remove abs64()
[deliverable/linux.git] / drivers / thermal / power_allocator.c
1 /*
2 * A power allocator to manage temperature
3 *
4 * Copyright (C) 2014 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #define pr_fmt(fmt) "Power allocator: " fmt
17
18 #include <linux/rculist.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_power_allocator.h>
24
25 #include "thermal_core.h"
26
27 #define INVALID_TRIP -1
28
29 #define FRAC_BITS 10
30 #define int_to_frac(x) ((x) << FRAC_BITS)
31 #define frac_to_int(x) ((x) >> FRAC_BITS)
32
33 /**
34 * mul_frac() - multiply two fixed-point numbers
35 * @x: first multiplicand
36 * @y: second multiplicand
37 *
38 * Return: the result of multiplying two fixed-point numbers. The
39 * result is also a fixed-point number.
40 */
41 static inline s64 mul_frac(s64 x, s64 y)
42 {
43 return (x * y) >> FRAC_BITS;
44 }
45
46 /**
47 * div_frac() - divide two fixed-point numbers
48 * @x: the dividend
49 * @y: the divisor
50 *
51 * Return: the result of dividing two fixed-point numbers. The
52 * result is also a fixed-point number.
53 */
54 static inline s64 div_frac(s64 x, s64 y)
55 {
56 return div_s64(x << FRAC_BITS, y);
57 }
58
59 /**
60 * struct power_allocator_params - parameters for the power allocator governor
61 * @allocated_tzp: whether we have allocated tzp for this thermal zone and
62 * it needs to be freed on unbind
63 * @err_integral: accumulated error in the PID controller.
64 * @prev_err: error in the previous iteration of the PID controller.
65 * Used to calculate the derivative term.
66 * @trip_switch_on: first passive trip point of the thermal zone. The
67 * governor switches on when this trip point is crossed.
68 * If the thermal zone only has one passive trip point,
69 * @trip_switch_on should be INVALID_TRIP.
70 * @trip_max_desired_temperature: last passive trip point of the thermal
71 * zone. The temperature we are
72 * controlling for.
73 */
74 struct power_allocator_params {
75 bool allocated_tzp;
76 s64 err_integral;
77 s32 prev_err;
78 int trip_switch_on;
79 int trip_max_desired_temperature;
80 };
81
82 /**
83 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
84 * @tz: thermal zone we are operating in
85 *
86 * For thermal zones that don't provide a sustainable_power in their
87 * thermal_zone_params, estimate one. Calculate it using the minimum
88 * power of all the cooling devices as that gives a valid value that
89 * can give some degree of functionality. For optimal performance of
90 * this governor, provide a sustainable_power in the thermal zone's
91 * thermal_zone_params.
92 */
93 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
94 {
95 u32 sustainable_power = 0;
96 struct thermal_instance *instance;
97 struct power_allocator_params *params = tz->governor_data;
98
99 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
100 struct thermal_cooling_device *cdev = instance->cdev;
101 u32 min_power;
102
103 if (instance->trip != params->trip_max_desired_temperature)
104 continue;
105
106 if (power_actor_get_min_power(cdev, tz, &min_power))
107 continue;
108
109 sustainable_power += min_power;
110 }
111
112 return sustainable_power;
113 }
114
115 /**
116 * estimate_pid_constants() - Estimate the constants for the PID controller
117 * @tz: thermal zone for which to estimate the constants
118 * @sustainable_power: sustainable power for the thermal zone
119 * @trip_switch_on: trip point number for the switch on temperature
120 * @control_temp: target temperature for the power allocator governor
121 * @force: whether to force the update of the constants
122 *
123 * This function is used to update the estimation of the PID
124 * controller constants in struct thermal_zone_parameters.
125 * Sustainable power is provided in case it was estimated. The
126 * estimated sustainable_power should not be stored in the
127 * thermal_zone_parameters so it has to be passed explicitly to this
128 * function.
129 *
130 * If @force is not set, the values in the thermal zone's parameters
131 * are preserved if they are not zero. If @force is set, the values
132 * in thermal zone's parameters are overwritten.
133 */
134 static void estimate_pid_constants(struct thermal_zone_device *tz,
135 u32 sustainable_power, int trip_switch_on,
136 int control_temp, bool force)
137 {
138 int ret;
139 int switch_on_temp;
140 u32 temperature_threshold;
141
142 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
143 if (ret)
144 switch_on_temp = 0;
145
146 temperature_threshold = control_temp - switch_on_temp;
147 /*
148 * estimate_pid_constants() tries to find appropriate default
149 * values for thermal zones that don't provide them. If a
150 * system integrator has configured a thermal zone with two
151 * passive trip points at the same temperature, that person
152 * hasn't put any effort to set up the thermal zone properly
153 * so just give up.
154 */
155 if (!temperature_threshold)
156 return;
157
158 if (!tz->tzp->k_po || force)
159 tz->tzp->k_po = int_to_frac(sustainable_power) /
160 temperature_threshold;
161
162 if (!tz->tzp->k_pu || force)
163 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
164 temperature_threshold;
165
166 if (!tz->tzp->k_i || force)
167 tz->tzp->k_i = int_to_frac(10) / 1000;
168 /*
169 * The default for k_d and integral_cutoff is 0, so we can
170 * leave them as they are.
171 */
172 }
173
174 /**
175 * pid_controller() - PID controller
176 * @tz: thermal zone we are operating in
177 * @current_temp: the current temperature in millicelsius
178 * @control_temp: the target temperature in millicelsius
179 * @max_allocatable_power: maximum allocatable power for this thermal zone
180 *
181 * This PID controller increases the available power budget so that the
182 * temperature of the thermal zone gets as close as possible to
183 * @control_temp and limits the power if it exceeds it. k_po is the
184 * proportional term when we are overshooting, k_pu is the
185 * proportional term when we are undershooting. integral_cutoff is a
186 * threshold below which we stop accumulating the error. The
187 * accumulated error is only valid if the requested power will make
188 * the system warmer. If the system is mostly idle, there's no point
189 * in accumulating positive error.
190 *
191 * Return: The power budget for the next period.
192 */
193 static u32 pid_controller(struct thermal_zone_device *tz,
194 int current_temp,
195 int control_temp,
196 u32 max_allocatable_power)
197 {
198 s64 p, i, d, power_range;
199 s32 err, max_power_frac;
200 u32 sustainable_power;
201 struct power_allocator_params *params = tz->governor_data;
202
203 max_power_frac = int_to_frac(max_allocatable_power);
204
205 if (tz->tzp->sustainable_power) {
206 sustainable_power = tz->tzp->sustainable_power;
207 } else {
208 sustainable_power = estimate_sustainable_power(tz);
209 estimate_pid_constants(tz, sustainable_power,
210 params->trip_switch_on, control_temp,
211 true);
212 }
213
214 err = control_temp - current_temp;
215 err = int_to_frac(err);
216
217 /* Calculate the proportional term */
218 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
219
220 /*
221 * Calculate the integral term
222 *
223 * if the error is less than cut off allow integration (but
224 * the integral is limited to max power)
225 */
226 i = mul_frac(tz->tzp->k_i, params->err_integral);
227
228 if (err < int_to_frac(tz->tzp->integral_cutoff)) {
229 s64 i_next = i + mul_frac(tz->tzp->k_i, err);
230
231 if (abs(i_next) < max_power_frac) {
232 i = i_next;
233 params->err_integral += err;
234 }
235 }
236
237 /*
238 * Calculate the derivative term
239 *
240 * We do err - prev_err, so with a positive k_d, a decreasing
241 * error (i.e. driving closer to the line) results in less
242 * power being applied, slowing down the controller)
243 */
244 d = mul_frac(tz->tzp->k_d, err - params->prev_err);
245 d = div_frac(d, tz->passive_delay);
246 params->prev_err = err;
247
248 power_range = p + i + d;
249
250 /* feed-forward the known sustainable dissipatable power */
251 power_range = sustainable_power + frac_to_int(power_range);
252
253 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
254
255 trace_thermal_power_allocator_pid(tz, frac_to_int(err),
256 frac_to_int(params->err_integral),
257 frac_to_int(p), frac_to_int(i),
258 frac_to_int(d), power_range);
259
260 return power_range;
261 }
262
263 /**
264 * divvy_up_power() - divvy the allocated power between the actors
265 * @req_power: each actor's requested power
266 * @max_power: each actor's maximum available power
267 * @num_actors: size of the @req_power, @max_power and @granted_power's array
268 * @total_req_power: sum of @req_power
269 * @power_range: total allocated power
270 * @granted_power: output array: each actor's granted power
271 * @extra_actor_power: an appropriately sized array to be used in the
272 * function as temporary storage of the extra power given
273 * to the actors
274 *
275 * This function divides the total allocated power (@power_range)
276 * fairly between the actors. It first tries to give each actor a
277 * share of the @power_range according to how much power it requested
278 * compared to the rest of the actors. For example, if only one actor
279 * requests power, then it receives all the @power_range. If
280 * three actors each requests 1mW, each receives a third of the
281 * @power_range.
282 *
283 * If any actor received more than their maximum power, then that
284 * surplus is re-divvied among the actors based on how far they are
285 * from their respective maximums.
286 *
287 * Granted power for each actor is written to @granted_power, which
288 * should've been allocated by the calling function.
289 */
290 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
291 u32 total_req_power, u32 power_range,
292 u32 *granted_power, u32 *extra_actor_power)
293 {
294 u32 extra_power, capped_extra_power;
295 int i;
296
297 /*
298 * Prevent division by 0 if none of the actors request power.
299 */
300 if (!total_req_power)
301 total_req_power = 1;
302
303 capped_extra_power = 0;
304 extra_power = 0;
305 for (i = 0; i < num_actors; i++) {
306 u64 req_range = req_power[i] * power_range;
307
308 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
309 total_req_power);
310
311 if (granted_power[i] > max_power[i]) {
312 extra_power += granted_power[i] - max_power[i];
313 granted_power[i] = max_power[i];
314 }
315
316 extra_actor_power[i] = max_power[i] - granted_power[i];
317 capped_extra_power += extra_actor_power[i];
318 }
319
320 if (!extra_power)
321 return;
322
323 /*
324 * Re-divvy the reclaimed extra among actors based on
325 * how far they are from the max
326 */
327 extra_power = min(extra_power, capped_extra_power);
328 if (capped_extra_power > 0)
329 for (i = 0; i < num_actors; i++)
330 granted_power[i] += (extra_actor_power[i] *
331 extra_power) / capped_extra_power;
332 }
333
334 static int allocate_power(struct thermal_zone_device *tz,
335 int current_temp,
336 int control_temp)
337 {
338 struct thermal_instance *instance;
339 struct power_allocator_params *params = tz->governor_data;
340 u32 *req_power, *max_power, *granted_power, *extra_actor_power;
341 u32 *weighted_req_power;
342 u32 total_req_power, max_allocatable_power, total_weighted_req_power;
343 u32 total_granted_power, power_range;
344 int i, num_actors, total_weight, ret = 0;
345 int trip_max_desired_temperature = params->trip_max_desired_temperature;
346
347 mutex_lock(&tz->lock);
348
349 num_actors = 0;
350 total_weight = 0;
351 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
352 if ((instance->trip == trip_max_desired_temperature) &&
353 cdev_is_power_actor(instance->cdev)) {
354 num_actors++;
355 total_weight += instance->weight;
356 }
357 }
358
359 if (!num_actors) {
360 ret = -ENODEV;
361 goto unlock;
362 }
363
364 /*
365 * We need to allocate five arrays of the same size:
366 * req_power, max_power, granted_power, extra_actor_power and
367 * weighted_req_power. They are going to be needed until this
368 * function returns. Allocate them all in one go to simplify
369 * the allocation and deallocation logic.
370 */
371 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
372 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
373 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
374 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
375 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
376 if (!req_power) {
377 ret = -ENOMEM;
378 goto unlock;
379 }
380
381 max_power = &req_power[num_actors];
382 granted_power = &req_power[2 * num_actors];
383 extra_actor_power = &req_power[3 * num_actors];
384 weighted_req_power = &req_power[4 * num_actors];
385
386 i = 0;
387 total_weighted_req_power = 0;
388 total_req_power = 0;
389 max_allocatable_power = 0;
390
391 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
392 int weight;
393 struct thermal_cooling_device *cdev = instance->cdev;
394
395 if (instance->trip != trip_max_desired_temperature)
396 continue;
397
398 if (!cdev_is_power_actor(cdev))
399 continue;
400
401 if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
402 continue;
403
404 if (!total_weight)
405 weight = 1 << FRAC_BITS;
406 else
407 weight = instance->weight;
408
409 weighted_req_power[i] = frac_to_int(weight * req_power[i]);
410
411 if (power_actor_get_max_power(cdev, tz, &max_power[i]))
412 continue;
413
414 total_req_power += req_power[i];
415 max_allocatable_power += max_power[i];
416 total_weighted_req_power += weighted_req_power[i];
417
418 i++;
419 }
420
421 power_range = pid_controller(tz, current_temp, control_temp,
422 max_allocatable_power);
423
424 divvy_up_power(weighted_req_power, max_power, num_actors,
425 total_weighted_req_power, power_range, granted_power,
426 extra_actor_power);
427
428 total_granted_power = 0;
429 i = 0;
430 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
431 if (instance->trip != trip_max_desired_temperature)
432 continue;
433
434 if (!cdev_is_power_actor(instance->cdev))
435 continue;
436
437 power_actor_set_power(instance->cdev, instance,
438 granted_power[i]);
439 total_granted_power += granted_power[i];
440
441 i++;
442 }
443
444 trace_thermal_power_allocator(tz, req_power, total_req_power,
445 granted_power, total_granted_power,
446 num_actors, power_range,
447 max_allocatable_power, current_temp,
448 control_temp - current_temp);
449
450 kfree(req_power);
451 unlock:
452 mutex_unlock(&tz->lock);
453
454 return ret;
455 }
456
457 /**
458 * get_governor_trips() - get the number of the two trip points that are key for this governor
459 * @tz: thermal zone to operate on
460 * @params: pointer to private data for this governor
461 *
462 * The power allocator governor works optimally with two trips points:
463 * a "switch on" trip point and a "maximum desired temperature". These
464 * are defined as the first and last passive trip points.
465 *
466 * If there is only one trip point, then that's considered to be the
467 * "maximum desired temperature" trip point and the governor is always
468 * on. If there are no passive or active trip points, then the
469 * governor won't do anything. In fact, its throttle function
470 * won't be called at all.
471 */
472 static void get_governor_trips(struct thermal_zone_device *tz,
473 struct power_allocator_params *params)
474 {
475 int i, last_active, last_passive;
476 bool found_first_passive;
477
478 found_first_passive = false;
479 last_active = INVALID_TRIP;
480 last_passive = INVALID_TRIP;
481
482 for (i = 0; i < tz->trips; i++) {
483 enum thermal_trip_type type;
484 int ret;
485
486 ret = tz->ops->get_trip_type(tz, i, &type);
487 if (ret) {
488 dev_warn(&tz->device,
489 "Failed to get trip point %d type: %d\n", i,
490 ret);
491 continue;
492 }
493
494 if (type == THERMAL_TRIP_PASSIVE) {
495 if (!found_first_passive) {
496 params->trip_switch_on = i;
497 found_first_passive = true;
498 } else {
499 last_passive = i;
500 }
501 } else if (type == THERMAL_TRIP_ACTIVE) {
502 last_active = i;
503 } else {
504 break;
505 }
506 }
507
508 if (last_passive != INVALID_TRIP) {
509 params->trip_max_desired_temperature = last_passive;
510 } else if (found_first_passive) {
511 params->trip_max_desired_temperature = params->trip_switch_on;
512 params->trip_switch_on = INVALID_TRIP;
513 } else {
514 params->trip_switch_on = INVALID_TRIP;
515 params->trip_max_desired_temperature = last_active;
516 }
517 }
518
519 static void reset_pid_controller(struct power_allocator_params *params)
520 {
521 params->err_integral = 0;
522 params->prev_err = 0;
523 }
524
525 static void allow_maximum_power(struct thermal_zone_device *tz)
526 {
527 struct thermal_instance *instance;
528 struct power_allocator_params *params = tz->governor_data;
529
530 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
531 if ((instance->trip != params->trip_max_desired_temperature) ||
532 (!cdev_is_power_actor(instance->cdev)))
533 continue;
534
535 instance->target = 0;
536 instance->cdev->updated = false;
537 thermal_cdev_update(instance->cdev);
538 }
539 }
540
541 /**
542 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
543 * @tz: thermal zone to bind it to
544 *
545 * Initialize the PID controller parameters and bind it to the thermal
546 * zone.
547 *
548 * Return: 0 on success, or -ENOMEM if we ran out of memory.
549 */
550 static int power_allocator_bind(struct thermal_zone_device *tz)
551 {
552 int ret;
553 struct power_allocator_params *params;
554 int control_temp;
555
556 params = kzalloc(sizeof(*params), GFP_KERNEL);
557 if (!params)
558 return -ENOMEM;
559
560 if (!tz->tzp) {
561 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
562 if (!tz->tzp) {
563 ret = -ENOMEM;
564 goto free_params;
565 }
566
567 params->allocated_tzp = true;
568 }
569
570 if (!tz->tzp->sustainable_power)
571 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
572
573 get_governor_trips(tz, params);
574
575 if (tz->trips > 0) {
576 ret = tz->ops->get_trip_temp(tz,
577 params->trip_max_desired_temperature,
578 &control_temp);
579 if (!ret)
580 estimate_pid_constants(tz, tz->tzp->sustainable_power,
581 params->trip_switch_on,
582 control_temp, false);
583 }
584
585 reset_pid_controller(params);
586
587 tz->governor_data = params;
588
589 return 0;
590
591 free_params:
592 kfree(params);
593
594 return ret;
595 }
596
597 static void power_allocator_unbind(struct thermal_zone_device *tz)
598 {
599 struct power_allocator_params *params = tz->governor_data;
600
601 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
602
603 if (params->allocated_tzp) {
604 kfree(tz->tzp);
605 tz->tzp = NULL;
606 }
607
608 kfree(tz->governor_data);
609 tz->governor_data = NULL;
610 }
611
612 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
613 {
614 int ret;
615 int switch_on_temp, control_temp, current_temp;
616 struct power_allocator_params *params = tz->governor_data;
617
618 /*
619 * We get called for every trip point but we only need to do
620 * our calculations once
621 */
622 if (trip != params->trip_max_desired_temperature)
623 return 0;
624
625 ret = thermal_zone_get_temp(tz, &current_temp);
626 if (ret) {
627 dev_warn(&tz->device, "Failed to get temperature: %d\n", ret);
628 return ret;
629 }
630
631 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
632 &switch_on_temp);
633 if (!ret && (current_temp < switch_on_temp)) {
634 tz->passive = 0;
635 reset_pid_controller(params);
636 allow_maximum_power(tz);
637 return 0;
638 }
639
640 tz->passive = 1;
641
642 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
643 &control_temp);
644 if (ret) {
645 dev_warn(&tz->device,
646 "Failed to get the maximum desired temperature: %d\n",
647 ret);
648 return ret;
649 }
650
651 return allocate_power(tz, current_temp, control_temp);
652 }
653
654 static struct thermal_governor thermal_gov_power_allocator = {
655 .name = "power_allocator",
656 .bind_to_tz = power_allocator_bind,
657 .unbind_from_tz = power_allocator_unbind,
658 .throttle = power_allocator_throttle,
659 };
660
661 int thermal_gov_power_allocator_register(void)
662 {
663 return thermal_register_governor(&thermal_gov_power_allocator);
664 }
665
666 void thermal_gov_power_allocator_unregister(void)
667 {
668 thermal_unregister_governor(&thermal_gov_power_allocator);
669 }
This page took 0.046536 seconds and 5 git commands to generate.