usb: dwc2: Move register save and restore functions
[deliverable/linux.git] / drivers / usb / dwc2 / hcd.c
1 /*
2 * hcd.c - DesignWare HS OTG Controller host-mode routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * This file contains the core HCD code, and implements the Linux hc_driver
39 * API
40 */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53
54 #include "core.h"
55 #include "hcd.h"
56
57 /**
58 * dwc2_dump_channel_info() - Prints the state of a host channel
59 *
60 * @hsotg: Programming view of DWC_otg controller
61 * @chan: Pointer to the channel to dump
62 *
63 * Must be called with interrupt disabled and spinlock held
64 *
65 * NOTE: This function will be removed once the peripheral controller code
66 * is integrated and the driver is stable
67 */
68 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
69 struct dwc2_host_chan *chan)
70 {
71 #ifdef VERBOSE_DEBUG
72 int num_channels = hsotg->core_params->host_channels;
73 struct dwc2_qh *qh;
74 u32 hcchar;
75 u32 hcsplt;
76 u32 hctsiz;
77 u32 hc_dma;
78 int i;
79
80 if (chan == NULL)
81 return;
82
83 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
84 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
85 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
86 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
87
88 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
89 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
90 hcchar, hcsplt);
91 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
92 hctsiz, hc_dma);
93 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
94 chan->dev_addr, chan->ep_num, chan->ep_is_in);
95 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
96 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
97 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
98 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
99 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
100 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
101 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
102 (unsigned long)chan->xfer_dma);
103 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
104 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
105 dev_dbg(hsotg->dev, " NP inactive sched:\n");
106 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
107 qh_list_entry)
108 dev_dbg(hsotg->dev, " %p\n", qh);
109 dev_dbg(hsotg->dev, " NP active sched:\n");
110 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
111 qh_list_entry)
112 dev_dbg(hsotg->dev, " %p\n", qh);
113 dev_dbg(hsotg->dev, " Channels:\n");
114 for (i = 0; i < num_channels; i++) {
115 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
116
117 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
118 }
119 #endif /* VERBOSE_DEBUG */
120 }
121
122 /*
123 * Processes all the URBs in a single list of QHs. Completes them with
124 * -ETIMEDOUT and frees the QTD.
125 *
126 * Must be called with interrupt disabled and spinlock held
127 */
128 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
129 struct list_head *qh_list)
130 {
131 struct dwc2_qh *qh, *qh_tmp;
132 struct dwc2_qtd *qtd, *qtd_tmp;
133
134 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
135 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
136 qtd_list_entry) {
137 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
138 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
139 }
140 }
141 }
142
143 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
144 struct list_head *qh_list)
145 {
146 struct dwc2_qtd *qtd, *qtd_tmp;
147 struct dwc2_qh *qh, *qh_tmp;
148 unsigned long flags;
149
150 if (!qh_list->next)
151 /* The list hasn't been initialized yet */
152 return;
153
154 spin_lock_irqsave(&hsotg->lock, flags);
155
156 /* Ensure there are no QTDs or URBs left */
157 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
158
159 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
160 dwc2_hcd_qh_unlink(hsotg, qh);
161
162 /* Free each QTD in the QH's QTD list */
163 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
164 qtd_list_entry)
165 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
166
167 if (qh->channel && qh->channel->qh == qh)
168 qh->channel->qh = NULL;
169
170 spin_unlock_irqrestore(&hsotg->lock, flags);
171 dwc2_hcd_qh_free(hsotg, qh);
172 spin_lock_irqsave(&hsotg->lock, flags);
173 }
174
175 spin_unlock_irqrestore(&hsotg->lock, flags);
176 }
177
178 /*
179 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
180 * and periodic schedules. The QTD associated with each URB is removed from
181 * the schedule and freed. This function may be called when a disconnect is
182 * detected or when the HCD is being stopped.
183 *
184 * Must be called with interrupt disabled and spinlock held
185 */
186 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
187 {
188 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
189 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
190 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
191 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
192 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
193 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
194 }
195
196 /**
197 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
198 *
199 * @hsotg: Pointer to struct dwc2_hsotg
200 */
201 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
202 {
203 u32 hprt0;
204
205 if (hsotg->op_state == OTG_STATE_B_HOST) {
206 /*
207 * Reset the port. During a HNP mode switch the reset
208 * needs to occur within 1ms and have a duration of at
209 * least 50ms.
210 */
211 hprt0 = dwc2_read_hprt0(hsotg);
212 hprt0 |= HPRT0_RST;
213 dwc2_writel(hprt0, hsotg->regs + HPRT0);
214 }
215
216 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
217 msecs_to_jiffies(50));
218 }
219
220 /* Must be called with interrupt disabled and spinlock held */
221 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
222 {
223 int num_channels = hsotg->core_params->host_channels;
224 struct dwc2_host_chan *channel;
225 u32 hcchar;
226 int i;
227
228 if (hsotg->core_params->dma_enable <= 0) {
229 /* Flush out any channel requests in slave mode */
230 for (i = 0; i < num_channels; i++) {
231 channel = hsotg->hc_ptr_array[i];
232 if (!list_empty(&channel->hc_list_entry))
233 continue;
234 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
235 if (hcchar & HCCHAR_CHENA) {
236 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
237 hcchar |= HCCHAR_CHDIS;
238 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
239 }
240 }
241 }
242
243 for (i = 0; i < num_channels; i++) {
244 channel = hsotg->hc_ptr_array[i];
245 if (!list_empty(&channel->hc_list_entry))
246 continue;
247 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
248 if (hcchar & HCCHAR_CHENA) {
249 /* Halt the channel */
250 hcchar |= HCCHAR_CHDIS;
251 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
252 }
253
254 dwc2_hc_cleanup(hsotg, channel);
255 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
256 /*
257 * Added for Descriptor DMA to prevent channel double cleanup in
258 * release_channel_ddma(), which is called from ep_disable when
259 * device disconnects
260 */
261 channel->qh = NULL;
262 }
263 /* All channels have been freed, mark them available */
264 if (hsotg->core_params->uframe_sched > 0) {
265 hsotg->available_host_channels =
266 hsotg->core_params->host_channels;
267 } else {
268 hsotg->non_periodic_channels = 0;
269 hsotg->periodic_channels = 0;
270 }
271 }
272
273 /**
274 * dwc2_hcd_connect() - Handles connect of the HCD
275 *
276 * @hsotg: Pointer to struct dwc2_hsotg
277 *
278 * Must be called with interrupt disabled and spinlock held
279 */
280 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
281 {
282 if (hsotg->lx_state != DWC2_L0)
283 usb_hcd_resume_root_hub(hsotg->priv);
284
285 hsotg->flags.b.port_connect_status_change = 1;
286 hsotg->flags.b.port_connect_status = 1;
287 }
288
289 /**
290 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
291 *
292 * @hsotg: Pointer to struct dwc2_hsotg
293 * @force: If true, we won't try to reconnect even if we see device connected.
294 *
295 * Must be called with interrupt disabled and spinlock held
296 */
297 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
298 {
299 u32 intr;
300 u32 hprt0;
301
302 /* Set status flags for the hub driver */
303 hsotg->flags.b.port_connect_status_change = 1;
304 hsotg->flags.b.port_connect_status = 0;
305
306 /*
307 * Shutdown any transfers in process by clearing the Tx FIFO Empty
308 * interrupt mask and status bits and disabling subsequent host
309 * channel interrupts.
310 */
311 intr = dwc2_readl(hsotg->regs + GINTMSK);
312 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
313 dwc2_writel(intr, hsotg->regs + GINTMSK);
314 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
315 dwc2_writel(intr, hsotg->regs + GINTSTS);
316
317 /*
318 * Turn off the vbus power only if the core has transitioned to device
319 * mode. If still in host mode, need to keep power on to detect a
320 * reconnection.
321 */
322 if (dwc2_is_device_mode(hsotg)) {
323 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
324 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
325 dwc2_writel(0, hsotg->regs + HPRT0);
326 }
327
328 dwc2_disable_host_interrupts(hsotg);
329 }
330
331 /* Respond with an error status to all URBs in the schedule */
332 dwc2_kill_all_urbs(hsotg);
333
334 if (dwc2_is_host_mode(hsotg))
335 /* Clean up any host channels that were in use */
336 dwc2_hcd_cleanup_channels(hsotg);
337
338 dwc2_host_disconnect(hsotg);
339
340 /*
341 * Add an extra check here to see if we're actually connected but
342 * we don't have a detection interrupt pending. This can happen if:
343 * 1. hardware sees connect
344 * 2. hardware sees disconnect
345 * 3. hardware sees connect
346 * 4. dwc2_port_intr() - clears connect interrupt
347 * 5. dwc2_handle_common_intr() - calls here
348 *
349 * Without the extra check here we will end calling disconnect
350 * and won't get any future interrupts to handle the connect.
351 */
352 if (!force) {
353 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
354 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
355 dwc2_hcd_connect(hsotg);
356 }
357 }
358
359 /**
360 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
361 *
362 * @hsotg: Pointer to struct dwc2_hsotg
363 */
364 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
365 {
366 if (hsotg->bus_suspended) {
367 hsotg->flags.b.port_suspend_change = 1;
368 usb_hcd_resume_root_hub(hsotg->priv);
369 }
370
371 if (hsotg->lx_state == DWC2_L1)
372 hsotg->flags.b.port_l1_change = 1;
373 }
374
375 /**
376 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
377 *
378 * @hsotg: Pointer to struct dwc2_hsotg
379 *
380 * Must be called with interrupt disabled and spinlock held
381 */
382 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
383 {
384 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
385
386 /*
387 * The root hub should be disconnected before this function is called.
388 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
389 * and the QH lists (via ..._hcd_endpoint_disable).
390 */
391
392 /* Turn off all host-specific interrupts */
393 dwc2_disable_host_interrupts(hsotg);
394
395 /* Turn off the vbus power */
396 dev_dbg(hsotg->dev, "PortPower off\n");
397 dwc2_writel(0, hsotg->regs + HPRT0);
398 }
399
400 /* Caller must hold driver lock */
401 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
402 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
403 struct dwc2_qtd *qtd)
404 {
405 u32 intr_mask;
406 int retval;
407 int dev_speed;
408
409 if (!hsotg->flags.b.port_connect_status) {
410 /* No longer connected */
411 dev_err(hsotg->dev, "Not connected\n");
412 return -ENODEV;
413 }
414
415 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
416
417 /* Some configurations cannot support LS traffic on a FS root port */
418 if ((dev_speed == USB_SPEED_LOW) &&
419 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
420 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
421 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
422 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
423
424 if (prtspd == HPRT0_SPD_FULL_SPEED)
425 return -ENODEV;
426 }
427
428 if (!qtd)
429 return -EINVAL;
430
431 dwc2_hcd_qtd_init(qtd, urb);
432 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
433 if (retval) {
434 dev_err(hsotg->dev,
435 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
436 retval);
437 return retval;
438 }
439
440 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
441 if (!(intr_mask & GINTSTS_SOF)) {
442 enum dwc2_transaction_type tr_type;
443
444 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
445 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
446 /*
447 * Do not schedule SG transactions until qtd has
448 * URB_GIVEBACK_ASAP set
449 */
450 return 0;
451
452 tr_type = dwc2_hcd_select_transactions(hsotg);
453 if (tr_type != DWC2_TRANSACTION_NONE)
454 dwc2_hcd_queue_transactions(hsotg, tr_type);
455 }
456
457 return 0;
458 }
459
460 /* Must be called with interrupt disabled and spinlock held */
461 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
462 struct dwc2_hcd_urb *urb)
463 {
464 struct dwc2_qh *qh;
465 struct dwc2_qtd *urb_qtd;
466
467 urb_qtd = urb->qtd;
468 if (!urb_qtd) {
469 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
470 return -EINVAL;
471 }
472
473 qh = urb_qtd->qh;
474 if (!qh) {
475 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
476 return -EINVAL;
477 }
478
479 urb->priv = NULL;
480
481 if (urb_qtd->in_process && qh->channel) {
482 dwc2_dump_channel_info(hsotg, qh->channel);
483
484 /* The QTD is in process (it has been assigned to a channel) */
485 if (hsotg->flags.b.port_connect_status)
486 /*
487 * If still connected (i.e. in host mode), halt the
488 * channel so it can be used for other transfers. If
489 * no longer connected, the host registers can't be
490 * written to halt the channel since the core is in
491 * device mode.
492 */
493 dwc2_hc_halt(hsotg, qh->channel,
494 DWC2_HC_XFER_URB_DEQUEUE);
495 }
496
497 /*
498 * Free the QTD and clean up the associated QH. Leave the QH in the
499 * schedule if it has any remaining QTDs.
500 */
501 if (hsotg->core_params->dma_desc_enable <= 0) {
502 u8 in_process = urb_qtd->in_process;
503
504 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
505 if (in_process) {
506 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
507 qh->channel = NULL;
508 } else if (list_empty(&qh->qtd_list)) {
509 dwc2_hcd_qh_unlink(hsotg, qh);
510 }
511 } else {
512 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
513 }
514
515 return 0;
516 }
517
518 /* Must NOT be called with interrupt disabled or spinlock held */
519 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
520 struct usb_host_endpoint *ep, int retry)
521 {
522 struct dwc2_qtd *qtd, *qtd_tmp;
523 struct dwc2_qh *qh;
524 unsigned long flags;
525 int rc;
526
527 spin_lock_irqsave(&hsotg->lock, flags);
528
529 qh = ep->hcpriv;
530 if (!qh) {
531 rc = -EINVAL;
532 goto err;
533 }
534
535 while (!list_empty(&qh->qtd_list) && retry--) {
536 if (retry == 0) {
537 dev_err(hsotg->dev,
538 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
539 rc = -EBUSY;
540 goto err;
541 }
542
543 spin_unlock_irqrestore(&hsotg->lock, flags);
544 usleep_range(20000, 40000);
545 spin_lock_irqsave(&hsotg->lock, flags);
546 qh = ep->hcpriv;
547 if (!qh) {
548 rc = -EINVAL;
549 goto err;
550 }
551 }
552
553 dwc2_hcd_qh_unlink(hsotg, qh);
554
555 /* Free each QTD in the QH's QTD list */
556 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
557 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
558
559 ep->hcpriv = NULL;
560
561 if (qh->channel && qh->channel->qh == qh)
562 qh->channel->qh = NULL;
563
564 spin_unlock_irqrestore(&hsotg->lock, flags);
565
566 dwc2_hcd_qh_free(hsotg, qh);
567
568 return 0;
569
570 err:
571 ep->hcpriv = NULL;
572 spin_unlock_irqrestore(&hsotg->lock, flags);
573
574 return rc;
575 }
576
577 /* Must be called with interrupt disabled and spinlock held */
578 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
579 struct usb_host_endpoint *ep)
580 {
581 struct dwc2_qh *qh = ep->hcpriv;
582
583 if (!qh)
584 return -EINVAL;
585
586 qh->data_toggle = DWC2_HC_PID_DATA0;
587
588 return 0;
589 }
590
591 /*
592 * Initializes dynamic portions of the DWC_otg HCD state
593 *
594 * Must be called with interrupt disabled and spinlock held
595 */
596 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
597 {
598 struct dwc2_host_chan *chan, *chan_tmp;
599 int num_channels;
600 int i;
601
602 hsotg->flags.d32 = 0;
603 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
604
605 if (hsotg->core_params->uframe_sched > 0) {
606 hsotg->available_host_channels =
607 hsotg->core_params->host_channels;
608 } else {
609 hsotg->non_periodic_channels = 0;
610 hsotg->periodic_channels = 0;
611 }
612
613 /*
614 * Put all channels in the free channel list and clean up channel
615 * states
616 */
617 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
618 hc_list_entry)
619 list_del_init(&chan->hc_list_entry);
620
621 num_channels = hsotg->core_params->host_channels;
622 for (i = 0; i < num_channels; i++) {
623 chan = hsotg->hc_ptr_array[i];
624 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
625 dwc2_hc_cleanup(hsotg, chan);
626 }
627
628 /* Initialize the DWC core for host mode operation */
629 dwc2_core_host_init(hsotg);
630 }
631
632 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
633 struct dwc2_host_chan *chan,
634 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
635 {
636 int hub_addr, hub_port;
637
638 chan->do_split = 1;
639 chan->xact_pos = qtd->isoc_split_pos;
640 chan->complete_split = qtd->complete_split;
641 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
642 chan->hub_addr = (u8)hub_addr;
643 chan->hub_port = (u8)hub_port;
644 }
645
646 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
647 struct dwc2_host_chan *chan,
648 struct dwc2_qtd *qtd)
649 {
650 struct dwc2_hcd_urb *urb = qtd->urb;
651 struct dwc2_hcd_iso_packet_desc *frame_desc;
652
653 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
654 case USB_ENDPOINT_XFER_CONTROL:
655 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
656
657 switch (qtd->control_phase) {
658 case DWC2_CONTROL_SETUP:
659 dev_vdbg(hsotg->dev, " Control setup transaction\n");
660 chan->do_ping = 0;
661 chan->ep_is_in = 0;
662 chan->data_pid_start = DWC2_HC_PID_SETUP;
663 if (hsotg->core_params->dma_enable > 0)
664 chan->xfer_dma = urb->setup_dma;
665 else
666 chan->xfer_buf = urb->setup_packet;
667 chan->xfer_len = 8;
668 break;
669
670 case DWC2_CONTROL_DATA:
671 dev_vdbg(hsotg->dev, " Control data transaction\n");
672 chan->data_pid_start = qtd->data_toggle;
673 break;
674
675 case DWC2_CONTROL_STATUS:
676 /*
677 * Direction is opposite of data direction or IN if no
678 * data
679 */
680 dev_vdbg(hsotg->dev, " Control status transaction\n");
681 if (urb->length == 0)
682 chan->ep_is_in = 1;
683 else
684 chan->ep_is_in =
685 dwc2_hcd_is_pipe_out(&urb->pipe_info);
686 if (chan->ep_is_in)
687 chan->do_ping = 0;
688 chan->data_pid_start = DWC2_HC_PID_DATA1;
689 chan->xfer_len = 0;
690 if (hsotg->core_params->dma_enable > 0)
691 chan->xfer_dma = hsotg->status_buf_dma;
692 else
693 chan->xfer_buf = hsotg->status_buf;
694 break;
695 }
696 break;
697
698 case USB_ENDPOINT_XFER_BULK:
699 chan->ep_type = USB_ENDPOINT_XFER_BULK;
700 break;
701
702 case USB_ENDPOINT_XFER_INT:
703 chan->ep_type = USB_ENDPOINT_XFER_INT;
704 break;
705
706 case USB_ENDPOINT_XFER_ISOC:
707 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
708 if (hsotg->core_params->dma_desc_enable > 0)
709 break;
710
711 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
712 frame_desc->status = 0;
713
714 if (hsotg->core_params->dma_enable > 0) {
715 chan->xfer_dma = urb->dma;
716 chan->xfer_dma += frame_desc->offset +
717 qtd->isoc_split_offset;
718 } else {
719 chan->xfer_buf = urb->buf;
720 chan->xfer_buf += frame_desc->offset +
721 qtd->isoc_split_offset;
722 }
723
724 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
725
726 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
727 if (chan->xfer_len <= 188)
728 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
729 else
730 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
731 }
732 break;
733 }
734 }
735
736 #define DWC2_USB_DMA_ALIGN 4
737
738 struct dma_aligned_buffer {
739 void *kmalloc_ptr;
740 void *old_xfer_buffer;
741 u8 data[0];
742 };
743
744 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
745 {
746 struct dma_aligned_buffer *temp;
747
748 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
749 return;
750
751 temp = container_of(urb->transfer_buffer,
752 struct dma_aligned_buffer, data);
753
754 if (usb_urb_dir_in(urb))
755 memcpy(temp->old_xfer_buffer, temp->data,
756 urb->transfer_buffer_length);
757 urb->transfer_buffer = temp->old_xfer_buffer;
758 kfree(temp->kmalloc_ptr);
759
760 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
761 }
762
763 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
764 {
765 struct dma_aligned_buffer *temp, *kmalloc_ptr;
766 size_t kmalloc_size;
767
768 if (urb->num_sgs || urb->sg ||
769 urb->transfer_buffer_length == 0 ||
770 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
771 return 0;
772
773 /* Allocate a buffer with enough padding for alignment */
774 kmalloc_size = urb->transfer_buffer_length +
775 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
776
777 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
778 if (!kmalloc_ptr)
779 return -ENOMEM;
780
781 /* Position our struct dma_aligned_buffer such that data is aligned */
782 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
783 temp->kmalloc_ptr = kmalloc_ptr;
784 temp->old_xfer_buffer = urb->transfer_buffer;
785 if (usb_urb_dir_out(urb))
786 memcpy(temp->data, urb->transfer_buffer,
787 urb->transfer_buffer_length);
788 urb->transfer_buffer = temp->data;
789
790 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
791
792 return 0;
793 }
794
795 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
796 gfp_t mem_flags)
797 {
798 int ret;
799
800 /* We assume setup_dma is always aligned; warn if not */
801 WARN_ON_ONCE(urb->setup_dma &&
802 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
803
804 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
805 if (ret)
806 return ret;
807
808 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
809 if (ret)
810 dwc2_free_dma_aligned_buffer(urb);
811
812 return ret;
813 }
814
815 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
816 {
817 usb_hcd_unmap_urb_for_dma(hcd, urb);
818 dwc2_free_dma_aligned_buffer(urb);
819 }
820
821 /**
822 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
823 * channel and initializes the host channel to perform the transactions. The
824 * host channel is removed from the free list.
825 *
826 * @hsotg: The HCD state structure
827 * @qh: Transactions from the first QTD for this QH are selected and assigned
828 * to a free host channel
829 */
830 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
831 {
832 struct dwc2_host_chan *chan;
833 struct dwc2_hcd_urb *urb;
834 struct dwc2_qtd *qtd;
835
836 if (dbg_qh(qh))
837 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
838
839 if (list_empty(&qh->qtd_list)) {
840 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
841 return -ENOMEM;
842 }
843
844 if (list_empty(&hsotg->free_hc_list)) {
845 dev_dbg(hsotg->dev, "No free channel to assign\n");
846 return -ENOMEM;
847 }
848
849 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
850 hc_list_entry);
851
852 /* Remove host channel from free list */
853 list_del_init(&chan->hc_list_entry);
854
855 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
856 urb = qtd->urb;
857 qh->channel = chan;
858 qtd->in_process = 1;
859
860 /*
861 * Use usb_pipedevice to determine device address. This address is
862 * 0 before the SET_ADDRESS command and the correct address afterward.
863 */
864 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
865 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
866 chan->speed = qh->dev_speed;
867 chan->max_packet = dwc2_max_packet(qh->maxp);
868
869 chan->xfer_started = 0;
870 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
871 chan->error_state = (qtd->error_count > 0);
872 chan->halt_on_queue = 0;
873 chan->halt_pending = 0;
874 chan->requests = 0;
875
876 /*
877 * The following values may be modified in the transfer type section
878 * below. The xfer_len value may be reduced when the transfer is
879 * started to accommodate the max widths of the XferSize and PktCnt
880 * fields in the HCTSIZn register.
881 */
882
883 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
884 if (chan->ep_is_in)
885 chan->do_ping = 0;
886 else
887 chan->do_ping = qh->ping_state;
888
889 chan->data_pid_start = qh->data_toggle;
890 chan->multi_count = 1;
891
892 if (urb->actual_length > urb->length &&
893 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
894 urb->actual_length = urb->length;
895
896 if (hsotg->core_params->dma_enable > 0)
897 chan->xfer_dma = urb->dma + urb->actual_length;
898 else
899 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
900
901 chan->xfer_len = urb->length - urb->actual_length;
902 chan->xfer_count = 0;
903
904 /* Set the split attributes if required */
905 if (qh->do_split)
906 dwc2_hc_init_split(hsotg, chan, qtd, urb);
907 else
908 chan->do_split = 0;
909
910 /* Set the transfer attributes */
911 dwc2_hc_init_xfer(hsotg, chan, qtd);
912
913 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
914 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
915 /*
916 * This value may be modified when the transfer is started
917 * to reflect the actual transfer length
918 */
919 chan->multi_count = dwc2_hb_mult(qh->maxp);
920
921 if (hsotg->core_params->dma_desc_enable > 0) {
922 chan->desc_list_addr = qh->desc_list_dma;
923 chan->desc_list_sz = qh->desc_list_sz;
924 }
925
926 dwc2_hc_init(hsotg, chan);
927 chan->qh = qh;
928
929 return 0;
930 }
931
932 /**
933 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
934 * schedule and assigns them to available host channels. Called from the HCD
935 * interrupt handler functions.
936 *
937 * @hsotg: The HCD state structure
938 *
939 * Return: The types of new transactions that were assigned to host channels
940 */
941 enum dwc2_transaction_type dwc2_hcd_select_transactions(
942 struct dwc2_hsotg *hsotg)
943 {
944 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
945 struct list_head *qh_ptr;
946 struct dwc2_qh *qh;
947 int num_channels;
948
949 #ifdef DWC2_DEBUG_SOF
950 dev_vdbg(hsotg->dev, " Select Transactions\n");
951 #endif
952
953 /* Process entries in the periodic ready list */
954 qh_ptr = hsotg->periodic_sched_ready.next;
955 while (qh_ptr != &hsotg->periodic_sched_ready) {
956 if (list_empty(&hsotg->free_hc_list))
957 break;
958 if (hsotg->core_params->uframe_sched > 0) {
959 if (hsotg->available_host_channels <= 1)
960 break;
961 hsotg->available_host_channels--;
962 }
963 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
964 if (dwc2_assign_and_init_hc(hsotg, qh))
965 break;
966
967 /*
968 * Move the QH from the periodic ready schedule to the
969 * periodic assigned schedule
970 */
971 qh_ptr = qh_ptr->next;
972 list_move_tail(&qh->qh_list_entry,
973 &hsotg->periodic_sched_assigned);
974 ret_val = DWC2_TRANSACTION_PERIODIC;
975 }
976
977 /*
978 * Process entries in the inactive portion of the non-periodic
979 * schedule. Some free host channels may not be used if they are
980 * reserved for periodic transfers.
981 */
982 num_channels = hsotg->core_params->host_channels;
983 qh_ptr = hsotg->non_periodic_sched_inactive.next;
984 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
985 if (hsotg->core_params->uframe_sched <= 0 &&
986 hsotg->non_periodic_channels >= num_channels -
987 hsotg->periodic_channels)
988 break;
989 if (list_empty(&hsotg->free_hc_list))
990 break;
991 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
992 if (hsotg->core_params->uframe_sched > 0) {
993 if (hsotg->available_host_channels < 1)
994 break;
995 hsotg->available_host_channels--;
996 }
997
998 if (dwc2_assign_and_init_hc(hsotg, qh))
999 break;
1000
1001 /*
1002 * Move the QH from the non-periodic inactive schedule to the
1003 * non-periodic active schedule
1004 */
1005 qh_ptr = qh_ptr->next;
1006 list_move_tail(&qh->qh_list_entry,
1007 &hsotg->non_periodic_sched_active);
1008
1009 if (ret_val == DWC2_TRANSACTION_NONE)
1010 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
1011 else
1012 ret_val = DWC2_TRANSACTION_ALL;
1013
1014 if (hsotg->core_params->uframe_sched <= 0)
1015 hsotg->non_periodic_channels++;
1016 }
1017
1018 return ret_val;
1019 }
1020
1021 /**
1022 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
1023 * a host channel associated with either a periodic or non-periodic transfer
1024 *
1025 * @hsotg: The HCD state structure
1026 * @chan: Host channel descriptor associated with either a periodic or
1027 * non-periodic transfer
1028 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
1029 * for periodic transfers or the non-periodic Tx FIFO
1030 * for non-periodic transfers
1031 *
1032 * Return: 1 if a request is queued and more requests may be needed to
1033 * complete the transfer, 0 if no more requests are required for this
1034 * transfer, -1 if there is insufficient space in the Tx FIFO
1035 *
1036 * This function assumes that there is space available in the appropriate
1037 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
1038 * it checks whether space is available in the appropriate Tx FIFO.
1039 *
1040 * Must be called with interrupt disabled and spinlock held
1041 */
1042 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
1043 struct dwc2_host_chan *chan,
1044 u16 fifo_dwords_avail)
1045 {
1046 int retval = 0;
1047
1048 if (chan->do_split)
1049 /* Put ourselves on the list to keep order straight */
1050 list_move_tail(&chan->split_order_list_entry,
1051 &hsotg->split_order);
1052
1053 if (hsotg->core_params->dma_enable > 0) {
1054 if (hsotg->core_params->dma_desc_enable > 0) {
1055 if (!chan->xfer_started ||
1056 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1057 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
1058 chan->qh->ping_state = 0;
1059 }
1060 } else if (!chan->xfer_started) {
1061 dwc2_hc_start_transfer(hsotg, chan);
1062 chan->qh->ping_state = 0;
1063 }
1064 } else if (chan->halt_pending) {
1065 /* Don't queue a request if the channel has been halted */
1066 } else if (chan->halt_on_queue) {
1067 dwc2_hc_halt(hsotg, chan, chan->halt_status);
1068 } else if (chan->do_ping) {
1069 if (!chan->xfer_started)
1070 dwc2_hc_start_transfer(hsotg, chan);
1071 } else if (!chan->ep_is_in ||
1072 chan->data_pid_start == DWC2_HC_PID_SETUP) {
1073 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
1074 if (!chan->xfer_started) {
1075 dwc2_hc_start_transfer(hsotg, chan);
1076 retval = 1;
1077 } else {
1078 retval = dwc2_hc_continue_transfer(hsotg, chan);
1079 }
1080 } else {
1081 retval = -1;
1082 }
1083 } else {
1084 if (!chan->xfer_started) {
1085 dwc2_hc_start_transfer(hsotg, chan);
1086 retval = 1;
1087 } else {
1088 retval = dwc2_hc_continue_transfer(hsotg, chan);
1089 }
1090 }
1091
1092 return retval;
1093 }
1094
1095 /*
1096 * Processes periodic channels for the next frame and queues transactions for
1097 * these channels to the DWC_otg controller. After queueing transactions, the
1098 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
1099 * to queue as Periodic Tx FIFO or request queue space becomes available.
1100 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
1101 *
1102 * Must be called with interrupt disabled and spinlock held
1103 */
1104 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
1105 {
1106 struct list_head *qh_ptr;
1107 struct dwc2_qh *qh;
1108 u32 tx_status;
1109 u32 fspcavail;
1110 u32 gintmsk;
1111 int status;
1112 bool no_queue_space = false;
1113 bool no_fifo_space = false;
1114 u32 qspcavail;
1115
1116 /* If empty list then just adjust interrupt enables */
1117 if (list_empty(&hsotg->periodic_sched_assigned))
1118 goto exit;
1119
1120 if (dbg_perio())
1121 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
1122
1123 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
1124 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1125 TXSTS_QSPCAVAIL_SHIFT;
1126 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1127 TXSTS_FSPCAVAIL_SHIFT;
1128
1129 if (dbg_perio()) {
1130 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
1131 qspcavail);
1132 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
1133 fspcavail);
1134 }
1135
1136 qh_ptr = hsotg->periodic_sched_assigned.next;
1137 while (qh_ptr != &hsotg->periodic_sched_assigned) {
1138 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
1139 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1140 TXSTS_QSPCAVAIL_SHIFT;
1141 if (qspcavail == 0) {
1142 no_queue_space = 1;
1143 break;
1144 }
1145
1146 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
1147 if (!qh->channel) {
1148 qh_ptr = qh_ptr->next;
1149 continue;
1150 }
1151
1152 /* Make sure EP's TT buffer is clean before queueing qtds */
1153 if (qh->tt_buffer_dirty) {
1154 qh_ptr = qh_ptr->next;
1155 continue;
1156 }
1157
1158 /*
1159 * Set a flag if we're queuing high-bandwidth in slave mode.
1160 * The flag prevents any halts to get into the request queue in
1161 * the middle of multiple high-bandwidth packets getting queued.
1162 */
1163 if (hsotg->core_params->dma_enable <= 0 &&
1164 qh->channel->multi_count > 1)
1165 hsotg->queuing_high_bandwidth = 1;
1166
1167 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1168 TXSTS_FSPCAVAIL_SHIFT;
1169 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1170 if (status < 0) {
1171 no_fifo_space = 1;
1172 break;
1173 }
1174
1175 /*
1176 * In Slave mode, stay on the current transfer until there is
1177 * nothing more to do or the high-bandwidth request count is
1178 * reached. In DMA mode, only need to queue one request. The
1179 * controller automatically handles multiple packets for
1180 * high-bandwidth transfers.
1181 */
1182 if (hsotg->core_params->dma_enable > 0 || status == 0 ||
1183 qh->channel->requests == qh->channel->multi_count) {
1184 qh_ptr = qh_ptr->next;
1185 /*
1186 * Move the QH from the periodic assigned schedule to
1187 * the periodic queued schedule
1188 */
1189 list_move_tail(&qh->qh_list_entry,
1190 &hsotg->periodic_sched_queued);
1191
1192 /* done queuing high bandwidth */
1193 hsotg->queuing_high_bandwidth = 0;
1194 }
1195 }
1196
1197 exit:
1198 if (no_queue_space || no_fifo_space ||
1199 (hsotg->core_params->dma_enable <= 0 &&
1200 !list_empty(&hsotg->periodic_sched_assigned))) {
1201 /*
1202 * May need to queue more transactions as the request
1203 * queue or Tx FIFO empties. Enable the periodic Tx
1204 * FIFO empty interrupt. (Always use the half-empty
1205 * level to ensure that new requests are loaded as
1206 * soon as possible.)
1207 */
1208 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1209 if (!(gintmsk & GINTSTS_PTXFEMP)) {
1210 gintmsk |= GINTSTS_PTXFEMP;
1211 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1212 }
1213 } else {
1214 /*
1215 * Disable the Tx FIFO empty interrupt since there are
1216 * no more transactions that need to be queued right
1217 * now. This function is called from interrupt
1218 * handlers to queue more transactions as transfer
1219 * states change.
1220 */
1221 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1222 if (gintmsk & GINTSTS_PTXFEMP) {
1223 gintmsk &= ~GINTSTS_PTXFEMP;
1224 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1225 }
1226 }
1227 }
1228
1229 /*
1230 * Processes active non-periodic channels and queues transactions for these
1231 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
1232 * FIFO Empty interrupt is enabled if there are more transactions to queue as
1233 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
1234 * FIFO Empty interrupt is disabled.
1235 *
1236 * Must be called with interrupt disabled and spinlock held
1237 */
1238 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
1239 {
1240 struct list_head *orig_qh_ptr;
1241 struct dwc2_qh *qh;
1242 u32 tx_status;
1243 u32 qspcavail;
1244 u32 fspcavail;
1245 u32 gintmsk;
1246 int status;
1247 int no_queue_space = 0;
1248 int no_fifo_space = 0;
1249 int more_to_do = 0;
1250
1251 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
1252
1253 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
1254 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1255 TXSTS_QSPCAVAIL_SHIFT;
1256 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1257 TXSTS_FSPCAVAIL_SHIFT;
1258 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
1259 qspcavail);
1260 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
1261 fspcavail);
1262
1263 /*
1264 * Keep track of the starting point. Skip over the start-of-list
1265 * entry.
1266 */
1267 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
1268 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1269 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
1270
1271 /*
1272 * Process once through the active list or until no more space is
1273 * available in the request queue or the Tx FIFO
1274 */
1275 do {
1276 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
1277 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1278 TXSTS_QSPCAVAIL_SHIFT;
1279 if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
1280 no_queue_space = 1;
1281 break;
1282 }
1283
1284 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
1285 qh_list_entry);
1286 if (!qh->channel)
1287 goto next;
1288
1289 /* Make sure EP's TT buffer is clean before queueing qtds */
1290 if (qh->tt_buffer_dirty)
1291 goto next;
1292
1293 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1294 TXSTS_FSPCAVAIL_SHIFT;
1295 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1296
1297 if (status > 0) {
1298 more_to_do = 1;
1299 } else if (status < 0) {
1300 no_fifo_space = 1;
1301 break;
1302 }
1303 next:
1304 /* Advance to next QH, skipping start-of-list entry */
1305 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1306 if (hsotg->non_periodic_qh_ptr ==
1307 &hsotg->non_periodic_sched_active)
1308 hsotg->non_periodic_qh_ptr =
1309 hsotg->non_periodic_qh_ptr->next;
1310 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
1311
1312 if (hsotg->core_params->dma_enable <= 0) {
1313 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
1314 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1315 TXSTS_QSPCAVAIL_SHIFT;
1316 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1317 TXSTS_FSPCAVAIL_SHIFT;
1318 dev_vdbg(hsotg->dev,
1319 " NP Tx Req Queue Space Avail (after queue): %d\n",
1320 qspcavail);
1321 dev_vdbg(hsotg->dev,
1322 " NP Tx FIFO Space Avail (after queue): %d\n",
1323 fspcavail);
1324
1325 if (more_to_do || no_queue_space || no_fifo_space) {
1326 /*
1327 * May need to queue more transactions as the request
1328 * queue or Tx FIFO empties. Enable the non-periodic
1329 * Tx FIFO empty interrupt. (Always use the half-empty
1330 * level to ensure that new requests are loaded as
1331 * soon as possible.)
1332 */
1333 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1334 gintmsk |= GINTSTS_NPTXFEMP;
1335 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1336 } else {
1337 /*
1338 * Disable the Tx FIFO empty interrupt since there are
1339 * no more transactions that need to be queued right
1340 * now. This function is called from interrupt
1341 * handlers to queue more transactions as transfer
1342 * states change.
1343 */
1344 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1345 gintmsk &= ~GINTSTS_NPTXFEMP;
1346 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1347 }
1348 }
1349 }
1350
1351 /**
1352 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
1353 * and queues transactions for these channels to the DWC_otg controller. Called
1354 * from the HCD interrupt handler functions.
1355 *
1356 * @hsotg: The HCD state structure
1357 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
1358 * or both)
1359 *
1360 * Must be called with interrupt disabled and spinlock held
1361 */
1362 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
1363 enum dwc2_transaction_type tr_type)
1364 {
1365 #ifdef DWC2_DEBUG_SOF
1366 dev_vdbg(hsotg->dev, "Queue Transactions\n");
1367 #endif
1368 /* Process host channels associated with periodic transfers */
1369 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
1370 tr_type == DWC2_TRANSACTION_ALL)
1371 dwc2_process_periodic_channels(hsotg);
1372
1373 /* Process host channels associated with non-periodic transfers */
1374 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
1375 tr_type == DWC2_TRANSACTION_ALL) {
1376 if (!list_empty(&hsotg->non_periodic_sched_active)) {
1377 dwc2_process_non_periodic_channels(hsotg);
1378 } else {
1379 /*
1380 * Ensure NP Tx FIFO empty interrupt is disabled when
1381 * there are no non-periodic transfers to process
1382 */
1383 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
1384
1385 gintmsk &= ~GINTSTS_NPTXFEMP;
1386 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
1387 }
1388 }
1389 }
1390
1391 static void dwc2_conn_id_status_change(struct work_struct *work)
1392 {
1393 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
1394 wf_otg);
1395 u32 count = 0;
1396 u32 gotgctl;
1397 unsigned long flags;
1398
1399 dev_dbg(hsotg->dev, "%s()\n", __func__);
1400
1401 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1402 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
1403 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
1404 !!(gotgctl & GOTGCTL_CONID_B));
1405
1406 /* B-Device connector (Device Mode) */
1407 if (gotgctl & GOTGCTL_CONID_B) {
1408 /* Wait for switch to device mode */
1409 dev_dbg(hsotg->dev, "connId B\n");
1410 while (!dwc2_is_device_mode(hsotg)) {
1411 dev_info(hsotg->dev,
1412 "Waiting for Peripheral Mode, Mode=%s\n",
1413 dwc2_is_host_mode(hsotg) ? "Host" :
1414 "Peripheral");
1415 usleep_range(20000, 40000);
1416 if (++count > 250)
1417 break;
1418 }
1419 if (count > 250)
1420 dev_err(hsotg->dev,
1421 "Connection id status change timed out\n");
1422 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
1423 dwc2_core_init(hsotg, false);
1424 dwc2_enable_global_interrupts(hsotg);
1425 spin_lock_irqsave(&hsotg->lock, flags);
1426 dwc2_hsotg_core_init_disconnected(hsotg, false);
1427 spin_unlock_irqrestore(&hsotg->lock, flags);
1428 dwc2_hsotg_core_connect(hsotg);
1429 } else {
1430 /* A-Device connector (Host Mode) */
1431 dev_dbg(hsotg->dev, "connId A\n");
1432 while (!dwc2_is_host_mode(hsotg)) {
1433 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
1434 dwc2_is_host_mode(hsotg) ?
1435 "Host" : "Peripheral");
1436 usleep_range(20000, 40000);
1437 if (++count > 250)
1438 break;
1439 }
1440 if (count > 250)
1441 dev_err(hsotg->dev,
1442 "Connection id status change timed out\n");
1443 hsotg->op_state = OTG_STATE_A_HOST;
1444
1445 /* Initialize the Core for Host mode */
1446 dwc2_core_init(hsotg, false);
1447 dwc2_enable_global_interrupts(hsotg);
1448 dwc2_hcd_start(hsotg);
1449 }
1450 }
1451
1452 static void dwc2_wakeup_detected(unsigned long data)
1453 {
1454 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
1455 u32 hprt0;
1456
1457 dev_dbg(hsotg->dev, "%s()\n", __func__);
1458
1459 /*
1460 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
1461 * so that OPT tests pass with all PHYs.)
1462 */
1463 hprt0 = dwc2_read_hprt0(hsotg);
1464 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
1465 hprt0 &= ~HPRT0_RES;
1466 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1467 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
1468 dwc2_readl(hsotg->regs + HPRT0));
1469
1470 dwc2_hcd_rem_wakeup(hsotg);
1471 hsotg->bus_suspended = 0;
1472
1473 /* Change to L0 state */
1474 hsotg->lx_state = DWC2_L0;
1475 }
1476
1477 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
1478 {
1479 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
1480
1481 return hcd->self.b_hnp_enable;
1482 }
1483
1484 /* Must NOT be called with interrupt disabled or spinlock held */
1485 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1486 {
1487 unsigned long flags;
1488 u32 hprt0;
1489 u32 pcgctl;
1490 u32 gotgctl;
1491
1492 dev_dbg(hsotg->dev, "%s()\n", __func__);
1493
1494 spin_lock_irqsave(&hsotg->lock, flags);
1495
1496 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
1497 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1498 gotgctl |= GOTGCTL_HSTSETHNPEN;
1499 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
1500 hsotg->op_state = OTG_STATE_A_SUSPEND;
1501 }
1502
1503 hprt0 = dwc2_read_hprt0(hsotg);
1504 hprt0 |= HPRT0_SUSP;
1505 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1506
1507 hsotg->bus_suspended = 1;
1508
1509 /*
1510 * If hibernation is supported, Phy clock will be suspended
1511 * after registers are backuped.
1512 */
1513 if (!hsotg->core_params->hibernation) {
1514 /* Suspend the Phy Clock */
1515 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1516 pcgctl |= PCGCTL_STOPPCLK;
1517 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1518 udelay(10);
1519 }
1520
1521 /* For HNP the bus must be suspended for at least 200ms */
1522 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
1523 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1524 pcgctl &= ~PCGCTL_STOPPCLK;
1525 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1526
1527 spin_unlock_irqrestore(&hsotg->lock, flags);
1528
1529 usleep_range(200000, 250000);
1530 } else {
1531 spin_unlock_irqrestore(&hsotg->lock, flags);
1532 }
1533 }
1534
1535 /* Must NOT be called with interrupt disabled or spinlock held */
1536 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
1537 {
1538 unsigned long flags;
1539 u32 hprt0;
1540 u32 pcgctl;
1541
1542 spin_lock_irqsave(&hsotg->lock, flags);
1543
1544 /*
1545 * If hibernation is supported, Phy clock is already resumed
1546 * after registers restore.
1547 */
1548 if (!hsotg->core_params->hibernation) {
1549 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1550 pcgctl &= ~PCGCTL_STOPPCLK;
1551 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1552 spin_unlock_irqrestore(&hsotg->lock, flags);
1553 usleep_range(20000, 40000);
1554 spin_lock_irqsave(&hsotg->lock, flags);
1555 }
1556
1557 hprt0 = dwc2_read_hprt0(hsotg);
1558 hprt0 |= HPRT0_RES;
1559 hprt0 &= ~HPRT0_SUSP;
1560 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1561 spin_unlock_irqrestore(&hsotg->lock, flags);
1562
1563 msleep(USB_RESUME_TIMEOUT);
1564
1565 spin_lock_irqsave(&hsotg->lock, flags);
1566 hprt0 = dwc2_read_hprt0(hsotg);
1567 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
1568 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1569 hsotg->bus_suspended = 0;
1570 spin_unlock_irqrestore(&hsotg->lock, flags);
1571 }
1572
1573 /* Handles hub class-specific requests */
1574 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
1575 u16 wvalue, u16 windex, char *buf, u16 wlength)
1576 {
1577 struct usb_hub_descriptor *hub_desc;
1578 int retval = 0;
1579 u32 hprt0;
1580 u32 port_status;
1581 u32 speed;
1582 u32 pcgctl;
1583
1584 switch (typereq) {
1585 case ClearHubFeature:
1586 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
1587
1588 switch (wvalue) {
1589 case C_HUB_LOCAL_POWER:
1590 case C_HUB_OVER_CURRENT:
1591 /* Nothing required here */
1592 break;
1593
1594 default:
1595 retval = -EINVAL;
1596 dev_err(hsotg->dev,
1597 "ClearHubFeature request %1xh unknown\n",
1598 wvalue);
1599 }
1600 break;
1601
1602 case ClearPortFeature:
1603 if (wvalue != USB_PORT_FEAT_L1)
1604 if (!windex || windex > 1)
1605 goto error;
1606 switch (wvalue) {
1607 case USB_PORT_FEAT_ENABLE:
1608 dev_dbg(hsotg->dev,
1609 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
1610 hprt0 = dwc2_read_hprt0(hsotg);
1611 hprt0 |= HPRT0_ENA;
1612 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1613 break;
1614
1615 case USB_PORT_FEAT_SUSPEND:
1616 dev_dbg(hsotg->dev,
1617 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
1618
1619 if (hsotg->bus_suspended)
1620 dwc2_port_resume(hsotg);
1621 break;
1622
1623 case USB_PORT_FEAT_POWER:
1624 dev_dbg(hsotg->dev,
1625 "ClearPortFeature USB_PORT_FEAT_POWER\n");
1626 hprt0 = dwc2_read_hprt0(hsotg);
1627 hprt0 &= ~HPRT0_PWR;
1628 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1629 break;
1630
1631 case USB_PORT_FEAT_INDICATOR:
1632 dev_dbg(hsotg->dev,
1633 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
1634 /* Port indicator not supported */
1635 break;
1636
1637 case USB_PORT_FEAT_C_CONNECTION:
1638 /*
1639 * Clears driver's internal Connect Status Change flag
1640 */
1641 dev_dbg(hsotg->dev,
1642 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
1643 hsotg->flags.b.port_connect_status_change = 0;
1644 break;
1645
1646 case USB_PORT_FEAT_C_RESET:
1647 /* Clears driver's internal Port Reset Change flag */
1648 dev_dbg(hsotg->dev,
1649 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
1650 hsotg->flags.b.port_reset_change = 0;
1651 break;
1652
1653 case USB_PORT_FEAT_C_ENABLE:
1654 /*
1655 * Clears the driver's internal Port Enable/Disable
1656 * Change flag
1657 */
1658 dev_dbg(hsotg->dev,
1659 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
1660 hsotg->flags.b.port_enable_change = 0;
1661 break;
1662
1663 case USB_PORT_FEAT_C_SUSPEND:
1664 /*
1665 * Clears the driver's internal Port Suspend Change
1666 * flag, which is set when resume signaling on the host
1667 * port is complete
1668 */
1669 dev_dbg(hsotg->dev,
1670 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
1671 hsotg->flags.b.port_suspend_change = 0;
1672 break;
1673
1674 case USB_PORT_FEAT_C_PORT_L1:
1675 dev_dbg(hsotg->dev,
1676 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
1677 hsotg->flags.b.port_l1_change = 0;
1678 break;
1679
1680 case USB_PORT_FEAT_C_OVER_CURRENT:
1681 dev_dbg(hsotg->dev,
1682 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
1683 hsotg->flags.b.port_over_current_change = 0;
1684 break;
1685
1686 default:
1687 retval = -EINVAL;
1688 dev_err(hsotg->dev,
1689 "ClearPortFeature request %1xh unknown or unsupported\n",
1690 wvalue);
1691 }
1692 break;
1693
1694 case GetHubDescriptor:
1695 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
1696 hub_desc = (struct usb_hub_descriptor *)buf;
1697 hub_desc->bDescLength = 9;
1698 hub_desc->bDescriptorType = USB_DT_HUB;
1699 hub_desc->bNbrPorts = 1;
1700 hub_desc->wHubCharacteristics =
1701 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
1702 HUB_CHAR_INDV_PORT_OCPM);
1703 hub_desc->bPwrOn2PwrGood = 1;
1704 hub_desc->bHubContrCurrent = 0;
1705 hub_desc->u.hs.DeviceRemovable[0] = 0;
1706 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
1707 break;
1708
1709 case GetHubStatus:
1710 dev_dbg(hsotg->dev, "GetHubStatus\n");
1711 memset(buf, 0, 4);
1712 break;
1713
1714 case GetPortStatus:
1715 dev_vdbg(hsotg->dev,
1716 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
1717 hsotg->flags.d32);
1718 if (!windex || windex > 1)
1719 goto error;
1720
1721 port_status = 0;
1722 if (hsotg->flags.b.port_connect_status_change)
1723 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
1724 if (hsotg->flags.b.port_enable_change)
1725 port_status |= USB_PORT_STAT_C_ENABLE << 16;
1726 if (hsotg->flags.b.port_suspend_change)
1727 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
1728 if (hsotg->flags.b.port_l1_change)
1729 port_status |= USB_PORT_STAT_C_L1 << 16;
1730 if (hsotg->flags.b.port_reset_change)
1731 port_status |= USB_PORT_STAT_C_RESET << 16;
1732 if (hsotg->flags.b.port_over_current_change) {
1733 dev_warn(hsotg->dev, "Overcurrent change detected\n");
1734 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1735 }
1736
1737 if (!hsotg->flags.b.port_connect_status) {
1738 /*
1739 * The port is disconnected, which means the core is
1740 * either in device mode or it soon will be. Just
1741 * return 0's for the remainder of the port status
1742 * since the port register can't be read if the core
1743 * is in device mode.
1744 */
1745 *(__le32 *)buf = cpu_to_le32(port_status);
1746 break;
1747 }
1748
1749 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1750 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
1751
1752 if (hprt0 & HPRT0_CONNSTS)
1753 port_status |= USB_PORT_STAT_CONNECTION;
1754 if (hprt0 & HPRT0_ENA)
1755 port_status |= USB_PORT_STAT_ENABLE;
1756 if (hprt0 & HPRT0_SUSP)
1757 port_status |= USB_PORT_STAT_SUSPEND;
1758 if (hprt0 & HPRT0_OVRCURRACT)
1759 port_status |= USB_PORT_STAT_OVERCURRENT;
1760 if (hprt0 & HPRT0_RST)
1761 port_status |= USB_PORT_STAT_RESET;
1762 if (hprt0 & HPRT0_PWR)
1763 port_status |= USB_PORT_STAT_POWER;
1764
1765 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1766 if (speed == HPRT0_SPD_HIGH_SPEED)
1767 port_status |= USB_PORT_STAT_HIGH_SPEED;
1768 else if (speed == HPRT0_SPD_LOW_SPEED)
1769 port_status |= USB_PORT_STAT_LOW_SPEED;
1770
1771 if (hprt0 & HPRT0_TSTCTL_MASK)
1772 port_status |= USB_PORT_STAT_TEST;
1773 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
1774
1775 if (hsotg->core_params->dma_desc_fs_enable) {
1776 /*
1777 * Enable descriptor DMA only if a full speed
1778 * device is connected.
1779 */
1780 if (hsotg->new_connection &&
1781 ((port_status &
1782 (USB_PORT_STAT_CONNECTION |
1783 USB_PORT_STAT_HIGH_SPEED |
1784 USB_PORT_STAT_LOW_SPEED)) ==
1785 USB_PORT_STAT_CONNECTION)) {
1786 u32 hcfg;
1787
1788 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
1789 hsotg->core_params->dma_desc_enable = 1;
1790 hcfg = dwc2_readl(hsotg->regs + HCFG);
1791 hcfg |= HCFG_DESCDMA;
1792 dwc2_writel(hcfg, hsotg->regs + HCFG);
1793 hsotg->new_connection = false;
1794 }
1795 }
1796
1797 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
1798 *(__le32 *)buf = cpu_to_le32(port_status);
1799 break;
1800
1801 case SetHubFeature:
1802 dev_dbg(hsotg->dev, "SetHubFeature\n");
1803 /* No HUB features supported */
1804 break;
1805
1806 case SetPortFeature:
1807 dev_dbg(hsotg->dev, "SetPortFeature\n");
1808 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
1809 goto error;
1810
1811 if (!hsotg->flags.b.port_connect_status) {
1812 /*
1813 * The port is disconnected, which means the core is
1814 * either in device mode or it soon will be. Just
1815 * return without doing anything since the port
1816 * register can't be written if the core is in device
1817 * mode.
1818 */
1819 break;
1820 }
1821
1822 switch (wvalue) {
1823 case USB_PORT_FEAT_SUSPEND:
1824 dev_dbg(hsotg->dev,
1825 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
1826 if (windex != hsotg->otg_port)
1827 goto error;
1828 dwc2_port_suspend(hsotg, windex);
1829 break;
1830
1831 case USB_PORT_FEAT_POWER:
1832 dev_dbg(hsotg->dev,
1833 "SetPortFeature - USB_PORT_FEAT_POWER\n");
1834 hprt0 = dwc2_read_hprt0(hsotg);
1835 hprt0 |= HPRT0_PWR;
1836 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1837 break;
1838
1839 case USB_PORT_FEAT_RESET:
1840 hprt0 = dwc2_read_hprt0(hsotg);
1841 dev_dbg(hsotg->dev,
1842 "SetPortFeature - USB_PORT_FEAT_RESET\n");
1843 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
1844 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
1845 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
1846 /* ??? Original driver does this */
1847 dwc2_writel(0, hsotg->regs + PCGCTL);
1848
1849 hprt0 = dwc2_read_hprt0(hsotg);
1850 /* Clear suspend bit if resetting from suspend state */
1851 hprt0 &= ~HPRT0_SUSP;
1852
1853 /*
1854 * When B-Host the Port reset bit is set in the Start
1855 * HCD Callback function, so that the reset is started
1856 * within 1ms of the HNP success interrupt
1857 */
1858 if (!dwc2_hcd_is_b_host(hsotg)) {
1859 hprt0 |= HPRT0_PWR | HPRT0_RST;
1860 dev_dbg(hsotg->dev,
1861 "In host mode, hprt0=%08x\n", hprt0);
1862 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1863 }
1864
1865 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
1866 usleep_range(50000, 70000);
1867 hprt0 &= ~HPRT0_RST;
1868 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1869 hsotg->lx_state = DWC2_L0; /* Now back to On state */
1870 break;
1871
1872 case USB_PORT_FEAT_INDICATOR:
1873 dev_dbg(hsotg->dev,
1874 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
1875 /* Not supported */
1876 break;
1877
1878 case USB_PORT_FEAT_TEST:
1879 hprt0 = dwc2_read_hprt0(hsotg);
1880 dev_dbg(hsotg->dev,
1881 "SetPortFeature - USB_PORT_FEAT_TEST\n");
1882 hprt0 &= ~HPRT0_TSTCTL_MASK;
1883 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
1884 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1885 break;
1886
1887 default:
1888 retval = -EINVAL;
1889 dev_err(hsotg->dev,
1890 "SetPortFeature %1xh unknown or unsupported\n",
1891 wvalue);
1892 break;
1893 }
1894 break;
1895
1896 default:
1897 error:
1898 retval = -EINVAL;
1899 dev_dbg(hsotg->dev,
1900 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
1901 typereq, windex, wvalue);
1902 break;
1903 }
1904
1905 return retval;
1906 }
1907
1908 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
1909 {
1910 int retval;
1911
1912 if (port != 1)
1913 return -EINVAL;
1914
1915 retval = (hsotg->flags.b.port_connect_status_change ||
1916 hsotg->flags.b.port_reset_change ||
1917 hsotg->flags.b.port_enable_change ||
1918 hsotg->flags.b.port_suspend_change ||
1919 hsotg->flags.b.port_over_current_change);
1920
1921 if (retval) {
1922 dev_dbg(hsotg->dev,
1923 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
1924 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
1925 hsotg->flags.b.port_connect_status_change);
1926 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
1927 hsotg->flags.b.port_reset_change);
1928 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
1929 hsotg->flags.b.port_enable_change);
1930 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
1931 hsotg->flags.b.port_suspend_change);
1932 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
1933 hsotg->flags.b.port_over_current_change);
1934 }
1935
1936 return retval;
1937 }
1938
1939 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1940 {
1941 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
1942
1943 #ifdef DWC2_DEBUG_SOF
1944 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
1945 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
1946 #endif
1947 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
1948 }
1949
1950 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
1951 {
1952 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
1953 u32 hfir = dwc2_readl(hsotg->regs + HFIR);
1954 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
1955 unsigned int us_per_frame;
1956 unsigned int frame_number;
1957 unsigned int remaining;
1958 unsigned int interval;
1959 unsigned int phy_clks;
1960
1961 /* High speed has 125 us per (micro) frame; others are 1 ms per */
1962 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
1963
1964 /* Extract fields */
1965 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
1966 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
1967 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
1968
1969 /*
1970 * Number of phy clocks since the last tick of the frame number after
1971 * "us" has passed.
1972 */
1973 phy_clks = (interval - remaining) +
1974 DIV_ROUND_UP(interval * us, us_per_frame);
1975
1976 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
1977 }
1978
1979 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
1980 {
1981 return hsotg->op_state == OTG_STATE_B_HOST;
1982 }
1983
1984 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
1985 int iso_desc_count,
1986 gfp_t mem_flags)
1987 {
1988 struct dwc2_hcd_urb *urb;
1989 u32 size = sizeof(*urb) + iso_desc_count *
1990 sizeof(struct dwc2_hcd_iso_packet_desc);
1991
1992 urb = kzalloc(size, mem_flags);
1993 if (urb)
1994 urb->packet_count = iso_desc_count;
1995 return urb;
1996 }
1997
1998 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
1999 struct dwc2_hcd_urb *urb, u8 dev_addr,
2000 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
2001 {
2002 if (dbg_perio() ||
2003 ep_type == USB_ENDPOINT_XFER_BULK ||
2004 ep_type == USB_ENDPOINT_XFER_CONTROL)
2005 dev_vdbg(hsotg->dev,
2006 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
2007 dev_addr, ep_num, ep_dir, ep_type, mps);
2008 urb->pipe_info.dev_addr = dev_addr;
2009 urb->pipe_info.ep_num = ep_num;
2010 urb->pipe_info.pipe_type = ep_type;
2011 urb->pipe_info.pipe_dir = ep_dir;
2012 urb->pipe_info.mps = mps;
2013 }
2014
2015 /*
2016 * NOTE: This function will be removed once the peripheral controller code
2017 * is integrated and the driver is stable
2018 */
2019 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
2020 {
2021 #ifdef DEBUG
2022 struct dwc2_host_chan *chan;
2023 struct dwc2_hcd_urb *urb;
2024 struct dwc2_qtd *qtd;
2025 int num_channels;
2026 u32 np_tx_status;
2027 u32 p_tx_status;
2028 int i;
2029
2030 num_channels = hsotg->core_params->host_channels;
2031 dev_dbg(hsotg->dev, "\n");
2032 dev_dbg(hsotg->dev,
2033 "************************************************************\n");
2034 dev_dbg(hsotg->dev, "HCD State:\n");
2035 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
2036
2037 for (i = 0; i < num_channels; i++) {
2038 chan = hsotg->hc_ptr_array[i];
2039 dev_dbg(hsotg->dev, " Channel %d:\n", i);
2040 dev_dbg(hsotg->dev,
2041 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
2042 chan->dev_addr, chan->ep_num, chan->ep_is_in);
2043 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
2044 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
2045 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
2046 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
2047 chan->data_pid_start);
2048 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
2049 dev_dbg(hsotg->dev, " xfer_started: %d\n",
2050 chan->xfer_started);
2051 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
2052 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
2053 (unsigned long)chan->xfer_dma);
2054 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
2055 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
2056 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
2057 chan->halt_on_queue);
2058 dev_dbg(hsotg->dev, " halt_pending: %d\n",
2059 chan->halt_pending);
2060 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
2061 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
2062 dev_dbg(hsotg->dev, " complete_split: %d\n",
2063 chan->complete_split);
2064 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
2065 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
2066 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
2067 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
2068 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
2069
2070 if (chan->xfer_started) {
2071 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
2072
2073 hfnum = dwc2_readl(hsotg->regs + HFNUM);
2074 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2075 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
2076 hcint = dwc2_readl(hsotg->regs + HCINT(i));
2077 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
2078 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
2079 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
2080 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
2081 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
2082 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
2083 }
2084
2085 if (!(chan->xfer_started && chan->qh))
2086 continue;
2087
2088 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
2089 if (!qtd->in_process)
2090 break;
2091 urb = qtd->urb;
2092 dev_dbg(hsotg->dev, " URB Info:\n");
2093 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
2094 qtd, urb);
2095 if (urb) {
2096 dev_dbg(hsotg->dev,
2097 " Dev: %d, EP: %d %s\n",
2098 dwc2_hcd_get_dev_addr(&urb->pipe_info),
2099 dwc2_hcd_get_ep_num(&urb->pipe_info),
2100 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
2101 "IN" : "OUT");
2102 dev_dbg(hsotg->dev,
2103 " Max packet size: %d\n",
2104 dwc2_hcd_get_mps(&urb->pipe_info));
2105 dev_dbg(hsotg->dev,
2106 " transfer_buffer: %p\n",
2107 urb->buf);
2108 dev_dbg(hsotg->dev,
2109 " transfer_dma: %08lx\n",
2110 (unsigned long)urb->dma);
2111 dev_dbg(hsotg->dev,
2112 " transfer_buffer_length: %d\n",
2113 urb->length);
2114 dev_dbg(hsotg->dev, " actual_length: %d\n",
2115 urb->actual_length);
2116 }
2117 }
2118 }
2119
2120 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
2121 hsotg->non_periodic_channels);
2122 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
2123 hsotg->periodic_channels);
2124 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
2125 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
2126 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
2127 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
2128 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
2129 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
2130 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2131 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
2132 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
2133 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
2134 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
2135 dwc2_hcd_dump_frrem(hsotg);
2136 dwc2_dump_global_registers(hsotg);
2137 dwc2_dump_host_registers(hsotg);
2138 dev_dbg(hsotg->dev,
2139 "************************************************************\n");
2140 dev_dbg(hsotg->dev, "\n");
2141 #endif
2142 }
2143
2144 /*
2145 * NOTE: This function will be removed once the peripheral controller code
2146 * is integrated and the driver is stable
2147 */
2148 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
2149 {
2150 #ifdef DWC2_DUMP_FRREM
2151 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
2152 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2153 hsotg->frrem_samples, hsotg->frrem_accum,
2154 hsotg->frrem_samples > 0 ?
2155 hsotg->frrem_accum / hsotg->frrem_samples : 0);
2156 dev_dbg(hsotg->dev, "\n");
2157 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
2158 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2159 hsotg->hfnum_7_samples,
2160 hsotg->hfnum_7_frrem_accum,
2161 hsotg->hfnum_7_samples > 0 ?
2162 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
2163 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
2164 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2165 hsotg->hfnum_0_samples,
2166 hsotg->hfnum_0_frrem_accum,
2167 hsotg->hfnum_0_samples > 0 ?
2168 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
2169 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
2170 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2171 hsotg->hfnum_other_samples,
2172 hsotg->hfnum_other_frrem_accum,
2173 hsotg->hfnum_other_samples > 0 ?
2174 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
2175 0);
2176 dev_dbg(hsotg->dev, "\n");
2177 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
2178 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2179 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
2180 hsotg->hfnum_7_samples_a > 0 ?
2181 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
2182 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
2183 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2184 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
2185 hsotg->hfnum_0_samples_a > 0 ?
2186 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
2187 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
2188 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2189 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
2190 hsotg->hfnum_other_samples_a > 0 ?
2191 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
2192 : 0);
2193 dev_dbg(hsotg->dev, "\n");
2194 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
2195 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2196 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
2197 hsotg->hfnum_7_samples_b > 0 ?
2198 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
2199 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
2200 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2201 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
2202 (hsotg->hfnum_0_samples_b > 0) ?
2203 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
2204 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
2205 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
2206 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
2207 (hsotg->hfnum_other_samples_b > 0) ?
2208 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
2209 : 0);
2210 #endif
2211 }
2212
2213 struct wrapper_priv_data {
2214 struct dwc2_hsotg *hsotg;
2215 };
2216
2217 /* Gets the dwc2_hsotg from a usb_hcd */
2218 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
2219 {
2220 struct wrapper_priv_data *p;
2221
2222 p = (struct wrapper_priv_data *) &hcd->hcd_priv;
2223 return p->hsotg;
2224 }
2225
2226 static int _dwc2_hcd_start(struct usb_hcd *hcd);
2227
2228 void dwc2_host_start(struct dwc2_hsotg *hsotg)
2229 {
2230 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2231
2232 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
2233 _dwc2_hcd_start(hcd);
2234 }
2235
2236 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
2237 {
2238 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2239
2240 hcd->self.is_b_host = 0;
2241 }
2242
2243 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
2244 int *hub_port)
2245 {
2246 struct urb *urb = context;
2247
2248 if (urb->dev->tt)
2249 *hub_addr = urb->dev->tt->hub->devnum;
2250 else
2251 *hub_addr = 0;
2252 *hub_port = urb->dev->ttport;
2253 }
2254
2255 /**
2256 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
2257 *
2258 * This will get the dwc2_tt structure (and ttport) associated with the given
2259 * context (which is really just a struct urb pointer).
2260 *
2261 * The first time this is called for a given TT we allocate memory for our
2262 * structure. When everyone is done and has called dwc2_host_put_tt_info()
2263 * then the refcount for the structure will go to 0 and we'll free it.
2264 *
2265 * @hsotg: The HCD state structure for the DWC OTG controller.
2266 * @qh: The QH structure.
2267 * @context: The priv pointer from a struct dwc2_hcd_urb.
2268 * @mem_flags: Flags for allocating memory.
2269 * @ttport: We'll return this device's port number here. That's used to
2270 * reference into the bitmap if we're on a multi_tt hub.
2271 *
2272 * Return: a pointer to a struct dwc2_tt. Don't forget to call
2273 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
2274 */
2275
2276 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
2277 gfp_t mem_flags, int *ttport)
2278 {
2279 struct urb *urb = context;
2280 struct dwc2_tt *dwc_tt = NULL;
2281
2282 if (urb->dev->tt) {
2283 *ttport = urb->dev->ttport;
2284
2285 dwc_tt = urb->dev->tt->hcpriv;
2286 if (dwc_tt == NULL) {
2287 size_t bitmap_size;
2288
2289 /*
2290 * For single_tt we need one schedule. For multi_tt
2291 * we need one per port.
2292 */
2293 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
2294 sizeof(dwc_tt->periodic_bitmaps[0]);
2295 if (urb->dev->tt->multi)
2296 bitmap_size *= urb->dev->tt->hub->maxchild;
2297
2298 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
2299 mem_flags);
2300 if (dwc_tt == NULL)
2301 return NULL;
2302
2303 dwc_tt->usb_tt = urb->dev->tt;
2304 dwc_tt->usb_tt->hcpriv = dwc_tt;
2305 }
2306
2307 dwc_tt->refcount++;
2308 }
2309
2310 return dwc_tt;
2311 }
2312
2313 /**
2314 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
2315 *
2316 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
2317 * of the structure are done.
2318 *
2319 * It's OK to call this with NULL.
2320 *
2321 * @hsotg: The HCD state structure for the DWC OTG controller.
2322 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
2323 */
2324 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
2325 {
2326 /* Model kfree and make put of NULL a no-op */
2327 if (dwc_tt == NULL)
2328 return;
2329
2330 WARN_ON(dwc_tt->refcount < 1);
2331
2332 dwc_tt->refcount--;
2333 if (!dwc_tt->refcount) {
2334 dwc_tt->usb_tt->hcpriv = NULL;
2335 kfree(dwc_tt);
2336 }
2337 }
2338
2339 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
2340 {
2341 struct urb *urb = context;
2342
2343 return urb->dev->speed;
2344 }
2345
2346 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2347 struct urb *urb)
2348 {
2349 struct usb_bus *bus = hcd_to_bus(hcd);
2350
2351 if (urb->interval)
2352 bus->bandwidth_allocated += bw / urb->interval;
2353 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2354 bus->bandwidth_isoc_reqs++;
2355 else
2356 bus->bandwidth_int_reqs++;
2357 }
2358
2359 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2360 struct urb *urb)
2361 {
2362 struct usb_bus *bus = hcd_to_bus(hcd);
2363
2364 if (urb->interval)
2365 bus->bandwidth_allocated -= bw / urb->interval;
2366 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2367 bus->bandwidth_isoc_reqs--;
2368 else
2369 bus->bandwidth_int_reqs--;
2370 }
2371
2372 /*
2373 * Sets the final status of an URB and returns it to the upper layer. Any
2374 * required cleanup of the URB is performed.
2375 *
2376 * Must be called with interrupt disabled and spinlock held
2377 */
2378 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2379 int status)
2380 {
2381 struct urb *urb;
2382 int i;
2383
2384 if (!qtd) {
2385 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
2386 return;
2387 }
2388
2389 if (!qtd->urb) {
2390 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
2391 return;
2392 }
2393
2394 urb = qtd->urb->priv;
2395 if (!urb) {
2396 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
2397 return;
2398 }
2399
2400 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
2401
2402 if (dbg_urb(urb))
2403 dev_vdbg(hsotg->dev,
2404 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
2405 __func__, urb, usb_pipedevice(urb->pipe),
2406 usb_pipeendpoint(urb->pipe),
2407 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
2408 urb->actual_length);
2409
2410
2411 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2412 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
2413 for (i = 0; i < urb->number_of_packets; ++i) {
2414 urb->iso_frame_desc[i].actual_length =
2415 dwc2_hcd_urb_get_iso_desc_actual_length(
2416 qtd->urb, i);
2417 urb->iso_frame_desc[i].status =
2418 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
2419 }
2420 }
2421
2422 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
2423 for (i = 0; i < urb->number_of_packets; i++)
2424 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
2425 i, urb->iso_frame_desc[i].status);
2426 }
2427
2428 urb->status = status;
2429 if (!status) {
2430 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
2431 urb->actual_length < urb->transfer_buffer_length)
2432 urb->status = -EREMOTEIO;
2433 }
2434
2435 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2436 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2437 struct usb_host_endpoint *ep = urb->ep;
2438
2439 if (ep)
2440 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
2441 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2442 urb);
2443 }
2444
2445 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
2446 urb->hcpriv = NULL;
2447 kfree(qtd->urb);
2448 qtd->urb = NULL;
2449
2450 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
2451 }
2452
2453 /*
2454 * Work queue function for starting the HCD when A-Cable is connected
2455 */
2456 static void dwc2_hcd_start_func(struct work_struct *work)
2457 {
2458 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2459 start_work.work);
2460
2461 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
2462 dwc2_host_start(hsotg);
2463 }
2464
2465 /*
2466 * Reset work queue function
2467 */
2468 static void dwc2_hcd_reset_func(struct work_struct *work)
2469 {
2470 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2471 reset_work.work);
2472 unsigned long flags;
2473 u32 hprt0;
2474
2475 dev_dbg(hsotg->dev, "USB RESET function called\n");
2476
2477 spin_lock_irqsave(&hsotg->lock, flags);
2478
2479 hprt0 = dwc2_read_hprt0(hsotg);
2480 hprt0 &= ~HPRT0_RST;
2481 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2482 hsotg->flags.b.port_reset_change = 1;
2483
2484 spin_unlock_irqrestore(&hsotg->lock, flags);
2485 }
2486
2487 /*
2488 * =========================================================================
2489 * Linux HC Driver Functions
2490 * =========================================================================
2491 */
2492
2493 /*
2494 * Initializes the DWC_otg controller and its root hub and prepares it for host
2495 * mode operation. Activates the root port. Returns 0 on success and a negative
2496 * error code on failure.
2497 */
2498 static int _dwc2_hcd_start(struct usb_hcd *hcd)
2499 {
2500 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2501 struct usb_bus *bus = hcd_to_bus(hcd);
2502 unsigned long flags;
2503
2504 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
2505
2506 spin_lock_irqsave(&hsotg->lock, flags);
2507 hsotg->lx_state = DWC2_L0;
2508 hcd->state = HC_STATE_RUNNING;
2509 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2510
2511 if (dwc2_is_device_mode(hsotg)) {
2512 spin_unlock_irqrestore(&hsotg->lock, flags);
2513 return 0; /* why 0 ?? */
2514 }
2515
2516 dwc2_hcd_reinit(hsotg);
2517
2518 /* Initialize and connect root hub if one is not already attached */
2519 if (bus->root_hub) {
2520 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
2521 /* Inform the HUB driver to resume */
2522 usb_hcd_resume_root_hub(hcd);
2523 }
2524
2525 spin_unlock_irqrestore(&hsotg->lock, flags);
2526 return 0;
2527 }
2528
2529 /*
2530 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
2531 * stopped.
2532 */
2533 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
2534 {
2535 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2536 unsigned long flags;
2537
2538 /* Turn off all host-specific interrupts */
2539 dwc2_disable_host_interrupts(hsotg);
2540
2541 /* Wait for interrupt processing to finish */
2542 synchronize_irq(hcd->irq);
2543
2544 spin_lock_irqsave(&hsotg->lock, flags);
2545 /* Ensure hcd is disconnected */
2546 dwc2_hcd_disconnect(hsotg, true);
2547 dwc2_hcd_stop(hsotg);
2548 hsotg->lx_state = DWC2_L3;
2549 hcd->state = HC_STATE_HALT;
2550 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2551 spin_unlock_irqrestore(&hsotg->lock, flags);
2552
2553 usleep_range(1000, 3000);
2554 }
2555
2556 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
2557 {
2558 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2559 unsigned long flags;
2560 int ret = 0;
2561 u32 hprt0;
2562
2563 spin_lock_irqsave(&hsotg->lock, flags);
2564
2565 if (hsotg->lx_state != DWC2_L0)
2566 goto unlock;
2567
2568 if (!HCD_HW_ACCESSIBLE(hcd))
2569 goto unlock;
2570
2571 if (!hsotg->core_params->hibernation)
2572 goto skip_power_saving;
2573
2574 /*
2575 * Drive USB suspend and disable port Power
2576 * if usb bus is not suspended.
2577 */
2578 if (!hsotg->bus_suspended) {
2579 hprt0 = dwc2_read_hprt0(hsotg);
2580 hprt0 |= HPRT0_SUSP;
2581 hprt0 &= ~HPRT0_PWR;
2582 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2583 }
2584
2585 /* Enter hibernation */
2586 ret = dwc2_enter_hibernation(hsotg);
2587 if (ret) {
2588 if (ret != -ENOTSUPP)
2589 dev_err(hsotg->dev,
2590 "enter hibernation failed\n");
2591 goto skip_power_saving;
2592 }
2593
2594 /* Ask phy to be suspended */
2595 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
2596 spin_unlock_irqrestore(&hsotg->lock, flags);
2597 usb_phy_set_suspend(hsotg->uphy, true);
2598 spin_lock_irqsave(&hsotg->lock, flags);
2599 }
2600
2601 /* After entering hibernation, hardware is no more accessible */
2602 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2603
2604 skip_power_saving:
2605 hsotg->lx_state = DWC2_L2;
2606 unlock:
2607 spin_unlock_irqrestore(&hsotg->lock, flags);
2608
2609 return ret;
2610 }
2611
2612 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
2613 {
2614 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2615 unsigned long flags;
2616 int ret = 0;
2617
2618 spin_lock_irqsave(&hsotg->lock, flags);
2619
2620 if (hsotg->lx_state != DWC2_L2)
2621 goto unlock;
2622
2623 if (!hsotg->core_params->hibernation) {
2624 hsotg->lx_state = DWC2_L0;
2625 goto unlock;
2626 }
2627
2628 /*
2629 * Set HW accessible bit before powering on the controller
2630 * since an interrupt may rise.
2631 */
2632 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2633
2634 /*
2635 * Enable power if not already done.
2636 * This must not be spinlocked since duration
2637 * of this call is unknown.
2638 */
2639 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
2640 spin_unlock_irqrestore(&hsotg->lock, flags);
2641 usb_phy_set_suspend(hsotg->uphy, false);
2642 spin_lock_irqsave(&hsotg->lock, flags);
2643 }
2644
2645 /* Exit hibernation */
2646 ret = dwc2_exit_hibernation(hsotg, true);
2647 if (ret && (ret != -ENOTSUPP))
2648 dev_err(hsotg->dev, "exit hibernation failed\n");
2649
2650 hsotg->lx_state = DWC2_L0;
2651
2652 spin_unlock_irqrestore(&hsotg->lock, flags);
2653
2654 if (hsotg->bus_suspended) {
2655 spin_lock_irqsave(&hsotg->lock, flags);
2656 hsotg->flags.b.port_suspend_change = 1;
2657 spin_unlock_irqrestore(&hsotg->lock, flags);
2658 dwc2_port_resume(hsotg);
2659 } else {
2660 /* Wait for controller to correctly update D+/D- level */
2661 usleep_range(3000, 5000);
2662
2663 /*
2664 * Clear Port Enable and Port Status changes.
2665 * Enable Port Power.
2666 */
2667 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
2668 HPRT0_ENACHG, hsotg->regs + HPRT0);
2669 /* Wait for controller to detect Port Connect */
2670 usleep_range(5000, 7000);
2671 }
2672
2673 return ret;
2674 unlock:
2675 spin_unlock_irqrestore(&hsotg->lock, flags);
2676
2677 return ret;
2678 }
2679
2680 /* Returns the current frame number */
2681 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
2682 {
2683 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2684
2685 return dwc2_hcd_get_frame_number(hsotg);
2686 }
2687
2688 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
2689 char *fn_name)
2690 {
2691 #ifdef VERBOSE_DEBUG
2692 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2693 char *pipetype;
2694 char *speed;
2695
2696 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
2697 dev_vdbg(hsotg->dev, " Device address: %d\n",
2698 usb_pipedevice(urb->pipe));
2699 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
2700 usb_pipeendpoint(urb->pipe),
2701 usb_pipein(urb->pipe) ? "IN" : "OUT");
2702
2703 switch (usb_pipetype(urb->pipe)) {
2704 case PIPE_CONTROL:
2705 pipetype = "CONTROL";
2706 break;
2707 case PIPE_BULK:
2708 pipetype = "BULK";
2709 break;
2710 case PIPE_INTERRUPT:
2711 pipetype = "INTERRUPT";
2712 break;
2713 case PIPE_ISOCHRONOUS:
2714 pipetype = "ISOCHRONOUS";
2715 break;
2716 default:
2717 pipetype = "UNKNOWN";
2718 break;
2719 }
2720
2721 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
2722 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
2723 "IN" : "OUT");
2724
2725 switch (urb->dev->speed) {
2726 case USB_SPEED_HIGH:
2727 speed = "HIGH";
2728 break;
2729 case USB_SPEED_FULL:
2730 speed = "FULL";
2731 break;
2732 case USB_SPEED_LOW:
2733 speed = "LOW";
2734 break;
2735 default:
2736 speed = "UNKNOWN";
2737 break;
2738 }
2739
2740 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
2741 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
2742 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
2743 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
2744 urb->transfer_buffer_length);
2745 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
2746 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
2747 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
2748 urb->setup_packet, (unsigned long)urb->setup_dma);
2749 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
2750
2751 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2752 int i;
2753
2754 for (i = 0; i < urb->number_of_packets; i++) {
2755 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
2756 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
2757 urb->iso_frame_desc[i].offset,
2758 urb->iso_frame_desc[i].length);
2759 }
2760 }
2761 #endif
2762 }
2763
2764 /*
2765 * Starts processing a USB transfer request specified by a USB Request Block
2766 * (URB). mem_flags indicates the type of memory allocation to use while
2767 * processing this URB.
2768 */
2769 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2770 gfp_t mem_flags)
2771 {
2772 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2773 struct usb_host_endpoint *ep = urb->ep;
2774 struct dwc2_hcd_urb *dwc2_urb;
2775 int i;
2776 int retval;
2777 int alloc_bandwidth = 0;
2778 u8 ep_type = 0;
2779 u32 tflags = 0;
2780 void *buf;
2781 unsigned long flags;
2782 struct dwc2_qh *qh;
2783 bool qh_allocated = false;
2784 struct dwc2_qtd *qtd;
2785
2786 if (dbg_urb(urb)) {
2787 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
2788 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
2789 }
2790
2791 if (ep == NULL)
2792 return -EINVAL;
2793
2794 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2795 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2796 spin_lock_irqsave(&hsotg->lock, flags);
2797 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
2798 alloc_bandwidth = 1;
2799 spin_unlock_irqrestore(&hsotg->lock, flags);
2800 }
2801
2802 switch (usb_pipetype(urb->pipe)) {
2803 case PIPE_CONTROL:
2804 ep_type = USB_ENDPOINT_XFER_CONTROL;
2805 break;
2806 case PIPE_ISOCHRONOUS:
2807 ep_type = USB_ENDPOINT_XFER_ISOC;
2808 break;
2809 case PIPE_BULK:
2810 ep_type = USB_ENDPOINT_XFER_BULK;
2811 break;
2812 case PIPE_INTERRUPT:
2813 ep_type = USB_ENDPOINT_XFER_INT;
2814 break;
2815 default:
2816 dev_warn(hsotg->dev, "Wrong ep type\n");
2817 }
2818
2819 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
2820 mem_flags);
2821 if (!dwc2_urb)
2822 return -ENOMEM;
2823
2824 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
2825 usb_pipeendpoint(urb->pipe), ep_type,
2826 usb_pipein(urb->pipe),
2827 usb_maxpacket(urb->dev, urb->pipe,
2828 !(usb_pipein(urb->pipe))));
2829
2830 buf = urb->transfer_buffer;
2831
2832 if (hcd->self.uses_dma) {
2833 if (!buf && (urb->transfer_dma & 3)) {
2834 dev_err(hsotg->dev,
2835 "%s: unaligned transfer with no transfer_buffer",
2836 __func__);
2837 retval = -EINVAL;
2838 goto fail0;
2839 }
2840 }
2841
2842 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
2843 tflags |= URB_GIVEBACK_ASAP;
2844 if (urb->transfer_flags & URB_ZERO_PACKET)
2845 tflags |= URB_SEND_ZERO_PACKET;
2846
2847 dwc2_urb->priv = urb;
2848 dwc2_urb->buf = buf;
2849 dwc2_urb->dma = urb->transfer_dma;
2850 dwc2_urb->length = urb->transfer_buffer_length;
2851 dwc2_urb->setup_packet = urb->setup_packet;
2852 dwc2_urb->setup_dma = urb->setup_dma;
2853 dwc2_urb->flags = tflags;
2854 dwc2_urb->interval = urb->interval;
2855 dwc2_urb->status = -EINPROGRESS;
2856
2857 for (i = 0; i < urb->number_of_packets; ++i)
2858 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
2859 urb->iso_frame_desc[i].offset,
2860 urb->iso_frame_desc[i].length);
2861
2862 urb->hcpriv = dwc2_urb;
2863 qh = (struct dwc2_qh *) ep->hcpriv;
2864 /* Create QH for the endpoint if it doesn't exist */
2865 if (!qh) {
2866 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
2867 if (!qh) {
2868 retval = -ENOMEM;
2869 goto fail0;
2870 }
2871 ep->hcpriv = qh;
2872 qh_allocated = true;
2873 }
2874
2875 qtd = kzalloc(sizeof(*qtd), mem_flags);
2876 if (!qtd) {
2877 retval = -ENOMEM;
2878 goto fail1;
2879 }
2880
2881 spin_lock_irqsave(&hsotg->lock, flags);
2882 retval = usb_hcd_link_urb_to_ep(hcd, urb);
2883 if (retval)
2884 goto fail2;
2885
2886 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
2887 if (retval)
2888 goto fail3;
2889
2890 if (alloc_bandwidth) {
2891 dwc2_allocate_bus_bandwidth(hcd,
2892 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2893 urb);
2894 }
2895
2896 spin_unlock_irqrestore(&hsotg->lock, flags);
2897
2898 return 0;
2899
2900 fail3:
2901 dwc2_urb->priv = NULL;
2902 usb_hcd_unlink_urb_from_ep(hcd, urb);
2903 if (qh_allocated && qh->channel && qh->channel->qh == qh)
2904 qh->channel->qh = NULL;
2905 fail2:
2906 spin_unlock_irqrestore(&hsotg->lock, flags);
2907 urb->hcpriv = NULL;
2908 kfree(qtd);
2909 fail1:
2910 if (qh_allocated) {
2911 struct dwc2_qtd *qtd2, *qtd2_tmp;
2912
2913 ep->hcpriv = NULL;
2914 dwc2_hcd_qh_unlink(hsotg, qh);
2915 /* Free each QTD in the QH's QTD list */
2916 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
2917 qtd_list_entry)
2918 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
2919 dwc2_hcd_qh_free(hsotg, qh);
2920 }
2921 fail0:
2922 kfree(dwc2_urb);
2923
2924 return retval;
2925 }
2926
2927 /*
2928 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
2929 */
2930 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
2931 int status)
2932 {
2933 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2934 int rc;
2935 unsigned long flags;
2936
2937 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
2938 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
2939
2940 spin_lock_irqsave(&hsotg->lock, flags);
2941
2942 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
2943 if (rc)
2944 goto out;
2945
2946 if (!urb->hcpriv) {
2947 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
2948 goto out;
2949 }
2950
2951 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
2952
2953 usb_hcd_unlink_urb_from_ep(hcd, urb);
2954
2955 kfree(urb->hcpriv);
2956 urb->hcpriv = NULL;
2957
2958 /* Higher layer software sets URB status */
2959 spin_unlock(&hsotg->lock);
2960 usb_hcd_giveback_urb(hcd, urb, status);
2961 spin_lock(&hsotg->lock);
2962
2963 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
2964 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
2965 out:
2966 spin_unlock_irqrestore(&hsotg->lock, flags);
2967
2968 return rc;
2969 }
2970
2971 /*
2972 * Frees resources in the DWC_otg controller related to a given endpoint. Also
2973 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
2974 * must already be dequeued.
2975 */
2976 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
2977 struct usb_host_endpoint *ep)
2978 {
2979 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2980
2981 dev_dbg(hsotg->dev,
2982 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
2983 ep->desc.bEndpointAddress, ep->hcpriv);
2984 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
2985 }
2986
2987 /*
2988 * Resets endpoint specific parameter values, in current version used to reset
2989 * the data toggle (as a WA). This function can be called from usb_clear_halt
2990 * routine.
2991 */
2992 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
2993 struct usb_host_endpoint *ep)
2994 {
2995 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2996 unsigned long flags;
2997
2998 dev_dbg(hsotg->dev,
2999 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
3000 ep->desc.bEndpointAddress);
3001
3002 spin_lock_irqsave(&hsotg->lock, flags);
3003 dwc2_hcd_endpoint_reset(hsotg, ep);
3004 spin_unlock_irqrestore(&hsotg->lock, flags);
3005 }
3006
3007 /*
3008 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
3009 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
3010 * interrupt.
3011 *
3012 * This function is called by the USB core when an interrupt occurs
3013 */
3014 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
3015 {
3016 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
3017
3018 return dwc2_handle_hcd_intr(hsotg);
3019 }
3020
3021 /*
3022 * Creates Status Change bitmap for the root hub and root port. The bitmap is
3023 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
3024 * is the status change indicator for the single root port. Returns 1 if either
3025 * change indicator is 1, otherwise returns 0.
3026 */
3027 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
3028 {
3029 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
3030
3031 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
3032 return buf[0] != 0;
3033 }
3034
3035 /* Handles hub class-specific requests */
3036 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
3037 u16 windex, char *buf, u16 wlength)
3038 {
3039 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
3040 wvalue, windex, buf, wlength);
3041 return retval;
3042 }
3043
3044 /* Handles hub TT buffer clear completions */
3045 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
3046 struct usb_host_endpoint *ep)
3047 {
3048 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
3049 struct dwc2_qh *qh;
3050 unsigned long flags;
3051
3052 qh = ep->hcpriv;
3053 if (!qh)
3054 return;
3055
3056 spin_lock_irqsave(&hsotg->lock, flags);
3057 qh->tt_buffer_dirty = 0;
3058
3059 if (hsotg->flags.b.port_connect_status)
3060 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
3061
3062 spin_unlock_irqrestore(&hsotg->lock, flags);
3063 }
3064
3065 static struct hc_driver dwc2_hc_driver = {
3066 .description = "dwc2_hsotg",
3067 .product_desc = "DWC OTG Controller",
3068 .hcd_priv_size = sizeof(struct wrapper_priv_data),
3069
3070 .irq = _dwc2_hcd_irq,
3071 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
3072
3073 .start = _dwc2_hcd_start,
3074 .stop = _dwc2_hcd_stop,
3075 .urb_enqueue = _dwc2_hcd_urb_enqueue,
3076 .urb_dequeue = _dwc2_hcd_urb_dequeue,
3077 .endpoint_disable = _dwc2_hcd_endpoint_disable,
3078 .endpoint_reset = _dwc2_hcd_endpoint_reset,
3079 .get_frame_number = _dwc2_hcd_get_frame_number,
3080
3081 .hub_status_data = _dwc2_hcd_hub_status_data,
3082 .hub_control = _dwc2_hcd_hub_control,
3083 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
3084
3085 .bus_suspend = _dwc2_hcd_suspend,
3086 .bus_resume = _dwc2_hcd_resume,
3087
3088 .map_urb_for_dma = dwc2_map_urb_for_dma,
3089 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
3090 };
3091
3092 /*
3093 * Frees secondary storage associated with the dwc2_hsotg structure contained
3094 * in the struct usb_hcd field
3095 */
3096 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
3097 {
3098 u32 ahbcfg;
3099 u32 dctl;
3100 int i;
3101
3102 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
3103
3104 /* Free memory for QH/QTD lists */
3105 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
3106 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
3107 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
3108 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
3109 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
3110 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
3111
3112 /* Free memory for the host channels */
3113 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
3114 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
3115
3116 if (chan != NULL) {
3117 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
3118 i, chan);
3119 hsotg->hc_ptr_array[i] = NULL;
3120 kfree(chan);
3121 }
3122 }
3123
3124 if (hsotg->core_params->dma_enable > 0) {
3125 if (hsotg->status_buf) {
3126 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
3127 hsotg->status_buf,
3128 hsotg->status_buf_dma);
3129 hsotg->status_buf = NULL;
3130 }
3131 } else {
3132 kfree(hsotg->status_buf);
3133 hsotg->status_buf = NULL;
3134 }
3135
3136 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
3137
3138 /* Disable all interrupts */
3139 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
3140 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
3141 dwc2_writel(0, hsotg->regs + GINTMSK);
3142
3143 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
3144 dctl = dwc2_readl(hsotg->regs + DCTL);
3145 dctl |= DCTL_SFTDISCON;
3146 dwc2_writel(dctl, hsotg->regs + DCTL);
3147 }
3148
3149 if (hsotg->wq_otg) {
3150 if (!cancel_work_sync(&hsotg->wf_otg))
3151 flush_workqueue(hsotg->wq_otg);
3152 destroy_workqueue(hsotg->wq_otg);
3153 }
3154
3155 del_timer(&hsotg->wkp_timer);
3156 }
3157
3158 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
3159 {
3160 /* Turn off all host-specific interrupts */
3161 dwc2_disable_host_interrupts(hsotg);
3162
3163 dwc2_hcd_free(hsotg);
3164 }
3165
3166 /*
3167 * Initializes the HCD. This function allocates memory for and initializes the
3168 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
3169 * USB bus with the core and calls the hc_driver->start() function. It returns
3170 * a negative error on failure.
3171 */
3172 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
3173 {
3174 struct usb_hcd *hcd;
3175 struct dwc2_host_chan *channel;
3176 u32 hcfg;
3177 int i, num_channels;
3178 int retval;
3179
3180 if (usb_disabled())
3181 return -ENODEV;
3182
3183 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
3184
3185 retval = -ENOMEM;
3186
3187 hcfg = dwc2_readl(hsotg->regs + HCFG);
3188 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
3189
3190 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3191 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
3192 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
3193 if (!hsotg->frame_num_array)
3194 goto error1;
3195 hsotg->last_frame_num_array = kzalloc(
3196 sizeof(*hsotg->last_frame_num_array) *
3197 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
3198 if (!hsotg->last_frame_num_array)
3199 goto error1;
3200 #endif
3201 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
3202
3203 /* Check if the bus driver or platform code has setup a dma_mask */
3204 if (hsotg->core_params->dma_enable > 0 &&
3205 hsotg->dev->dma_mask == NULL) {
3206 dev_warn(hsotg->dev,
3207 "dma_mask not set, disabling DMA\n");
3208 hsotg->core_params->dma_enable = 0;
3209 hsotg->core_params->dma_desc_enable = 0;
3210 }
3211
3212 /* Set device flags indicating whether the HCD supports DMA */
3213 if (hsotg->core_params->dma_enable > 0) {
3214 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
3215 dev_warn(hsotg->dev, "can't set DMA mask\n");
3216 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
3217 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
3218 }
3219
3220 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
3221 if (!hcd)
3222 goto error1;
3223
3224 if (hsotg->core_params->dma_enable <= 0)
3225 hcd->self.uses_dma = 0;
3226
3227 hcd->has_tt = 1;
3228
3229 ((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
3230 hsotg->priv = hcd;
3231
3232 /*
3233 * Disable the global interrupt until all the interrupt handlers are
3234 * installed
3235 */
3236 dwc2_disable_global_interrupts(hsotg);
3237
3238 /* Initialize the DWC_otg core, and select the Phy type */
3239 retval = dwc2_core_init(hsotg, true);
3240 if (retval)
3241 goto error2;
3242
3243 /* Create new workqueue and init work */
3244 retval = -ENOMEM;
3245 hsotg->wq_otg = create_singlethread_workqueue("dwc2");
3246 if (!hsotg->wq_otg) {
3247 dev_err(hsotg->dev, "Failed to create workqueue\n");
3248 goto error2;
3249 }
3250 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
3251
3252 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
3253 (unsigned long)hsotg);
3254
3255 /* Initialize the non-periodic schedule */
3256 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
3257 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
3258
3259 /* Initialize the periodic schedule */
3260 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
3261 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
3262 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
3263 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
3264
3265 INIT_LIST_HEAD(&hsotg->split_order);
3266
3267 /*
3268 * Create a host channel descriptor for each host channel implemented
3269 * in the controller. Initialize the channel descriptor array.
3270 */
3271 INIT_LIST_HEAD(&hsotg->free_hc_list);
3272 num_channels = hsotg->core_params->host_channels;
3273 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
3274
3275 for (i = 0; i < num_channels; i++) {
3276 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
3277 if (channel == NULL)
3278 goto error3;
3279 channel->hc_num = i;
3280 INIT_LIST_HEAD(&channel->split_order_list_entry);
3281 hsotg->hc_ptr_array[i] = channel;
3282 }
3283
3284 /* Initialize hsotg start work */
3285 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
3286
3287 /* Initialize port reset work */
3288 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
3289
3290 /*
3291 * Allocate space for storing data on status transactions. Normally no
3292 * data is sent, but this space acts as a bit bucket. This must be
3293 * done after usb_add_hcd since that function allocates the DMA buffer
3294 * pool.
3295 */
3296 if (hsotg->core_params->dma_enable > 0)
3297 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
3298 DWC2_HCD_STATUS_BUF_SIZE,
3299 &hsotg->status_buf_dma, GFP_KERNEL);
3300 else
3301 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
3302 GFP_KERNEL);
3303
3304 if (!hsotg->status_buf)
3305 goto error3;
3306
3307 /*
3308 * Create kmem caches to handle descriptor buffers in descriptor
3309 * DMA mode.
3310 * Alignment must be set to 512 bytes.
3311 */
3312 if (hsotg->core_params->dma_desc_enable ||
3313 hsotg->core_params->dma_desc_fs_enable) {
3314 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
3315 sizeof(struct dwc2_hcd_dma_desc) *
3316 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
3317 NULL);
3318 if (!hsotg->desc_gen_cache) {
3319 dev_err(hsotg->dev,
3320 "unable to create dwc2 generic desc cache\n");
3321
3322 /*
3323 * Disable descriptor dma mode since it will not be
3324 * usable.
3325 */
3326 hsotg->core_params->dma_desc_enable = 0;
3327 hsotg->core_params->dma_desc_fs_enable = 0;
3328 }
3329
3330 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
3331 sizeof(struct dwc2_hcd_dma_desc) *
3332 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
3333 if (!hsotg->desc_hsisoc_cache) {
3334 dev_err(hsotg->dev,
3335 "unable to create dwc2 hs isoc desc cache\n");
3336
3337 kmem_cache_destroy(hsotg->desc_gen_cache);
3338
3339 /*
3340 * Disable descriptor dma mode since it will not be
3341 * usable.
3342 */
3343 hsotg->core_params->dma_desc_enable = 0;
3344 hsotg->core_params->dma_desc_fs_enable = 0;
3345 }
3346 }
3347
3348 hsotg->otg_port = 1;
3349 hsotg->frame_list = NULL;
3350 hsotg->frame_list_dma = 0;
3351 hsotg->periodic_qh_count = 0;
3352
3353 /* Initiate lx_state to L3 disconnected state */
3354 hsotg->lx_state = DWC2_L3;
3355
3356 hcd->self.otg_port = hsotg->otg_port;
3357
3358 /* Don't support SG list at this point */
3359 hcd->self.sg_tablesize = 0;
3360
3361 if (!IS_ERR_OR_NULL(hsotg->uphy))
3362 otg_set_host(hsotg->uphy->otg, &hcd->self);
3363
3364 /*
3365 * Finish generic HCD initialization and start the HCD. This function
3366 * allocates the DMA buffer pool, registers the USB bus, requests the
3367 * IRQ line, and calls hcd_start method.
3368 */
3369 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
3370 if (retval < 0)
3371 goto error4;
3372
3373 device_wakeup_enable(hcd->self.controller);
3374
3375 dwc2_hcd_dump_state(hsotg);
3376
3377 dwc2_enable_global_interrupts(hsotg);
3378
3379 return 0;
3380
3381 error4:
3382 kmem_cache_destroy(hsotg->desc_gen_cache);
3383 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
3384 error3:
3385 dwc2_hcd_release(hsotg);
3386 error2:
3387 usb_put_hcd(hcd);
3388 error1:
3389 kfree(hsotg->core_params);
3390
3391 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3392 kfree(hsotg->last_frame_num_array);
3393 kfree(hsotg->frame_num_array);
3394 #endif
3395
3396 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
3397 return retval;
3398 }
3399
3400 /*
3401 * Removes the HCD.
3402 * Frees memory and resources associated with the HCD and deregisters the bus.
3403 */
3404 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
3405 {
3406 struct usb_hcd *hcd;
3407
3408 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
3409
3410 hcd = dwc2_hsotg_to_hcd(hsotg);
3411 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
3412
3413 if (!hcd) {
3414 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
3415 __func__);
3416 return;
3417 }
3418
3419 if (!IS_ERR_OR_NULL(hsotg->uphy))
3420 otg_set_host(hsotg->uphy->otg, NULL);
3421
3422 usb_remove_hcd(hcd);
3423 hsotg->priv = NULL;
3424
3425 kmem_cache_destroy(hsotg->desc_gen_cache);
3426 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
3427
3428 dwc2_hcd_release(hsotg);
3429 usb_put_hcd(hcd);
3430
3431 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3432 kfree(hsotg->last_frame_num_array);
3433 kfree(hsotg->frame_num_array);
3434 #endif
3435 }
3436
3437 /**
3438 * dwc2_backup_host_registers() - Backup controller host registers.
3439 * When suspending usb bus, registers needs to be backuped
3440 * if controller power is disabled once suspended.
3441 *
3442 * @hsotg: Programming view of the DWC_otg controller
3443 */
3444 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
3445 {
3446 struct dwc2_hregs_backup *hr;
3447 int i;
3448
3449 dev_dbg(hsotg->dev, "%s\n", __func__);
3450
3451 /* Backup Host regs */
3452 hr = &hsotg->hr_backup;
3453 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
3454 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
3455 for (i = 0; i < hsotg->core_params->host_channels; ++i)
3456 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
3457
3458 hr->hprt0 = dwc2_read_hprt0(hsotg);
3459 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
3460 hr->valid = true;
3461
3462 return 0;
3463 }
3464
3465 /**
3466 * dwc2_restore_host_registers() - Restore controller host registers.
3467 * When resuming usb bus, device registers needs to be restored
3468 * if controller power were disabled.
3469 *
3470 * @hsotg: Programming view of the DWC_otg controller
3471 */
3472 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
3473 {
3474 struct dwc2_hregs_backup *hr;
3475 int i;
3476
3477 dev_dbg(hsotg->dev, "%s\n", __func__);
3478
3479 /* Restore host regs */
3480 hr = &hsotg->hr_backup;
3481 if (!hr->valid) {
3482 dev_err(hsotg->dev, "%s: no host registers to restore\n",
3483 __func__);
3484 return -EINVAL;
3485 }
3486 hr->valid = false;
3487
3488 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
3489 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
3490
3491 for (i = 0; i < hsotg->core_params->host_channels; ++i)
3492 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
3493
3494 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
3495 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
3496 hsotg->frame_number = 0;
3497
3498 return 0;
3499 }
This page took 0.320069 seconds and 5 git commands to generate.