Merge branch 'linux-4.6' of git://github.com/skeggsb/linux into drm-fixes
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...) do { } while (0)
113 #endif
114
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117
118 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
119 .c_iflag = ICRNL | IXON,
120 .c_oflag = OPOST | ONLCR,
121 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 ECHOCTL | ECHOKE | IEXTEN,
124 .c_cc = INIT_C_CC,
125 .c_ispeed = 38400,
126 .c_ospeed = 38400,
127 /* .c_line = N_TTY, */
128 };
129
130 EXPORT_SYMBOL(tty_std_termios);
131
132 /* This list gets poked at by procfs and various bits of boot up code. This
133 could do with some rationalisation such as pulling the tty proc function
134 into this file */
135
136 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
137
138 /* Mutex to protect creating and releasing a tty */
139 DEFINE_MUTEX(tty_mutex);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157
158 /**
159 * free_tty_struct - free a disused tty
160 * @tty: tty struct to free
161 *
162 * Free the write buffers, tty queue and tty memory itself.
163 *
164 * Locking: none. Must be called after tty is definitely unused
165 */
166
167 static void free_tty_struct(struct tty_struct *tty)
168 {
169 tty_ldisc_deinit(tty);
170 put_device(tty->dev);
171 kfree(tty->write_buf);
172 tty->magic = 0xDEADDEAD;
173 kfree(tty);
174 }
175
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 return ((struct tty_file_private *)file->private_data)->tty;
179 }
180
181 int tty_alloc_file(struct file *file)
182 {
183 struct tty_file_private *priv;
184
185 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 if (!priv)
187 return -ENOMEM;
188
189 file->private_data = priv;
190
191 return 0;
192 }
193
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 struct tty_file_private *priv = file->private_data;
198
199 priv->tty = tty;
200 priv->file = file;
201
202 spin_lock(&tty->files_lock);
203 list_add(&priv->list, &tty->tty_files);
204 spin_unlock(&tty->files_lock);
205 }
206
207 /**
208 * tty_free_file - free file->private_data
209 *
210 * This shall be used only for fail path handling when tty_add_file was not
211 * called yet.
212 */
213 void tty_free_file(struct file *file)
214 {
215 struct tty_file_private *priv = file->private_data;
216
217 file->private_data = NULL;
218 kfree(priv);
219 }
220
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 struct tty_file_private *priv = file->private_data;
225 struct tty_struct *tty = priv->tty;
226
227 spin_lock(&tty->files_lock);
228 list_del(&priv->list);
229 spin_unlock(&tty->files_lock);
230 tty_free_file(file);
231 }
232
233
234 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236 /**
237 * tty_name - return tty naming
238 * @tty: tty structure
239 *
240 * Convert a tty structure into a name. The name reflects the kernel
241 * naming policy and if udev is in use may not reflect user space
242 *
243 * Locking: none
244 */
245
246 const char *tty_name(const struct tty_struct *tty)
247 {
248 if (!tty) /* Hmm. NULL pointer. That's fun. */
249 return "NULL tty";
250 return tty->name;
251 }
252
253 EXPORT_SYMBOL(tty_name);
254
255 const char *tty_driver_name(const struct tty_struct *tty)
256 {
257 if (!tty || !tty->driver)
258 return "";
259 return tty->driver->name;
260 }
261
262 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
263 const char *routine)
264 {
265 #ifdef TTY_PARANOIA_CHECK
266 if (!tty) {
267 pr_warn("(%d:%d): %s: NULL tty\n",
268 imajor(inode), iminor(inode), routine);
269 return 1;
270 }
271 if (tty->magic != TTY_MAGIC) {
272 pr_warn("(%d:%d): %s: bad magic number\n",
273 imajor(inode), iminor(inode), routine);
274 return 1;
275 }
276 #endif
277 return 0;
278 }
279
280 /* Caller must hold tty_lock */
281 static int check_tty_count(struct tty_struct *tty, const char *routine)
282 {
283 #ifdef CHECK_TTY_COUNT
284 struct list_head *p;
285 int count = 0;
286
287 spin_lock(&tty->files_lock);
288 list_for_each(p, &tty->tty_files) {
289 count++;
290 }
291 spin_unlock(&tty->files_lock);
292 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
293 tty->driver->subtype == PTY_TYPE_SLAVE &&
294 tty->link && tty->link->count)
295 count++;
296 if (tty->count != count) {
297 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
298 routine, tty->count, count);
299 return count;
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 static int is_ignored(int sig)
383 {
384 return (sigismember(&current->blocked, sig) ||
385 current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
386 }
387
388 /**
389 * tty_check_change - check for POSIX terminal changes
390 * @tty: tty to check
391 *
392 * If we try to write to, or set the state of, a terminal and we're
393 * not in the foreground, send a SIGTTOU. If the signal is blocked or
394 * ignored, go ahead and perform the operation. (POSIX 7.2)
395 *
396 * Locking: ctrl_lock
397 */
398
399 int __tty_check_change(struct tty_struct *tty, int sig)
400 {
401 unsigned long flags;
402 struct pid *pgrp, *tty_pgrp;
403 int ret = 0;
404
405 if (current->signal->tty != tty)
406 return 0;
407
408 rcu_read_lock();
409 pgrp = task_pgrp(current);
410
411 spin_lock_irqsave(&tty->ctrl_lock, flags);
412 tty_pgrp = tty->pgrp;
413 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414
415 if (tty_pgrp && pgrp != tty->pgrp) {
416 if (is_ignored(sig)) {
417 if (sig == SIGTTIN)
418 ret = -EIO;
419 } else if (is_current_pgrp_orphaned())
420 ret = -EIO;
421 else {
422 kill_pgrp(pgrp, sig, 1);
423 set_thread_flag(TIF_SIGPENDING);
424 ret = -ERESTARTSYS;
425 }
426 }
427 rcu_read_unlock();
428
429 if (!tty_pgrp)
430 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
431
432 return ret;
433 }
434
435 int tty_check_change(struct tty_struct *tty)
436 {
437 return __tty_check_change(tty, SIGTTOU);
438 }
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 size_t count, loff_t *ppos)
443 {
444 return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 size_t count, loff_t *ppos)
449 {
450 return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 unsigned long arg)
461 {
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466 unsigned int cmd, unsigned long arg)
467 {
468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static int hung_up_tty_fasync(int fd, struct file *file, int on)
472 {
473 return -ENOTTY;
474 }
475
476 static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 };
487
488 static const struct file_operations console_fops = {
489 .llseek = no_llseek,
490 .read = tty_read,
491 .write = redirected_tty_write,
492 .poll = tty_poll,
493 .unlocked_ioctl = tty_ioctl,
494 .compat_ioctl = tty_compat_ioctl,
495 .open = tty_open,
496 .release = tty_release,
497 .fasync = tty_fasync,
498 };
499
500 static const struct file_operations hung_up_tty_fops = {
501 .llseek = no_llseek,
502 .read = hung_up_tty_read,
503 .write = hung_up_tty_write,
504 .poll = hung_up_tty_poll,
505 .unlocked_ioctl = hung_up_tty_ioctl,
506 .compat_ioctl = hung_up_tty_compat_ioctl,
507 .release = tty_release,
508 .fasync = hung_up_tty_fasync,
509 };
510
511 static DEFINE_SPINLOCK(redirect_lock);
512 static struct file *redirect;
513
514
515 void proc_clear_tty(struct task_struct *p)
516 {
517 unsigned long flags;
518 struct tty_struct *tty;
519 spin_lock_irqsave(&p->sighand->siglock, flags);
520 tty = p->signal->tty;
521 p->signal->tty = NULL;
522 spin_unlock_irqrestore(&p->sighand->siglock, flags);
523 tty_kref_put(tty);
524 }
525
526 /**
527 * proc_set_tty - set the controlling terminal
528 *
529 * Only callable by the session leader and only if it does not already have
530 * a controlling terminal.
531 *
532 * Caller must hold: tty_lock()
533 * a readlock on tasklist_lock
534 * sighand lock
535 */
536 static void __proc_set_tty(struct tty_struct *tty)
537 {
538 unsigned long flags;
539
540 spin_lock_irqsave(&tty->ctrl_lock, flags);
541 /*
542 * The session and fg pgrp references will be non-NULL if
543 * tiocsctty() is stealing the controlling tty
544 */
545 put_pid(tty->session);
546 put_pid(tty->pgrp);
547 tty->pgrp = get_pid(task_pgrp(current));
548 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
549 tty->session = get_pid(task_session(current));
550 if (current->signal->tty) {
551 tty_debug(tty, "current tty %s not NULL!!\n",
552 current->signal->tty->name);
553 tty_kref_put(current->signal->tty);
554 }
555 put_pid(current->signal->tty_old_pgrp);
556 current->signal->tty = tty_kref_get(tty);
557 current->signal->tty_old_pgrp = NULL;
558 }
559
560 static void proc_set_tty(struct tty_struct *tty)
561 {
562 spin_lock_irq(&current->sighand->siglock);
563 __proc_set_tty(tty);
564 spin_unlock_irq(&current->sighand->siglock);
565 }
566
567 struct tty_struct *get_current_tty(void)
568 {
569 struct tty_struct *tty;
570 unsigned long flags;
571
572 spin_lock_irqsave(&current->sighand->siglock, flags);
573 tty = tty_kref_get(current->signal->tty);
574 spin_unlock_irqrestore(&current->sighand->siglock, flags);
575 return tty;
576 }
577 EXPORT_SYMBOL_GPL(get_current_tty);
578
579 static void session_clear_tty(struct pid *session)
580 {
581 struct task_struct *p;
582 do_each_pid_task(session, PIDTYPE_SID, p) {
583 proc_clear_tty(p);
584 } while_each_pid_task(session, PIDTYPE_SID, p);
585 }
586
587 /**
588 * tty_wakeup - request more data
589 * @tty: terminal
590 *
591 * Internal and external helper for wakeups of tty. This function
592 * informs the line discipline if present that the driver is ready
593 * to receive more output data.
594 */
595
596 void tty_wakeup(struct tty_struct *tty)
597 {
598 struct tty_ldisc *ld;
599
600 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
601 ld = tty_ldisc_ref(tty);
602 if (ld) {
603 if (ld->ops->write_wakeup)
604 ld->ops->write_wakeup(tty);
605 tty_ldisc_deref(ld);
606 }
607 }
608 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
609 }
610
611 EXPORT_SYMBOL_GPL(tty_wakeup);
612
613 /**
614 * tty_signal_session_leader - sends SIGHUP to session leader
615 * @tty controlling tty
616 * @exit_session if non-zero, signal all foreground group processes
617 *
618 * Send SIGHUP and SIGCONT to the session leader and its process group.
619 * Optionally, signal all processes in the foreground process group.
620 *
621 * Returns the number of processes in the session with this tty
622 * as their controlling terminal. This value is used to drop
623 * tty references for those processes.
624 */
625 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
626 {
627 struct task_struct *p;
628 int refs = 0;
629 struct pid *tty_pgrp = NULL;
630
631 read_lock(&tasklist_lock);
632 if (tty->session) {
633 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
634 spin_lock_irq(&p->sighand->siglock);
635 if (p->signal->tty == tty) {
636 p->signal->tty = NULL;
637 /* We defer the dereferences outside fo
638 the tasklist lock */
639 refs++;
640 }
641 if (!p->signal->leader) {
642 spin_unlock_irq(&p->sighand->siglock);
643 continue;
644 }
645 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
646 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
647 put_pid(p->signal->tty_old_pgrp); /* A noop */
648 spin_lock(&tty->ctrl_lock);
649 tty_pgrp = get_pid(tty->pgrp);
650 if (tty->pgrp)
651 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
652 spin_unlock(&tty->ctrl_lock);
653 spin_unlock_irq(&p->sighand->siglock);
654 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
655 }
656 read_unlock(&tasklist_lock);
657
658 if (tty_pgrp) {
659 if (exit_session)
660 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
661 put_pid(tty_pgrp);
662 }
663
664 return refs;
665 }
666
667 /**
668 * __tty_hangup - actual handler for hangup events
669 * @work: tty device
670 *
671 * This can be called by a "kworker" kernel thread. That is process
672 * synchronous but doesn't hold any locks, so we need to make sure we
673 * have the appropriate locks for what we're doing.
674 *
675 * The hangup event clears any pending redirections onto the hung up
676 * device. It ensures future writes will error and it does the needed
677 * line discipline hangup and signal delivery. The tty object itself
678 * remains intact.
679 *
680 * Locking:
681 * BTM
682 * redirect lock for undoing redirection
683 * file list lock for manipulating list of ttys
684 * tty_ldiscs_lock from called functions
685 * termios_rwsem resetting termios data
686 * tasklist_lock to walk task list for hangup event
687 * ->siglock to protect ->signal/->sighand
688 */
689 static void __tty_hangup(struct tty_struct *tty, int exit_session)
690 {
691 struct file *cons_filp = NULL;
692 struct file *filp, *f = NULL;
693 struct tty_file_private *priv;
694 int closecount = 0, n;
695 int refs;
696
697 if (!tty)
698 return;
699
700
701 spin_lock(&redirect_lock);
702 if (redirect && file_tty(redirect) == tty) {
703 f = redirect;
704 redirect = NULL;
705 }
706 spin_unlock(&redirect_lock);
707
708 tty_lock(tty);
709
710 if (test_bit(TTY_HUPPED, &tty->flags)) {
711 tty_unlock(tty);
712 return;
713 }
714
715 /* inuse_filps is protected by the single tty lock,
716 this really needs to change if we want to flush the
717 workqueue with the lock held */
718 check_tty_count(tty, "tty_hangup");
719
720 spin_lock(&tty->files_lock);
721 /* This breaks for file handles being sent over AF_UNIX sockets ? */
722 list_for_each_entry(priv, &tty->tty_files, list) {
723 filp = priv->file;
724 if (filp->f_op->write == redirected_tty_write)
725 cons_filp = filp;
726 if (filp->f_op->write != tty_write)
727 continue;
728 closecount++;
729 __tty_fasync(-1, filp, 0); /* can't block */
730 filp->f_op = &hung_up_tty_fops;
731 }
732 spin_unlock(&tty->files_lock);
733
734 refs = tty_signal_session_leader(tty, exit_session);
735 /* Account for the p->signal references we killed */
736 while (refs--)
737 tty_kref_put(tty);
738
739 tty_ldisc_hangup(tty, cons_filp != NULL);
740
741 spin_lock_irq(&tty->ctrl_lock);
742 clear_bit(TTY_THROTTLED, &tty->flags);
743 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
744 put_pid(tty->session);
745 put_pid(tty->pgrp);
746 tty->session = NULL;
747 tty->pgrp = NULL;
748 tty->ctrl_status = 0;
749 spin_unlock_irq(&tty->ctrl_lock);
750
751 /*
752 * If one of the devices matches a console pointer, we
753 * cannot just call hangup() because that will cause
754 * tty->count and state->count to go out of sync.
755 * So we just call close() the right number of times.
756 */
757 if (cons_filp) {
758 if (tty->ops->close)
759 for (n = 0; n < closecount; n++)
760 tty->ops->close(tty, cons_filp);
761 } else if (tty->ops->hangup)
762 tty->ops->hangup(tty);
763 /*
764 * We don't want to have driver/ldisc interactions beyond the ones
765 * we did here. The driver layer expects no calls after ->hangup()
766 * from the ldisc side, which is now guaranteed.
767 */
768 set_bit(TTY_HUPPED, &tty->flags);
769 tty_unlock(tty);
770
771 if (f)
772 fput(f);
773 }
774
775 static void do_tty_hangup(struct work_struct *work)
776 {
777 struct tty_struct *tty =
778 container_of(work, struct tty_struct, hangup_work);
779
780 __tty_hangup(tty, 0);
781 }
782
783 /**
784 * tty_hangup - trigger a hangup event
785 * @tty: tty to hangup
786 *
787 * A carrier loss (virtual or otherwise) has occurred on this like
788 * schedule a hangup sequence to run after this event.
789 */
790
791 void tty_hangup(struct tty_struct *tty)
792 {
793 tty_debug_hangup(tty, "hangup\n");
794 schedule_work(&tty->hangup_work);
795 }
796
797 EXPORT_SYMBOL(tty_hangup);
798
799 /**
800 * tty_vhangup - process vhangup
801 * @tty: tty to hangup
802 *
803 * The user has asked via system call for the terminal to be hung up.
804 * We do this synchronously so that when the syscall returns the process
805 * is complete. That guarantee is necessary for security reasons.
806 */
807
808 void tty_vhangup(struct tty_struct *tty)
809 {
810 tty_debug_hangup(tty, "vhangup\n");
811 __tty_hangup(tty, 0);
812 }
813
814 EXPORT_SYMBOL(tty_vhangup);
815
816
817 /**
818 * tty_vhangup_self - process vhangup for own ctty
819 *
820 * Perform a vhangup on the current controlling tty
821 */
822
823 void tty_vhangup_self(void)
824 {
825 struct tty_struct *tty;
826
827 tty = get_current_tty();
828 if (tty) {
829 tty_vhangup(tty);
830 tty_kref_put(tty);
831 }
832 }
833
834 /**
835 * tty_vhangup_session - hangup session leader exit
836 * @tty: tty to hangup
837 *
838 * The session leader is exiting and hanging up its controlling terminal.
839 * Every process in the foreground process group is signalled SIGHUP.
840 *
841 * We do this synchronously so that when the syscall returns the process
842 * is complete. That guarantee is necessary for security reasons.
843 */
844
845 static void tty_vhangup_session(struct tty_struct *tty)
846 {
847 tty_debug_hangup(tty, "session hangup\n");
848 __tty_hangup(tty, 1);
849 }
850
851 /**
852 * tty_hung_up_p - was tty hung up
853 * @filp: file pointer of tty
854 *
855 * Return true if the tty has been subject to a vhangup or a carrier
856 * loss
857 */
858
859 int tty_hung_up_p(struct file *filp)
860 {
861 return (filp->f_op == &hung_up_tty_fops);
862 }
863
864 EXPORT_SYMBOL(tty_hung_up_p);
865
866 /**
867 * disassociate_ctty - disconnect controlling tty
868 * @on_exit: true if exiting so need to "hang up" the session
869 *
870 * This function is typically called only by the session leader, when
871 * it wants to disassociate itself from its controlling tty.
872 *
873 * It performs the following functions:
874 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
875 * (2) Clears the tty from being controlling the session
876 * (3) Clears the controlling tty for all processes in the
877 * session group.
878 *
879 * The argument on_exit is set to 1 if called when a process is
880 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
881 *
882 * Locking:
883 * BTM is taken for hysterical raisins, and held when
884 * called from no_tty().
885 * tty_mutex is taken to protect tty
886 * ->siglock is taken to protect ->signal/->sighand
887 * tasklist_lock is taken to walk process list for sessions
888 * ->siglock is taken to protect ->signal/->sighand
889 */
890
891 void disassociate_ctty(int on_exit)
892 {
893 struct tty_struct *tty;
894
895 if (!current->signal->leader)
896 return;
897
898 tty = get_current_tty();
899 if (tty) {
900 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
901 tty_vhangup_session(tty);
902 } else {
903 struct pid *tty_pgrp = tty_get_pgrp(tty);
904 if (tty_pgrp) {
905 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
906 if (!on_exit)
907 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
908 put_pid(tty_pgrp);
909 }
910 }
911 tty_kref_put(tty);
912
913 } else if (on_exit) {
914 struct pid *old_pgrp;
915 spin_lock_irq(&current->sighand->siglock);
916 old_pgrp = current->signal->tty_old_pgrp;
917 current->signal->tty_old_pgrp = NULL;
918 spin_unlock_irq(&current->sighand->siglock);
919 if (old_pgrp) {
920 kill_pgrp(old_pgrp, SIGHUP, on_exit);
921 kill_pgrp(old_pgrp, SIGCONT, on_exit);
922 put_pid(old_pgrp);
923 }
924 return;
925 }
926
927 spin_lock_irq(&current->sighand->siglock);
928 put_pid(current->signal->tty_old_pgrp);
929 current->signal->tty_old_pgrp = NULL;
930
931 tty = tty_kref_get(current->signal->tty);
932 if (tty) {
933 unsigned long flags;
934 spin_lock_irqsave(&tty->ctrl_lock, flags);
935 put_pid(tty->session);
936 put_pid(tty->pgrp);
937 tty->session = NULL;
938 tty->pgrp = NULL;
939 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 tty_kref_put(tty);
941 } else
942 tty_debug_hangup(tty, "no current tty\n");
943
944 spin_unlock_irq(&current->sighand->siglock);
945 /* Now clear signal->tty under the lock */
946 read_lock(&tasklist_lock);
947 session_clear_tty(task_session(current));
948 read_unlock(&tasklist_lock);
949 }
950
951 /**
952 *
953 * no_tty - Ensure the current process does not have a controlling tty
954 */
955 void no_tty(void)
956 {
957 /* FIXME: Review locking here. The tty_lock never covered any race
958 between a new association and proc_clear_tty but possible we need
959 to protect against this anyway */
960 struct task_struct *tsk = current;
961 disassociate_ctty(0);
962 proc_clear_tty(tsk);
963 }
964
965
966 /**
967 * stop_tty - propagate flow control
968 * @tty: tty to stop
969 *
970 * Perform flow control to the driver. May be called
971 * on an already stopped device and will not re-call the driver
972 * method.
973 *
974 * This functionality is used by both the line disciplines for
975 * halting incoming flow and by the driver. It may therefore be
976 * called from any context, may be under the tty atomic_write_lock
977 * but not always.
978 *
979 * Locking:
980 * flow_lock
981 */
982
983 void __stop_tty(struct tty_struct *tty)
984 {
985 if (tty->stopped)
986 return;
987 tty->stopped = 1;
988 if (tty->ops->stop)
989 tty->ops->stop(tty);
990 }
991
992 void stop_tty(struct tty_struct *tty)
993 {
994 unsigned long flags;
995
996 spin_lock_irqsave(&tty->flow_lock, flags);
997 __stop_tty(tty);
998 spin_unlock_irqrestore(&tty->flow_lock, flags);
999 }
1000 EXPORT_SYMBOL(stop_tty);
1001
1002 /**
1003 * start_tty - propagate flow control
1004 * @tty: tty to start
1005 *
1006 * Start a tty that has been stopped if at all possible. If this
1007 * tty was previous stopped and is now being started, the driver
1008 * start method is invoked and the line discipline woken.
1009 *
1010 * Locking:
1011 * flow_lock
1012 */
1013
1014 void __start_tty(struct tty_struct *tty)
1015 {
1016 if (!tty->stopped || tty->flow_stopped)
1017 return;
1018 tty->stopped = 0;
1019 if (tty->ops->start)
1020 tty->ops->start(tty);
1021 tty_wakeup(tty);
1022 }
1023
1024 void start_tty(struct tty_struct *tty)
1025 {
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&tty->flow_lock, flags);
1029 __start_tty(tty);
1030 spin_unlock_irqrestore(&tty->flow_lock, flags);
1031 }
1032 EXPORT_SYMBOL(start_tty);
1033
1034 static void tty_update_time(struct timespec *time)
1035 {
1036 unsigned long sec = get_seconds();
1037
1038 /*
1039 * We only care if the two values differ in anything other than the
1040 * lower three bits (i.e every 8 seconds). If so, then we can update
1041 * the time of the tty device, otherwise it could be construded as a
1042 * security leak to let userspace know the exact timing of the tty.
1043 */
1044 if ((sec ^ time->tv_sec) & ~7)
1045 time->tv_sec = sec;
1046 }
1047
1048 /**
1049 * tty_read - read method for tty device files
1050 * @file: pointer to tty file
1051 * @buf: user buffer
1052 * @count: size of user buffer
1053 * @ppos: unused
1054 *
1055 * Perform the read system call function on this terminal device. Checks
1056 * for hung up devices before calling the line discipline method.
1057 *
1058 * Locking:
1059 * Locks the line discipline internally while needed. Multiple
1060 * read calls may be outstanding in parallel.
1061 */
1062
1063 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064 loff_t *ppos)
1065 {
1066 int i;
1067 struct inode *inode = file_inode(file);
1068 struct tty_struct *tty = file_tty(file);
1069 struct tty_ldisc *ld;
1070
1071 if (tty_paranoia_check(tty, inode, "tty_read"))
1072 return -EIO;
1073 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074 return -EIO;
1075
1076 /* We want to wait for the line discipline to sort out in this
1077 situation */
1078 ld = tty_ldisc_ref_wait(tty);
1079 if (!ld)
1080 return hung_up_tty_read(file, buf, count, ppos);
1081 if (ld->ops->read)
1082 i = ld->ops->read(tty, file, buf, count);
1083 else
1084 i = -EIO;
1085 tty_ldisc_deref(ld);
1086
1087 if (i > 0)
1088 tty_update_time(&inode->i_atime);
1089
1090 return i;
1091 }
1092
1093 static void tty_write_unlock(struct tty_struct *tty)
1094 {
1095 mutex_unlock(&tty->atomic_write_lock);
1096 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097 }
1098
1099 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100 {
1101 if (!mutex_trylock(&tty->atomic_write_lock)) {
1102 if (ndelay)
1103 return -EAGAIN;
1104 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105 return -ERESTARTSYS;
1106 }
1107 return 0;
1108 }
1109
1110 /*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114 static inline ssize_t do_tty_write(
1115 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116 struct tty_struct *tty,
1117 struct file *file,
1118 const char __user *buf,
1119 size_t count)
1120 {
1121 ssize_t ret, written = 0;
1122 unsigned int chunk;
1123
1124 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125 if (ret < 0)
1126 return ret;
1127
1128 /*
1129 * We chunk up writes into a temporary buffer. This
1130 * simplifies low-level drivers immensely, since they
1131 * don't have locking issues and user mode accesses.
1132 *
1133 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134 * big chunk-size..
1135 *
1136 * The default chunk-size is 2kB, because the NTTY
1137 * layer has problems with bigger chunks. It will
1138 * claim to be able to handle more characters than
1139 * it actually does.
1140 *
1141 * FIXME: This can probably go away now except that 64K chunks
1142 * are too likely to fail unless switched to vmalloc...
1143 */
1144 chunk = 2048;
1145 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146 chunk = 65536;
1147 if (count < chunk)
1148 chunk = count;
1149
1150 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151 if (tty->write_cnt < chunk) {
1152 unsigned char *buf_chunk;
1153
1154 if (chunk < 1024)
1155 chunk = 1024;
1156
1157 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158 if (!buf_chunk) {
1159 ret = -ENOMEM;
1160 goto out;
1161 }
1162 kfree(tty->write_buf);
1163 tty->write_cnt = chunk;
1164 tty->write_buf = buf_chunk;
1165 }
1166
1167 /* Do the write .. */
1168 for (;;) {
1169 size_t size = count;
1170 if (size > chunk)
1171 size = chunk;
1172 ret = -EFAULT;
1173 if (copy_from_user(tty->write_buf, buf, size))
1174 break;
1175 ret = write(tty, file, tty->write_buf, size);
1176 if (ret <= 0)
1177 break;
1178 written += ret;
1179 buf += ret;
1180 count -= ret;
1181 if (!count)
1182 break;
1183 ret = -ERESTARTSYS;
1184 if (signal_pending(current))
1185 break;
1186 cond_resched();
1187 }
1188 if (written) {
1189 tty_update_time(&file_inode(file)->i_mtime);
1190 ret = written;
1191 }
1192 out:
1193 tty_write_unlock(tty);
1194 return ret;
1195 }
1196
1197 /**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209 void tty_write_message(struct tty_struct *tty, char *msg)
1210 {
1211 if (tty) {
1212 mutex_lock(&tty->atomic_write_lock);
1213 tty_lock(tty);
1214 if (tty->ops->write && tty->count > 0)
1215 tty->ops->write(tty, msg, strlen(msg));
1216 tty_unlock(tty);
1217 tty_write_unlock(tty);
1218 }
1219 return;
1220 }
1221
1222
1223 /**
1224 * tty_write - write method for tty device file
1225 * @file: tty file pointer
1226 * @buf: user data to write
1227 * @count: bytes to write
1228 * @ppos: unused
1229 *
1230 * Write data to a tty device via the line discipline.
1231 *
1232 * Locking:
1233 * Locks the line discipline as required
1234 * Writes to the tty driver are serialized by the atomic_write_lock
1235 * and are then processed in chunks to the device. The line discipline
1236 * write method will not be invoked in parallel for each device.
1237 */
1238
1239 static ssize_t tty_write(struct file *file, const char __user *buf,
1240 size_t count, loff_t *ppos)
1241 {
1242 struct tty_struct *tty = file_tty(file);
1243 struct tty_ldisc *ld;
1244 ssize_t ret;
1245
1246 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247 return -EIO;
1248 if (!tty || !tty->ops->write ||
1249 (test_bit(TTY_IO_ERROR, &tty->flags)))
1250 return -EIO;
1251 /* Short term debug to catch buggy drivers */
1252 if (tty->ops->write_room == NULL)
1253 tty_err(tty, "missing write_room method\n");
1254 ld = tty_ldisc_ref_wait(tty);
1255 if (!ld)
1256 return hung_up_tty_write(file, buf, count, ppos);
1257 if (!ld->ops->write)
1258 ret = -EIO;
1259 else
1260 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261 tty_ldisc_deref(ld);
1262 return ret;
1263 }
1264
1265 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266 size_t count, loff_t *ppos)
1267 {
1268 struct file *p = NULL;
1269
1270 spin_lock(&redirect_lock);
1271 if (redirect)
1272 p = get_file(redirect);
1273 spin_unlock(&redirect_lock);
1274
1275 if (p) {
1276 ssize_t res;
1277 res = vfs_write(p, buf, count, &p->f_pos);
1278 fput(p);
1279 return res;
1280 }
1281 return tty_write(file, buf, count, ppos);
1282 }
1283
1284 /**
1285 * tty_send_xchar - send priority character
1286 *
1287 * Send a high priority character to the tty even if stopped
1288 *
1289 * Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292 int tty_send_xchar(struct tty_struct *tty, char ch)
1293 {
1294 int was_stopped = tty->stopped;
1295
1296 if (tty->ops->send_xchar) {
1297 down_read(&tty->termios_rwsem);
1298 tty->ops->send_xchar(tty, ch);
1299 up_read(&tty->termios_rwsem);
1300 return 0;
1301 }
1302
1303 if (tty_write_lock(tty, 0) < 0)
1304 return -ERESTARTSYS;
1305
1306 down_read(&tty->termios_rwsem);
1307 if (was_stopped)
1308 start_tty(tty);
1309 tty->ops->write(tty, &ch, 1);
1310 if (was_stopped)
1311 stop_tty(tty);
1312 up_read(&tty->termios_rwsem);
1313 tty_write_unlock(tty);
1314 return 0;
1315 }
1316
1317 static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319 /**
1320 * pty_line_name - generate name for a pty
1321 * @driver: the tty driver in use
1322 * @index: the minor number
1323 * @p: output buffer of at least 6 bytes
1324 *
1325 * Generate a name from a driver reference and write it to the output
1326 * buffer.
1327 *
1328 * Locking: None
1329 */
1330 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331 {
1332 int i = index + driver->name_base;
1333 /* ->name is initialized to "ttyp", but "tty" is expected */
1334 sprintf(p, "%s%c%x",
1335 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336 ptychar[i >> 4 & 0xf], i & 0xf);
1337 }
1338
1339 /**
1340 * tty_line_name - generate name for a tty
1341 * @driver: the tty driver in use
1342 * @index: the minor number
1343 * @p: output buffer of at least 7 bytes
1344 *
1345 * Generate a name from a driver reference and write it to the output
1346 * buffer.
1347 *
1348 * Locking: None
1349 */
1350 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351 {
1352 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353 return sprintf(p, "%s", driver->name);
1354 else
1355 return sprintf(p, "%s%d", driver->name,
1356 index + driver->name_base);
1357 }
1358
1359 /**
1360 * tty_driver_lookup_tty() - find an existing tty, if any
1361 * @driver: the driver for the tty
1362 * @idx: the minor number
1363 *
1364 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 * driver lookup() method returns an error.
1366 *
1367 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368 */
1369 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370 struct inode *inode, int idx)
1371 {
1372 struct tty_struct *tty;
1373
1374 if (driver->ops->lookup)
1375 tty = driver->ops->lookup(driver, inode, idx);
1376 else
1377 tty = driver->ttys[idx];
1378
1379 if (!IS_ERR(tty))
1380 tty_kref_get(tty);
1381 return tty;
1382 }
1383
1384 /**
1385 * tty_init_termios - helper for termios setup
1386 * @tty: the tty to set up
1387 *
1388 * Initialise the termios structures for this tty. Thus runs under
1389 * the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392 void tty_init_termios(struct tty_struct *tty)
1393 {
1394 struct ktermios *tp;
1395 int idx = tty->index;
1396
1397 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398 tty->termios = tty->driver->init_termios;
1399 else {
1400 /* Check for lazy saved data */
1401 tp = tty->driver->termios[idx];
1402 if (tp != NULL) {
1403 tty->termios = *tp;
1404 tty->termios.c_line = tty->driver->init_termios.c_line;
1405 } else
1406 tty->termios = tty->driver->init_termios;
1407 }
1408 /* Compatibility until drivers always set this */
1409 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411 }
1412 EXPORT_SYMBOL_GPL(tty_init_termios);
1413
1414 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415 {
1416 tty_init_termios(tty);
1417 tty_driver_kref_get(driver);
1418 tty->count++;
1419 driver->ttys[tty->index] = tty;
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424 /**
1425 * tty_driver_install_tty() - install a tty entry in the driver
1426 * @driver: the driver for the tty
1427 * @tty: the tty
1428 *
1429 * Install a tty object into the driver tables. The tty->index field
1430 * will be set by the time this is called. This method is responsible
1431 * for ensuring any need additional structures are allocated and
1432 * configured.
1433 *
1434 * Locking: tty_mutex for now
1435 */
1436 static int tty_driver_install_tty(struct tty_driver *driver,
1437 struct tty_struct *tty)
1438 {
1439 return driver->ops->install ? driver->ops->install(driver, tty) :
1440 tty_standard_install(driver, tty);
1441 }
1442
1443 /**
1444 * tty_driver_remove_tty() - remove a tty from the driver tables
1445 * @driver: the driver for the tty
1446 * @idx: the minor number
1447 *
1448 * Remvoe a tty object from the driver tables. The tty->index field
1449 * will be set by the time this is called.
1450 *
1451 * Locking: tty_mutex for now
1452 */
1453 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454 {
1455 if (driver->ops->remove)
1456 driver->ops->remove(driver, tty);
1457 else
1458 driver->ttys[tty->index] = NULL;
1459 }
1460
1461 /*
1462 * tty_reopen() - fast re-open of an open tty
1463 * @tty - the tty to open
1464 *
1465 * Return 0 on success, -errno on error.
1466 * Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 * Locking: Caller must hold tty_lock
1469 */
1470 static int tty_reopen(struct tty_struct *tty)
1471 {
1472 struct tty_driver *driver = tty->driver;
1473
1474 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475 driver->subtype == PTY_TYPE_MASTER)
1476 return -EIO;
1477
1478 if (!tty->count)
1479 return -EAGAIN;
1480
1481 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482 return -EBUSY;
1483
1484 tty->count++;
1485
1486 if (!tty->ldisc)
1487 return tty_ldisc_reinit(tty, tty->termios.c_line);
1488
1489 return 0;
1490 }
1491
1492 /**
1493 * tty_init_dev - initialise a tty device
1494 * @driver: tty driver we are opening a device on
1495 * @idx: device index
1496 * @ret_tty: returned tty structure
1497 *
1498 * Prepare a tty device. This may not be a "new" clean device but
1499 * could also be an active device. The pty drivers require special
1500 * handling because of this.
1501 *
1502 * Locking:
1503 * The function is called under the tty_mutex, which
1504 * protects us from the tty struct or driver itself going away.
1505 *
1506 * On exit the tty device has the line discipline attached and
1507 * a reference count of 1. If a pair was created for pty/tty use
1508 * and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open. The new code protects the open with a mutex, so it's
1512 * really quite straightforward. The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517 {
1518 struct tty_struct *tty;
1519 int retval;
1520
1521 /*
1522 * First time open is complex, especially for PTY devices.
1523 * This code guarantees that either everything succeeds and the
1524 * TTY is ready for operation, or else the table slots are vacated
1525 * and the allocated memory released. (Except that the termios
1526 * and locked termios may be retained.)
1527 */
1528
1529 if (!try_module_get(driver->owner))
1530 return ERR_PTR(-ENODEV);
1531
1532 tty = alloc_tty_struct(driver, idx);
1533 if (!tty) {
1534 retval = -ENOMEM;
1535 goto err_module_put;
1536 }
1537
1538 tty_lock(tty);
1539 retval = tty_driver_install_tty(driver, tty);
1540 if (retval < 0)
1541 goto err_free_tty;
1542
1543 if (!tty->port)
1544 tty->port = driver->ports[idx];
1545
1546 WARN_RATELIMIT(!tty->port,
1547 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548 __func__, tty->driver->name);
1549
1550 tty->port->itty = tty;
1551
1552 /*
1553 * Structures all installed ... call the ldisc open routines.
1554 * If we fail here just call release_tty to clean up. No need
1555 * to decrement the use counts, as release_tty doesn't care.
1556 */
1557 retval = tty_ldisc_setup(tty, tty->link);
1558 if (retval)
1559 goto err_release_tty;
1560 /* Return the tty locked so that it cannot vanish under the caller */
1561 return tty;
1562
1563 err_free_tty:
1564 tty_unlock(tty);
1565 free_tty_struct(tty);
1566 err_module_put:
1567 module_put(driver->owner);
1568 return ERR_PTR(retval);
1569
1570 /* call the tty release_tty routine to clean out this slot */
1571 err_release_tty:
1572 tty_unlock(tty);
1573 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574 retval, idx);
1575 release_tty(tty, idx);
1576 return ERR_PTR(retval);
1577 }
1578
1579 static void tty_free_termios(struct tty_struct *tty)
1580 {
1581 struct ktermios *tp;
1582 int idx = tty->index;
1583
1584 /* If the port is going to reset then it has no termios to save */
1585 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586 return;
1587
1588 /* Stash the termios data */
1589 tp = tty->driver->termios[idx];
1590 if (tp == NULL) {
1591 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592 if (tp == NULL)
1593 return;
1594 tty->driver->termios[idx] = tp;
1595 }
1596 *tp = tty->termios;
1597 }
1598
1599 /**
1600 * tty_flush_works - flush all works of a tty/pty pair
1601 * @tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 * Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605 static void tty_flush_works(struct tty_struct *tty)
1606 {
1607 flush_work(&tty->SAK_work);
1608 flush_work(&tty->hangup_work);
1609 if (tty->link) {
1610 flush_work(&tty->link->SAK_work);
1611 flush_work(&tty->link->hangup_work);
1612 }
1613 }
1614
1615 /**
1616 * release_one_tty - release tty structure memory
1617 * @kref: kref of tty we are obliterating
1618 *
1619 * Releases memory associated with a tty structure, and clears out the
1620 * driver table slots. This function is called when a device is no longer
1621 * in use. It also gets called when setup of a device fails.
1622 *
1623 * Locking:
1624 * takes the file list lock internally when working on the list
1625 * of ttys that the driver keeps.
1626 *
1627 * This method gets called from a work queue so that the driver private
1628 * cleanup ops can sleep (needed for USB at least)
1629 */
1630 static void release_one_tty(struct work_struct *work)
1631 {
1632 struct tty_struct *tty =
1633 container_of(work, struct tty_struct, hangup_work);
1634 struct tty_driver *driver = tty->driver;
1635 struct module *owner = driver->owner;
1636
1637 if (tty->ops->cleanup)
1638 tty->ops->cleanup(tty);
1639
1640 tty->magic = 0;
1641 tty_driver_kref_put(driver);
1642 module_put(owner);
1643
1644 spin_lock(&tty->files_lock);
1645 list_del_init(&tty->tty_files);
1646 spin_unlock(&tty->files_lock);
1647
1648 put_pid(tty->pgrp);
1649 put_pid(tty->session);
1650 free_tty_struct(tty);
1651 }
1652
1653 static void queue_release_one_tty(struct kref *kref)
1654 {
1655 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657 /* The hangup queue is now free so we can reuse it rather than
1658 waste a chunk of memory for each port */
1659 INIT_WORK(&tty->hangup_work, release_one_tty);
1660 schedule_work(&tty->hangup_work);
1661 }
1662
1663 /**
1664 * tty_kref_put - release a tty kref
1665 * @tty: tty device
1666 *
1667 * Release a reference to a tty device and if need be let the kref
1668 * layer destruct the object for us
1669 */
1670
1671 void tty_kref_put(struct tty_struct *tty)
1672 {
1673 if (tty)
1674 kref_put(&tty->kref, queue_release_one_tty);
1675 }
1676 EXPORT_SYMBOL(tty_kref_put);
1677
1678 /**
1679 * release_tty - release tty structure memory
1680 *
1681 * Release both @tty and a possible linked partner (think pty pair),
1682 * and decrement the refcount of the backing module.
1683 *
1684 * Locking:
1685 * tty_mutex
1686 * takes the file list lock internally when working on the list
1687 * of ttys that the driver keeps.
1688 *
1689 */
1690 static void release_tty(struct tty_struct *tty, int idx)
1691 {
1692 /* This should always be true but check for the moment */
1693 WARN_ON(tty->index != idx);
1694 WARN_ON(!mutex_is_locked(&tty_mutex));
1695 if (tty->ops->shutdown)
1696 tty->ops->shutdown(tty);
1697 tty_free_termios(tty);
1698 tty_driver_remove_tty(tty->driver, tty);
1699 tty->port->itty = NULL;
1700 if (tty->link)
1701 tty->link->port->itty = NULL;
1702 tty_buffer_cancel_work(tty->port);
1703
1704 tty_kref_put(tty->link);
1705 tty_kref_put(tty);
1706 }
1707
1708 /**
1709 * tty_release_checks - check a tty before real release
1710 * @tty: tty to check
1711 * @o_tty: link of @tty (if any)
1712 * @idx: index of the tty
1713 *
1714 * Performs some paranoid checking before true release of the @tty.
1715 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717 static int tty_release_checks(struct tty_struct *tty, int idx)
1718 {
1719 #ifdef TTY_PARANOIA_CHECK
1720 if (idx < 0 || idx >= tty->driver->num) {
1721 tty_debug(tty, "bad idx %d\n", idx);
1722 return -1;
1723 }
1724
1725 /* not much to check for devpts */
1726 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727 return 0;
1728
1729 if (tty != tty->driver->ttys[idx]) {
1730 tty_debug(tty, "bad driver table[%d] = %p\n",
1731 idx, tty->driver->ttys[idx]);
1732 return -1;
1733 }
1734 if (tty->driver->other) {
1735 struct tty_struct *o_tty = tty->link;
1736
1737 if (o_tty != tty->driver->other->ttys[idx]) {
1738 tty_debug(tty, "bad other table[%d] = %p\n",
1739 idx, tty->driver->other->ttys[idx]);
1740 return -1;
1741 }
1742 if (o_tty->link != tty) {
1743 tty_debug(tty, "bad link = %p\n", o_tty->link);
1744 return -1;
1745 }
1746 }
1747 #endif
1748 return 0;
1749 }
1750
1751 /**
1752 * tty_release - vfs callback for close
1753 * @inode: inode of tty
1754 * @filp: file pointer for handle to tty
1755 *
1756 * Called the last time each file handle is closed that references
1757 * this tty. There may however be several such references.
1758 *
1759 * Locking:
1760 * Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770 int tty_release(struct inode *inode, struct file *filp)
1771 {
1772 struct tty_struct *tty = file_tty(filp);
1773 struct tty_struct *o_tty = NULL;
1774 int do_sleep, final;
1775 int idx;
1776 long timeout = 0;
1777 int once = 1;
1778
1779 if (tty_paranoia_check(tty, inode, __func__))
1780 return 0;
1781
1782 tty_lock(tty);
1783 check_tty_count(tty, __func__);
1784
1785 __tty_fasync(-1, filp, 0);
1786
1787 idx = tty->index;
1788 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789 tty->driver->subtype == PTY_TYPE_MASTER)
1790 o_tty = tty->link;
1791
1792 if (tty_release_checks(tty, idx)) {
1793 tty_unlock(tty);
1794 return 0;
1795 }
1796
1797 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798
1799 if (tty->ops->close)
1800 tty->ops->close(tty, filp);
1801
1802 /* If tty is pty master, lock the slave pty (stable lock order) */
1803 tty_lock_slave(o_tty);
1804
1805 /*
1806 * Sanity check: if tty->count is going to zero, there shouldn't be
1807 * any waiters on tty->read_wait or tty->write_wait. We test the
1808 * wait queues and kick everyone out _before_ actually starting to
1809 * close. This ensures that we won't block while releasing the tty
1810 * structure.
1811 *
1812 * The test for the o_tty closing is necessary, since the master and
1813 * slave sides may close in any order. If the slave side closes out
1814 * first, its count will be one, since the master side holds an open.
1815 * Thus this test wouldn't be triggered at the time the slave closed,
1816 * so we do it now.
1817 */
1818 while (1) {
1819 do_sleep = 0;
1820
1821 if (tty->count <= 1) {
1822 if (waitqueue_active(&tty->read_wait)) {
1823 wake_up_poll(&tty->read_wait, POLLIN);
1824 do_sleep++;
1825 }
1826 if (waitqueue_active(&tty->write_wait)) {
1827 wake_up_poll(&tty->write_wait, POLLOUT);
1828 do_sleep++;
1829 }
1830 }
1831 if (o_tty && o_tty->count <= 1) {
1832 if (waitqueue_active(&o_tty->read_wait)) {
1833 wake_up_poll(&o_tty->read_wait, POLLIN);
1834 do_sleep++;
1835 }
1836 if (waitqueue_active(&o_tty->write_wait)) {
1837 wake_up_poll(&o_tty->write_wait, POLLOUT);
1838 do_sleep++;
1839 }
1840 }
1841 if (!do_sleep)
1842 break;
1843
1844 if (once) {
1845 once = 0;
1846 tty_warn(tty, "read/write wait queue active!\n");
1847 }
1848 schedule_timeout_killable(timeout);
1849 if (timeout < 120 * HZ)
1850 timeout = 2 * timeout + 1;
1851 else
1852 timeout = MAX_SCHEDULE_TIMEOUT;
1853 }
1854
1855 if (o_tty) {
1856 if (--o_tty->count < 0) {
1857 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858 o_tty->count = 0;
1859 }
1860 }
1861 if (--tty->count < 0) {
1862 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863 tty->count = 0;
1864 }
1865
1866 /*
1867 * We've decremented tty->count, so we need to remove this file
1868 * descriptor off the tty->tty_files list; this serves two
1869 * purposes:
1870 * - check_tty_count sees the correct number of file descriptors
1871 * associated with this tty.
1872 * - do_tty_hangup no longer sees this file descriptor as
1873 * something that needs to be handled for hangups.
1874 */
1875 tty_del_file(filp);
1876
1877 /*
1878 * Perform some housekeeping before deciding whether to return.
1879 *
1880 * If _either_ side is closing, make sure there aren't any
1881 * processes that still think tty or o_tty is their controlling
1882 * tty.
1883 */
1884 if (!tty->count) {
1885 read_lock(&tasklist_lock);
1886 session_clear_tty(tty->session);
1887 if (o_tty)
1888 session_clear_tty(o_tty->session);
1889 read_unlock(&tasklist_lock);
1890 }
1891
1892 /* check whether both sides are closing ... */
1893 final = !tty->count && !(o_tty && o_tty->count);
1894
1895 tty_unlock_slave(o_tty);
1896 tty_unlock(tty);
1897
1898 /* At this point, the tty->count == 0 should ensure a dead tty
1899 cannot be re-opened by a racing opener */
1900
1901 if (!final)
1902 return 0;
1903
1904 tty_debug_hangup(tty, "final close\n");
1905 /*
1906 * Ask the line discipline code to release its structures
1907 */
1908 tty_ldisc_release(tty);
1909
1910 /* Wait for pending work before tty destruction commmences */
1911 tty_flush_works(tty);
1912
1913 tty_debug_hangup(tty, "freeing structure\n");
1914 /*
1915 * The release_tty function takes care of the details of clearing
1916 * the slots and preserving the termios structure. The tty_unlock_pair
1917 * should be safe as we keep a kref while the tty is locked (so the
1918 * unlock never unlocks a freed tty).
1919 */
1920 mutex_lock(&tty_mutex);
1921 release_tty(tty, idx);
1922 mutex_unlock(&tty_mutex);
1923
1924 return 0;
1925 }
1926
1927 /**
1928 * tty_open_current_tty - get locked tty of current task
1929 * @device: device number
1930 * @filp: file pointer to tty
1931 * @return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 * Performs a re-open of the current task's controlling tty.
1934 *
1935 * We cannot return driver and index like for the other nodes because
1936 * devpts will not work then. It expects inodes to be from devpts FS.
1937 */
1938 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939 {
1940 struct tty_struct *tty;
1941 int retval;
1942
1943 if (device != MKDEV(TTYAUX_MAJOR, 0))
1944 return NULL;
1945
1946 tty = get_current_tty();
1947 if (!tty)
1948 return ERR_PTR(-ENXIO);
1949
1950 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951 /* noctty = 1; */
1952 tty_lock(tty);
1953 tty_kref_put(tty); /* safe to drop the kref now */
1954
1955 retval = tty_reopen(tty);
1956 if (retval < 0) {
1957 tty_unlock(tty);
1958 tty = ERR_PTR(retval);
1959 }
1960 return tty;
1961 }
1962
1963 /**
1964 * tty_lookup_driver - lookup a tty driver for a given device file
1965 * @device: device number
1966 * @filp: file pointer to tty
1967 * @noctty: set if the device should not become a controlling tty
1968 * @index: index for the device in the @return driver
1969 * @return: driver for this inode (with increased refcount)
1970 *
1971 * If @return is not erroneous, the caller is responsible to decrement the
1972 * refcount by tty_driver_kref_put.
1973 *
1974 * Locking: tty_mutex protects get_tty_driver
1975 */
1976 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977 int *index)
1978 {
1979 struct tty_driver *driver;
1980
1981 switch (device) {
1982 #ifdef CONFIG_VT
1983 case MKDEV(TTY_MAJOR, 0): {
1984 extern struct tty_driver *console_driver;
1985 driver = tty_driver_kref_get(console_driver);
1986 *index = fg_console;
1987 break;
1988 }
1989 #endif
1990 case MKDEV(TTYAUX_MAJOR, 1): {
1991 struct tty_driver *console_driver = console_device(index);
1992 if (console_driver) {
1993 driver = tty_driver_kref_get(console_driver);
1994 if (driver) {
1995 /* Don't let /dev/console block */
1996 filp->f_flags |= O_NONBLOCK;
1997 break;
1998 }
1999 }
2000 return ERR_PTR(-ENODEV);
2001 }
2002 default:
2003 driver = get_tty_driver(device, index);
2004 if (!driver)
2005 return ERR_PTR(-ENODEV);
2006 break;
2007 }
2008 return driver;
2009 }
2010
2011 /**
2012 * tty_open_by_driver - open a tty device
2013 * @device: dev_t of device to open
2014 * @inode: inode of device file
2015 * @filp: file pointer to tty
2016 *
2017 * Performs the driver lookup, checks for a reopen, or otherwise
2018 * performs the first-time tty initialization.
2019 *
2020 * Returns the locked initialized or re-opened &tty_struct
2021 *
2022 * Claims the global tty_mutex to serialize:
2023 * - concurrent first-time tty initialization
2024 * - concurrent tty driver removal w/ lookup
2025 * - concurrent tty removal from driver table
2026 */
2027 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028 struct file *filp)
2029 {
2030 struct tty_struct *tty;
2031 struct tty_driver *driver = NULL;
2032 int index = -1;
2033 int retval;
2034
2035 mutex_lock(&tty_mutex);
2036 driver = tty_lookup_driver(device, filp, &index);
2037 if (IS_ERR(driver)) {
2038 mutex_unlock(&tty_mutex);
2039 return ERR_CAST(driver);
2040 }
2041
2042 /* check whether we're reopening an existing tty */
2043 tty = tty_driver_lookup_tty(driver, inode, index);
2044 if (IS_ERR(tty)) {
2045 mutex_unlock(&tty_mutex);
2046 goto out;
2047 }
2048
2049 if (tty) {
2050 mutex_unlock(&tty_mutex);
2051 retval = tty_lock_interruptible(tty);
2052 if (retval) {
2053 if (retval == -EINTR)
2054 retval = -ERESTARTSYS;
2055 tty = ERR_PTR(retval);
2056 goto out;
2057 }
2058 /* safe to drop the kref from tty_driver_lookup_tty() */
2059 tty_kref_put(tty);
2060 retval = tty_reopen(tty);
2061 if (retval < 0) {
2062 tty_unlock(tty);
2063 tty = ERR_PTR(retval);
2064 }
2065 } else { /* Returns with the tty_lock held for now */
2066 tty = tty_init_dev(driver, index);
2067 mutex_unlock(&tty_mutex);
2068 }
2069 out:
2070 tty_driver_kref_put(driver);
2071 return tty;
2072 }
2073
2074 /**
2075 * tty_open - open a tty device
2076 * @inode: inode of device file
2077 * @filp: file pointer to tty
2078 *
2079 * tty_open and tty_release keep up the tty count that contains the
2080 * number of opens done on a tty. We cannot use the inode-count, as
2081 * different inodes might point to the same tty.
2082 *
2083 * Open-counting is needed for pty masters, as well as for keeping
2084 * track of serial lines: DTR is dropped when the last close happens.
2085 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2086 *
2087 * The termios state of a pty is reset on first open so that
2088 * settings don't persist across reuse.
2089 *
2090 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2091 * tty->count should protect the rest.
2092 * ->siglock protects ->signal/->sighand
2093 *
2094 * Note: the tty_unlock/lock cases without a ref are only safe due to
2095 * tty_mutex
2096 */
2097
2098 static int tty_open(struct inode *inode, struct file *filp)
2099 {
2100 struct tty_struct *tty;
2101 int noctty, retval;
2102 dev_t device = inode->i_rdev;
2103 unsigned saved_flags = filp->f_flags;
2104
2105 nonseekable_open(inode, filp);
2106
2107 retry_open:
2108 retval = tty_alloc_file(filp);
2109 if (retval)
2110 return -ENOMEM;
2111
2112 tty = tty_open_current_tty(device, filp);
2113 if (!tty)
2114 tty = tty_open_by_driver(device, inode, filp);
2115
2116 if (IS_ERR(tty)) {
2117 tty_free_file(filp);
2118 retval = PTR_ERR(tty);
2119 if (retval != -EAGAIN || signal_pending(current))
2120 return retval;
2121 schedule();
2122 goto retry_open;
2123 }
2124
2125 tty_add_file(tty, filp);
2126
2127 check_tty_count(tty, __func__);
2128 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2129
2130 if (tty->ops->open)
2131 retval = tty->ops->open(tty, filp);
2132 else
2133 retval = -ENODEV;
2134 filp->f_flags = saved_flags;
2135
2136 if (retval) {
2137 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2138
2139 tty_unlock(tty); /* need to call tty_release without BTM */
2140 tty_release(inode, filp);
2141 if (retval != -ERESTARTSYS)
2142 return retval;
2143
2144 if (signal_pending(current))
2145 return retval;
2146
2147 schedule();
2148 /*
2149 * Need to reset f_op in case a hangup happened.
2150 */
2151 if (tty_hung_up_p(filp))
2152 filp->f_op = &tty_fops;
2153 goto retry_open;
2154 }
2155 clear_bit(TTY_HUPPED, &tty->flags);
2156
2157
2158 read_lock(&tasklist_lock);
2159 spin_lock_irq(&current->sighand->siglock);
2160 noctty = (filp->f_flags & O_NOCTTY) ||
2161 device == MKDEV(TTY_MAJOR, 0) ||
2162 device == MKDEV(TTYAUX_MAJOR, 1) ||
2163 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2164 tty->driver->subtype == PTY_TYPE_MASTER);
2165
2166 if (!noctty &&
2167 current->signal->leader &&
2168 !current->signal->tty &&
2169 tty->session == NULL) {
2170 /*
2171 * Don't let a process that only has write access to the tty
2172 * obtain the privileges associated with having a tty as
2173 * controlling terminal (being able to reopen it with full
2174 * access through /dev/tty, being able to perform pushback).
2175 * Many distributions set the group of all ttys to "tty" and
2176 * grant write-only access to all terminals for setgid tty
2177 * binaries, which should not imply full privileges on all ttys.
2178 *
2179 * This could theoretically break old code that performs open()
2180 * on a write-only file descriptor. In that case, it might be
2181 * necessary to also permit this if
2182 * inode_permission(inode, MAY_READ) == 0.
2183 */
2184 if (filp->f_mode & FMODE_READ)
2185 __proc_set_tty(tty);
2186 }
2187 spin_unlock_irq(&current->sighand->siglock);
2188 read_unlock(&tasklist_lock);
2189 tty_unlock(tty);
2190 return 0;
2191 }
2192
2193
2194
2195 /**
2196 * tty_poll - check tty status
2197 * @filp: file being polled
2198 * @wait: poll wait structures to update
2199 *
2200 * Call the line discipline polling method to obtain the poll
2201 * status of the device.
2202 *
2203 * Locking: locks called line discipline but ldisc poll method
2204 * may be re-entered freely by other callers.
2205 */
2206
2207 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2208 {
2209 struct tty_struct *tty = file_tty(filp);
2210 struct tty_ldisc *ld;
2211 int ret = 0;
2212
2213 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2214 return 0;
2215
2216 ld = tty_ldisc_ref_wait(tty);
2217 if (!ld)
2218 return hung_up_tty_poll(filp, wait);
2219 if (ld->ops->poll)
2220 ret = ld->ops->poll(tty, filp, wait);
2221 tty_ldisc_deref(ld);
2222 return ret;
2223 }
2224
2225 static int __tty_fasync(int fd, struct file *filp, int on)
2226 {
2227 struct tty_struct *tty = file_tty(filp);
2228 unsigned long flags;
2229 int retval = 0;
2230
2231 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2232 goto out;
2233
2234 retval = fasync_helper(fd, filp, on, &tty->fasync);
2235 if (retval <= 0)
2236 goto out;
2237
2238 if (on) {
2239 enum pid_type type;
2240 struct pid *pid;
2241
2242 spin_lock_irqsave(&tty->ctrl_lock, flags);
2243 if (tty->pgrp) {
2244 pid = tty->pgrp;
2245 type = PIDTYPE_PGID;
2246 } else {
2247 pid = task_pid(current);
2248 type = PIDTYPE_PID;
2249 }
2250 get_pid(pid);
2251 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2252 __f_setown(filp, pid, type, 0);
2253 put_pid(pid);
2254 retval = 0;
2255 }
2256 out:
2257 return retval;
2258 }
2259
2260 static int tty_fasync(int fd, struct file *filp, int on)
2261 {
2262 struct tty_struct *tty = file_tty(filp);
2263 int retval = -ENOTTY;
2264
2265 tty_lock(tty);
2266 if (!tty_hung_up_p(filp))
2267 retval = __tty_fasync(fd, filp, on);
2268 tty_unlock(tty);
2269
2270 return retval;
2271 }
2272
2273 /**
2274 * tiocsti - fake input character
2275 * @tty: tty to fake input into
2276 * @p: pointer to character
2277 *
2278 * Fake input to a tty device. Does the necessary locking and
2279 * input management.
2280 *
2281 * FIXME: does not honour flow control ??
2282 *
2283 * Locking:
2284 * Called functions take tty_ldiscs_lock
2285 * current->signal->tty check is safe without locks
2286 *
2287 * FIXME: may race normal receive processing
2288 */
2289
2290 static int tiocsti(struct tty_struct *tty, char __user *p)
2291 {
2292 char ch, mbz = 0;
2293 struct tty_ldisc *ld;
2294
2295 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2296 return -EPERM;
2297 if (get_user(ch, p))
2298 return -EFAULT;
2299 tty_audit_tiocsti(tty, ch);
2300 ld = tty_ldisc_ref_wait(tty);
2301 if (!ld)
2302 return -EIO;
2303 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2304 tty_ldisc_deref(ld);
2305 return 0;
2306 }
2307
2308 /**
2309 * tiocgwinsz - implement window query ioctl
2310 * @tty; tty
2311 * @arg: user buffer for result
2312 *
2313 * Copies the kernel idea of the window size into the user buffer.
2314 *
2315 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2316 * is consistent.
2317 */
2318
2319 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2320 {
2321 int err;
2322
2323 mutex_lock(&tty->winsize_mutex);
2324 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2325 mutex_unlock(&tty->winsize_mutex);
2326
2327 return err ? -EFAULT: 0;
2328 }
2329
2330 /**
2331 * tty_do_resize - resize event
2332 * @tty: tty being resized
2333 * @rows: rows (character)
2334 * @cols: cols (character)
2335 *
2336 * Update the termios variables and send the necessary signals to
2337 * peform a terminal resize correctly
2338 */
2339
2340 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2341 {
2342 struct pid *pgrp;
2343
2344 /* Lock the tty */
2345 mutex_lock(&tty->winsize_mutex);
2346 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2347 goto done;
2348
2349 /* Signal the foreground process group */
2350 pgrp = tty_get_pgrp(tty);
2351 if (pgrp)
2352 kill_pgrp(pgrp, SIGWINCH, 1);
2353 put_pid(pgrp);
2354
2355 tty->winsize = *ws;
2356 done:
2357 mutex_unlock(&tty->winsize_mutex);
2358 return 0;
2359 }
2360 EXPORT_SYMBOL(tty_do_resize);
2361
2362 /**
2363 * tiocswinsz - implement window size set ioctl
2364 * @tty; tty side of tty
2365 * @arg: user buffer for result
2366 *
2367 * Copies the user idea of the window size to the kernel. Traditionally
2368 * this is just advisory information but for the Linux console it
2369 * actually has driver level meaning and triggers a VC resize.
2370 *
2371 * Locking:
2372 * Driver dependent. The default do_resize method takes the
2373 * tty termios mutex and ctrl_lock. The console takes its own lock
2374 * then calls into the default method.
2375 */
2376
2377 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2378 {
2379 struct winsize tmp_ws;
2380 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2381 return -EFAULT;
2382
2383 if (tty->ops->resize)
2384 return tty->ops->resize(tty, &tmp_ws);
2385 else
2386 return tty_do_resize(tty, &tmp_ws);
2387 }
2388
2389 /**
2390 * tioccons - allow admin to move logical console
2391 * @file: the file to become console
2392 *
2393 * Allow the administrator to move the redirected console device
2394 *
2395 * Locking: uses redirect_lock to guard the redirect information
2396 */
2397
2398 static int tioccons(struct file *file)
2399 {
2400 if (!capable(CAP_SYS_ADMIN))
2401 return -EPERM;
2402 if (file->f_op->write == redirected_tty_write) {
2403 struct file *f;
2404 spin_lock(&redirect_lock);
2405 f = redirect;
2406 redirect = NULL;
2407 spin_unlock(&redirect_lock);
2408 if (f)
2409 fput(f);
2410 return 0;
2411 }
2412 spin_lock(&redirect_lock);
2413 if (redirect) {
2414 spin_unlock(&redirect_lock);
2415 return -EBUSY;
2416 }
2417 redirect = get_file(file);
2418 spin_unlock(&redirect_lock);
2419 return 0;
2420 }
2421
2422 /**
2423 * fionbio - non blocking ioctl
2424 * @file: file to set blocking value
2425 * @p: user parameter
2426 *
2427 * Historical tty interfaces had a blocking control ioctl before
2428 * the generic functionality existed. This piece of history is preserved
2429 * in the expected tty API of posix OS's.
2430 *
2431 * Locking: none, the open file handle ensures it won't go away.
2432 */
2433
2434 static int fionbio(struct file *file, int __user *p)
2435 {
2436 int nonblock;
2437
2438 if (get_user(nonblock, p))
2439 return -EFAULT;
2440
2441 spin_lock(&file->f_lock);
2442 if (nonblock)
2443 file->f_flags |= O_NONBLOCK;
2444 else
2445 file->f_flags &= ~O_NONBLOCK;
2446 spin_unlock(&file->f_lock);
2447 return 0;
2448 }
2449
2450 /**
2451 * tiocsctty - set controlling tty
2452 * @tty: tty structure
2453 * @arg: user argument
2454 *
2455 * This ioctl is used to manage job control. It permits a session
2456 * leader to set this tty as the controlling tty for the session.
2457 *
2458 * Locking:
2459 * Takes tty_lock() to serialize proc_set_tty() for this tty
2460 * Takes tasklist_lock internally to walk sessions
2461 * Takes ->siglock() when updating signal->tty
2462 */
2463
2464 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2465 {
2466 int ret = 0;
2467
2468 tty_lock(tty);
2469 read_lock(&tasklist_lock);
2470
2471 if (current->signal->leader && (task_session(current) == tty->session))
2472 goto unlock;
2473
2474 /*
2475 * The process must be a session leader and
2476 * not have a controlling tty already.
2477 */
2478 if (!current->signal->leader || current->signal->tty) {
2479 ret = -EPERM;
2480 goto unlock;
2481 }
2482
2483 if (tty->session) {
2484 /*
2485 * This tty is already the controlling
2486 * tty for another session group!
2487 */
2488 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2489 /*
2490 * Steal it away
2491 */
2492 session_clear_tty(tty->session);
2493 } else {
2494 ret = -EPERM;
2495 goto unlock;
2496 }
2497 }
2498
2499 /* See the comment in tty_open(). */
2500 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2501 ret = -EPERM;
2502 goto unlock;
2503 }
2504
2505 proc_set_tty(tty);
2506 unlock:
2507 read_unlock(&tasklist_lock);
2508 tty_unlock(tty);
2509 return ret;
2510 }
2511
2512 /**
2513 * tty_get_pgrp - return a ref counted pgrp pid
2514 * @tty: tty to read
2515 *
2516 * Returns a refcounted instance of the pid struct for the process
2517 * group controlling the tty.
2518 */
2519
2520 struct pid *tty_get_pgrp(struct tty_struct *tty)
2521 {
2522 unsigned long flags;
2523 struct pid *pgrp;
2524
2525 spin_lock_irqsave(&tty->ctrl_lock, flags);
2526 pgrp = get_pid(tty->pgrp);
2527 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2528
2529 return pgrp;
2530 }
2531 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2532
2533 /*
2534 * This checks not only the pgrp, but falls back on the pid if no
2535 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2536 * without this...
2537 *
2538 * The caller must hold rcu lock or the tasklist lock.
2539 */
2540 static struct pid *session_of_pgrp(struct pid *pgrp)
2541 {
2542 struct task_struct *p;
2543 struct pid *sid = NULL;
2544
2545 p = pid_task(pgrp, PIDTYPE_PGID);
2546 if (p == NULL)
2547 p = pid_task(pgrp, PIDTYPE_PID);
2548 if (p != NULL)
2549 sid = task_session(p);
2550
2551 return sid;
2552 }
2553
2554 /**
2555 * tiocgpgrp - get process group
2556 * @tty: tty passed by user
2557 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2558 * @p: returned pid
2559 *
2560 * Obtain the process group of the tty. If there is no process group
2561 * return an error.
2562 *
2563 * Locking: none. Reference to current->signal->tty is safe.
2564 */
2565
2566 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2567 {
2568 struct pid *pid;
2569 int ret;
2570 /*
2571 * (tty == real_tty) is a cheap way of
2572 * testing if the tty is NOT a master pty.
2573 */
2574 if (tty == real_tty && current->signal->tty != real_tty)
2575 return -ENOTTY;
2576 pid = tty_get_pgrp(real_tty);
2577 ret = put_user(pid_vnr(pid), p);
2578 put_pid(pid);
2579 return ret;
2580 }
2581
2582 /**
2583 * tiocspgrp - attempt to set process group
2584 * @tty: tty passed by user
2585 * @real_tty: tty side device matching tty passed by user
2586 * @p: pid pointer
2587 *
2588 * Set the process group of the tty to the session passed. Only
2589 * permitted where the tty session is our session.
2590 *
2591 * Locking: RCU, ctrl lock
2592 */
2593
2594 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2595 {
2596 struct pid *pgrp;
2597 pid_t pgrp_nr;
2598 int retval = tty_check_change(real_tty);
2599
2600 if (retval == -EIO)
2601 return -ENOTTY;
2602 if (retval)
2603 return retval;
2604 if (!current->signal->tty ||
2605 (current->signal->tty != real_tty) ||
2606 (real_tty->session != task_session(current)))
2607 return -ENOTTY;
2608 if (get_user(pgrp_nr, p))
2609 return -EFAULT;
2610 if (pgrp_nr < 0)
2611 return -EINVAL;
2612 rcu_read_lock();
2613 pgrp = find_vpid(pgrp_nr);
2614 retval = -ESRCH;
2615 if (!pgrp)
2616 goto out_unlock;
2617 retval = -EPERM;
2618 if (session_of_pgrp(pgrp) != task_session(current))
2619 goto out_unlock;
2620 retval = 0;
2621 spin_lock_irq(&tty->ctrl_lock);
2622 put_pid(real_tty->pgrp);
2623 real_tty->pgrp = get_pid(pgrp);
2624 spin_unlock_irq(&tty->ctrl_lock);
2625 out_unlock:
2626 rcu_read_unlock();
2627 return retval;
2628 }
2629
2630 /**
2631 * tiocgsid - get session id
2632 * @tty: tty passed by user
2633 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2634 * @p: pointer to returned session id
2635 *
2636 * Obtain the session id of the tty. If there is no session
2637 * return an error.
2638 *
2639 * Locking: none. Reference to current->signal->tty is safe.
2640 */
2641
2642 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2643 {
2644 /*
2645 * (tty == real_tty) is a cheap way of
2646 * testing if the tty is NOT a master pty.
2647 */
2648 if (tty == real_tty && current->signal->tty != real_tty)
2649 return -ENOTTY;
2650 if (!real_tty->session)
2651 return -ENOTTY;
2652 return put_user(pid_vnr(real_tty->session), p);
2653 }
2654
2655 /**
2656 * tiocsetd - set line discipline
2657 * @tty: tty device
2658 * @p: pointer to user data
2659 *
2660 * Set the line discipline according to user request.
2661 *
2662 * Locking: see tty_set_ldisc, this function is just a helper
2663 */
2664
2665 static int tiocsetd(struct tty_struct *tty, int __user *p)
2666 {
2667 int disc;
2668 int ret;
2669
2670 if (get_user(disc, p))
2671 return -EFAULT;
2672
2673 ret = tty_set_ldisc(tty, disc);
2674
2675 return ret;
2676 }
2677
2678 /**
2679 * tiocgetd - get line discipline
2680 * @tty: tty device
2681 * @p: pointer to user data
2682 *
2683 * Retrieves the line discipline id directly from the ldisc.
2684 *
2685 * Locking: waits for ldisc reference (in case the line discipline
2686 * is changing or the tty is being hungup)
2687 */
2688
2689 static int tiocgetd(struct tty_struct *tty, int __user *p)
2690 {
2691 struct tty_ldisc *ld;
2692 int ret;
2693
2694 ld = tty_ldisc_ref_wait(tty);
2695 if (!ld)
2696 return -EIO;
2697 ret = put_user(ld->ops->num, p);
2698 tty_ldisc_deref(ld);
2699 return ret;
2700 }
2701
2702 /**
2703 * send_break - performed time break
2704 * @tty: device to break on
2705 * @duration: timeout in mS
2706 *
2707 * Perform a timed break on hardware that lacks its own driver level
2708 * timed break functionality.
2709 *
2710 * Locking:
2711 * atomic_write_lock serializes
2712 *
2713 */
2714
2715 static int send_break(struct tty_struct *tty, unsigned int duration)
2716 {
2717 int retval;
2718
2719 if (tty->ops->break_ctl == NULL)
2720 return 0;
2721
2722 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2723 retval = tty->ops->break_ctl(tty, duration);
2724 else {
2725 /* Do the work ourselves */
2726 if (tty_write_lock(tty, 0) < 0)
2727 return -EINTR;
2728 retval = tty->ops->break_ctl(tty, -1);
2729 if (retval)
2730 goto out;
2731 if (!signal_pending(current))
2732 msleep_interruptible(duration);
2733 retval = tty->ops->break_ctl(tty, 0);
2734 out:
2735 tty_write_unlock(tty);
2736 if (signal_pending(current))
2737 retval = -EINTR;
2738 }
2739 return retval;
2740 }
2741
2742 /**
2743 * tty_tiocmget - get modem status
2744 * @tty: tty device
2745 * @file: user file pointer
2746 * @p: pointer to result
2747 *
2748 * Obtain the modem status bits from the tty driver if the feature
2749 * is supported. Return -EINVAL if it is not available.
2750 *
2751 * Locking: none (up to the driver)
2752 */
2753
2754 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2755 {
2756 int retval = -EINVAL;
2757
2758 if (tty->ops->tiocmget) {
2759 retval = tty->ops->tiocmget(tty);
2760
2761 if (retval >= 0)
2762 retval = put_user(retval, p);
2763 }
2764 return retval;
2765 }
2766
2767 /**
2768 * tty_tiocmset - set modem status
2769 * @tty: tty device
2770 * @cmd: command - clear bits, set bits or set all
2771 * @p: pointer to desired bits
2772 *
2773 * Set the modem status bits from the tty driver if the feature
2774 * is supported. Return -EINVAL if it is not available.
2775 *
2776 * Locking: none (up to the driver)
2777 */
2778
2779 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2780 unsigned __user *p)
2781 {
2782 int retval;
2783 unsigned int set, clear, val;
2784
2785 if (tty->ops->tiocmset == NULL)
2786 return -EINVAL;
2787
2788 retval = get_user(val, p);
2789 if (retval)
2790 return retval;
2791 set = clear = 0;
2792 switch (cmd) {
2793 case TIOCMBIS:
2794 set = val;
2795 break;
2796 case TIOCMBIC:
2797 clear = val;
2798 break;
2799 case TIOCMSET:
2800 set = val;
2801 clear = ~val;
2802 break;
2803 }
2804 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2806 return tty->ops->tiocmset(tty, set, clear);
2807 }
2808
2809 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2810 {
2811 int retval = -EINVAL;
2812 struct serial_icounter_struct icount;
2813 memset(&icount, 0, sizeof(icount));
2814 if (tty->ops->get_icount)
2815 retval = tty->ops->get_icount(tty, &icount);
2816 if (retval != 0)
2817 return retval;
2818 if (copy_to_user(arg, &icount, sizeof(icount)))
2819 return -EFAULT;
2820 return 0;
2821 }
2822
2823 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2824 {
2825 static DEFINE_RATELIMIT_STATE(depr_flags,
2826 DEFAULT_RATELIMIT_INTERVAL,
2827 DEFAULT_RATELIMIT_BURST);
2828 char comm[TASK_COMM_LEN];
2829 int flags;
2830
2831 if (get_user(flags, &ss->flags))
2832 return;
2833
2834 flags &= ASYNC_DEPRECATED;
2835
2836 if (flags && __ratelimit(&depr_flags))
2837 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2838 __func__, get_task_comm(comm, current), flags);
2839 }
2840
2841 /*
2842 * if pty, return the slave side (real_tty)
2843 * otherwise, return self
2844 */
2845 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2846 {
2847 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2848 tty->driver->subtype == PTY_TYPE_MASTER)
2849 tty = tty->link;
2850 return tty;
2851 }
2852
2853 /*
2854 * Split this up, as gcc can choke on it otherwise..
2855 */
2856 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2857 {
2858 struct tty_struct *tty = file_tty(file);
2859 struct tty_struct *real_tty;
2860 void __user *p = (void __user *)arg;
2861 int retval;
2862 struct tty_ldisc *ld;
2863
2864 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2865 return -EINVAL;
2866
2867 real_tty = tty_pair_get_tty(tty);
2868
2869 /*
2870 * Factor out some common prep work
2871 */
2872 switch (cmd) {
2873 case TIOCSETD:
2874 case TIOCSBRK:
2875 case TIOCCBRK:
2876 case TCSBRK:
2877 case TCSBRKP:
2878 retval = tty_check_change(tty);
2879 if (retval)
2880 return retval;
2881 if (cmd != TIOCCBRK) {
2882 tty_wait_until_sent(tty, 0);
2883 if (signal_pending(current))
2884 return -EINTR;
2885 }
2886 break;
2887 }
2888
2889 /*
2890 * Now do the stuff.
2891 */
2892 switch (cmd) {
2893 case TIOCSTI:
2894 return tiocsti(tty, p);
2895 case TIOCGWINSZ:
2896 return tiocgwinsz(real_tty, p);
2897 case TIOCSWINSZ:
2898 return tiocswinsz(real_tty, p);
2899 case TIOCCONS:
2900 return real_tty != tty ? -EINVAL : tioccons(file);
2901 case FIONBIO:
2902 return fionbio(file, p);
2903 case TIOCEXCL:
2904 set_bit(TTY_EXCLUSIVE, &tty->flags);
2905 return 0;
2906 case TIOCNXCL:
2907 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2908 return 0;
2909 case TIOCGEXCL:
2910 {
2911 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2912 return put_user(excl, (int __user *)p);
2913 }
2914 case TIOCNOTTY:
2915 if (current->signal->tty != tty)
2916 return -ENOTTY;
2917 no_tty();
2918 return 0;
2919 case TIOCSCTTY:
2920 return tiocsctty(real_tty, file, arg);
2921 case TIOCGPGRP:
2922 return tiocgpgrp(tty, real_tty, p);
2923 case TIOCSPGRP:
2924 return tiocspgrp(tty, real_tty, p);
2925 case TIOCGSID:
2926 return tiocgsid(tty, real_tty, p);
2927 case TIOCGETD:
2928 return tiocgetd(tty, p);
2929 case TIOCSETD:
2930 return tiocsetd(tty, p);
2931 case TIOCVHANGUP:
2932 if (!capable(CAP_SYS_ADMIN))
2933 return -EPERM;
2934 tty_vhangup(tty);
2935 return 0;
2936 case TIOCGDEV:
2937 {
2938 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2939 return put_user(ret, (unsigned int __user *)p);
2940 }
2941 /*
2942 * Break handling
2943 */
2944 case TIOCSBRK: /* Turn break on, unconditionally */
2945 if (tty->ops->break_ctl)
2946 return tty->ops->break_ctl(tty, -1);
2947 return 0;
2948 case TIOCCBRK: /* Turn break off, unconditionally */
2949 if (tty->ops->break_ctl)
2950 return tty->ops->break_ctl(tty, 0);
2951 return 0;
2952 case TCSBRK: /* SVID version: non-zero arg --> no break */
2953 /* non-zero arg means wait for all output data
2954 * to be sent (performed above) but don't send break.
2955 * This is used by the tcdrain() termios function.
2956 */
2957 if (!arg)
2958 return send_break(tty, 250);
2959 return 0;
2960 case TCSBRKP: /* support for POSIX tcsendbreak() */
2961 return send_break(tty, arg ? arg*100 : 250);
2962
2963 case TIOCMGET:
2964 return tty_tiocmget(tty, p);
2965 case TIOCMSET:
2966 case TIOCMBIC:
2967 case TIOCMBIS:
2968 return tty_tiocmset(tty, cmd, p);
2969 case TIOCGICOUNT:
2970 retval = tty_tiocgicount(tty, p);
2971 /* For the moment allow fall through to the old method */
2972 if (retval != -EINVAL)
2973 return retval;
2974 break;
2975 case TCFLSH:
2976 switch (arg) {
2977 case TCIFLUSH:
2978 case TCIOFLUSH:
2979 /* flush tty buffer and allow ldisc to process ioctl */
2980 tty_buffer_flush(tty, NULL);
2981 break;
2982 }
2983 break;
2984 case TIOCSSERIAL:
2985 tty_warn_deprecated_flags(p);
2986 break;
2987 }
2988 if (tty->ops->ioctl) {
2989 retval = tty->ops->ioctl(tty, cmd, arg);
2990 if (retval != -ENOIOCTLCMD)
2991 return retval;
2992 }
2993 ld = tty_ldisc_ref_wait(tty);
2994 if (!ld)
2995 return hung_up_tty_ioctl(file, cmd, arg);
2996 retval = -EINVAL;
2997 if (ld->ops->ioctl) {
2998 retval = ld->ops->ioctl(tty, file, cmd, arg);
2999 if (retval == -ENOIOCTLCMD)
3000 retval = -ENOTTY;
3001 }
3002 tty_ldisc_deref(ld);
3003 return retval;
3004 }
3005
3006 #ifdef CONFIG_COMPAT
3007 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3008 unsigned long arg)
3009 {
3010 struct tty_struct *tty = file_tty(file);
3011 struct tty_ldisc *ld;
3012 int retval = -ENOIOCTLCMD;
3013
3014 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3015 return -EINVAL;
3016
3017 if (tty->ops->compat_ioctl) {
3018 retval = tty->ops->compat_ioctl(tty, cmd, arg);
3019 if (retval != -ENOIOCTLCMD)
3020 return retval;
3021 }
3022
3023 ld = tty_ldisc_ref_wait(tty);
3024 if (!ld)
3025 return hung_up_tty_compat_ioctl(file, cmd, arg);
3026 if (ld->ops->compat_ioctl)
3027 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3028 else
3029 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3030 tty_ldisc_deref(ld);
3031
3032 return retval;
3033 }
3034 #endif
3035
3036 static int this_tty(const void *t, struct file *file, unsigned fd)
3037 {
3038 if (likely(file->f_op->read != tty_read))
3039 return 0;
3040 return file_tty(file) != t ? 0 : fd + 1;
3041 }
3042
3043 /*
3044 * This implements the "Secure Attention Key" --- the idea is to
3045 * prevent trojan horses by killing all processes associated with this
3046 * tty when the user hits the "Secure Attention Key". Required for
3047 * super-paranoid applications --- see the Orange Book for more details.
3048 *
3049 * This code could be nicer; ideally it should send a HUP, wait a few
3050 * seconds, then send a INT, and then a KILL signal. But you then
3051 * have to coordinate with the init process, since all processes associated
3052 * with the current tty must be dead before the new getty is allowed
3053 * to spawn.
3054 *
3055 * Now, if it would be correct ;-/ The current code has a nasty hole -
3056 * it doesn't catch files in flight. We may send the descriptor to ourselves
3057 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3058 *
3059 * Nasty bug: do_SAK is being called in interrupt context. This can
3060 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3061 */
3062 void __do_SAK(struct tty_struct *tty)
3063 {
3064 #ifdef TTY_SOFT_SAK
3065 tty_hangup(tty);
3066 #else
3067 struct task_struct *g, *p;
3068 struct pid *session;
3069 int i;
3070
3071 if (!tty)
3072 return;
3073 session = tty->session;
3074
3075 tty_ldisc_flush(tty);
3076
3077 tty_driver_flush_buffer(tty);
3078
3079 read_lock(&tasklist_lock);
3080 /* Kill the entire session */
3081 do_each_pid_task(session, PIDTYPE_SID, p) {
3082 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3083 task_pid_nr(p), p->comm);
3084 send_sig(SIGKILL, p, 1);
3085 } while_each_pid_task(session, PIDTYPE_SID, p);
3086
3087 /* Now kill any processes that happen to have the tty open */
3088 do_each_thread(g, p) {
3089 if (p->signal->tty == tty) {
3090 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3091 task_pid_nr(p), p->comm);
3092 send_sig(SIGKILL, p, 1);
3093 continue;
3094 }
3095 task_lock(p);
3096 i = iterate_fd(p->files, 0, this_tty, tty);
3097 if (i != 0) {
3098 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3099 task_pid_nr(p), p->comm, i - 1);
3100 force_sig(SIGKILL, p);
3101 }
3102 task_unlock(p);
3103 } while_each_thread(g, p);
3104 read_unlock(&tasklist_lock);
3105 #endif
3106 }
3107
3108 static void do_SAK_work(struct work_struct *work)
3109 {
3110 struct tty_struct *tty =
3111 container_of(work, struct tty_struct, SAK_work);
3112 __do_SAK(tty);
3113 }
3114
3115 /*
3116 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3117 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3118 * the values which we write to it will be identical to the values which it
3119 * already has. --akpm
3120 */
3121 void do_SAK(struct tty_struct *tty)
3122 {
3123 if (!tty)
3124 return;
3125 schedule_work(&tty->SAK_work);
3126 }
3127
3128 EXPORT_SYMBOL(do_SAK);
3129
3130 static int dev_match_devt(struct device *dev, const void *data)
3131 {
3132 const dev_t *devt = data;
3133 return dev->devt == *devt;
3134 }
3135
3136 /* Must put_device() after it's unused! */
3137 static struct device *tty_get_device(struct tty_struct *tty)
3138 {
3139 dev_t devt = tty_devnum(tty);
3140 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3141 }
3142
3143
3144 /**
3145 * alloc_tty_struct
3146 *
3147 * This subroutine allocates and initializes a tty structure.
3148 *
3149 * Locking: none - tty in question is not exposed at this point
3150 */
3151
3152 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3153 {
3154 struct tty_struct *tty;
3155
3156 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3157 if (!tty)
3158 return NULL;
3159
3160 kref_init(&tty->kref);
3161 tty->magic = TTY_MAGIC;
3162 tty_ldisc_init(tty);
3163 tty->session = NULL;
3164 tty->pgrp = NULL;
3165 mutex_init(&tty->legacy_mutex);
3166 mutex_init(&tty->throttle_mutex);
3167 init_rwsem(&tty->termios_rwsem);
3168 mutex_init(&tty->winsize_mutex);
3169 init_ldsem(&tty->ldisc_sem);
3170 init_waitqueue_head(&tty->write_wait);
3171 init_waitqueue_head(&tty->read_wait);
3172 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3173 mutex_init(&tty->atomic_write_lock);
3174 spin_lock_init(&tty->ctrl_lock);
3175 spin_lock_init(&tty->flow_lock);
3176 spin_lock_init(&tty->files_lock);
3177 INIT_LIST_HEAD(&tty->tty_files);
3178 INIT_WORK(&tty->SAK_work, do_SAK_work);
3179
3180 tty->driver = driver;
3181 tty->ops = driver->ops;
3182 tty->index = idx;
3183 tty_line_name(driver, idx, tty->name);
3184 tty->dev = tty_get_device(tty);
3185
3186 return tty;
3187 }
3188
3189 /**
3190 * tty_put_char - write one character to a tty
3191 * @tty: tty
3192 * @ch: character
3193 *
3194 * Write one byte to the tty using the provided put_char method
3195 * if present. Returns the number of characters successfully output.
3196 *
3197 * Note: the specific put_char operation in the driver layer may go
3198 * away soon. Don't call it directly, use this method
3199 */
3200
3201 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3202 {
3203 if (tty->ops->put_char)
3204 return tty->ops->put_char(tty, ch);
3205 return tty->ops->write(tty, &ch, 1);
3206 }
3207 EXPORT_SYMBOL_GPL(tty_put_char);
3208
3209 struct class *tty_class;
3210
3211 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3212 unsigned int index, unsigned int count)
3213 {
3214 int err;
3215
3216 /* init here, since reused cdevs cause crashes */
3217 driver->cdevs[index] = cdev_alloc();
3218 if (!driver->cdevs[index])
3219 return -ENOMEM;
3220 driver->cdevs[index]->ops = &tty_fops;
3221 driver->cdevs[index]->owner = driver->owner;
3222 err = cdev_add(driver->cdevs[index], dev, count);
3223 if (err)
3224 kobject_put(&driver->cdevs[index]->kobj);
3225 return err;
3226 }
3227
3228 /**
3229 * tty_register_device - register a tty device
3230 * @driver: the tty driver that describes the tty device
3231 * @index: the index in the tty driver for this tty device
3232 * @device: a struct device that is associated with this tty device.
3233 * This field is optional, if there is no known struct device
3234 * for this tty device it can be set to NULL safely.
3235 *
3236 * Returns a pointer to the struct device for this tty device
3237 * (or ERR_PTR(-EFOO) on error).
3238 *
3239 * This call is required to be made to register an individual tty device
3240 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3241 * that bit is not set, this function should not be called by a tty
3242 * driver.
3243 *
3244 * Locking: ??
3245 */
3246
3247 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3248 struct device *device)
3249 {
3250 return tty_register_device_attr(driver, index, device, NULL, NULL);
3251 }
3252 EXPORT_SYMBOL(tty_register_device);
3253
3254 static void tty_device_create_release(struct device *dev)
3255 {
3256 dev_dbg(dev, "releasing...\n");
3257 kfree(dev);
3258 }
3259
3260 /**
3261 * tty_register_device_attr - register a tty device
3262 * @driver: the tty driver that describes the tty device
3263 * @index: the index in the tty driver for this tty device
3264 * @device: a struct device that is associated with this tty device.
3265 * This field is optional, if there is no known struct device
3266 * for this tty device it can be set to NULL safely.
3267 * @drvdata: Driver data to be set to device.
3268 * @attr_grp: Attribute group to be set on device.
3269 *
3270 * Returns a pointer to the struct device for this tty device
3271 * (or ERR_PTR(-EFOO) on error).
3272 *
3273 * This call is required to be made to register an individual tty device
3274 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3275 * that bit is not set, this function should not be called by a tty
3276 * driver.
3277 *
3278 * Locking: ??
3279 */
3280 struct device *tty_register_device_attr(struct tty_driver *driver,
3281 unsigned index, struct device *device,
3282 void *drvdata,
3283 const struct attribute_group **attr_grp)
3284 {
3285 char name[64];
3286 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3287 struct device *dev = NULL;
3288 int retval = -ENODEV;
3289 bool cdev = false;
3290
3291 if (index >= driver->num) {
3292 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3293 driver->name, index);
3294 return ERR_PTR(-EINVAL);
3295 }
3296
3297 if (driver->type == TTY_DRIVER_TYPE_PTY)
3298 pty_line_name(driver, index, name);
3299 else
3300 tty_line_name(driver, index, name);
3301
3302 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3303 retval = tty_cdev_add(driver, devt, index, 1);
3304 if (retval)
3305 goto error;
3306 cdev = true;
3307 }
3308
3309 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3310 if (!dev) {
3311 retval = -ENOMEM;
3312 goto error;
3313 }
3314
3315 dev->devt = devt;
3316 dev->class = tty_class;
3317 dev->parent = device;
3318 dev->release = tty_device_create_release;
3319 dev_set_name(dev, "%s", name);
3320 dev->groups = attr_grp;
3321 dev_set_drvdata(dev, drvdata);
3322
3323 retval = device_register(dev);
3324 if (retval)
3325 goto error;
3326
3327 return dev;
3328
3329 error:
3330 put_device(dev);
3331 if (cdev) {
3332 cdev_del(driver->cdevs[index]);
3333 driver->cdevs[index] = NULL;
3334 }
3335 return ERR_PTR(retval);
3336 }
3337 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3338
3339 /**
3340 * tty_unregister_device - unregister a tty device
3341 * @driver: the tty driver that describes the tty device
3342 * @index: the index in the tty driver for this tty device
3343 *
3344 * If a tty device is registered with a call to tty_register_device() then
3345 * this function must be called when the tty device is gone.
3346 *
3347 * Locking: ??
3348 */
3349
3350 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3351 {
3352 device_destroy(tty_class,
3353 MKDEV(driver->major, driver->minor_start) + index);
3354 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3355 cdev_del(driver->cdevs[index]);
3356 driver->cdevs[index] = NULL;
3357 }
3358 }
3359 EXPORT_SYMBOL(tty_unregister_device);
3360
3361 /**
3362 * __tty_alloc_driver -- allocate tty driver
3363 * @lines: count of lines this driver can handle at most
3364 * @owner: module which is repsonsible for this driver
3365 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3366 *
3367 * This should not be called directly, some of the provided macros should be
3368 * used instead. Use IS_ERR and friends on @retval.
3369 */
3370 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3371 unsigned long flags)
3372 {
3373 struct tty_driver *driver;
3374 unsigned int cdevs = 1;
3375 int err;
3376
3377 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3378 return ERR_PTR(-EINVAL);
3379
3380 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3381 if (!driver)
3382 return ERR_PTR(-ENOMEM);
3383
3384 kref_init(&driver->kref);
3385 driver->magic = TTY_DRIVER_MAGIC;
3386 driver->num = lines;
3387 driver->owner = owner;
3388 driver->flags = flags;
3389
3390 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3391 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3392 GFP_KERNEL);
3393 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3394 GFP_KERNEL);
3395 if (!driver->ttys || !driver->termios) {
3396 err = -ENOMEM;
3397 goto err_free_all;
3398 }
3399 }
3400
3401 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3402 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3403 GFP_KERNEL);
3404 if (!driver->ports) {
3405 err = -ENOMEM;
3406 goto err_free_all;
3407 }
3408 cdevs = lines;
3409 }
3410
3411 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3412 if (!driver->cdevs) {
3413 err = -ENOMEM;
3414 goto err_free_all;
3415 }
3416
3417 return driver;
3418 err_free_all:
3419 kfree(driver->ports);
3420 kfree(driver->ttys);
3421 kfree(driver->termios);
3422 kfree(driver->cdevs);
3423 kfree(driver);
3424 return ERR_PTR(err);
3425 }
3426 EXPORT_SYMBOL(__tty_alloc_driver);
3427
3428 static void destruct_tty_driver(struct kref *kref)
3429 {
3430 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3431 int i;
3432 struct ktermios *tp;
3433
3434 if (driver->flags & TTY_DRIVER_INSTALLED) {
3435 /*
3436 * Free the termios and termios_locked structures because
3437 * we don't want to get memory leaks when modular tty
3438 * drivers are removed from the kernel.
3439 */
3440 for (i = 0; i < driver->num; i++) {
3441 tp = driver->termios[i];
3442 if (tp) {
3443 driver->termios[i] = NULL;
3444 kfree(tp);
3445 }
3446 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3447 tty_unregister_device(driver, i);
3448 }
3449 proc_tty_unregister_driver(driver);
3450 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3451 cdev_del(driver->cdevs[0]);
3452 }
3453 kfree(driver->cdevs);
3454 kfree(driver->ports);
3455 kfree(driver->termios);
3456 kfree(driver->ttys);
3457 kfree(driver);
3458 }
3459
3460 void tty_driver_kref_put(struct tty_driver *driver)
3461 {
3462 kref_put(&driver->kref, destruct_tty_driver);
3463 }
3464 EXPORT_SYMBOL(tty_driver_kref_put);
3465
3466 void tty_set_operations(struct tty_driver *driver,
3467 const struct tty_operations *op)
3468 {
3469 driver->ops = op;
3470 };
3471 EXPORT_SYMBOL(tty_set_operations);
3472
3473 void put_tty_driver(struct tty_driver *d)
3474 {
3475 tty_driver_kref_put(d);
3476 }
3477 EXPORT_SYMBOL(put_tty_driver);
3478
3479 /*
3480 * Called by a tty driver to register itself.
3481 */
3482 int tty_register_driver(struct tty_driver *driver)
3483 {
3484 int error;
3485 int i;
3486 dev_t dev;
3487 struct device *d;
3488
3489 if (!driver->major) {
3490 error = alloc_chrdev_region(&dev, driver->minor_start,
3491 driver->num, driver->name);
3492 if (!error) {
3493 driver->major = MAJOR(dev);
3494 driver->minor_start = MINOR(dev);
3495 }
3496 } else {
3497 dev = MKDEV(driver->major, driver->minor_start);
3498 error = register_chrdev_region(dev, driver->num, driver->name);
3499 }
3500 if (error < 0)
3501 goto err;
3502
3503 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3504 error = tty_cdev_add(driver, dev, 0, driver->num);
3505 if (error)
3506 goto err_unreg_char;
3507 }
3508
3509 mutex_lock(&tty_mutex);
3510 list_add(&driver->tty_drivers, &tty_drivers);
3511 mutex_unlock(&tty_mutex);
3512
3513 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3514 for (i = 0; i < driver->num; i++) {
3515 d = tty_register_device(driver, i, NULL);
3516 if (IS_ERR(d)) {
3517 error = PTR_ERR(d);
3518 goto err_unreg_devs;
3519 }
3520 }
3521 }
3522 proc_tty_register_driver(driver);
3523 driver->flags |= TTY_DRIVER_INSTALLED;
3524 return 0;
3525
3526 err_unreg_devs:
3527 for (i--; i >= 0; i--)
3528 tty_unregister_device(driver, i);
3529
3530 mutex_lock(&tty_mutex);
3531 list_del(&driver->tty_drivers);
3532 mutex_unlock(&tty_mutex);
3533
3534 err_unreg_char:
3535 unregister_chrdev_region(dev, driver->num);
3536 err:
3537 return error;
3538 }
3539 EXPORT_SYMBOL(tty_register_driver);
3540
3541 /*
3542 * Called by a tty driver to unregister itself.
3543 */
3544 int tty_unregister_driver(struct tty_driver *driver)
3545 {
3546 #if 0
3547 /* FIXME */
3548 if (driver->refcount)
3549 return -EBUSY;
3550 #endif
3551 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3552 driver->num);
3553 mutex_lock(&tty_mutex);
3554 list_del(&driver->tty_drivers);
3555 mutex_unlock(&tty_mutex);
3556 return 0;
3557 }
3558
3559 EXPORT_SYMBOL(tty_unregister_driver);
3560
3561 dev_t tty_devnum(struct tty_struct *tty)
3562 {
3563 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3564 }
3565 EXPORT_SYMBOL(tty_devnum);
3566
3567 void tty_default_fops(struct file_operations *fops)
3568 {
3569 *fops = tty_fops;
3570 }
3571
3572 /*
3573 * Initialize the console device. This is called *early*, so
3574 * we can't necessarily depend on lots of kernel help here.
3575 * Just do some early initializations, and do the complex setup
3576 * later.
3577 */
3578 void __init console_init(void)
3579 {
3580 initcall_t *call;
3581
3582 /* Setup the default TTY line discipline. */
3583 n_tty_init();
3584
3585 /*
3586 * set up the console device so that later boot sequences can
3587 * inform about problems etc..
3588 */
3589 call = __con_initcall_start;
3590 while (call < __con_initcall_end) {
3591 (*call)();
3592 call++;
3593 }
3594 }
3595
3596 static char *tty_devnode(struct device *dev, umode_t *mode)
3597 {
3598 if (!mode)
3599 return NULL;
3600 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3601 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3602 *mode = 0666;
3603 return NULL;
3604 }
3605
3606 static int __init tty_class_init(void)
3607 {
3608 tty_class = class_create(THIS_MODULE, "tty");
3609 if (IS_ERR(tty_class))
3610 return PTR_ERR(tty_class);
3611 tty_class->devnode = tty_devnode;
3612 return 0;
3613 }
3614
3615 postcore_initcall(tty_class_init);
3616
3617 /* 3/2004 jmc: why do these devices exist? */
3618 static struct cdev tty_cdev, console_cdev;
3619
3620 static ssize_t show_cons_active(struct device *dev,
3621 struct device_attribute *attr, char *buf)
3622 {
3623 struct console *cs[16];
3624 int i = 0;
3625 struct console *c;
3626 ssize_t count = 0;
3627
3628 console_lock();
3629 for_each_console(c) {
3630 if (!c->device)
3631 continue;
3632 if (!c->write)
3633 continue;
3634 if ((c->flags & CON_ENABLED) == 0)
3635 continue;
3636 cs[i++] = c;
3637 if (i >= ARRAY_SIZE(cs))
3638 break;
3639 }
3640 while (i--) {
3641 int index = cs[i]->index;
3642 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3643
3644 /* don't resolve tty0 as some programs depend on it */
3645 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3646 count += tty_line_name(drv, index, buf + count);
3647 else
3648 count += sprintf(buf + count, "%s%d",
3649 cs[i]->name, cs[i]->index);
3650
3651 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3652 }
3653 console_unlock();
3654
3655 return count;
3656 }
3657 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3658
3659 static struct attribute *cons_dev_attrs[] = {
3660 &dev_attr_active.attr,
3661 NULL
3662 };
3663
3664 ATTRIBUTE_GROUPS(cons_dev);
3665
3666 static struct device *consdev;
3667
3668 void console_sysfs_notify(void)
3669 {
3670 if (consdev)
3671 sysfs_notify(&consdev->kobj, NULL, "active");
3672 }
3673
3674 /*
3675 * Ok, now we can initialize the rest of the tty devices and can count
3676 * on memory allocations, interrupts etc..
3677 */
3678 int __init tty_init(void)
3679 {
3680 cdev_init(&tty_cdev, &tty_fops);
3681 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3682 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3683 panic("Couldn't register /dev/tty driver\n");
3684 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3685
3686 cdev_init(&console_cdev, &console_fops);
3687 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3688 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3689 panic("Couldn't register /dev/console driver\n");
3690 consdev = device_create_with_groups(tty_class, NULL,
3691 MKDEV(TTYAUX_MAJOR, 1), NULL,
3692 cons_dev_groups, "console");
3693 if (IS_ERR(consdev))
3694 consdev = NULL;
3695
3696 #ifdef CONFIG_VT
3697 vty_init(&console_fops);
3698 #endif
3699 return 0;
3700 }
3701
This page took 0.104388 seconds and 6 git commands to generate.