c4974144c7871d7f0987b6fd2f8f5762fa0fc9f9
[deliverable/linux.git] / drivers / thermal / cpu_cooling.c
1 /*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
33
34 #include <trace/events/thermal.h>
35
36 /*
37 * Cooling state <-> CPUFreq frequency
38 *
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
41 *
42 * Highest cooling state corresponds to lowest possible frequency.
43 *
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
48 */
49
50 /**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
54 *
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
57 */
58 struct power_table {
59 u32 frequency;
60 u32 power;
61 };
62
63 /**
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
71 * @cpufreq_val: integer value representing the absolute value of the clipped
72 * frequency.
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
86 *
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
89 */
90 struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
94 unsigned int cpufreq_val;
95 unsigned int max_level;
96 unsigned int *freq_table; /* In descending order */
97 struct cpumask allowed_cpus;
98 struct list_head node;
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
106 };
107 static DEFINE_IDR(cpufreq_idr);
108 static DEFINE_MUTEX(cooling_cpufreq_lock);
109
110 static LIST_HEAD(cpufreq_dev_list);
111
112 /**
113 * get_idr - function to get a unique id.
114 * @idr: struct idr * handle used to create a id.
115 * @id: int * value generated by this function.
116 *
117 * This function will populate @id with an unique
118 * id, using the idr API.
119 *
120 * Return: 0 on success, an error code on failure.
121 */
122 static int get_idr(struct idr *idr, int *id)
123 {
124 int ret;
125
126 mutex_lock(&cooling_cpufreq_lock);
127 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
128 mutex_unlock(&cooling_cpufreq_lock);
129 if (unlikely(ret < 0))
130 return ret;
131 *id = ret;
132
133 return 0;
134 }
135
136 /**
137 * release_idr - function to free the unique id.
138 * @idr: struct idr * handle used for creating the id.
139 * @id: int value representing the unique id.
140 */
141 static void release_idr(struct idr *idr, int id)
142 {
143 mutex_lock(&cooling_cpufreq_lock);
144 idr_remove(idr, id);
145 mutex_unlock(&cooling_cpufreq_lock);
146 }
147
148 /* Below code defines functions to be used for cpufreq as cooling device */
149
150 /**
151 * get_level: Find the level for a particular frequency
152 * @cpufreq_dev: cpufreq_dev for which the property is required
153 * @freq: Frequency
154 *
155 * Return: level on success, THERMAL_CSTATE_INVALID on error.
156 */
157 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
158 unsigned int freq)
159 {
160 unsigned long level;
161
162 for (level = 0; level <= cpufreq_dev->max_level; level++) {
163 if (freq == cpufreq_dev->freq_table[level])
164 return level;
165
166 if (freq > cpufreq_dev->freq_table[level])
167 break;
168 }
169
170 return THERMAL_CSTATE_INVALID;
171 }
172
173 /**
174 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
175 * @cpu: cpu for which the level is required
176 * @freq: the frequency of interest
177 *
178 * This function will match the cooling level corresponding to the
179 * requested @freq and return it.
180 *
181 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
182 * otherwise.
183 */
184 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
185 {
186 struct cpufreq_cooling_device *cpufreq_dev;
187
188 mutex_lock(&cooling_cpufreq_lock);
189 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
190 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
191 mutex_unlock(&cooling_cpufreq_lock);
192 return get_level(cpufreq_dev, freq);
193 }
194 }
195 mutex_unlock(&cooling_cpufreq_lock);
196
197 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
198 return THERMAL_CSTATE_INVALID;
199 }
200 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
201
202 static void update_cpu_device(int cpu)
203 {
204 struct cpufreq_cooling_device *cpufreq_dev;
205
206 mutex_lock(&cooling_cpufreq_lock);
207 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
208 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
209 cpufreq_dev->cpu_dev = get_cpu_device(cpu);
210 if (!cpufreq_dev->cpu_dev) {
211 dev_warn(&cpufreq_dev->cool_dev->device,
212 "No cpu device for new policy cpu %d\n",
213 cpu);
214 }
215 break;
216 }
217 }
218 mutex_unlock(&cooling_cpufreq_lock);
219 }
220
221 static void remove_cpu_device(int cpu)
222 {
223 struct cpufreq_cooling_device *cpufreq_dev;
224
225 mutex_lock(&cooling_cpufreq_lock);
226 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
227 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
228 cpufreq_dev->cpu_dev = NULL;
229 break;
230 }
231 }
232 mutex_unlock(&cooling_cpufreq_lock);
233 }
234
235 /**
236 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
237 * @nb: struct notifier_block * with callback info.
238 * @event: value showing cpufreq event for which this function invoked.
239 * @data: callback-specific data
240 *
241 * Callback to hijack the notification on cpufreq policy transition.
242 * Every time there is a change in policy, we will intercept and
243 * update the cpufreq policy with thermal constraints.
244 *
245 * Return: 0 (success)
246 */
247 static int cpufreq_thermal_notifier(struct notifier_block *nb,
248 unsigned long event, void *data)
249 {
250 struct cpufreq_policy *policy = data;
251 unsigned long max_freq = 0;
252 struct cpufreq_cooling_device *cpufreq_dev;
253
254 switch (event) {
255
256 case CPUFREQ_ADJUST:
257 mutex_lock(&cooling_cpufreq_lock);
258 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
259 if (!cpumask_test_cpu(policy->cpu,
260 &cpufreq_dev->allowed_cpus))
261 continue;
262
263 max_freq = cpufreq_dev->cpufreq_val;
264
265 if (policy->max != max_freq)
266 cpufreq_verify_within_limits(policy, 0,
267 max_freq);
268 }
269 mutex_unlock(&cooling_cpufreq_lock);
270 break;
271
272 case CPUFREQ_CREATE_POLICY:
273 update_cpu_device(policy->cpu);
274 break;
275 case CPUFREQ_REMOVE_POLICY:
276 remove_cpu_device(policy->cpu);
277 break;
278 default:
279 return NOTIFY_DONE;
280 }
281
282 return NOTIFY_OK;
283 }
284
285 /**
286 * build_dyn_power_table() - create a dynamic power to frequency table
287 * @cpufreq_device: the cpufreq cooling device in which to store the table
288 * @capacitance: dynamic power coefficient for these cpus
289 *
290 * Build a dynamic power to frequency table for this cpu and store it
291 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
292 * cpu_freq_to_power() to convert between power and frequency
293 * efficiently. Power is stored in mW, frequency in KHz. The
294 * resulting table is in ascending order.
295 *
296 * Return: 0 on success, -E* on error.
297 */
298 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
299 u32 capacitance)
300 {
301 struct power_table *power_table;
302 struct dev_pm_opp *opp;
303 struct device *dev = NULL;
304 int num_opps = 0, cpu, i, ret = 0;
305 unsigned long freq;
306
307 rcu_read_lock();
308
309 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
310 dev = get_cpu_device(cpu);
311 if (!dev) {
312 dev_warn(&cpufreq_device->cool_dev->device,
313 "No cpu device for cpu %d\n", cpu);
314 continue;
315 }
316
317 num_opps = dev_pm_opp_get_opp_count(dev);
318 if (num_opps > 0) {
319 break;
320 } else if (num_opps < 0) {
321 ret = num_opps;
322 goto unlock;
323 }
324 }
325
326 if (num_opps == 0) {
327 ret = -EINVAL;
328 goto unlock;
329 }
330
331 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
332
333 for (freq = 0, i = 0;
334 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
335 freq++, i++) {
336 u32 freq_mhz, voltage_mv;
337 u64 power;
338
339 freq_mhz = freq / 1000000;
340 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
341
342 /*
343 * Do the multiplication with MHz and millivolt so as
344 * to not overflow.
345 */
346 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
347 do_div(power, 1000000000);
348
349 /* frequency is stored in power_table in KHz */
350 power_table[i].frequency = freq / 1000;
351
352 /* power is stored in mW */
353 power_table[i].power = power;
354 }
355
356 if (i == 0) {
357 ret = PTR_ERR(opp);
358 goto unlock;
359 }
360
361 cpufreq_device->cpu_dev = dev;
362 cpufreq_device->dyn_power_table = power_table;
363 cpufreq_device->dyn_power_table_entries = i;
364
365 unlock:
366 rcu_read_unlock();
367 return ret;
368 }
369
370 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
371 u32 freq)
372 {
373 int i;
374 struct power_table *pt = cpufreq_device->dyn_power_table;
375
376 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
377 if (freq < pt[i].frequency)
378 break;
379
380 return pt[i - 1].power;
381 }
382
383 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
384 u32 power)
385 {
386 int i;
387 struct power_table *pt = cpufreq_device->dyn_power_table;
388
389 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
390 if (power < pt[i].power)
391 break;
392
393 return pt[i - 1].frequency;
394 }
395
396 /**
397 * get_load() - get load for a cpu since last updated
398 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
399 * @cpu: cpu number
400 *
401 * Return: The average load of cpu @cpu in percentage since this
402 * function was last called.
403 */
404 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
405 {
406 u32 load;
407 u64 now, now_idle, delta_time, delta_idle;
408
409 now_idle = get_cpu_idle_time(cpu, &now, 0);
410 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
411 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
412
413 if (delta_time <= delta_idle)
414 load = 0;
415 else
416 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
417
418 cpufreq_device->time_in_idle[cpu] = now_idle;
419 cpufreq_device->time_in_idle_timestamp[cpu] = now;
420
421 return load;
422 }
423
424 /**
425 * get_static_power() - calculate the static power consumed by the cpus
426 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
427 * @tz: thermal zone device in which we're operating
428 * @freq: frequency in KHz
429 * @power: pointer in which to store the calculated static power
430 *
431 * Calculate the static power consumed by the cpus described by
432 * @cpu_actor running at frequency @freq. This function relies on a
433 * platform specific function that should have been provided when the
434 * actor was registered. If it wasn't, the static power is assumed to
435 * be negligible. The calculated static power is stored in @power.
436 *
437 * Return: 0 on success, -E* on failure.
438 */
439 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
440 struct thermal_zone_device *tz, unsigned long freq,
441 u32 *power)
442 {
443 struct dev_pm_opp *opp;
444 unsigned long voltage;
445 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
446 unsigned long freq_hz = freq * 1000;
447
448 if (!cpufreq_device->plat_get_static_power ||
449 !cpufreq_device->cpu_dev) {
450 *power = 0;
451 return 0;
452 }
453
454 rcu_read_lock();
455
456 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
457 true);
458 voltage = dev_pm_opp_get_voltage(opp);
459
460 rcu_read_unlock();
461
462 if (voltage == 0) {
463 dev_warn_ratelimited(cpufreq_device->cpu_dev,
464 "Failed to get voltage for frequency %lu: %ld\n",
465 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
466 return -EINVAL;
467 }
468
469 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
470 voltage, power);
471 }
472
473 /**
474 * get_dynamic_power() - calculate the dynamic power
475 * @cpufreq_device: &cpufreq_cooling_device for this cdev
476 * @freq: current frequency
477 *
478 * Return: the dynamic power consumed by the cpus described by
479 * @cpufreq_device.
480 */
481 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
482 unsigned long freq)
483 {
484 u32 raw_cpu_power;
485
486 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
487 return (raw_cpu_power * cpufreq_device->last_load) / 100;
488 }
489
490 /* cpufreq cooling device callback functions are defined below */
491
492 /**
493 * cpufreq_get_max_state - callback function to get the max cooling state.
494 * @cdev: thermal cooling device pointer.
495 * @state: fill this variable with the max cooling state.
496 *
497 * Callback for the thermal cooling device to return the cpufreq
498 * max cooling state.
499 *
500 * Return: 0 on success, an error code otherwise.
501 */
502 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
503 unsigned long *state)
504 {
505 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
506
507 *state = cpufreq_device->max_level;
508 return 0;
509 }
510
511 /**
512 * cpufreq_get_cur_state - callback function to get the current cooling state.
513 * @cdev: thermal cooling device pointer.
514 * @state: fill this variable with the current cooling state.
515 *
516 * Callback for the thermal cooling device to return the cpufreq
517 * current cooling state.
518 *
519 * Return: 0 on success, an error code otherwise.
520 */
521 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
522 unsigned long *state)
523 {
524 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
525
526 *state = cpufreq_device->cpufreq_state;
527
528 return 0;
529 }
530
531 /**
532 * cpufreq_set_cur_state - callback function to set the current cooling state.
533 * @cdev: thermal cooling device pointer.
534 * @state: set this variable to the current cooling state.
535 *
536 * Callback for the thermal cooling device to change the cpufreq
537 * current cooling state.
538 *
539 * Return: 0 on success, an error code otherwise.
540 */
541 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
542 unsigned long state)
543 {
544 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
545 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
546 unsigned int clip_freq;
547
548 /* Request state should be less than max_level */
549 if (WARN_ON(state > cpufreq_device->max_level))
550 return -EINVAL;
551
552 /* Check if the old cooling action is same as new cooling action */
553 if (cpufreq_device->cpufreq_state == state)
554 return 0;
555
556 clip_freq = cpufreq_device->freq_table[state];
557 cpufreq_device->cpufreq_state = state;
558 cpufreq_device->cpufreq_val = clip_freq;
559
560 cpufreq_update_policy(cpu);
561
562 return 0;
563 }
564
565 /**
566 * cpufreq_get_requested_power() - get the current power
567 * @cdev: &thermal_cooling_device pointer
568 * @tz: a valid thermal zone device pointer
569 * @power: pointer in which to store the resulting power
570 *
571 * Calculate the current power consumption of the cpus in milliwatts
572 * and store it in @power. This function should actually calculate
573 * the requested power, but it's hard to get the frequency that
574 * cpufreq would have assigned if there were no thermal limits.
575 * Instead, we calculate the current power on the assumption that the
576 * immediate future will look like the immediate past.
577 *
578 * We use the current frequency and the average load since this
579 * function was last called. In reality, there could have been
580 * multiple opps since this function was last called and that affects
581 * the load calculation. While it's not perfectly accurate, this
582 * simplification is good enough and works. REVISIT this, as more
583 * complex code may be needed if experiments show that it's not
584 * accurate enough.
585 *
586 * Return: 0 on success, -E* if getting the static power failed.
587 */
588 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
589 struct thermal_zone_device *tz,
590 u32 *power)
591 {
592 unsigned long freq;
593 int i = 0, cpu, ret;
594 u32 static_power, dynamic_power, total_load = 0;
595 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
596 u32 *load_cpu = NULL;
597
598 freq = cpufreq_quick_get(cpumask_any(&cpufreq_device->allowed_cpus));
599
600 if (trace_thermal_power_cpu_get_power_enabled()) {
601 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
602
603 load_cpu = devm_kcalloc(&cdev->device, ncpus, sizeof(*load_cpu),
604 GFP_KERNEL);
605 }
606
607 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
608 u32 load;
609
610 if (cpu_online(cpu))
611 load = get_load(cpufreq_device, cpu);
612 else
613 load = 0;
614
615 total_load += load;
616 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
617 load_cpu[i] = load;
618
619 i++;
620 }
621
622 cpufreq_device->last_load = total_load;
623
624 dynamic_power = get_dynamic_power(cpufreq_device, freq);
625 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
626 if (ret) {
627 if (load_cpu)
628 devm_kfree(&cdev->device, load_cpu);
629 return ret;
630 }
631
632 if (load_cpu) {
633 trace_thermal_power_cpu_get_power(
634 &cpufreq_device->allowed_cpus,
635 freq, load_cpu, i, dynamic_power, static_power);
636
637 devm_kfree(&cdev->device, load_cpu);
638 }
639
640 *power = static_power + dynamic_power;
641 return 0;
642 }
643
644 /**
645 * cpufreq_state2power() - convert a cpu cdev state to power consumed
646 * @cdev: &thermal_cooling_device pointer
647 * @tz: a valid thermal zone device pointer
648 * @state: cooling device state to be converted
649 * @power: pointer in which to store the resulting power
650 *
651 * Convert cooling device state @state into power consumption in
652 * milliwatts assuming 100% load. Store the calculated power in
653 * @power.
654 *
655 * Return: 0 on success, -EINVAL if the cooling device state could not
656 * be converted into a frequency or other -E* if there was an error
657 * when calculating the static power.
658 */
659 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
660 struct thermal_zone_device *tz,
661 unsigned long state, u32 *power)
662 {
663 unsigned int freq, num_cpus;
664 cpumask_t cpumask;
665 u32 static_power, dynamic_power;
666 int ret;
667 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
668
669 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
670 num_cpus = cpumask_weight(&cpumask);
671
672 /* None of our cpus are online, so no power */
673 if (num_cpus == 0) {
674 *power = 0;
675 return 0;
676 }
677
678 freq = cpufreq_device->freq_table[state];
679 if (!freq)
680 return -EINVAL;
681
682 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
683 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
684 if (ret)
685 return ret;
686
687 *power = static_power + dynamic_power;
688 return 0;
689 }
690
691 /**
692 * cpufreq_power2state() - convert power to a cooling device state
693 * @cdev: &thermal_cooling_device pointer
694 * @tz: a valid thermal zone device pointer
695 * @power: power in milliwatts to be converted
696 * @state: pointer in which to store the resulting state
697 *
698 * Calculate a cooling device state for the cpus described by @cdev
699 * that would allow them to consume at most @power mW and store it in
700 * @state. Note that this calculation depends on external factors
701 * such as the cpu load or the current static power. Calling this
702 * function with the same power as input can yield different cooling
703 * device states depending on those external factors.
704 *
705 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
706 * the calculated frequency could not be converted to a valid state.
707 * The latter should not happen unless the frequencies available to
708 * cpufreq have changed since the initialization of the cpu cooling
709 * device.
710 */
711 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
712 struct thermal_zone_device *tz, u32 power,
713 unsigned long *state)
714 {
715 unsigned int cpu, cur_freq, target_freq;
716 int ret;
717 s32 dyn_power;
718 u32 last_load, normalised_power, static_power;
719 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
720
721 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
722
723 /* None of our cpus are online */
724 if (cpu >= nr_cpu_ids)
725 return -ENODEV;
726
727 cur_freq = cpufreq_quick_get(cpu);
728 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
729 if (ret)
730 return ret;
731
732 dyn_power = power - static_power;
733 dyn_power = dyn_power > 0 ? dyn_power : 0;
734 last_load = cpufreq_device->last_load ?: 1;
735 normalised_power = (dyn_power * 100) / last_load;
736 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
737
738 *state = cpufreq_cooling_get_level(cpu, target_freq);
739 if (*state == THERMAL_CSTATE_INVALID) {
740 dev_warn_ratelimited(&cdev->device,
741 "Failed to convert %dKHz for cpu %d into a cdev state\n",
742 target_freq, cpu);
743 return -EINVAL;
744 }
745
746 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
747 target_freq, *state, power);
748 return 0;
749 }
750
751 /* Bind cpufreq callbacks to thermal cooling device ops */
752 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
753 .get_max_state = cpufreq_get_max_state,
754 .get_cur_state = cpufreq_get_cur_state,
755 .set_cur_state = cpufreq_set_cur_state,
756 };
757
758 /* Notifier for cpufreq policy change */
759 static struct notifier_block thermal_cpufreq_notifier_block = {
760 .notifier_call = cpufreq_thermal_notifier,
761 };
762
763 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
764 unsigned int prev_max)
765 {
766 struct cpufreq_frequency_table *pos;
767 unsigned int max = 0;
768
769 cpufreq_for_each_valid_entry(pos, table) {
770 if (pos->frequency > max && pos->frequency < prev_max)
771 max = pos->frequency;
772 }
773
774 return max;
775 }
776
777 /**
778 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
779 * @np: a valid struct device_node to the cooling device device tree node
780 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
781 * Normally this should be same as cpufreq policy->related_cpus.
782 * @capacitance: dynamic power coefficient for these cpus
783 * @plat_static_func: function to calculate the static power consumed by these
784 * cpus (optional)
785 *
786 * This interface function registers the cpufreq cooling device with the name
787 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
788 * cooling devices. It also gives the opportunity to link the cooling device
789 * with a device tree node, in order to bind it via the thermal DT code.
790 *
791 * Return: a valid struct thermal_cooling_device pointer on success,
792 * on failure, it returns a corresponding ERR_PTR().
793 */
794 static struct thermal_cooling_device *
795 __cpufreq_cooling_register(struct device_node *np,
796 const struct cpumask *clip_cpus, u32 capacitance,
797 get_static_t plat_static_func)
798 {
799 struct thermal_cooling_device *cool_dev;
800 struct cpufreq_cooling_device *cpufreq_dev;
801 char dev_name[THERMAL_NAME_LENGTH];
802 struct cpufreq_frequency_table *pos, *table;
803 unsigned int freq, i, num_cpus;
804 int ret;
805
806 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
807 if (!table) {
808 pr_debug("%s: CPUFreq table not found\n", __func__);
809 return ERR_PTR(-EPROBE_DEFER);
810 }
811
812 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
813 if (!cpufreq_dev)
814 return ERR_PTR(-ENOMEM);
815
816 num_cpus = cpumask_weight(clip_cpus);
817 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
818 sizeof(*cpufreq_dev->time_in_idle),
819 GFP_KERNEL);
820 if (!cpufreq_dev->time_in_idle) {
821 cool_dev = ERR_PTR(-ENOMEM);
822 goto free_cdev;
823 }
824
825 cpufreq_dev->time_in_idle_timestamp =
826 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
827 GFP_KERNEL);
828 if (!cpufreq_dev->time_in_idle_timestamp) {
829 cool_dev = ERR_PTR(-ENOMEM);
830 goto free_time_in_idle;
831 }
832
833 /* Find max levels */
834 cpufreq_for_each_valid_entry(pos, table)
835 cpufreq_dev->max_level++;
836
837 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
838 cpufreq_dev->max_level, GFP_KERNEL);
839 if (!cpufreq_dev->freq_table) {
840 cool_dev = ERR_PTR(-ENOMEM);
841 goto free_time_in_idle_timestamp;
842 }
843
844 /* max_level is an index, not a counter */
845 cpufreq_dev->max_level--;
846
847 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
848
849 if (capacitance) {
850 cpufreq_cooling_ops.get_requested_power =
851 cpufreq_get_requested_power;
852 cpufreq_cooling_ops.state2power = cpufreq_state2power;
853 cpufreq_cooling_ops.power2state = cpufreq_power2state;
854 cpufreq_dev->plat_get_static_power = plat_static_func;
855
856 ret = build_dyn_power_table(cpufreq_dev, capacitance);
857 if (ret) {
858 cool_dev = ERR_PTR(ret);
859 goto free_table;
860 }
861 }
862
863 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
864 if (ret) {
865 cool_dev = ERR_PTR(ret);
866 goto free_table;
867 }
868
869 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
870 cpufreq_dev->id);
871
872 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
873 &cpufreq_cooling_ops);
874 if (IS_ERR(cool_dev))
875 goto remove_idr;
876
877 /* Fill freq-table in descending order of frequencies */
878 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
879 freq = find_next_max(table, freq);
880 cpufreq_dev->freq_table[i] = freq;
881
882 /* Warn for duplicate entries */
883 if (!freq)
884 pr_warn("%s: table has duplicate entries\n", __func__);
885 else
886 pr_debug("%s: freq:%u KHz\n", __func__, freq);
887 }
888
889 cpufreq_dev->cpufreq_val = cpufreq_dev->freq_table[0];
890 cpufreq_dev->cool_dev = cool_dev;
891
892 mutex_lock(&cooling_cpufreq_lock);
893
894 /* Register the notifier for first cpufreq cooling device */
895 if (list_empty(&cpufreq_dev_list))
896 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
897 CPUFREQ_POLICY_NOTIFIER);
898 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
899
900 mutex_unlock(&cooling_cpufreq_lock);
901
902 return cool_dev;
903
904 remove_idr:
905 release_idr(&cpufreq_idr, cpufreq_dev->id);
906 free_table:
907 kfree(cpufreq_dev->freq_table);
908 free_time_in_idle_timestamp:
909 kfree(cpufreq_dev->time_in_idle_timestamp);
910 free_time_in_idle:
911 kfree(cpufreq_dev->time_in_idle);
912 free_cdev:
913 kfree(cpufreq_dev);
914
915 return cool_dev;
916 }
917
918 /**
919 * cpufreq_cooling_register - function to create cpufreq cooling device.
920 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
921 *
922 * This interface function registers the cpufreq cooling device with the name
923 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
924 * cooling devices.
925 *
926 * Return: a valid struct thermal_cooling_device pointer on success,
927 * on failure, it returns a corresponding ERR_PTR().
928 */
929 struct thermal_cooling_device *
930 cpufreq_cooling_register(const struct cpumask *clip_cpus)
931 {
932 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
933 }
934 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
935
936 /**
937 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
938 * @np: a valid struct device_node to the cooling device device tree node
939 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
940 *
941 * This interface function registers the cpufreq cooling device with the name
942 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
943 * cooling devices. Using this API, the cpufreq cooling device will be
944 * linked to the device tree node provided.
945 *
946 * Return: a valid struct thermal_cooling_device pointer on success,
947 * on failure, it returns a corresponding ERR_PTR().
948 */
949 struct thermal_cooling_device *
950 of_cpufreq_cooling_register(struct device_node *np,
951 const struct cpumask *clip_cpus)
952 {
953 if (!np)
954 return ERR_PTR(-EINVAL);
955
956 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
957 }
958 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
959
960 /**
961 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
962 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
963 * @capacitance: dynamic power coefficient for these cpus
964 * @plat_static_func: function to calculate the static power consumed by these
965 * cpus (optional)
966 *
967 * This interface function registers the cpufreq cooling device with
968 * the name "thermal-cpufreq-%x". This api can support multiple
969 * instances of cpufreq cooling devices. Using this function, the
970 * cooling device will implement the power extensions by using a
971 * simple cpu power model. The cpus must have registered their OPPs
972 * using the OPP library.
973 *
974 * An optional @plat_static_func may be provided to calculate the
975 * static power consumed by these cpus. If the platform's static
976 * power consumption is unknown or negligible, make it NULL.
977 *
978 * Return: a valid struct thermal_cooling_device pointer on success,
979 * on failure, it returns a corresponding ERR_PTR().
980 */
981 struct thermal_cooling_device *
982 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
983 get_static_t plat_static_func)
984 {
985 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
986 plat_static_func);
987 }
988 EXPORT_SYMBOL(cpufreq_power_cooling_register);
989
990 /**
991 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
992 * @np: a valid struct device_node to the cooling device device tree node
993 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
994 * @capacitance: dynamic power coefficient for these cpus
995 * @plat_static_func: function to calculate the static power consumed by these
996 * cpus (optional)
997 *
998 * This interface function registers the cpufreq cooling device with
999 * the name "thermal-cpufreq-%x". This api can support multiple
1000 * instances of cpufreq cooling devices. Using this API, the cpufreq
1001 * cooling device will be linked to the device tree node provided.
1002 * Using this function, the cooling device will implement the power
1003 * extensions by using a simple cpu power model. The cpus must have
1004 * registered their OPPs using the OPP library.
1005 *
1006 * An optional @plat_static_func may be provided to calculate the
1007 * static power consumed by these cpus. If the platform's static
1008 * power consumption is unknown or negligible, make it NULL.
1009 *
1010 * Return: a valid struct thermal_cooling_device pointer on success,
1011 * on failure, it returns a corresponding ERR_PTR().
1012 */
1013 struct thermal_cooling_device *
1014 of_cpufreq_power_cooling_register(struct device_node *np,
1015 const struct cpumask *clip_cpus,
1016 u32 capacitance,
1017 get_static_t plat_static_func)
1018 {
1019 if (!np)
1020 return ERR_PTR(-EINVAL);
1021
1022 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1023 plat_static_func);
1024 }
1025 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1026
1027 /**
1028 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1029 * @cdev: thermal cooling device pointer.
1030 *
1031 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1032 */
1033 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1034 {
1035 struct cpufreq_cooling_device *cpufreq_dev;
1036
1037 if (!cdev)
1038 return;
1039
1040 cpufreq_dev = cdev->devdata;
1041 mutex_lock(&cooling_cpufreq_lock);
1042 list_del(&cpufreq_dev->node);
1043
1044 /* Unregister the notifier for the last cpufreq cooling device */
1045 if (list_empty(&cpufreq_dev_list))
1046 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1047 CPUFREQ_POLICY_NOTIFIER);
1048 mutex_unlock(&cooling_cpufreq_lock);
1049
1050 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1051 release_idr(&cpufreq_idr, cpufreq_dev->id);
1052 kfree(cpufreq_dev->time_in_idle_timestamp);
1053 kfree(cpufreq_dev->time_in_idle);
1054 kfree(cpufreq_dev->freq_table);
1055 kfree(cpufreq_dev);
1056 }
1057 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
This page took 0.080644 seconds and 4 git commands to generate.