this point on, the algorithm deals with the page sets
331 * described above. The number of pagesets is divided by the
332 * RcvArray group size to produce the number of full groups
333 * needed.
334 *
335 * Groups from the 3 lists are manipulated using the following
336 * rules:
337 * 1. For each set of 8 pagesets, a complete group from
338 * tid_group_list is taken, programmed, and moved to
339 * the tid_full_list list.
340 * 2. For all remaining pagesets:
341 * 2.1 If the tid_used_list is empty and the tid_group_list
342 * is empty, stop processing pageset and return only
343 * what has been programmed up to this point.
344 * 2.2 If the tid_used_list is empty and the tid_group_list
345 * is not empty, move a group from tid_group_list to
346 * tid_used_list.
347 * 2.3 For each group is tid_used_group, program as much as
348 * can fit into the group. If the group becomes fully
349 * used, move it to tid_full_list.
350 */
351 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
352 {
353 int ret = 0, need_group = 0, pinned;
354 struct hfi1_filedata *fd = fp->private_data;
355 struct hfi1_ctxtdata *uctxt = fd->uctxt;
356 struct hfi1_devdata *dd = uctxt->dd;
357 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
358 tididx = 0, mapped, mapped_pages = 0;
359 unsigned long vaddr = tinfo->vaddr;
360 struct page **pages = NULL;
361 u32 *tidlist = NULL;
362 struct tid_pageset *pagesets = NULL;
363
364 /* Get the number of pages the user buffer spans */
365 npages = num_user_pages(vaddr, tinfo->length);
366 if (!npages)
367 return -EINVAL;
368
369 if (npages > uctxt->expected_count) {
370 dd_dev_err(dd, "Expected buffer too big\n");
371 return -EINVAL;
372 }
373
374 /* Verify that access is OK for the user buffer */
375 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
376 npages * PAGE_SIZE)) {
377 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
378 (void *)vaddr, npages);
379 return -EFAULT;
380 }
381
382 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
383 GFP_KERNEL);
384 if (!pagesets)
385 return -ENOMEM;
386
387 /* Allocate the array of struct page pointers needed for pinning */
388 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
389 if (!pages) {
390 ret = -ENOMEM;
391 goto bail;
392 }
393
394 /*
395 * Pin all the pages of the user buffer. If we can't pin all the
396 * pages, accept the amount pinned so far and program only that.
397 * User space knows how to deal with partially programmed buffers.
398 */
399 if (!hfi1_can_pin_pages(dd, fd->tid_n_pinned, npages))
400 return -ENOMEM;
401 pinned = hfi1_acquire_user_pages(vaddr, npages, true, pages);
402 if (pinned <= 0) {
403 ret = pinned;
404 goto bail;
405 }
406 fd->tid_n_pinned += npages;
407
408 /* Find sets of physically contiguous pages */
409 npagesets = find_phys_blocks(pages, pinned, pagesets);
410
411 /*
412 * We don't need to access this under a lock since tid_used is per
413 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
414 * and hfi1_user_exp_rcv_setup() at the same time.
415 */
416 spin_lock(&fd->tid_lock);
417 if (fd->tid_used + npagesets > fd->tid_limit)
418 pageset_count = fd->tid_limit - fd->tid_used;
419 else
420 pageset_count = npagesets;
421 spin_unlock(&fd->tid_lock);
422
423 if (!pageset_count)
424 goto bail;
425
426 ngroups = pageset_count / dd->rcv_entries.group_size;
427 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
428 if (!tidlist) {
429 ret = -ENOMEM;
430 goto nomem;
431 }
432
433 tididx = 0;
434
435 /*
436 * From this point on, we are going to be using shared (between master
437 * and subcontexts) context resources. We need to take the lock.
438 */
439 mutex_lock(&uctxt->exp_lock);
440 /*
441 * The first step is to program the RcvArray entries which are complete
442 * groups.
443 */
444 while (ngroups && uctxt->tid_group_list.count) {
445 struct tid_group *grp =
446 tid_group_pop(&uctxt->tid_group_list);
447
448 ret = program_rcvarray(fp, vaddr, grp, pagesets,
449 pageidx, dd->rcv_entries.group_size,
450 pages, tidlist, &tididx, &mapped);
451 /*
452 * If there was a failure to program the RcvArray
453 * entries for the entire group, reset the grp fields
454 * and add the grp back to the free group list.
455 */
456 if (ret <= 0) {
457 tid_group_add_tail(grp, &uctxt->tid_group_list);
458 hfi1_cdbg(TID,
459 "Failed to program RcvArray group %d", ret);
460 goto unlock;
461 }
462
463 tid_group_add_tail(grp, &uctxt->tid_full_list);
464 ngroups--;
465 pageidx += ret;
466 mapped_pages += mapped;
467 }
468
469 while (pageidx < pageset_count) {
470 struct tid_group *grp, *ptr;
471 /*
472 * If we don't have any partially used tid groups, check
473 * if we have empty groups. If so, take one from there and
474 * put in the partially used list.
475 */
476 if (!uctxt->tid_used_list.count || need_group) {
477 if (!uctxt->tid_group_list.count)
478 goto unlock;
479
480 grp = tid_group_pop(&uctxt->tid_group_list);
481 tid_group_add_tail(grp, &uctxt->tid_used_list);
482 need_group = 0;
483 }
484 /*
485 * There is an optimization opportunity here - instead of
486 * fitting as many page sets as we can, check for a group
487 * later on in the list that could fit all of them.
488 */
489 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
490 list) {
491 unsigned use = min_t(unsigned, pageset_count - pageidx,
492 grp->size - grp->used);
493
494 ret = program_rcvarray(fp, vaddr, grp, pagesets,
495 pageidx, use, pages, tidlist,
496 &tididx, &mapped);
497 if (ret < 0) {
498 hfi1_cdbg(TID,
499 "Failed to program RcvArray entries %d",
500 ret);
501 ret = -EFAULT;
502 goto unlock;
503 } else if (ret > 0) {
504 if (grp->used == grp->size)
505 tid_group_move(grp,
506 &uctxt->tid_used_list,
507 &uctxt->tid_full_list);
508 pageidx += ret;
509 mapped_pages += mapped;
510 need_group = 0;
511 /* Check if we are done so we break out early */
512 if (pageidx >= pageset_count)
513 break;
514 } else if (WARN_ON(ret == 0)) {
515 /*
516 * If ret is 0, we did not program any entries
517 * into this group, which can only happen if
518 * we've screwed up the accounting somewhere.
519 * Warn and try to continue.
520 */
521 need_group = 1;
522 }
523 }
524 }
525 unlock:
526 mutex_unlock(&uctxt->exp_lock);
527 nomem:
528 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
529 mapped_pages, ret);
530 if (tididx) {
531 spin_lock(&fd->tid_lock);
532 fd->tid_used += tididx;
533 spin_unlock(&fd->tid_lock);
534 tinfo->tidcnt = tididx;
535 tinfo->length = mapped_pages * PAGE_SIZE;
536
537 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
538 tidlist, sizeof(tidlist[0]) * tididx)) {
539 /*
540 * On failure to copy to the user level, we need to undo
541 * everything done so far so we don't leak resources.
542 */
543 tinfo->tidlist = (unsigned long)&tidlist;
544 hfi1_user_exp_rcv_clear(fp, tinfo);
545 tinfo->tidlist = 0;
546 ret = -EFAULT;
547 goto bail;
548 }
549 }
550
551 /*
552 * If not everything was mapped (due to insufficient RcvArray entries,
553 * for example), unpin all unmapped pages so we can pin them nex time.
554 */
555 if (mapped_pages != pinned) {
556 hfi1_release_user_pages(current->mm, &pages[mapped_pages],
557 pinned - mapped_pages,
558 false);
559 fd->tid_n_pinned -= pinned - mapped_pages;
560 }
561 bail:
562 kfree(pagesets);
563 kfree(pages);
564 kfree(tidlist);
565 return ret > 0 ? 0 : ret;
566 }
567
568 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
569 {
570 int ret = 0;
571 struct hfi1_filedata *fd = fp->private_data;
572 struct hfi1_ctxtdata *uctxt = fd->uctxt;
573 u32 *tidinfo;
574 unsigned tididx;
575
576 tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
577 if (!tidinfo)
578 return -ENOMEM;
579
580 if (copy_from_user(tidinfo, (void __user *)(unsigned long)
581 tinfo->tidlist, sizeof(tidinfo[0]) *
582 tinfo->tidcnt)) {
583 ret = -EFAULT;
584 goto done;
585 }
586
587 mutex_lock(&uctxt->exp_lock);
588 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
589 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
590 if (ret) {
591 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
592 ret);
593 break;
594 }
595 }
596 spin_lock(&fd->tid_lock);
597 fd->tid_used -= tididx;
598 spin_unlock(&fd->tid_lock);
599 tinfo->tidcnt = tididx;
600 mutex_unlock(&uctxt->exp_lock);
601 done:
602 kfree(tidinfo);
603 return ret;
604 }
605
606 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
607 {
608 struct hfi1_filedata *fd = fp->private_data;
609 struct hfi1_ctxtdata *uctxt = fd->uctxt;
610 unsigned long *ev = uctxt->dd->events +
611 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
612 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
613 u32 *array;
614 int ret = 0;
615
616 if (!fd->invalid_tids)
617 return -EINVAL;
618
619 /*
620 * copy_to_user() can sleep, which will leave the invalid_lock
621 * locked and cause the MMU notifier to be blocked on the lock
622 * for a long time.
623 * Copy the data to a local buffer so we can release the lock.
624 */
625 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
626 if (!array)
627 return -EFAULT;
628
629 spin_lock(&fd->invalid_lock);
630 if (fd->invalid_tid_idx) {
631 memcpy(array, fd->invalid_tids, sizeof(*array) *
632 fd->invalid_tid_idx);
633 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
634 fd->invalid_tid_idx);
635 tinfo->tidcnt = fd->invalid_tid_idx;
636 fd->invalid_tid_idx = 0;
637 /*
638 * Reset the user flag while still holding the lock.
639 * Otherwise, PSM can miss events.
640 */
641 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
642 } else {
643 tinfo->tidcnt = 0;
644 }
645 spin_unlock(&fd->invalid_lock);
646
647 if (tinfo->tidcnt) {
648 if (copy_to_user((void __user *)tinfo->tidlist,
649 array, sizeof(*array) * tinfo->tidcnt))
650 ret = -EFAULT;
651 }
652 kfree(array);
653
654 return ret;
655 }
656
657 static u32 find_phys_blocks(struct page **pages, unsigned npages,
658 struct tid_pageset *list)
659 {
660 unsigned pagecount, pageidx, setcount = 0, i;
661 unsigned long pfn, this_pfn;
662
663 if (!npages)
664 return 0;
665
666 /*
667 * Look for sets of physically contiguous pages in the user buffer.
668 * This will allow us to optimize Expected RcvArray entry usage by
669 * using the bigger supported sizes.
670 */
671 pfn = page_to_pfn(pages[0]);
672 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
673 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
674
675 /*
676 * If the pfn's are not sequential, pages are not physically
677 * contiguous.
678 */
679 if (this_pfn != ++pfn) {
680 /*
681 * At this point we have to loop over the set of
682 * physically contiguous pages and break them down it
683 * sizes supported by the HW.
684 * There are two main constraints:
685 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
686 * If the total set size is bigger than that
687 * program only a MAX_EXPECTED_BUFFER chunk.
688 * 2. The buffer size has to be a power of two. If
689 * it is not, round down to the closes power of
690 * 2 and program that size.
691 */
692 while (pagecount) {
693 int maxpages = pagecount;
694 u32 bufsize = pagecount * PAGE_SIZE;
695
696 if (bufsize > MAX_EXPECTED_BUFFER)
697 maxpages =
698 MAX_EXPECTED_BUFFER >>
699 PAGE_SHIFT;
700 else if (!is_power_of_2(bufsize))
701 maxpages =
702 rounddown_pow_of_two(bufsize) >>
703 PAGE_SHIFT;
704
705 list[setcount].idx = pageidx;
706 list[setcount].count = maxpages;
707 pagecount -= maxpages;
708 pageidx += maxpages;
709 setcount++;
710 }
711 pageidx = i;
712 pagecount = 1;
713 pfn = this_pfn;
714 } else {
715 pagecount++;
716 }
717 }
718 return setcount;
719 }
720
721 /**
722 * program_rcvarray() - program an RcvArray group with receive buffers
723 * @fp: file pointer
724 * @vaddr: starting user virtual address
725 * @grp: RcvArray group
726 * @sets: array of struct tid_pageset holding information on physically
727 * contiguous chunks from the user buffer
728 * @start: starting index into sets array
729 * @count: number of struct tid_pageset's to program
730 * @pages: an array of struct page * for the user buffer
731 * @tidlist: the array of u32 elements when the information about the
732 * programmed RcvArray entries is to be encoded.
733 * @tididx: starting offset into tidlist
734 * @pmapped: (output parameter) number of pages programmed into the RcvArray
735 * entries.
736 *
737 * This function will program up to 'count' number of RcvArray entries from the
738 * group 'grp'. To make best use of write-combining writes, the function will
739 * perform writes to the unused RcvArray entries which will be ignored by the
740 * HW. Each RcvArray entry will be programmed with a physically contiguous
741 * buffer chunk from the user's virtual buffer.
742 *
743 * Return:
744 * -EINVAL if the requested count is larger than the size of the group,
745 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
746 * number of RcvArray entries programmed.
747 */
748 static int program_rcvarray(struct file *fp, unsigned long vaddr,
749 struct tid_group *grp,
750 struct tid_pageset *sets,
751 unsigned start, u16 count, struct page **pages,
752 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
753 {
754 struct hfi1_filedata *fd = fp->private_data;
755 struct hfi1_ctxtdata *uctxt = fd->uctxt;
756 struct hfi1_devdata *dd = uctxt->dd;
757 u16 idx;
758 u32 tidinfo = 0, rcventry, useidx = 0;
759 int mapped = 0;
760
761 /* Count should never be larger than the group size */
762 if (count > grp->size)
763 return -EINVAL;
764
765 /* Find the first unused entry in the group */
766 for (idx = 0; idx < grp->size; idx++) {
767 if (!(grp->map & (1 << idx))) {
768 useidx = idx;
769 break;
770 }
771 rcv_array_wc_fill(dd, grp->base + idx);
772 }
773
774 idx = 0;
775 while (idx < count) {
776 u16 npages, pageidx, setidx = start + idx;
777 int ret = 0;
778
779 /*
780 * If this entry in the group is used, move to the next one.
781 * If we go past the end of the group, exit the loop.
782 */
783 if (useidx >= grp->size) {
784 break;
785 } else if (grp->map & (1 << useidx)) {
786 rcv_array_wc_fill(dd, grp->base + useidx);
787 useidx++;
788 continue;
789 }
790
791 rcventry = grp->base + useidx;
792 npages = sets[setidx].count;
793 pageidx = sets[setidx].idx;
794
795 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
796 rcventry, grp, pages + pageidx,
797 npages);
798 if (ret)
799 return ret;
800 mapped += npages;
801
802 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
803 EXP_TID_SET(LEN, npages);
804 tidlist[(*tididx)++] = tidinfo;
805 grp->used++;
806 grp->map |= 1 << useidx++;
807 idx++;
808 }
809
810 /* Fill the rest of the group with "blank" writes */
811 for (; useidx < grp->size; useidx++)
812 rcv_array_wc_fill(dd, grp->base + useidx);
813 *pmapped = mapped;
814 return idx;
815 }
816
817 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
818 u32 rcventry, struct tid_group *grp,
819 struct page **pages, unsigned npages)
820 {
821 int ret;
822 struct hfi1_filedata *fd = fp->private_data;
823 struct hfi1_ctxtdata *uctxt = fd->uctxt;
824 struct tid_rb_node *node;
825 struct hfi1_devdata *dd = uctxt->dd;
826 struct rb_root *root = &fd->tid_rb_root;
827 dma_addr_t phys;
828
829 /*
830 * Allocate the node first so we can handle a potential
831 * failure before we've programmed anything.
832 */
833 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
834 GFP_KERNEL);
835 if (!node)
836 return -ENOMEM;
837
838 phys = pci_map_single(dd->pcidev,
839 __va(page_to_phys(pages[0])),
840 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
841 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
842 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
843 phys);
844 kfree(node);
845 return -EFAULT;
846 }
847
848 node->mmu.addr = vaddr;
849 node->mmu.len = npages * PAGE_SIZE;
850 node->phys = page_to_phys(pages[0]);
851 node->npages = npages;
852 node->rcventry = rcventry;
853 node->dma_addr = phys;
854 node->grp = grp;
855 node->freed = false;
856 memcpy(node->pages, pages, sizeof(struct page *) * npages);
857
858 if (HFI1_CAP_IS_USET(TID_UNMAP))
859 ret = mmu_rb_insert(root, &node->mmu);
860 else
861 ret = hfi1_mmu_rb_insert(root, &node->mmu);
862
863 if (ret) {
864 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
865 node->rcventry, node->mmu.addr, node->phys, ret);
866 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
867 PCI_DMA_FROMDEVICE);
868 kfree(node);
869 return -EFAULT;
870 }
871 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
872 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
873 node->mmu.addr, node->phys, phys);
874 return 0;
875 }
876
877 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
878 struct tid_group **grp)
879 {
880 struct hfi1_filedata *fd = fp->private_data;
881 struct hfi1_ctxtdata *uctxt = fd->uctxt;
882 struct hfi1_devdata *dd = uctxt->dd;
883 struct tid_rb_node *node;
884 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
885 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
886
887 if (tididx >= uctxt->expected_count) {
888 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
889 tididx, uctxt->ctxt);
890 return -EINVAL;
891 }
892
893 if (tidctrl == 0x3)
894 return -EINVAL;
895
896 rcventry = tididx + (tidctrl - 1);
897
898 node = fd->entry_to_rb[rcventry];
899 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
900 return -EBADF;
901 if (HFI1_CAP_IS_USET(TID_UNMAP))
902 mmu_rb_remove(&fd->tid_rb_root, &node->mmu, false);
903 else
904 hfi1_mmu_rb_remove(&fd->tid_rb_root, &node->mmu);
905
906 if (grp)
907 *grp = node->grp;
908 clear_tid_node(fd, fd->subctxt, node);
909 return 0;
910 }
911
912 static void clear_tid_node(struct hfi1_filedata *fd, u16 subctxt,
913 struct tid_rb_node *node)
914 {
915 struct hfi1_ctxtdata *uctxt = fd->uctxt;
916 struct hfi1_devdata *dd = uctxt->dd;
917
918 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
919 node->npages, node->mmu.addr, node->phys,
920 node->dma_addr);
921
922 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
923 /*
924 * Make sure device has seen the write before we unpin the
925 * pages.
926 */
927 flush_wc();
928
929 pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
930 PCI_DMA_FROMDEVICE);
931 hfi1_release_user_pages(current->mm, node->pages, node->npages, true);
932 fd->tid_n_pinned -= node->npages;
933
934 node->grp->used--;
935 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
936
937 if (node->grp->used == node->grp->size - 1)
938 tid_group_move(node->grp, &uctxt->tid_full_list,
939 &uctxt->tid_used_list);
940 else if (!node->grp->used)
941 tid_group_move(node->grp, &uctxt->tid_used_list,
942 &uctxt->tid_group_list);
943 kfree(node);
944 }
945
946 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
947 struct exp_tid_set *set, struct rb_root *root)
948 {
949 struct tid_group *grp, *ptr;
950 struct hfi1_filedata *fd = container_of(root, struct hfi1_filedata,
951 tid_rb_root);
952 int i;
953
954 list_for_each_entry_safe(grp, ptr, &set->list, list) {
955 list_del_init(&grp->list);
956
957 for (i = 0; i < grp->size; i++) {
958 if (grp->map & (1 << i)) {
959 u16 rcventry = grp->base + i;
960 struct tid_rb_node *node;
961
962 node = fd->entry_to_rb[rcventry -
963 uctxt->expected_base];
964 if (!node || node->rcventry != rcventry)
965 continue;
966 if (HFI1_CAP_IS_USET(TID_UNMAP))
967 mmu_rb_remove(&fd->tid_rb_root,
968 &node->mmu, false);
969 else
970 hfi1_mmu_rb_remove(&fd->tid_rb_root,
971 &node->mmu);
972 clear_tid_node(fd, -1, node);
973 }
974 }
975 }
976 }
977
978 static int mmu_rb_invalidate(struct rb_root *root, struct mmu_rb_node *mnode)
979 {
980 struct hfi1_filedata *fdata =
981 container_of(root, struct hfi1_filedata, tid_rb_root);
982 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
983 struct tid_rb_node *node =
984 container_of(mnode, struct tid_rb_node, mmu);
985
986 if (node->freed)
987 return 0;
988
989 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
990 node->rcventry, node->npages, node->dma_addr);
991 node->freed = true;
992
993 spin_lock(&fdata->invalid_lock);
994 if (fdata->invalid_tid_idx < uctxt->expected_count) {
995 fdata->invalid_tids[fdata->invalid_tid_idx] =
996 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
997 fdata->invalid_tids[fdata->invalid_tid_idx] |=
998 EXP_TID_SET(LEN, node->npages);
999 if (!fdata->invalid_tid_idx) {
1000 unsigned long *ev;
1001
1002 /*
1003 * hfi1_set_uevent_bits() sets a user event flag
1004 * for all processes. Because calling into the
1005 * driver to process TID cache invalidations is
1006 * expensive and TID cache invalidations are
1007 * handled on a per-process basis, we can
1008 * optimize this to set the flag only for the
1009 * process in question.
1010 */
1011 ev = uctxt->dd->events +
1012 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1013 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1014 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1015 }
1016 fdata->invalid_tid_idx++;
1017 }
1018 spin_unlock(&fdata->invalid_lock);
1019 return 0;
1020 }
1021
1022 static int mmu_rb_insert(struct rb_root *root, struct mmu_rb_node *node)
1023 {
1024 struct hfi1_filedata *fdata =
1025 container_of(root, struct hfi1_filedata, tid_rb_root);
1026 struct tid_rb_node *tnode =
1027 container_of(node, struct tid_rb_node, mmu);
1028 u32 base = fdata->uctxt->expected_base;
1029
1030 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1031 return 0;
1032 }
1033
1034 static void mmu_rb_remove(struct rb_root *root, struct mmu_rb_node *node,
1035 bool notifier)
1036 {
1037 struct hfi1_filedata *fdata =
1038 container_of(root, struct hfi1_filedata, tid_rb_root);
1039 struct tid_rb_node *tnode =
1040 container_of(node, struct tid_rb_node, mmu);
1041 u32 base = fdata->uctxt->expected_base;
1042
1043 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1044 }
This page took 0.059751 seconds and 6 git commands to generate.