Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73
74 /*
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76 * address of the TRB.
77 */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 union xhci_trb *trb)
80 {
81 unsigned long segment_offset;
82
83 if (!seg || !trb || trb < seg->trbs)
84 return 0;
85 /* offset in TRBs */
86 segment_offset = trb - seg->trbs;
87 if (segment_offset >= TRBS_PER_SEGMENT)
88 return 0;
89 return seg->dma + (segment_offset * sizeof(*trb));
90 }
91
92 static bool trb_is_link(union xhci_trb *trb)
93 {
94 return TRB_TYPE_LINK_LE32(trb->link.control);
95 }
96
97 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
100 }
101
102 static bool last_trb_on_ring(struct xhci_ring *ring,
103 struct xhci_segment *seg, union xhci_trb *trb)
104 {
105 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
106 }
107
108 static bool link_trb_toggles_cycle(union xhci_trb *trb)
109 {
110 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
111 }
112
113 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
114 * TRB is in a new segment. This does not skip over link TRBs, and it does not
115 * effect the ring dequeue or enqueue pointers.
116 */
117 static void next_trb(struct xhci_hcd *xhci,
118 struct xhci_ring *ring,
119 struct xhci_segment **seg,
120 union xhci_trb **trb)
121 {
122 if (trb_is_link(*trb)) {
123 *seg = (*seg)->next;
124 *trb = ((*seg)->trbs);
125 } else {
126 (*trb)++;
127 }
128 }
129
130 /*
131 * See Cycle bit rules. SW is the consumer for the event ring only.
132 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
133 */
134 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
135 {
136 ring->deq_updates++;
137
138 /* event ring doesn't have link trbs, check for last trb */
139 if (ring->type == TYPE_EVENT) {
140 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
141 ring->dequeue++;
142 return;
143 }
144 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
145 ring->cycle_state ^= 1;
146 ring->deq_seg = ring->deq_seg->next;
147 ring->dequeue = ring->deq_seg->trbs;
148 return;
149 }
150
151 /* All other rings have link trbs */
152 if (!trb_is_link(ring->dequeue)) {
153 ring->dequeue++;
154 ring->num_trbs_free++;
155 }
156 while (trb_is_link(ring->dequeue)) {
157 ring->deq_seg = ring->deq_seg->next;
158 ring->dequeue = ring->deq_seg->trbs;
159 }
160 return;
161 }
162
163 /*
164 * See Cycle bit rules. SW is the consumer for the event ring only.
165 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
166 *
167 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
168 * chain bit is set), then set the chain bit in all the following link TRBs.
169 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
170 * have their chain bit cleared (so that each Link TRB is a separate TD).
171 *
172 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
173 * set, but other sections talk about dealing with the chain bit set. This was
174 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
175 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
176 *
177 * @more_trbs_coming: Will you enqueue more TRBs before calling
178 * prepare_transfer()?
179 */
180 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
181 bool more_trbs_coming)
182 {
183 u32 chain;
184 union xhci_trb *next;
185
186 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
187 /* If this is not event ring, there is one less usable TRB */
188 if (!trb_is_link(ring->enqueue))
189 ring->num_trbs_free--;
190 next = ++(ring->enqueue);
191
192 ring->enq_updates++;
193 /* Update the dequeue pointer further if that was a link TRB */
194 while (trb_is_link(next)) {
195
196 /*
197 * If the caller doesn't plan on enqueueing more TDs before
198 * ringing the doorbell, then we don't want to give the link TRB
199 * to the hardware just yet. We'll give the link TRB back in
200 * prepare_ring() just before we enqueue the TD at the top of
201 * the ring.
202 */
203 if (!chain && !more_trbs_coming)
204 break;
205
206 /* If we're not dealing with 0.95 hardware or isoc rings on
207 * AMD 0.96 host, carry over the chain bit of the previous TRB
208 * (which may mean the chain bit is cleared).
209 */
210 if (!(ring->type == TYPE_ISOC &&
211 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
212 !xhci_link_trb_quirk(xhci)) {
213 next->link.control &= cpu_to_le32(~TRB_CHAIN);
214 next->link.control |= cpu_to_le32(chain);
215 }
216 /* Give this link TRB to the hardware */
217 wmb();
218 next->link.control ^= cpu_to_le32(TRB_CYCLE);
219
220 /* Toggle the cycle bit after the last ring segment. */
221 if (link_trb_toggles_cycle(next))
222 ring->cycle_state ^= 1;
223
224 ring->enq_seg = ring->enq_seg->next;
225 ring->enqueue = ring->enq_seg->trbs;
226 next = ring->enqueue;
227 }
228 }
229
230 /*
231 * Check to see if there's room to enqueue num_trbs on the ring and make sure
232 * enqueue pointer will not advance into dequeue segment. See rules above.
233 */
234 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
235 unsigned int num_trbs)
236 {
237 int num_trbs_in_deq_seg;
238
239 if (ring->num_trbs_free < num_trbs)
240 return 0;
241
242 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
243 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
244 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
245 return 0;
246 }
247
248 return 1;
249 }
250
251 /* Ring the host controller doorbell after placing a command on the ring */
252 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
253 {
254 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
255 return;
256
257 xhci_dbg(xhci, "// Ding dong!\n");
258 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
259 /* Flush PCI posted writes */
260 readl(&xhci->dba->doorbell[0]);
261 }
262
263 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
264 {
265 u64 temp_64;
266 int ret;
267
268 xhci_dbg(xhci, "Abort command ring\n");
269
270 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
271 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
272
273 /*
274 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
275 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
276 * but the completion event in never sent. Use the cmd timeout timer to
277 * handle those cases. Use twice the time to cover the bit polling retry
278 */
279 mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT));
280 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
281 &xhci->op_regs->cmd_ring);
282
283 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
284 * time the completion od all xHCI commands, including
285 * the Command Abort operation. If software doesn't see
286 * CRR negated in a timely manner (e.g. longer than 5
287 * seconds), then it should assume that the there are
288 * larger problems with the xHC and assert HCRST.
289 */
290 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
291 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
292 if (ret < 0) {
293 /* we are about to kill xhci, give it one more chance */
294 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
295 &xhci->op_regs->cmd_ring);
296 udelay(1000);
297 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
298 CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
299 if (ret == 0)
300 return 0;
301
302 xhci_err(xhci, "Stopped the command ring failed, "
303 "maybe the host is dead\n");
304 del_timer(&xhci->cmd_timer);
305 xhci->xhc_state |= XHCI_STATE_DYING;
306 xhci_quiesce(xhci);
307 xhci_halt(xhci);
308 return -ESHUTDOWN;
309 }
310
311 return 0;
312 }
313
314 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
315 unsigned int slot_id,
316 unsigned int ep_index,
317 unsigned int stream_id)
318 {
319 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
320 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
321 unsigned int ep_state = ep->ep_state;
322
323 /* Don't ring the doorbell for this endpoint if there are pending
324 * cancellations because we don't want to interrupt processing.
325 * We don't want to restart any stream rings if there's a set dequeue
326 * pointer command pending because the device can choose to start any
327 * stream once the endpoint is on the HW schedule.
328 */
329 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
330 (ep_state & EP_HALTED))
331 return;
332 writel(DB_VALUE(ep_index, stream_id), db_addr);
333 /* The CPU has better things to do at this point than wait for a
334 * write-posting flush. It'll get there soon enough.
335 */
336 }
337
338 /* Ring the doorbell for any rings with pending URBs */
339 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
340 unsigned int slot_id,
341 unsigned int ep_index)
342 {
343 unsigned int stream_id;
344 struct xhci_virt_ep *ep;
345
346 ep = &xhci->devs[slot_id]->eps[ep_index];
347
348 /* A ring has pending URBs if its TD list is not empty */
349 if (!(ep->ep_state & EP_HAS_STREAMS)) {
350 if (ep->ring && !(list_empty(&ep->ring->td_list)))
351 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
352 return;
353 }
354
355 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
356 stream_id++) {
357 struct xhci_stream_info *stream_info = ep->stream_info;
358 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
359 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
360 stream_id);
361 }
362 }
363
364 /* Get the right ring for the given slot_id, ep_index and stream_id.
365 * If the endpoint supports streams, boundary check the URB's stream ID.
366 * If the endpoint doesn't support streams, return the singular endpoint ring.
367 */
368 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
369 unsigned int slot_id, unsigned int ep_index,
370 unsigned int stream_id)
371 {
372 struct xhci_virt_ep *ep;
373
374 ep = &xhci->devs[slot_id]->eps[ep_index];
375 /* Common case: no streams */
376 if (!(ep->ep_state & EP_HAS_STREAMS))
377 return ep->ring;
378
379 if (stream_id == 0) {
380 xhci_warn(xhci,
381 "WARN: Slot ID %u, ep index %u has streams, "
382 "but URB has no stream ID.\n",
383 slot_id, ep_index);
384 return NULL;
385 }
386
387 if (stream_id < ep->stream_info->num_streams)
388 return ep->stream_info->stream_rings[stream_id];
389
390 xhci_warn(xhci,
391 "WARN: Slot ID %u, ep index %u has "
392 "stream IDs 1 to %u allocated, "
393 "but stream ID %u is requested.\n",
394 slot_id, ep_index,
395 ep->stream_info->num_streams - 1,
396 stream_id);
397 return NULL;
398 }
399
400 /*
401 * Move the xHC's endpoint ring dequeue pointer past cur_td.
402 * Record the new state of the xHC's endpoint ring dequeue segment,
403 * dequeue pointer, and new consumer cycle state in state.
404 * Update our internal representation of the ring's dequeue pointer.
405 *
406 * We do this in three jumps:
407 * - First we update our new ring state to be the same as when the xHC stopped.
408 * - Then we traverse the ring to find the segment that contains
409 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
410 * any link TRBs with the toggle cycle bit set.
411 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
412 * if we've moved it past a link TRB with the toggle cycle bit set.
413 *
414 * Some of the uses of xhci_generic_trb are grotty, but if they're done
415 * with correct __le32 accesses they should work fine. Only users of this are
416 * in here.
417 */
418 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
419 unsigned int slot_id, unsigned int ep_index,
420 unsigned int stream_id, struct xhci_td *cur_td,
421 struct xhci_dequeue_state *state)
422 {
423 struct xhci_virt_device *dev = xhci->devs[slot_id];
424 struct xhci_virt_ep *ep = &dev->eps[ep_index];
425 struct xhci_ring *ep_ring;
426 struct xhci_segment *new_seg;
427 union xhci_trb *new_deq;
428 dma_addr_t addr;
429 u64 hw_dequeue;
430 bool cycle_found = false;
431 bool td_last_trb_found = false;
432
433 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
434 ep_index, stream_id);
435 if (!ep_ring) {
436 xhci_warn(xhci, "WARN can't find new dequeue state "
437 "for invalid stream ID %u.\n",
438 stream_id);
439 return;
440 }
441
442 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
443 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
444 "Finding endpoint context");
445 /* 4.6.9 the css flag is written to the stream context for streams */
446 if (ep->ep_state & EP_HAS_STREAMS) {
447 struct xhci_stream_ctx *ctx =
448 &ep->stream_info->stream_ctx_array[stream_id];
449 hw_dequeue = le64_to_cpu(ctx->stream_ring);
450 } else {
451 struct xhci_ep_ctx *ep_ctx
452 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
453 hw_dequeue = le64_to_cpu(ep_ctx->deq);
454 }
455
456 new_seg = ep_ring->deq_seg;
457 new_deq = ep_ring->dequeue;
458 state->new_cycle_state = hw_dequeue & 0x1;
459
460 /*
461 * We want to find the pointer, segment and cycle state of the new trb
462 * (the one after current TD's last_trb). We know the cycle state at
463 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
464 * found.
465 */
466 do {
467 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
468 == (dma_addr_t)(hw_dequeue & ~0xf)) {
469 cycle_found = true;
470 if (td_last_trb_found)
471 break;
472 }
473 if (new_deq == cur_td->last_trb)
474 td_last_trb_found = true;
475
476 if (cycle_found &&
477 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
478 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
479 state->new_cycle_state ^= 0x1;
480
481 next_trb(xhci, ep_ring, &new_seg, &new_deq);
482
483 /* Search wrapped around, bail out */
484 if (new_deq == ep->ring->dequeue) {
485 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
486 state->new_deq_seg = NULL;
487 state->new_deq_ptr = NULL;
488 return;
489 }
490
491 } while (!cycle_found || !td_last_trb_found);
492
493 state->new_deq_seg = new_seg;
494 state->new_deq_ptr = new_deq;
495
496 /* Don't update the ring cycle state for the producer (us). */
497 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
498 "Cycle state = 0x%x", state->new_cycle_state);
499
500 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
501 "New dequeue segment = %p (virtual)",
502 state->new_deq_seg);
503 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
504 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
505 "New dequeue pointer = 0x%llx (DMA)",
506 (unsigned long long) addr);
507 }
508
509 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
510 * (The last TRB actually points to the ring enqueue pointer, which is not part
511 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
512 */
513 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
514 struct xhci_td *cur_td, bool flip_cycle)
515 {
516 struct xhci_segment *cur_seg;
517 union xhci_trb *cur_trb;
518
519 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
520 true;
521 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
522 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
523 /* Unchain any chained Link TRBs, but
524 * leave the pointers intact.
525 */
526 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
527 /* Flip the cycle bit (link TRBs can't be the first
528 * or last TRB).
529 */
530 if (flip_cycle)
531 cur_trb->generic.field[3] ^=
532 cpu_to_le32(TRB_CYCLE);
533 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
534 "Cancel (unchain) link TRB");
535 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
536 "Address = %p (0x%llx dma); "
537 "in seg %p (0x%llx dma)",
538 cur_trb,
539 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
540 cur_seg,
541 (unsigned long long)cur_seg->dma);
542 } else {
543 cur_trb->generic.field[0] = 0;
544 cur_trb->generic.field[1] = 0;
545 cur_trb->generic.field[2] = 0;
546 /* Preserve only the cycle bit of this TRB */
547 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
548 /* Flip the cycle bit except on the first or last TRB */
549 if (flip_cycle && cur_trb != cur_td->first_trb &&
550 cur_trb != cur_td->last_trb)
551 cur_trb->generic.field[3] ^=
552 cpu_to_le32(TRB_CYCLE);
553 cur_trb->generic.field[3] |= cpu_to_le32(
554 TRB_TYPE(TRB_TR_NOOP));
555 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
556 "TRB to noop at offset 0x%llx",
557 (unsigned long long)
558 xhci_trb_virt_to_dma(cur_seg, cur_trb));
559 }
560 if (cur_trb == cur_td->last_trb)
561 break;
562 }
563 }
564
565 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
566 struct xhci_virt_ep *ep)
567 {
568 ep->ep_state &= ~EP_HALT_PENDING;
569 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
570 * timer is running on another CPU, we don't decrement stop_cmds_pending
571 * (since we didn't successfully stop the watchdog timer).
572 */
573 if (del_timer(&ep->stop_cmd_timer))
574 ep->stop_cmds_pending--;
575 }
576
577 /* Must be called with xhci->lock held in interrupt context */
578 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
579 struct xhci_td *cur_td, int status)
580 {
581 struct usb_hcd *hcd;
582 struct urb *urb;
583 struct urb_priv *urb_priv;
584
585 urb = cur_td->urb;
586 urb_priv = urb->hcpriv;
587 urb_priv->td_cnt++;
588 hcd = bus_to_hcd(urb->dev->bus);
589
590 /* Only giveback urb when this is the last td in urb */
591 if (urb_priv->td_cnt == urb_priv->length) {
592 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
593 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
594 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
595 if (xhci->quirks & XHCI_AMD_PLL_FIX)
596 usb_amd_quirk_pll_enable();
597 }
598 }
599 usb_hcd_unlink_urb_from_ep(hcd, urb);
600
601 spin_unlock(&xhci->lock);
602 usb_hcd_giveback_urb(hcd, urb, status);
603 xhci_urb_free_priv(urb_priv);
604 spin_lock(&xhci->lock);
605 }
606 }
607
608 void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, struct xhci_ring *ring,
609 struct xhci_td *td)
610 {
611 struct device *dev = xhci_to_hcd(xhci)->self.controller;
612 struct xhci_segment *seg = td->bounce_seg;
613 struct urb *urb = td->urb;
614
615 if (!seg || !urb)
616 return;
617
618 if (usb_urb_dir_out(urb)) {
619 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
620 DMA_TO_DEVICE);
621 return;
622 }
623
624 /* for in tranfers we need to copy the data from bounce to sg */
625 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
626 seg->bounce_len, seg->bounce_offs);
627 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
628 DMA_FROM_DEVICE);
629 seg->bounce_len = 0;
630 seg->bounce_offs = 0;
631 }
632
633 /*
634 * When we get a command completion for a Stop Endpoint Command, we need to
635 * unlink any cancelled TDs from the ring. There are two ways to do that:
636 *
637 * 1. If the HW was in the middle of processing the TD that needs to be
638 * cancelled, then we must move the ring's dequeue pointer past the last TRB
639 * in the TD with a Set Dequeue Pointer Command.
640 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
641 * bit cleared) so that the HW will skip over them.
642 */
643 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
644 union xhci_trb *trb, struct xhci_event_cmd *event)
645 {
646 unsigned int ep_index;
647 struct xhci_ring *ep_ring;
648 struct xhci_virt_ep *ep;
649 struct list_head *entry;
650 struct xhci_td *cur_td = NULL;
651 struct xhci_td *last_unlinked_td;
652
653 struct xhci_dequeue_state deq_state;
654
655 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
656 if (!xhci->devs[slot_id])
657 xhci_warn(xhci, "Stop endpoint command "
658 "completion for disabled slot %u\n",
659 slot_id);
660 return;
661 }
662
663 memset(&deq_state, 0, sizeof(deq_state));
664 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
665 ep = &xhci->devs[slot_id]->eps[ep_index];
666
667 if (list_empty(&ep->cancelled_td_list)) {
668 xhci_stop_watchdog_timer_in_irq(xhci, ep);
669 ep->stopped_td = NULL;
670 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
671 return;
672 }
673
674 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
675 * We have the xHCI lock, so nothing can modify this list until we drop
676 * it. We're also in the event handler, so we can't get re-interrupted
677 * if another Stop Endpoint command completes
678 */
679 list_for_each(entry, &ep->cancelled_td_list) {
680 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
681 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
682 "Removing canceled TD starting at 0x%llx (dma).",
683 (unsigned long long)xhci_trb_virt_to_dma(
684 cur_td->start_seg, cur_td->first_trb));
685 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
686 if (!ep_ring) {
687 /* This shouldn't happen unless a driver is mucking
688 * with the stream ID after submission. This will
689 * leave the TD on the hardware ring, and the hardware
690 * will try to execute it, and may access a buffer
691 * that has already been freed. In the best case, the
692 * hardware will execute it, and the event handler will
693 * ignore the completion event for that TD, since it was
694 * removed from the td_list for that endpoint. In
695 * short, don't muck with the stream ID after
696 * submission.
697 */
698 xhci_warn(xhci, "WARN Cancelled URB %p "
699 "has invalid stream ID %u.\n",
700 cur_td->urb,
701 cur_td->urb->stream_id);
702 goto remove_finished_td;
703 }
704 /*
705 * If we stopped on the TD we need to cancel, then we have to
706 * move the xHC endpoint ring dequeue pointer past this TD.
707 */
708 if (cur_td == ep->stopped_td)
709 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
710 cur_td->urb->stream_id,
711 cur_td, &deq_state);
712 else
713 td_to_noop(xhci, ep_ring, cur_td, false);
714 remove_finished_td:
715 /*
716 * The event handler won't see a completion for this TD anymore,
717 * so remove it from the endpoint ring's TD list. Keep it in
718 * the cancelled TD list for URB completion later.
719 */
720 list_del_init(&cur_td->td_list);
721 }
722 last_unlinked_td = cur_td;
723 xhci_stop_watchdog_timer_in_irq(xhci, ep);
724
725 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
726 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
727 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
728 ep->stopped_td->urb->stream_id, &deq_state);
729 xhci_ring_cmd_db(xhci);
730 } else {
731 /* Otherwise ring the doorbell(s) to restart queued transfers */
732 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
733 }
734
735 ep->stopped_td = NULL;
736
737 /*
738 * Drop the lock and complete the URBs in the cancelled TD list.
739 * New TDs to be cancelled might be added to the end of the list before
740 * we can complete all the URBs for the TDs we already unlinked.
741 * So stop when we've completed the URB for the last TD we unlinked.
742 */
743 do {
744 cur_td = list_entry(ep->cancelled_td_list.next,
745 struct xhci_td, cancelled_td_list);
746 list_del_init(&cur_td->cancelled_td_list);
747
748 /* Clean up the cancelled URB */
749 /* Doesn't matter what we pass for status, since the core will
750 * just overwrite it (because the URB has been unlinked).
751 */
752 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
753 if (ep_ring && cur_td->bounce_seg)
754 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
755 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
756
757 /* Stop processing the cancelled list if the watchdog timer is
758 * running.
759 */
760 if (xhci->xhc_state & XHCI_STATE_DYING)
761 return;
762 } while (cur_td != last_unlinked_td);
763
764 /* Return to the event handler with xhci->lock re-acquired */
765 }
766
767 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
768 {
769 struct xhci_td *cur_td;
770
771 while (!list_empty(&ring->td_list)) {
772 cur_td = list_first_entry(&ring->td_list,
773 struct xhci_td, td_list);
774 list_del_init(&cur_td->td_list);
775 if (!list_empty(&cur_td->cancelled_td_list))
776 list_del_init(&cur_td->cancelled_td_list);
777
778 if (cur_td->bounce_seg)
779 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
780 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
781 }
782 }
783
784 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
785 int slot_id, int ep_index)
786 {
787 struct xhci_td *cur_td;
788 struct xhci_virt_ep *ep;
789 struct xhci_ring *ring;
790
791 ep = &xhci->devs[slot_id]->eps[ep_index];
792 if ((ep->ep_state & EP_HAS_STREAMS) ||
793 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
794 int stream_id;
795
796 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
797 stream_id++) {
798 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
799 "Killing URBs for slot ID %u, ep index %u, stream %u",
800 slot_id, ep_index, stream_id + 1);
801 xhci_kill_ring_urbs(xhci,
802 ep->stream_info->stream_rings[stream_id]);
803 }
804 } else {
805 ring = ep->ring;
806 if (!ring)
807 return;
808 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
809 "Killing URBs for slot ID %u, ep index %u",
810 slot_id, ep_index);
811 xhci_kill_ring_urbs(xhci, ring);
812 }
813 while (!list_empty(&ep->cancelled_td_list)) {
814 cur_td = list_first_entry(&ep->cancelled_td_list,
815 struct xhci_td, cancelled_td_list);
816 list_del_init(&cur_td->cancelled_td_list);
817 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
818 }
819 }
820
821 /* Watchdog timer function for when a stop endpoint command fails to complete.
822 * In this case, we assume the host controller is broken or dying or dead. The
823 * host may still be completing some other events, so we have to be careful to
824 * let the event ring handler and the URB dequeueing/enqueueing functions know
825 * through xhci->state.
826 *
827 * The timer may also fire if the host takes a very long time to respond to the
828 * command, and the stop endpoint command completion handler cannot delete the
829 * timer before the timer function is called. Another endpoint cancellation may
830 * sneak in before the timer function can grab the lock, and that may queue
831 * another stop endpoint command and add the timer back. So we cannot use a
832 * simple flag to say whether there is a pending stop endpoint command for a
833 * particular endpoint.
834 *
835 * Instead we use a combination of that flag and a counter for the number of
836 * pending stop endpoint commands. If the timer is the tail end of the last
837 * stop endpoint command, and the endpoint's command is still pending, we assume
838 * the host is dying.
839 */
840 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
841 {
842 struct xhci_hcd *xhci;
843 struct xhci_virt_ep *ep;
844 int ret, i, j;
845 unsigned long flags;
846
847 ep = (struct xhci_virt_ep *) arg;
848 xhci = ep->xhci;
849
850 spin_lock_irqsave(&xhci->lock, flags);
851
852 ep->stop_cmds_pending--;
853 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
854 spin_unlock_irqrestore(&xhci->lock, flags);
855 return;
856 }
857 if (xhci->xhc_state & XHCI_STATE_DYING) {
858 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
859 "Stop EP timer ran, but another timer marked "
860 "xHCI as DYING, exiting.");
861 spin_unlock_irqrestore(&xhci->lock, flags);
862 return;
863 }
864 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
865 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
866 "Stop EP timer ran, but no command pending, "
867 "exiting.");
868 spin_unlock_irqrestore(&xhci->lock, flags);
869 return;
870 }
871
872 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
873 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
874 /* Oops, HC is dead or dying or at least not responding to the stop
875 * endpoint command.
876 */
877 xhci->xhc_state |= XHCI_STATE_DYING;
878 /* Disable interrupts from the host controller and start halting it */
879 xhci_quiesce(xhci);
880 spin_unlock_irqrestore(&xhci->lock, flags);
881
882 ret = xhci_halt(xhci);
883
884 spin_lock_irqsave(&xhci->lock, flags);
885 if (ret < 0) {
886 /* This is bad; the host is not responding to commands and it's
887 * not allowing itself to be halted. At least interrupts are
888 * disabled. If we call usb_hc_died(), it will attempt to
889 * disconnect all device drivers under this host. Those
890 * disconnect() methods will wait for all URBs to be unlinked,
891 * so we must complete them.
892 */
893 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
894 xhci_warn(xhci, "Completing active URBs anyway.\n");
895 /* We could turn all TDs on the rings to no-ops. This won't
896 * help if the host has cached part of the ring, and is slow if
897 * we want to preserve the cycle bit. Skip it and hope the host
898 * doesn't touch the memory.
899 */
900 }
901 for (i = 0; i < MAX_HC_SLOTS; i++) {
902 if (!xhci->devs[i])
903 continue;
904 for (j = 0; j < 31; j++)
905 xhci_kill_endpoint_urbs(xhci, i, j);
906 }
907 spin_unlock_irqrestore(&xhci->lock, flags);
908 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
909 "Calling usb_hc_died()");
910 usb_hc_died(xhci_to_hcd(xhci));
911 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
912 "xHCI host controller is dead.");
913 }
914
915
916 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
917 struct xhci_virt_device *dev,
918 struct xhci_ring *ep_ring,
919 unsigned int ep_index)
920 {
921 union xhci_trb *dequeue_temp;
922 int num_trbs_free_temp;
923 bool revert = false;
924
925 num_trbs_free_temp = ep_ring->num_trbs_free;
926 dequeue_temp = ep_ring->dequeue;
927
928 /* If we get two back-to-back stalls, and the first stalled transfer
929 * ends just before a link TRB, the dequeue pointer will be left on
930 * the link TRB by the code in the while loop. So we have to update
931 * the dequeue pointer one segment further, or we'll jump off
932 * the segment into la-la-land.
933 */
934 if (trb_is_link(ep_ring->dequeue)) {
935 ep_ring->deq_seg = ep_ring->deq_seg->next;
936 ep_ring->dequeue = ep_ring->deq_seg->trbs;
937 }
938
939 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
940 /* We have more usable TRBs */
941 ep_ring->num_trbs_free++;
942 ep_ring->dequeue++;
943 if (trb_is_link(ep_ring->dequeue)) {
944 if (ep_ring->dequeue ==
945 dev->eps[ep_index].queued_deq_ptr)
946 break;
947 ep_ring->deq_seg = ep_ring->deq_seg->next;
948 ep_ring->dequeue = ep_ring->deq_seg->trbs;
949 }
950 if (ep_ring->dequeue == dequeue_temp) {
951 revert = true;
952 break;
953 }
954 }
955
956 if (revert) {
957 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
958 ep_ring->num_trbs_free = num_trbs_free_temp;
959 }
960 }
961
962 /*
963 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
964 * we need to clear the set deq pending flag in the endpoint ring state, so that
965 * the TD queueing code can ring the doorbell again. We also need to ring the
966 * endpoint doorbell to restart the ring, but only if there aren't more
967 * cancellations pending.
968 */
969 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
970 union xhci_trb *trb, u32 cmd_comp_code)
971 {
972 unsigned int ep_index;
973 unsigned int stream_id;
974 struct xhci_ring *ep_ring;
975 struct xhci_virt_device *dev;
976 struct xhci_virt_ep *ep;
977 struct xhci_ep_ctx *ep_ctx;
978 struct xhci_slot_ctx *slot_ctx;
979
980 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
981 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
982 dev = xhci->devs[slot_id];
983 ep = &dev->eps[ep_index];
984
985 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
986 if (!ep_ring) {
987 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
988 stream_id);
989 /* XXX: Harmless??? */
990 goto cleanup;
991 }
992
993 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
994 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
995
996 if (cmd_comp_code != COMP_SUCCESS) {
997 unsigned int ep_state;
998 unsigned int slot_state;
999
1000 switch (cmd_comp_code) {
1001 case COMP_TRB_ERR:
1002 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1003 break;
1004 case COMP_CTX_STATE:
1005 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1006 ep_state = le32_to_cpu(ep_ctx->ep_info);
1007 ep_state &= EP_STATE_MASK;
1008 slot_state = le32_to_cpu(slot_ctx->dev_state);
1009 slot_state = GET_SLOT_STATE(slot_state);
1010 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1011 "Slot state = %u, EP state = %u",
1012 slot_state, ep_state);
1013 break;
1014 case COMP_EBADSLT:
1015 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1016 slot_id);
1017 break;
1018 default:
1019 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1020 cmd_comp_code);
1021 break;
1022 }
1023 /* OK what do we do now? The endpoint state is hosed, and we
1024 * should never get to this point if the synchronization between
1025 * queueing, and endpoint state are correct. This might happen
1026 * if the device gets disconnected after we've finished
1027 * cancelling URBs, which might not be an error...
1028 */
1029 } else {
1030 u64 deq;
1031 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1032 if (ep->ep_state & EP_HAS_STREAMS) {
1033 struct xhci_stream_ctx *ctx =
1034 &ep->stream_info->stream_ctx_array[stream_id];
1035 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1036 } else {
1037 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1038 }
1039 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1040 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1041 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1042 ep->queued_deq_ptr) == deq) {
1043 /* Update the ring's dequeue segment and dequeue pointer
1044 * to reflect the new position.
1045 */
1046 update_ring_for_set_deq_completion(xhci, dev,
1047 ep_ring, ep_index);
1048 } else {
1049 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1050 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1051 ep->queued_deq_seg, ep->queued_deq_ptr);
1052 }
1053 }
1054
1055 cleanup:
1056 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1057 dev->eps[ep_index].queued_deq_seg = NULL;
1058 dev->eps[ep_index].queued_deq_ptr = NULL;
1059 /* Restart any rings with pending URBs */
1060 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1061 }
1062
1063 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1064 union xhci_trb *trb, u32 cmd_comp_code)
1065 {
1066 unsigned int ep_index;
1067
1068 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1069 /* This command will only fail if the endpoint wasn't halted,
1070 * but we don't care.
1071 */
1072 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1073 "Ignoring reset ep completion code of %u", cmd_comp_code);
1074
1075 /* HW with the reset endpoint quirk needs to have a configure endpoint
1076 * command complete before the endpoint can be used. Queue that here
1077 * because the HW can't handle two commands being queued in a row.
1078 */
1079 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1080 struct xhci_command *command;
1081 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1082 if (!command) {
1083 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1084 return;
1085 }
1086 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1087 "Queueing configure endpoint command");
1088 xhci_queue_configure_endpoint(xhci, command,
1089 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1090 false);
1091 xhci_ring_cmd_db(xhci);
1092 } else {
1093 /* Clear our internal halted state */
1094 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1095 }
1096 }
1097
1098 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1099 u32 cmd_comp_code)
1100 {
1101 if (cmd_comp_code == COMP_SUCCESS)
1102 xhci->slot_id = slot_id;
1103 else
1104 xhci->slot_id = 0;
1105 }
1106
1107 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1108 {
1109 struct xhci_virt_device *virt_dev;
1110
1111 virt_dev = xhci->devs[slot_id];
1112 if (!virt_dev)
1113 return;
1114 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1115 /* Delete default control endpoint resources */
1116 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1117 xhci_free_virt_device(xhci, slot_id);
1118 }
1119
1120 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1121 struct xhci_event_cmd *event, u32 cmd_comp_code)
1122 {
1123 struct xhci_virt_device *virt_dev;
1124 struct xhci_input_control_ctx *ctrl_ctx;
1125 unsigned int ep_index;
1126 unsigned int ep_state;
1127 u32 add_flags, drop_flags;
1128
1129 /*
1130 * Configure endpoint commands can come from the USB core
1131 * configuration or alt setting changes, or because the HW
1132 * needed an extra configure endpoint command after a reset
1133 * endpoint command or streams were being configured.
1134 * If the command was for a halted endpoint, the xHCI driver
1135 * is not waiting on the configure endpoint command.
1136 */
1137 virt_dev = xhci->devs[slot_id];
1138 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1139 if (!ctrl_ctx) {
1140 xhci_warn(xhci, "Could not get input context, bad type.\n");
1141 return;
1142 }
1143
1144 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1145 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1146 /* Input ctx add_flags are the endpoint index plus one */
1147 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1148
1149 /* A usb_set_interface() call directly after clearing a halted
1150 * condition may race on this quirky hardware. Not worth
1151 * worrying about, since this is prototype hardware. Not sure
1152 * if this will work for streams, but streams support was
1153 * untested on this prototype.
1154 */
1155 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1156 ep_index != (unsigned int) -1 &&
1157 add_flags - SLOT_FLAG == drop_flags) {
1158 ep_state = virt_dev->eps[ep_index].ep_state;
1159 if (!(ep_state & EP_HALTED))
1160 return;
1161 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1162 "Completed config ep cmd - "
1163 "last ep index = %d, state = %d",
1164 ep_index, ep_state);
1165 /* Clear internal halted state and restart ring(s) */
1166 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1167 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1168 return;
1169 }
1170 return;
1171 }
1172
1173 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1174 struct xhci_event_cmd *event)
1175 {
1176 xhci_dbg(xhci, "Completed reset device command.\n");
1177 if (!xhci->devs[slot_id])
1178 xhci_warn(xhci, "Reset device command completion "
1179 "for disabled slot %u\n", slot_id);
1180 }
1181
1182 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1183 struct xhci_event_cmd *event)
1184 {
1185 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1186 xhci->error_bitmask |= 1 << 6;
1187 return;
1188 }
1189 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1190 "NEC firmware version %2x.%02x",
1191 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1192 NEC_FW_MINOR(le32_to_cpu(event->status)));
1193 }
1194
1195 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1196 {
1197 list_del(&cmd->cmd_list);
1198
1199 if (cmd->completion) {
1200 cmd->status = status;
1201 complete(cmd->completion);
1202 } else {
1203 kfree(cmd);
1204 }
1205 }
1206
1207 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1208 {
1209 struct xhci_command *cur_cmd, *tmp_cmd;
1210 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1211 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1212 }
1213
1214 /*
1215 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1216 * If there are other commands waiting then restart the ring and kick the timer.
1217 * This must be called with command ring stopped and xhci->lock held.
1218 */
1219 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1220 struct xhci_command *cur_cmd)
1221 {
1222 struct xhci_command *i_cmd, *tmp_cmd;
1223 u32 cycle_state;
1224
1225 /* Turn all aborted commands in list to no-ops, then restart */
1226 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1227 cmd_list) {
1228
1229 if (i_cmd->status != COMP_CMD_ABORT)
1230 continue;
1231
1232 i_cmd->status = COMP_CMD_STOP;
1233
1234 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1235 i_cmd->command_trb);
1236 /* get cycle state from the original cmd trb */
1237 cycle_state = le32_to_cpu(
1238 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE;
1239 /* modify the command trb to no-op command */
1240 i_cmd->command_trb->generic.field[0] = 0;
1241 i_cmd->command_trb->generic.field[1] = 0;
1242 i_cmd->command_trb->generic.field[2] = 0;
1243 i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1244 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1245
1246 /*
1247 * caller waiting for completion is called when command
1248 * completion event is received for these no-op commands
1249 */
1250 }
1251
1252 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1253
1254 /* ring command ring doorbell to restart the command ring */
1255 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1256 !(xhci->xhc_state & XHCI_STATE_DYING)) {
1257 xhci->current_cmd = cur_cmd;
1258 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1259 xhci_ring_cmd_db(xhci);
1260 }
1261 return;
1262 }
1263
1264
1265 void xhci_handle_command_timeout(unsigned long data)
1266 {
1267 struct xhci_hcd *xhci;
1268 int ret;
1269 unsigned long flags;
1270 u64 hw_ring_state;
1271 bool second_timeout = false;
1272 xhci = (struct xhci_hcd *) data;
1273
1274 /* mark this command to be cancelled */
1275 spin_lock_irqsave(&xhci->lock, flags);
1276 if (xhci->current_cmd) {
1277 if (xhci->current_cmd->status == COMP_CMD_ABORT)
1278 second_timeout = true;
1279 xhci->current_cmd->status = COMP_CMD_ABORT;
1280 }
1281
1282 /* Make sure command ring is running before aborting it */
1283 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1284 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1285 (hw_ring_state & CMD_RING_RUNNING)) {
1286 spin_unlock_irqrestore(&xhci->lock, flags);
1287 xhci_dbg(xhci, "Command timeout\n");
1288 ret = xhci_abort_cmd_ring(xhci);
1289 if (unlikely(ret == -ESHUTDOWN)) {
1290 xhci_err(xhci, "Abort command ring failed\n");
1291 xhci_cleanup_command_queue(xhci);
1292 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1293 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1294 }
1295 return;
1296 }
1297
1298 /* command ring failed to restart, or host removed. Bail out */
1299 if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) {
1300 spin_unlock_irqrestore(&xhci->lock, flags);
1301 xhci_dbg(xhci, "command timed out twice, ring start fail?\n");
1302 xhci_cleanup_command_queue(xhci);
1303 return;
1304 }
1305
1306 /* command timeout on stopped ring, ring can't be aborted */
1307 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1308 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1309 spin_unlock_irqrestore(&xhci->lock, flags);
1310 return;
1311 }
1312
1313 static void handle_cmd_completion(struct xhci_hcd *xhci,
1314 struct xhci_event_cmd *event)
1315 {
1316 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1317 u64 cmd_dma;
1318 dma_addr_t cmd_dequeue_dma;
1319 u32 cmd_comp_code;
1320 union xhci_trb *cmd_trb;
1321 struct xhci_command *cmd;
1322 u32 cmd_type;
1323
1324 cmd_dma = le64_to_cpu(event->cmd_trb);
1325 cmd_trb = xhci->cmd_ring->dequeue;
1326 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1327 cmd_trb);
1328 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1329 if (cmd_dequeue_dma == 0) {
1330 xhci->error_bitmask |= 1 << 4;
1331 return;
1332 }
1333 /* Does the DMA address match our internal dequeue pointer address? */
1334 if (cmd_dma != (u64) cmd_dequeue_dma) {
1335 xhci->error_bitmask |= 1 << 5;
1336 return;
1337 }
1338
1339 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1340
1341 del_timer(&xhci->cmd_timer);
1342
1343 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1344
1345 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1346
1347 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1348 if (cmd_comp_code == COMP_CMD_STOP) {
1349 xhci_handle_stopped_cmd_ring(xhci, cmd);
1350 return;
1351 }
1352
1353 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1354 xhci_err(xhci,
1355 "Command completion event does not match command\n");
1356 return;
1357 }
1358
1359 /*
1360 * Host aborted the command ring, check if the current command was
1361 * supposed to be aborted, otherwise continue normally.
1362 * The command ring is stopped now, but the xHC will issue a Command
1363 * Ring Stopped event which will cause us to restart it.
1364 */
1365 if (cmd_comp_code == COMP_CMD_ABORT) {
1366 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1367 if (cmd->status == COMP_CMD_ABORT)
1368 goto event_handled;
1369 }
1370
1371 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1372 switch (cmd_type) {
1373 case TRB_ENABLE_SLOT:
1374 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1375 break;
1376 case TRB_DISABLE_SLOT:
1377 xhci_handle_cmd_disable_slot(xhci, slot_id);
1378 break;
1379 case TRB_CONFIG_EP:
1380 if (!cmd->completion)
1381 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1382 cmd_comp_code);
1383 break;
1384 case TRB_EVAL_CONTEXT:
1385 break;
1386 case TRB_ADDR_DEV:
1387 break;
1388 case TRB_STOP_RING:
1389 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1390 le32_to_cpu(cmd_trb->generic.field[3])));
1391 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1392 break;
1393 case TRB_SET_DEQ:
1394 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1395 le32_to_cpu(cmd_trb->generic.field[3])));
1396 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1397 break;
1398 case TRB_CMD_NOOP:
1399 /* Is this an aborted command turned to NO-OP? */
1400 if (cmd->status == COMP_CMD_STOP)
1401 cmd_comp_code = COMP_CMD_STOP;
1402 break;
1403 case TRB_RESET_EP:
1404 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1405 le32_to_cpu(cmd_trb->generic.field[3])));
1406 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1407 break;
1408 case TRB_RESET_DEV:
1409 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1410 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1411 */
1412 slot_id = TRB_TO_SLOT_ID(
1413 le32_to_cpu(cmd_trb->generic.field[3]));
1414 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1415 break;
1416 case TRB_NEC_GET_FW:
1417 xhci_handle_cmd_nec_get_fw(xhci, event);
1418 break;
1419 default:
1420 /* Skip over unknown commands on the event ring */
1421 xhci->error_bitmask |= 1 << 6;
1422 break;
1423 }
1424
1425 /* restart timer if this wasn't the last command */
1426 if (cmd->cmd_list.next != &xhci->cmd_list) {
1427 xhci->current_cmd = list_entry(cmd->cmd_list.next,
1428 struct xhci_command, cmd_list);
1429 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1430 }
1431
1432 event_handled:
1433 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1434
1435 inc_deq(xhci, xhci->cmd_ring);
1436 }
1437
1438 static void handle_vendor_event(struct xhci_hcd *xhci,
1439 union xhci_trb *event)
1440 {
1441 u32 trb_type;
1442
1443 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1444 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1445 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1446 handle_cmd_completion(xhci, &event->event_cmd);
1447 }
1448
1449 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1450 * port registers -- USB 3.0 and USB 2.0).
1451 *
1452 * Returns a zero-based port number, which is suitable for indexing into each of
1453 * the split roothubs' port arrays and bus state arrays.
1454 * Add one to it in order to call xhci_find_slot_id_by_port.
1455 */
1456 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1457 struct xhci_hcd *xhci, u32 port_id)
1458 {
1459 unsigned int i;
1460 unsigned int num_similar_speed_ports = 0;
1461
1462 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1463 * and usb2_ports are 0-based indexes. Count the number of similar
1464 * speed ports, up to 1 port before this port.
1465 */
1466 for (i = 0; i < (port_id - 1); i++) {
1467 u8 port_speed = xhci->port_array[i];
1468
1469 /*
1470 * Skip ports that don't have known speeds, or have duplicate
1471 * Extended Capabilities port speed entries.
1472 */
1473 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1474 continue;
1475
1476 /*
1477 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1478 * 1.1 ports are under the USB 2.0 hub. If the port speed
1479 * matches the device speed, it's a similar speed port.
1480 */
1481 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1482 num_similar_speed_ports++;
1483 }
1484 return num_similar_speed_ports;
1485 }
1486
1487 static void handle_device_notification(struct xhci_hcd *xhci,
1488 union xhci_trb *event)
1489 {
1490 u32 slot_id;
1491 struct usb_device *udev;
1492
1493 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1494 if (!xhci->devs[slot_id]) {
1495 xhci_warn(xhci, "Device Notification event for "
1496 "unused slot %u\n", slot_id);
1497 return;
1498 }
1499
1500 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1501 slot_id);
1502 udev = xhci->devs[slot_id]->udev;
1503 if (udev && udev->parent)
1504 usb_wakeup_notification(udev->parent, udev->portnum);
1505 }
1506
1507 static void handle_port_status(struct xhci_hcd *xhci,
1508 union xhci_trb *event)
1509 {
1510 struct usb_hcd *hcd;
1511 u32 port_id;
1512 u32 temp, temp1;
1513 int max_ports;
1514 int slot_id;
1515 unsigned int faked_port_index;
1516 u8 major_revision;
1517 struct xhci_bus_state *bus_state;
1518 __le32 __iomem **port_array;
1519 bool bogus_port_status = false;
1520
1521 /* Port status change events always have a successful completion code */
1522 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1523 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1524 xhci->error_bitmask |= 1 << 8;
1525 }
1526 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1527 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1528
1529 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1530 if ((port_id <= 0) || (port_id > max_ports)) {
1531 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1532 inc_deq(xhci, xhci->event_ring);
1533 return;
1534 }
1535
1536 /* Figure out which usb_hcd this port is attached to:
1537 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1538 */
1539 major_revision = xhci->port_array[port_id - 1];
1540
1541 /* Find the right roothub. */
1542 hcd = xhci_to_hcd(xhci);
1543 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1544 hcd = xhci->shared_hcd;
1545
1546 if (major_revision == 0) {
1547 xhci_warn(xhci, "Event for port %u not in "
1548 "Extended Capabilities, ignoring.\n",
1549 port_id);
1550 bogus_port_status = true;
1551 goto cleanup;
1552 }
1553 if (major_revision == DUPLICATE_ENTRY) {
1554 xhci_warn(xhci, "Event for port %u duplicated in"
1555 "Extended Capabilities, ignoring.\n",
1556 port_id);
1557 bogus_port_status = true;
1558 goto cleanup;
1559 }
1560
1561 /*
1562 * Hardware port IDs reported by a Port Status Change Event include USB
1563 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1564 * resume event, but we first need to translate the hardware port ID
1565 * into the index into the ports on the correct split roothub, and the
1566 * correct bus_state structure.
1567 */
1568 bus_state = &xhci->bus_state[hcd_index(hcd)];
1569 if (hcd->speed >= HCD_USB3)
1570 port_array = xhci->usb3_ports;
1571 else
1572 port_array = xhci->usb2_ports;
1573 /* Find the faked port hub number */
1574 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1575 port_id);
1576
1577 temp = readl(port_array[faked_port_index]);
1578 if (hcd->state == HC_STATE_SUSPENDED) {
1579 xhci_dbg(xhci, "resume root hub\n");
1580 usb_hcd_resume_root_hub(hcd);
1581 }
1582
1583 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1584 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1585
1586 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1587 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1588
1589 temp1 = readl(&xhci->op_regs->command);
1590 if (!(temp1 & CMD_RUN)) {
1591 xhci_warn(xhci, "xHC is not running.\n");
1592 goto cleanup;
1593 }
1594
1595 if (DEV_SUPERSPEED_ANY(temp)) {
1596 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1597 /* Set a flag to say the port signaled remote wakeup,
1598 * so we can tell the difference between the end of
1599 * device and host initiated resume.
1600 */
1601 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1602 xhci_test_and_clear_bit(xhci, port_array,
1603 faked_port_index, PORT_PLC);
1604 xhci_set_link_state(xhci, port_array, faked_port_index,
1605 XDEV_U0);
1606 /* Need to wait until the next link state change
1607 * indicates the device is actually in U0.
1608 */
1609 bogus_port_status = true;
1610 goto cleanup;
1611 } else if (!test_bit(faked_port_index,
1612 &bus_state->resuming_ports)) {
1613 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1614 bus_state->resume_done[faked_port_index] = jiffies +
1615 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1616 set_bit(faked_port_index, &bus_state->resuming_ports);
1617 mod_timer(&hcd->rh_timer,
1618 bus_state->resume_done[faked_port_index]);
1619 /* Do the rest in GetPortStatus */
1620 }
1621 }
1622
1623 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1624 DEV_SUPERSPEED_ANY(temp)) {
1625 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1626 /* We've just brought the device into U0 through either the
1627 * Resume state after a device remote wakeup, or through the
1628 * U3Exit state after a host-initiated resume. If it's a device
1629 * initiated remote wake, don't pass up the link state change,
1630 * so the roothub behavior is consistent with external
1631 * USB 3.0 hub behavior.
1632 */
1633 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1634 faked_port_index + 1);
1635 if (slot_id && xhci->devs[slot_id])
1636 xhci_ring_device(xhci, slot_id);
1637 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1638 bus_state->port_remote_wakeup &=
1639 ~(1 << faked_port_index);
1640 xhci_test_and_clear_bit(xhci, port_array,
1641 faked_port_index, PORT_PLC);
1642 usb_wakeup_notification(hcd->self.root_hub,
1643 faked_port_index + 1);
1644 bogus_port_status = true;
1645 goto cleanup;
1646 }
1647 }
1648
1649 /*
1650 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1651 * RExit to a disconnect state). If so, let the the driver know it's
1652 * out of the RExit state.
1653 */
1654 if (!DEV_SUPERSPEED_ANY(temp) &&
1655 test_and_clear_bit(faked_port_index,
1656 &bus_state->rexit_ports)) {
1657 complete(&bus_state->rexit_done[faked_port_index]);
1658 bogus_port_status = true;
1659 goto cleanup;
1660 }
1661
1662 if (hcd->speed < HCD_USB3)
1663 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1664 PORT_PLC);
1665
1666 cleanup:
1667 /* Update event ring dequeue pointer before dropping the lock */
1668 inc_deq(xhci, xhci->event_ring);
1669
1670 /* Don't make the USB core poll the roothub if we got a bad port status
1671 * change event. Besides, at that point we can't tell which roothub
1672 * (USB 2.0 or USB 3.0) to kick.
1673 */
1674 if (bogus_port_status)
1675 return;
1676
1677 /*
1678 * xHCI port-status-change events occur when the "or" of all the
1679 * status-change bits in the portsc register changes from 0 to 1.
1680 * New status changes won't cause an event if any other change
1681 * bits are still set. When an event occurs, switch over to
1682 * polling to avoid losing status changes.
1683 */
1684 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1685 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1686 spin_unlock(&xhci->lock);
1687 /* Pass this up to the core */
1688 usb_hcd_poll_rh_status(hcd);
1689 spin_lock(&xhci->lock);
1690 }
1691
1692 /*
1693 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1694 * at end_trb, which may be in another segment. If the suspect DMA address is a
1695 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1696 * returns 0.
1697 */
1698 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1699 struct xhci_segment *start_seg,
1700 union xhci_trb *start_trb,
1701 union xhci_trb *end_trb,
1702 dma_addr_t suspect_dma,
1703 bool debug)
1704 {
1705 dma_addr_t start_dma;
1706 dma_addr_t end_seg_dma;
1707 dma_addr_t end_trb_dma;
1708 struct xhci_segment *cur_seg;
1709
1710 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1711 cur_seg = start_seg;
1712
1713 do {
1714 if (start_dma == 0)
1715 return NULL;
1716 /* We may get an event for a Link TRB in the middle of a TD */
1717 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1718 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1719 /* If the end TRB isn't in this segment, this is set to 0 */
1720 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1721
1722 if (debug)
1723 xhci_warn(xhci,
1724 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1725 (unsigned long long)suspect_dma,
1726 (unsigned long long)start_dma,
1727 (unsigned long long)end_trb_dma,
1728 (unsigned long long)cur_seg->dma,
1729 (unsigned long long)end_seg_dma);
1730
1731 if (end_trb_dma > 0) {
1732 /* The end TRB is in this segment, so suspect should be here */
1733 if (start_dma <= end_trb_dma) {
1734 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1735 return cur_seg;
1736 } else {
1737 /* Case for one segment with
1738 * a TD wrapped around to the top
1739 */
1740 if ((suspect_dma >= start_dma &&
1741 suspect_dma <= end_seg_dma) ||
1742 (suspect_dma >= cur_seg->dma &&
1743 suspect_dma <= end_trb_dma))
1744 return cur_seg;
1745 }
1746 return NULL;
1747 } else {
1748 /* Might still be somewhere in this segment */
1749 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1750 return cur_seg;
1751 }
1752 cur_seg = cur_seg->next;
1753 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1754 } while (cur_seg != start_seg);
1755
1756 return NULL;
1757 }
1758
1759 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1760 unsigned int slot_id, unsigned int ep_index,
1761 unsigned int stream_id,
1762 struct xhci_td *td, union xhci_trb *event_trb)
1763 {
1764 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1765 struct xhci_command *command;
1766 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1767 if (!command)
1768 return;
1769
1770 ep->ep_state |= EP_HALTED;
1771 ep->stopped_stream = stream_id;
1772
1773 xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1774 xhci_cleanup_stalled_ring(xhci, ep_index, td);
1775
1776 ep->stopped_stream = 0;
1777
1778 xhci_ring_cmd_db(xhci);
1779 }
1780
1781 /* Check if an error has halted the endpoint ring. The class driver will
1782 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1783 * However, a babble and other errors also halt the endpoint ring, and the class
1784 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1785 * Ring Dequeue Pointer command manually.
1786 */
1787 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1788 struct xhci_ep_ctx *ep_ctx,
1789 unsigned int trb_comp_code)
1790 {
1791 /* TRB completion codes that may require a manual halt cleanup */
1792 if (trb_comp_code == COMP_TX_ERR ||
1793 trb_comp_code == COMP_BABBLE ||
1794 trb_comp_code == COMP_SPLIT_ERR)
1795 /* The 0.95 spec says a babbling control endpoint
1796 * is not halted. The 0.96 spec says it is. Some HW
1797 * claims to be 0.95 compliant, but it halts the control
1798 * endpoint anyway. Check if a babble halted the
1799 * endpoint.
1800 */
1801 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1802 cpu_to_le32(EP_STATE_HALTED))
1803 return 1;
1804
1805 return 0;
1806 }
1807
1808 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1809 {
1810 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1811 /* Vendor defined "informational" completion code,
1812 * treat as not-an-error.
1813 */
1814 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1815 trb_comp_code);
1816 xhci_dbg(xhci, "Treating code as success.\n");
1817 return 1;
1818 }
1819 return 0;
1820 }
1821
1822 /*
1823 * Finish the td processing, remove the td from td list;
1824 * Return 1 if the urb can be given back.
1825 */
1826 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1827 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1828 struct xhci_virt_ep *ep, int *status, bool skip)
1829 {
1830 struct xhci_virt_device *xdev;
1831 struct xhci_ring *ep_ring;
1832 unsigned int slot_id;
1833 int ep_index;
1834 struct urb *urb = NULL;
1835 struct xhci_ep_ctx *ep_ctx;
1836 int ret = 0;
1837 struct urb_priv *urb_priv;
1838 u32 trb_comp_code;
1839
1840 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1841 xdev = xhci->devs[slot_id];
1842 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1843 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1844 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1845 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1846
1847 if (skip)
1848 goto td_cleanup;
1849
1850 if (trb_comp_code == COMP_STOP_INVAL ||
1851 trb_comp_code == COMP_STOP ||
1852 trb_comp_code == COMP_STOP_SHORT) {
1853 /* The Endpoint Stop Command completion will take care of any
1854 * stopped TDs. A stopped TD may be restarted, so don't update
1855 * the ring dequeue pointer or take this TD off any lists yet.
1856 */
1857 ep->stopped_td = td;
1858 return 0;
1859 }
1860 if (trb_comp_code == COMP_STALL ||
1861 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1862 trb_comp_code)) {
1863 /* Issue a reset endpoint command to clear the host side
1864 * halt, followed by a set dequeue command to move the
1865 * dequeue pointer past the TD.
1866 * The class driver clears the device side halt later.
1867 */
1868 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1869 ep_ring->stream_id, td, event_trb);
1870 } else {
1871 /* Update ring dequeue pointer */
1872 while (ep_ring->dequeue != td->last_trb)
1873 inc_deq(xhci, ep_ring);
1874 inc_deq(xhci, ep_ring);
1875 }
1876
1877 td_cleanup:
1878 /* Clean up the endpoint's TD list */
1879 urb = td->urb;
1880 urb_priv = urb->hcpriv;
1881
1882 /* if a bounce buffer was used to align this td then unmap it */
1883 if (td->bounce_seg)
1884 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1885
1886 /* Do one last check of the actual transfer length.
1887 * If the host controller said we transferred more data than the buffer
1888 * length, urb->actual_length will be a very big number (since it's
1889 * unsigned). Play it safe and say we didn't transfer anything.
1890 */
1891 if (urb->actual_length > urb->transfer_buffer_length) {
1892 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1893 urb->transfer_buffer_length,
1894 urb->actual_length);
1895 urb->actual_length = 0;
1896 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1897 *status = -EREMOTEIO;
1898 else
1899 *status = 0;
1900 }
1901 list_del_init(&td->td_list);
1902 /* Was this TD slated to be cancelled but completed anyway? */
1903 if (!list_empty(&td->cancelled_td_list))
1904 list_del_init(&td->cancelled_td_list);
1905
1906 urb_priv->td_cnt++;
1907 /* Giveback the urb when all the tds are completed */
1908 if (urb_priv->td_cnt == urb_priv->length) {
1909 ret = 1;
1910 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1911 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1912 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1913 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1914 usb_amd_quirk_pll_enable();
1915 }
1916 }
1917 }
1918
1919 return ret;
1920 }
1921
1922 /*
1923 * Process control tds, update urb status and actual_length.
1924 */
1925 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1926 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1927 struct xhci_virt_ep *ep, int *status)
1928 {
1929 struct xhci_virt_device *xdev;
1930 struct xhci_ring *ep_ring;
1931 unsigned int slot_id;
1932 int ep_index;
1933 struct xhci_ep_ctx *ep_ctx;
1934 u32 trb_comp_code;
1935
1936 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1937 xdev = xhci->devs[slot_id];
1938 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1939 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1940 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1941 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1942
1943 switch (trb_comp_code) {
1944 case COMP_SUCCESS:
1945 if (event_trb == ep_ring->dequeue) {
1946 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1947 "without IOC set??\n");
1948 *status = -ESHUTDOWN;
1949 } else if (event_trb != td->last_trb) {
1950 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1951 "without IOC set??\n");
1952 *status = -ESHUTDOWN;
1953 } else {
1954 *status = 0;
1955 }
1956 break;
1957 case COMP_SHORT_TX:
1958 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1959 *status = -EREMOTEIO;
1960 else
1961 *status = 0;
1962 break;
1963 case COMP_STOP_SHORT:
1964 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1965 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1966 else
1967 td->urb->actual_length =
1968 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1969
1970 return finish_td(xhci, td, event_trb, event, ep, status, false);
1971 case COMP_STOP:
1972 /* Did we stop at data stage? */
1973 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1974 td->urb->actual_length =
1975 td->urb->transfer_buffer_length -
1976 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1977 /* fall through */
1978 case COMP_STOP_INVAL:
1979 return finish_td(xhci, td, event_trb, event, ep, status, false);
1980 default:
1981 if (!xhci_requires_manual_halt_cleanup(xhci,
1982 ep_ctx, trb_comp_code))
1983 break;
1984 xhci_dbg(xhci, "TRB error code %u, "
1985 "halted endpoint index = %u\n",
1986 trb_comp_code, ep_index);
1987 /* else fall through */
1988 case COMP_STALL:
1989 /* Did we transfer part of the data (middle) phase? */
1990 if (event_trb != ep_ring->dequeue &&
1991 event_trb != td->last_trb)
1992 td->urb->actual_length =
1993 td->urb->transfer_buffer_length -
1994 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1995 else if (!td->urb_length_set)
1996 td->urb->actual_length = 0;
1997
1998 return finish_td(xhci, td, event_trb, event, ep, status, false);
1999 }
2000 /*
2001 * Did we transfer any data, despite the errors that might have
2002 * happened? I.e. did we get past the setup stage?
2003 */
2004 if (event_trb != ep_ring->dequeue) {
2005 /* The event was for the status stage */
2006 if (event_trb == td->last_trb) {
2007 if (td->urb_length_set) {
2008 /* Don't overwrite a previously set error code
2009 */
2010 if ((*status == -EINPROGRESS || *status == 0) &&
2011 (td->urb->transfer_flags
2012 & URB_SHORT_NOT_OK))
2013 /* Did we already see a short data
2014 * stage? */
2015 *status = -EREMOTEIO;
2016 } else {
2017 td->urb->actual_length =
2018 td->urb->transfer_buffer_length;
2019 }
2020 } else {
2021 /*
2022 * Maybe the event was for the data stage? If so, update
2023 * already the actual_length of the URB and flag it as
2024 * set, so that it is not overwritten in the event for
2025 * the last TRB.
2026 */
2027 td->urb_length_set = true;
2028 td->urb->actual_length =
2029 td->urb->transfer_buffer_length -
2030 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2031 xhci_dbg(xhci, "Waiting for status "
2032 "stage event\n");
2033 return 0;
2034 }
2035 }
2036
2037 return finish_td(xhci, td, event_trb, event, ep, status, false);
2038 }
2039
2040 /*
2041 * Process isochronous tds, update urb packet status and actual_length.
2042 */
2043 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2044 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2045 struct xhci_virt_ep *ep, int *status)
2046 {
2047 struct xhci_ring *ep_ring;
2048 struct urb_priv *urb_priv;
2049 int idx;
2050 int len = 0;
2051 union xhci_trb *cur_trb;
2052 struct xhci_segment *cur_seg;
2053 struct usb_iso_packet_descriptor *frame;
2054 u32 trb_comp_code;
2055 bool skip_td = false;
2056
2057 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2058 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2059 urb_priv = td->urb->hcpriv;
2060 idx = urb_priv->td_cnt;
2061 frame = &td->urb->iso_frame_desc[idx];
2062
2063 /* handle completion code */
2064 switch (trb_comp_code) {
2065 case COMP_SUCCESS:
2066 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2067 frame->status = 0;
2068 break;
2069 }
2070 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2071 trb_comp_code = COMP_SHORT_TX;
2072 /* fallthrough */
2073 case COMP_STOP_SHORT:
2074 case COMP_SHORT_TX:
2075 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2076 -EREMOTEIO : 0;
2077 break;
2078 case COMP_BW_OVER:
2079 frame->status = -ECOMM;
2080 skip_td = true;
2081 break;
2082 case COMP_BUFF_OVER:
2083 case COMP_BABBLE:
2084 frame->status = -EOVERFLOW;
2085 skip_td = true;
2086 break;
2087 case COMP_DEV_ERR:
2088 case COMP_STALL:
2089 frame->status = -EPROTO;
2090 skip_td = true;
2091 break;
2092 case COMP_TX_ERR:
2093 frame->status = -EPROTO;
2094 if (event_trb != td->last_trb)
2095 return 0;
2096 skip_td = true;
2097 break;
2098 case COMP_STOP:
2099 case COMP_STOP_INVAL:
2100 break;
2101 default:
2102 frame->status = -1;
2103 break;
2104 }
2105
2106 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2107 frame->actual_length = frame->length;
2108 td->urb->actual_length += frame->length;
2109 } else if (trb_comp_code == COMP_STOP_SHORT) {
2110 frame->actual_length =
2111 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2112 td->urb->actual_length += frame->actual_length;
2113 } else {
2114 for (cur_trb = ep_ring->dequeue,
2115 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2116 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2117 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2118 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2119 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2120 }
2121 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2122 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2123
2124 if (trb_comp_code != COMP_STOP_INVAL) {
2125 frame->actual_length = len;
2126 td->urb->actual_length += len;
2127 }
2128 }
2129
2130 return finish_td(xhci, td, event_trb, event, ep, status, false);
2131 }
2132
2133 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2134 struct xhci_transfer_event *event,
2135 struct xhci_virt_ep *ep, int *status)
2136 {
2137 struct xhci_ring *ep_ring;
2138 struct urb_priv *urb_priv;
2139 struct usb_iso_packet_descriptor *frame;
2140 int idx;
2141
2142 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2143 urb_priv = td->urb->hcpriv;
2144 idx = urb_priv->td_cnt;
2145 frame = &td->urb->iso_frame_desc[idx];
2146
2147 /* The transfer is partly done. */
2148 frame->status = -EXDEV;
2149
2150 /* calc actual length */
2151 frame->actual_length = 0;
2152
2153 /* Update ring dequeue pointer */
2154 while (ep_ring->dequeue != td->last_trb)
2155 inc_deq(xhci, ep_ring);
2156 inc_deq(xhci, ep_ring);
2157
2158 return finish_td(xhci, td, NULL, event, ep, status, true);
2159 }
2160
2161 /*
2162 * Process bulk and interrupt tds, update urb status and actual_length.
2163 */
2164 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2165 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2166 struct xhci_virt_ep *ep, int *status)
2167 {
2168 struct xhci_ring *ep_ring;
2169 union xhci_trb *cur_trb;
2170 struct xhci_segment *cur_seg;
2171 u32 trb_comp_code;
2172
2173 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2174 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2175
2176 switch (trb_comp_code) {
2177 case COMP_SUCCESS:
2178 /* Double check that the HW transferred everything. */
2179 if (event_trb != td->last_trb ||
2180 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2181 xhci_warn(xhci, "WARN Successful completion "
2182 "on short TX\n");
2183 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2184 *status = -EREMOTEIO;
2185 else
2186 *status = 0;
2187 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2188 trb_comp_code = COMP_SHORT_TX;
2189 } else {
2190 *status = 0;
2191 }
2192 break;
2193 case COMP_STOP_SHORT:
2194 case COMP_SHORT_TX:
2195 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2196 *status = -EREMOTEIO;
2197 else
2198 *status = 0;
2199 break;
2200 default:
2201 /* Others already handled above */
2202 break;
2203 }
2204 if (trb_comp_code == COMP_SHORT_TX)
2205 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2206 "%d bytes untransferred\n",
2207 td->urb->ep->desc.bEndpointAddress,
2208 td->urb->transfer_buffer_length,
2209 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2210 /* Stopped - short packet completion */
2211 if (trb_comp_code == COMP_STOP_SHORT) {
2212 td->urb->actual_length =
2213 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2214
2215 if (td->urb->transfer_buffer_length <
2216 td->urb->actual_length) {
2217 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2218 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2219 td->urb->actual_length = 0;
2220 /* status will be set by usb core for canceled urbs */
2221 }
2222 /* Fast path - was this the last TRB in the TD for this URB? */
2223 } else if (event_trb == td->last_trb) {
2224 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2225 td->urb->actual_length =
2226 td->urb->transfer_buffer_length -
2227 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2228 if (td->urb->transfer_buffer_length <
2229 td->urb->actual_length) {
2230 xhci_warn(xhci, "HC gave bad length "
2231 "of %d bytes left\n",
2232 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2233 td->urb->actual_length = 0;
2234 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2235 *status = -EREMOTEIO;
2236 else
2237 *status = 0;
2238 }
2239 /* Don't overwrite a previously set error code */
2240 if (*status == -EINPROGRESS) {
2241 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2242 *status = -EREMOTEIO;
2243 else
2244 *status = 0;
2245 }
2246 } else {
2247 td->urb->actual_length =
2248 td->urb->transfer_buffer_length;
2249 /* Ignore a short packet completion if the
2250 * untransferred length was zero.
2251 */
2252 if (*status == -EREMOTEIO)
2253 *status = 0;
2254 }
2255 } else {
2256 /* Slow path - walk the list, starting from the dequeue
2257 * pointer, to get the actual length transferred.
2258 */
2259 td->urb->actual_length = 0;
2260 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2261 cur_trb != event_trb;
2262 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2263 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2264 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2265 td->urb->actual_length +=
2266 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2267 }
2268 /* If the ring didn't stop on a Link or No-op TRB, add
2269 * in the actual bytes transferred from the Normal TRB
2270 */
2271 if (trb_comp_code != COMP_STOP_INVAL)
2272 td->urb->actual_length +=
2273 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2274 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2275 }
2276
2277 return finish_td(xhci, td, event_trb, event, ep, status, false);
2278 }
2279
2280 /*
2281 * If this function returns an error condition, it means it got a Transfer
2282 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2283 * At this point, the host controller is probably hosed and should be reset.
2284 */
2285 static int handle_tx_event(struct xhci_hcd *xhci,
2286 struct xhci_transfer_event *event)
2287 __releases(&xhci->lock)
2288 __acquires(&xhci->lock)
2289 {
2290 struct xhci_virt_device *xdev;
2291 struct xhci_virt_ep *ep;
2292 struct xhci_ring *ep_ring;
2293 unsigned int slot_id;
2294 int ep_index;
2295 struct xhci_td *td = NULL;
2296 dma_addr_t event_dma;
2297 struct xhci_segment *event_seg;
2298 union xhci_trb *event_trb;
2299 struct urb *urb = NULL;
2300 int status = -EINPROGRESS;
2301 struct urb_priv *urb_priv;
2302 struct xhci_ep_ctx *ep_ctx;
2303 struct list_head *tmp;
2304 u32 trb_comp_code;
2305 int ret = 0;
2306 int td_num = 0;
2307 bool handling_skipped_tds = false;
2308
2309 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2310 xdev = xhci->devs[slot_id];
2311 if (!xdev) {
2312 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2313 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2314 (unsigned long long) xhci_trb_virt_to_dma(
2315 xhci->event_ring->deq_seg,
2316 xhci->event_ring->dequeue),
2317 lower_32_bits(le64_to_cpu(event->buffer)),
2318 upper_32_bits(le64_to_cpu(event->buffer)),
2319 le32_to_cpu(event->transfer_len),
2320 le32_to_cpu(event->flags));
2321 xhci_dbg(xhci, "Event ring:\n");
2322 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2323 return -ENODEV;
2324 }
2325
2326 /* Endpoint ID is 1 based, our index is zero based */
2327 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2328 ep = &xdev->eps[ep_index];
2329 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2330 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2331 if (!ep_ring ||
2332 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2333 EP_STATE_DISABLED) {
2334 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2335 "or incorrect stream ring\n");
2336 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2337 (unsigned long long) xhci_trb_virt_to_dma(
2338 xhci->event_ring->deq_seg,
2339 xhci->event_ring->dequeue),
2340 lower_32_bits(le64_to_cpu(event->buffer)),
2341 upper_32_bits(le64_to_cpu(event->buffer)),
2342 le32_to_cpu(event->transfer_len),
2343 le32_to_cpu(event->flags));
2344 xhci_dbg(xhci, "Event ring:\n");
2345 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2346 return -ENODEV;
2347 }
2348
2349 /* Count current td numbers if ep->skip is set */
2350 if (ep->skip) {
2351 list_for_each(tmp, &ep_ring->td_list)
2352 td_num++;
2353 }
2354
2355 event_dma = le64_to_cpu(event->buffer);
2356 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2357 /* Look for common error cases */
2358 switch (trb_comp_code) {
2359 /* Skip codes that require special handling depending on
2360 * transfer type
2361 */
2362 case COMP_SUCCESS:
2363 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2364 break;
2365 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2366 trb_comp_code = COMP_SHORT_TX;
2367 else
2368 xhci_warn_ratelimited(xhci,
2369 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2370 case COMP_SHORT_TX:
2371 break;
2372 case COMP_STOP:
2373 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2374 break;
2375 case COMP_STOP_INVAL:
2376 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2377 break;
2378 case COMP_STOP_SHORT:
2379 xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2380 break;
2381 case COMP_STALL:
2382 xhci_dbg(xhci, "Stalled endpoint\n");
2383 ep->ep_state |= EP_HALTED;
2384 status = -EPIPE;
2385 break;
2386 case COMP_TRB_ERR:
2387 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2388 status = -EILSEQ;
2389 break;
2390 case COMP_SPLIT_ERR:
2391 case COMP_TX_ERR:
2392 xhci_dbg(xhci, "Transfer error on endpoint\n");
2393 status = -EPROTO;
2394 break;
2395 case COMP_BABBLE:
2396 xhci_dbg(xhci, "Babble error on endpoint\n");
2397 status = -EOVERFLOW;
2398 break;
2399 case COMP_DB_ERR:
2400 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2401 status = -ENOSR;
2402 break;
2403 case COMP_BW_OVER:
2404 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2405 break;
2406 case COMP_BUFF_OVER:
2407 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2408 break;
2409 case COMP_UNDERRUN:
2410 /*
2411 * When the Isoch ring is empty, the xHC will generate
2412 * a Ring Overrun Event for IN Isoch endpoint or Ring
2413 * Underrun Event for OUT Isoch endpoint.
2414 */
2415 xhci_dbg(xhci, "underrun event on endpoint\n");
2416 if (!list_empty(&ep_ring->td_list))
2417 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2418 "still with TDs queued?\n",
2419 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2420 ep_index);
2421 goto cleanup;
2422 case COMP_OVERRUN:
2423 xhci_dbg(xhci, "overrun event on endpoint\n");
2424 if (!list_empty(&ep_ring->td_list))
2425 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2426 "still with TDs queued?\n",
2427 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2428 ep_index);
2429 goto cleanup;
2430 case COMP_DEV_ERR:
2431 xhci_warn(xhci, "WARN: detect an incompatible device");
2432 status = -EPROTO;
2433 break;
2434 case COMP_MISSED_INT:
2435 /*
2436 * When encounter missed service error, one or more isoc tds
2437 * may be missed by xHC.
2438 * Set skip flag of the ep_ring; Complete the missed tds as
2439 * short transfer when process the ep_ring next time.
2440 */
2441 ep->skip = true;
2442 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2443 goto cleanup;
2444 case COMP_PING_ERR:
2445 ep->skip = true;
2446 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2447 goto cleanup;
2448 default:
2449 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2450 status = 0;
2451 break;
2452 }
2453 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2454 trb_comp_code);
2455 goto cleanup;
2456 }
2457
2458 do {
2459 /* This TRB should be in the TD at the head of this ring's
2460 * TD list.
2461 */
2462 if (list_empty(&ep_ring->td_list)) {
2463 /*
2464 * A stopped endpoint may generate an extra completion
2465 * event if the device was suspended. Don't print
2466 * warnings.
2467 */
2468 if (!(trb_comp_code == COMP_STOP ||
2469 trb_comp_code == COMP_STOP_INVAL)) {
2470 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2471 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2472 ep_index);
2473 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2474 (le32_to_cpu(event->flags) &
2475 TRB_TYPE_BITMASK)>>10);
2476 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2477 }
2478 if (ep->skip) {
2479 ep->skip = false;
2480 xhci_dbg(xhci, "td_list is empty while skip "
2481 "flag set. Clear skip flag.\n");
2482 }
2483 ret = 0;
2484 goto cleanup;
2485 }
2486
2487 /* We've skipped all the TDs on the ep ring when ep->skip set */
2488 if (ep->skip && td_num == 0) {
2489 ep->skip = false;
2490 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2491 "Clear skip flag.\n");
2492 ret = 0;
2493 goto cleanup;
2494 }
2495
2496 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2497 if (ep->skip)
2498 td_num--;
2499
2500 /* Is this a TRB in the currently executing TD? */
2501 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2502 td->last_trb, event_dma, false);
2503
2504 /*
2505 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2506 * is not in the current TD pointed by ep_ring->dequeue because
2507 * that the hardware dequeue pointer still at the previous TRB
2508 * of the current TD. The previous TRB maybe a Link TD or the
2509 * last TRB of the previous TD. The command completion handle
2510 * will take care the rest.
2511 */
2512 if (!event_seg && (trb_comp_code == COMP_STOP ||
2513 trb_comp_code == COMP_STOP_INVAL)) {
2514 ret = 0;
2515 goto cleanup;
2516 }
2517
2518 if (!event_seg) {
2519 if (!ep->skip ||
2520 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2521 /* Some host controllers give a spurious
2522 * successful event after a short transfer.
2523 * Ignore it.
2524 */
2525 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2526 ep_ring->last_td_was_short) {
2527 ep_ring->last_td_was_short = false;
2528 ret = 0;
2529 goto cleanup;
2530 }
2531 /* HC is busted, give up! */
2532 xhci_err(xhci,
2533 "ERROR Transfer event TRB DMA ptr not "
2534 "part of current TD ep_index %d "
2535 "comp_code %u\n", ep_index,
2536 trb_comp_code);
2537 trb_in_td(xhci, ep_ring->deq_seg,
2538 ep_ring->dequeue, td->last_trb,
2539 event_dma, true);
2540 return -ESHUTDOWN;
2541 }
2542
2543 ret = skip_isoc_td(xhci, td, event, ep, &status);
2544 goto cleanup;
2545 }
2546 if (trb_comp_code == COMP_SHORT_TX)
2547 ep_ring->last_td_was_short = true;
2548 else
2549 ep_ring->last_td_was_short = false;
2550
2551 if (ep->skip) {
2552 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2553 ep->skip = false;
2554 }
2555
2556 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2557 sizeof(*event_trb)];
2558 /*
2559 * No-op TRB should not trigger interrupts.
2560 * If event_trb is a no-op TRB, it means the
2561 * corresponding TD has been cancelled. Just ignore
2562 * the TD.
2563 */
2564 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2565 xhci_dbg(xhci,
2566 "event_trb is a no-op TRB. Skip it\n");
2567 goto cleanup;
2568 }
2569
2570 /* Now update the urb's actual_length and give back to
2571 * the core
2572 */
2573 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2574 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2575 &status);
2576 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2577 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2578 &status);
2579 else
2580 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2581 ep, &status);
2582
2583 cleanup:
2584
2585
2586 handling_skipped_tds = ep->skip &&
2587 trb_comp_code != COMP_MISSED_INT &&
2588 trb_comp_code != COMP_PING_ERR;
2589
2590 /*
2591 * Do not update event ring dequeue pointer if we're in a loop
2592 * processing missed tds.
2593 */
2594 if (!handling_skipped_tds)
2595 inc_deq(xhci, xhci->event_ring);
2596
2597 if (ret) {
2598 urb = td->urb;
2599 urb_priv = urb->hcpriv;
2600
2601 xhci_urb_free_priv(urb_priv);
2602
2603 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2604 if ((urb->actual_length != urb->transfer_buffer_length &&
2605 (urb->transfer_flags &
2606 URB_SHORT_NOT_OK)) ||
2607 (status != 0 &&
2608 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2609 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2610 "expected = %d, status = %d\n",
2611 urb, urb->actual_length,
2612 urb->transfer_buffer_length,
2613 status);
2614 spin_unlock(&xhci->lock);
2615 /* EHCI, UHCI, and OHCI always unconditionally set the
2616 * urb->status of an isochronous endpoint to 0.
2617 */
2618 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2619 status = 0;
2620 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2621 spin_lock(&xhci->lock);
2622 }
2623
2624 /*
2625 * If ep->skip is set, it means there are missed tds on the
2626 * endpoint ring need to take care of.
2627 * Process them as short transfer until reach the td pointed by
2628 * the event.
2629 */
2630 } while (handling_skipped_tds);
2631
2632 return 0;
2633 }
2634
2635 /*
2636 * This function handles all OS-owned events on the event ring. It may drop
2637 * xhci->lock between event processing (e.g. to pass up port status changes).
2638 * Returns >0 for "possibly more events to process" (caller should call again),
2639 * otherwise 0 if done. In future, <0 returns should indicate error code.
2640 */
2641 static int xhci_handle_event(struct xhci_hcd *xhci)
2642 {
2643 union xhci_trb *event;
2644 int update_ptrs = 1;
2645 int ret;
2646
2647 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2648 xhci->error_bitmask |= 1 << 1;
2649 return 0;
2650 }
2651
2652 event = xhci->event_ring->dequeue;
2653 /* Does the HC or OS own the TRB? */
2654 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2655 xhci->event_ring->cycle_state) {
2656 xhci->error_bitmask |= 1 << 2;
2657 return 0;
2658 }
2659
2660 /*
2661 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2662 * speculative reads of the event's flags/data below.
2663 */
2664 rmb();
2665 /* FIXME: Handle more event types. */
2666 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2667 case TRB_TYPE(TRB_COMPLETION):
2668 handle_cmd_completion(xhci, &event->event_cmd);
2669 break;
2670 case TRB_TYPE(TRB_PORT_STATUS):
2671 handle_port_status(xhci, event);
2672 update_ptrs = 0;
2673 break;
2674 case TRB_TYPE(TRB_TRANSFER):
2675 ret = handle_tx_event(xhci, &event->trans_event);
2676 if (ret < 0)
2677 xhci->error_bitmask |= 1 << 9;
2678 else
2679 update_ptrs = 0;
2680 break;
2681 case TRB_TYPE(TRB_DEV_NOTE):
2682 handle_device_notification(xhci, event);
2683 break;
2684 default:
2685 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2686 TRB_TYPE(48))
2687 handle_vendor_event(xhci, event);
2688 else
2689 xhci->error_bitmask |= 1 << 3;
2690 }
2691 /* Any of the above functions may drop and re-acquire the lock, so check
2692 * to make sure a watchdog timer didn't mark the host as non-responsive.
2693 */
2694 if (xhci->xhc_state & XHCI_STATE_DYING) {
2695 xhci_dbg(xhci, "xHCI host dying, returning from "
2696 "event handler.\n");
2697 return 0;
2698 }
2699
2700 if (update_ptrs)
2701 /* Update SW event ring dequeue pointer */
2702 inc_deq(xhci, xhci->event_ring);
2703
2704 /* Are there more items on the event ring? Caller will call us again to
2705 * check.
2706 */
2707 return 1;
2708 }
2709
2710 /*
2711 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2712 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2713 * indicators of an event TRB error, but we check the status *first* to be safe.
2714 */
2715 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2716 {
2717 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2718 u32 status;
2719 u64 temp_64;
2720 union xhci_trb *event_ring_deq;
2721 dma_addr_t deq;
2722
2723 spin_lock(&xhci->lock);
2724 /* Check if the xHC generated the interrupt, or the irq is shared */
2725 status = readl(&xhci->op_regs->status);
2726 if (status == 0xffffffff)
2727 goto hw_died;
2728
2729 if (!(status & STS_EINT)) {
2730 spin_unlock(&xhci->lock);
2731 return IRQ_NONE;
2732 }
2733 if (status & STS_FATAL) {
2734 xhci_warn(xhci, "WARNING: Host System Error\n");
2735 xhci_halt(xhci);
2736 hw_died:
2737 spin_unlock(&xhci->lock);
2738 return IRQ_HANDLED;
2739 }
2740
2741 /*
2742 * Clear the op reg interrupt status first,
2743 * so we can receive interrupts from other MSI-X interrupters.
2744 * Write 1 to clear the interrupt status.
2745 */
2746 status |= STS_EINT;
2747 writel(status, &xhci->op_regs->status);
2748 /* FIXME when MSI-X is supported and there are multiple vectors */
2749 /* Clear the MSI-X event interrupt status */
2750
2751 if (hcd->irq) {
2752 u32 irq_pending;
2753 /* Acknowledge the PCI interrupt */
2754 irq_pending = readl(&xhci->ir_set->irq_pending);
2755 irq_pending |= IMAN_IP;
2756 writel(irq_pending, &xhci->ir_set->irq_pending);
2757 }
2758
2759 if (xhci->xhc_state & XHCI_STATE_DYING ||
2760 xhci->xhc_state & XHCI_STATE_HALTED) {
2761 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2762 "Shouldn't IRQs be disabled?\n");
2763 /* Clear the event handler busy flag (RW1C);
2764 * the event ring should be empty.
2765 */
2766 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2767 xhci_write_64(xhci, temp_64 | ERST_EHB,
2768 &xhci->ir_set->erst_dequeue);
2769 spin_unlock(&xhci->lock);
2770
2771 return IRQ_HANDLED;
2772 }
2773
2774 event_ring_deq = xhci->event_ring->dequeue;
2775 /* FIXME this should be a delayed service routine
2776 * that clears the EHB.
2777 */
2778 while (xhci_handle_event(xhci) > 0) {}
2779
2780 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2781 /* If necessary, update the HW's version of the event ring deq ptr. */
2782 if (event_ring_deq != xhci->event_ring->dequeue) {
2783 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2784 xhci->event_ring->dequeue);
2785 if (deq == 0)
2786 xhci_warn(xhci, "WARN something wrong with SW event "
2787 "ring dequeue ptr.\n");
2788 /* Update HC event ring dequeue pointer */
2789 temp_64 &= ERST_PTR_MASK;
2790 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2791 }
2792
2793 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2794 temp_64 |= ERST_EHB;
2795 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2796
2797 spin_unlock(&xhci->lock);
2798
2799 return IRQ_HANDLED;
2800 }
2801
2802 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2803 {
2804 return xhci_irq(hcd);
2805 }
2806
2807 /**** Endpoint Ring Operations ****/
2808
2809 /*
2810 * Generic function for queueing a TRB on a ring.
2811 * The caller must have checked to make sure there's room on the ring.
2812 *
2813 * @more_trbs_coming: Will you enqueue more TRBs before calling
2814 * prepare_transfer()?
2815 */
2816 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2817 bool more_trbs_coming,
2818 u32 field1, u32 field2, u32 field3, u32 field4)
2819 {
2820 struct xhci_generic_trb *trb;
2821
2822 trb = &ring->enqueue->generic;
2823 trb->field[0] = cpu_to_le32(field1);
2824 trb->field[1] = cpu_to_le32(field2);
2825 trb->field[2] = cpu_to_le32(field3);
2826 trb->field[3] = cpu_to_le32(field4);
2827 inc_enq(xhci, ring, more_trbs_coming);
2828 }
2829
2830 /*
2831 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2832 * FIXME allocate segments if the ring is full.
2833 */
2834 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2835 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2836 {
2837 unsigned int num_trbs_needed;
2838
2839 /* Make sure the endpoint has been added to xHC schedule */
2840 switch (ep_state) {
2841 case EP_STATE_DISABLED:
2842 /*
2843 * USB core changed config/interfaces without notifying us,
2844 * or hardware is reporting the wrong state.
2845 */
2846 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2847 return -ENOENT;
2848 case EP_STATE_ERROR:
2849 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2850 /* FIXME event handling code for error needs to clear it */
2851 /* XXX not sure if this should be -ENOENT or not */
2852 return -EINVAL;
2853 case EP_STATE_HALTED:
2854 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2855 case EP_STATE_STOPPED:
2856 case EP_STATE_RUNNING:
2857 break;
2858 default:
2859 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2860 /*
2861 * FIXME issue Configure Endpoint command to try to get the HC
2862 * back into a known state.
2863 */
2864 return -EINVAL;
2865 }
2866
2867 while (1) {
2868 if (room_on_ring(xhci, ep_ring, num_trbs))
2869 break;
2870
2871 if (ep_ring == xhci->cmd_ring) {
2872 xhci_err(xhci, "Do not support expand command ring\n");
2873 return -ENOMEM;
2874 }
2875
2876 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2877 "ERROR no room on ep ring, try ring expansion");
2878 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2879 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2880 mem_flags)) {
2881 xhci_err(xhci, "Ring expansion failed\n");
2882 return -ENOMEM;
2883 }
2884 }
2885
2886 while (trb_is_link(ep_ring->enqueue)) {
2887 /* If we're not dealing with 0.95 hardware or isoc rings
2888 * on AMD 0.96 host, clear the chain bit.
2889 */
2890 if (!xhci_link_trb_quirk(xhci) &&
2891 !(ep_ring->type == TYPE_ISOC &&
2892 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2893 ep_ring->enqueue->link.control &=
2894 cpu_to_le32(~TRB_CHAIN);
2895 else
2896 ep_ring->enqueue->link.control |=
2897 cpu_to_le32(TRB_CHAIN);
2898
2899 wmb();
2900 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2901
2902 /* Toggle the cycle bit after the last ring segment. */
2903 if (link_trb_toggles_cycle(ep_ring->enqueue))
2904 ep_ring->cycle_state ^= 1;
2905
2906 ep_ring->enq_seg = ep_ring->enq_seg->next;
2907 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2908 }
2909 return 0;
2910 }
2911
2912 static int prepare_transfer(struct xhci_hcd *xhci,
2913 struct xhci_virt_device *xdev,
2914 unsigned int ep_index,
2915 unsigned int stream_id,
2916 unsigned int num_trbs,
2917 struct urb *urb,
2918 unsigned int td_index,
2919 gfp_t mem_flags)
2920 {
2921 int ret;
2922 struct urb_priv *urb_priv;
2923 struct xhci_td *td;
2924 struct xhci_ring *ep_ring;
2925 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2926
2927 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2928 if (!ep_ring) {
2929 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2930 stream_id);
2931 return -EINVAL;
2932 }
2933
2934 ret = prepare_ring(xhci, ep_ring,
2935 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2936 num_trbs, mem_flags);
2937 if (ret)
2938 return ret;
2939
2940 urb_priv = urb->hcpriv;
2941 td = urb_priv->td[td_index];
2942
2943 INIT_LIST_HEAD(&td->td_list);
2944 INIT_LIST_HEAD(&td->cancelled_td_list);
2945
2946 if (td_index == 0) {
2947 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2948 if (unlikely(ret))
2949 return ret;
2950 }
2951
2952 td->urb = urb;
2953 /* Add this TD to the tail of the endpoint ring's TD list */
2954 list_add_tail(&td->td_list, &ep_ring->td_list);
2955 td->start_seg = ep_ring->enq_seg;
2956 td->first_trb = ep_ring->enqueue;
2957
2958 urb_priv->td[td_index] = td;
2959
2960 return 0;
2961 }
2962
2963 static unsigned int count_trbs(u64 addr, u64 len)
2964 {
2965 unsigned int num_trbs;
2966
2967 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2968 TRB_MAX_BUFF_SIZE);
2969 if (num_trbs == 0)
2970 num_trbs++;
2971
2972 return num_trbs;
2973 }
2974
2975 static inline unsigned int count_trbs_needed(struct urb *urb)
2976 {
2977 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2978 }
2979
2980 static unsigned int count_sg_trbs_needed(struct urb *urb)
2981 {
2982 struct scatterlist *sg;
2983 unsigned int i, len, full_len, num_trbs = 0;
2984
2985 full_len = urb->transfer_buffer_length;
2986
2987 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2988 len = sg_dma_len(sg);
2989 num_trbs += count_trbs(sg_dma_address(sg), len);
2990 len = min_t(unsigned int, len, full_len);
2991 full_len -= len;
2992 if (full_len == 0)
2993 break;
2994 }
2995
2996 return num_trbs;
2997 }
2998
2999 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3000 {
3001 u64 addr, len;
3002
3003 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3004 len = urb->iso_frame_desc[i].length;
3005
3006 return count_trbs(addr, len);
3007 }
3008
3009 static void check_trb_math(struct urb *urb, int running_total)
3010 {
3011 if (unlikely(running_total != urb->transfer_buffer_length))
3012 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3013 "queued %#x (%d), asked for %#x (%d)\n",
3014 __func__,
3015 urb->ep->desc.bEndpointAddress,
3016 running_total, running_total,
3017 urb->transfer_buffer_length,
3018 urb->transfer_buffer_length);
3019 }
3020
3021 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3022 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3023 struct xhci_generic_trb *start_trb)
3024 {
3025 /*
3026 * Pass all the TRBs to the hardware at once and make sure this write
3027 * isn't reordered.
3028 */
3029 wmb();
3030 if (start_cycle)
3031 start_trb->field[3] |= cpu_to_le32(start_cycle);
3032 else
3033 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3034 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3035 }
3036
3037 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3038 struct xhci_ep_ctx *ep_ctx)
3039 {
3040 int xhci_interval;
3041 int ep_interval;
3042
3043 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3044 ep_interval = urb->interval;
3045
3046 /* Convert to microframes */
3047 if (urb->dev->speed == USB_SPEED_LOW ||
3048 urb->dev->speed == USB_SPEED_FULL)
3049 ep_interval *= 8;
3050
3051 /* FIXME change this to a warning and a suggestion to use the new API
3052 * to set the polling interval (once the API is added).
3053 */
3054 if (xhci_interval != ep_interval) {
3055 dev_dbg_ratelimited(&urb->dev->dev,
3056 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3057 ep_interval, ep_interval == 1 ? "" : "s",
3058 xhci_interval, xhci_interval == 1 ? "" : "s");
3059 urb->interval = xhci_interval;
3060 /* Convert back to frames for LS/FS devices */
3061 if (urb->dev->speed == USB_SPEED_LOW ||
3062 urb->dev->speed == USB_SPEED_FULL)
3063 urb->interval /= 8;
3064 }
3065 }
3066
3067 /*
3068 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3069 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3070 * (comprised of sg list entries) can take several service intervals to
3071 * transmit.
3072 */
3073 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3074 struct urb *urb, int slot_id, unsigned int ep_index)
3075 {
3076 struct xhci_ep_ctx *ep_ctx;
3077
3078 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3079 check_interval(xhci, urb, ep_ctx);
3080
3081 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3082 }
3083
3084 /*
3085 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3086 * packets remaining in the TD (*not* including this TRB).
3087 *
3088 * Total TD packet count = total_packet_count =
3089 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3090 *
3091 * Packets transferred up to and including this TRB = packets_transferred =
3092 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3093 *
3094 * TD size = total_packet_count - packets_transferred
3095 *
3096 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3097 * including this TRB, right shifted by 10
3098 *
3099 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3100 * This is taken care of in the TRB_TD_SIZE() macro
3101 *
3102 * The last TRB in a TD must have the TD size set to zero.
3103 */
3104 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3105 int trb_buff_len, unsigned int td_total_len,
3106 struct urb *urb, bool more_trbs_coming)
3107 {
3108 u32 maxp, total_packet_count;
3109
3110 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3111 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3112 return ((td_total_len - transferred) >> 10);
3113
3114 /* One TRB with a zero-length data packet. */
3115 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3116 trb_buff_len == td_total_len)
3117 return 0;
3118
3119 /* for MTK xHCI, TD size doesn't include this TRB */
3120 if (xhci->quirks & XHCI_MTK_HOST)
3121 trb_buff_len = 0;
3122
3123 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3124 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3125
3126 /* Queueing functions don't count the current TRB into transferred */
3127 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3128 }
3129
3130
3131 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3132 u32 *trb_buff_len, struct xhci_segment *seg)
3133 {
3134 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3135 unsigned int unalign;
3136 unsigned int max_pkt;
3137 u32 new_buff_len;
3138
3139 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3140 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3141
3142 /* we got lucky, last normal TRB data on segment is packet aligned */
3143 if (unalign == 0)
3144 return 0;
3145
3146 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3147 unalign, *trb_buff_len);
3148
3149 /* is the last nornal TRB alignable by splitting it */
3150 if (*trb_buff_len > unalign) {
3151 *trb_buff_len -= unalign;
3152 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3153 return 0;
3154 }
3155
3156 /*
3157 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3158 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3159 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3160 */
3161 new_buff_len = max_pkt - (enqd_len % max_pkt);
3162
3163 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3164 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3165
3166 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3167 if (usb_urb_dir_out(urb)) {
3168 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3169 seg->bounce_buf, new_buff_len, enqd_len);
3170 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3171 max_pkt, DMA_TO_DEVICE);
3172 } else {
3173 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3174 max_pkt, DMA_FROM_DEVICE);
3175 }
3176
3177 if (dma_mapping_error(dev, seg->bounce_dma)) {
3178 /* try without aligning. Some host controllers survive */
3179 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3180 return 0;
3181 }
3182 *trb_buff_len = new_buff_len;
3183 seg->bounce_len = new_buff_len;
3184 seg->bounce_offs = enqd_len;
3185
3186 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3187
3188 return 1;
3189 }
3190
3191 /* This is very similar to what ehci-q.c qtd_fill() does */
3192 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3193 struct urb *urb, int slot_id, unsigned int ep_index)
3194 {
3195 struct xhci_ring *ring;
3196 struct urb_priv *urb_priv;
3197 struct xhci_td *td;
3198 struct xhci_generic_trb *start_trb;
3199 struct scatterlist *sg = NULL;
3200 bool more_trbs_coming = true;
3201 bool need_zero_pkt = false;
3202 bool first_trb = true;
3203 unsigned int num_trbs;
3204 unsigned int start_cycle, num_sgs = 0;
3205 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3206 int sent_len, ret;
3207 u32 field, length_field, remainder;
3208 u64 addr, send_addr;
3209
3210 ring = xhci_urb_to_transfer_ring(xhci, urb);
3211 if (!ring)
3212 return -EINVAL;
3213
3214 full_len = urb->transfer_buffer_length;
3215 /* If we have scatter/gather list, we use it. */
3216 if (urb->num_sgs) {
3217 num_sgs = urb->num_mapped_sgs;
3218 sg = urb->sg;
3219 addr = (u64) sg_dma_address(sg);
3220 block_len = sg_dma_len(sg);
3221 num_trbs = count_sg_trbs_needed(urb);
3222 } else {
3223 num_trbs = count_trbs_needed(urb);
3224 addr = (u64) urb->transfer_dma;
3225 block_len = full_len;
3226 }
3227 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3228 ep_index, urb->stream_id,
3229 num_trbs, urb, 0, mem_flags);
3230 if (unlikely(ret < 0))
3231 return ret;
3232
3233 urb_priv = urb->hcpriv;
3234
3235 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3236 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length > 1)
3237 need_zero_pkt = true;
3238
3239 td = urb_priv->td[0];
3240
3241 /*
3242 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3243 * until we've finished creating all the other TRBs. The ring's cycle
3244 * state may change as we enqueue the other TRBs, so save it too.
3245 */
3246 start_trb = &ring->enqueue->generic;
3247 start_cycle = ring->cycle_state;
3248 send_addr = addr;
3249
3250 /* Queue the TRBs, even if they are zero-length */
3251 for (enqd_len = 0; first_trb || enqd_len < full_len;
3252 enqd_len += trb_buff_len) {
3253 field = TRB_TYPE(TRB_NORMAL);
3254
3255 /* TRB buffer should not cross 64KB boundaries */
3256 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3257 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3258
3259 if (enqd_len + trb_buff_len > full_len)
3260 trb_buff_len = full_len - enqd_len;
3261
3262 /* Don't change the cycle bit of the first TRB until later */
3263 if (first_trb) {
3264 first_trb = false;
3265 if (start_cycle == 0)
3266 field |= TRB_CYCLE;
3267 } else
3268 field |= ring->cycle_state;
3269
3270 /* Chain all the TRBs together; clear the chain bit in the last
3271 * TRB to indicate it's the last TRB in the chain.
3272 */
3273 if (enqd_len + trb_buff_len < full_len) {
3274 field |= TRB_CHAIN;
3275 if (trb_is_link(ring->enqueue + 1)) {
3276 if (xhci_align_td(xhci, urb, enqd_len,
3277 &trb_buff_len,
3278 ring->enq_seg)) {
3279 send_addr = ring->enq_seg->bounce_dma;
3280 /* assuming TD won't span 2 segs */
3281 td->bounce_seg = ring->enq_seg;
3282 }
3283 }
3284 }
3285 if (enqd_len + trb_buff_len >= full_len) {
3286 field &= ~TRB_CHAIN;
3287 field |= TRB_IOC;
3288 more_trbs_coming = false;
3289 td->last_trb = ring->enqueue;
3290 }
3291
3292 /* Only set interrupt on short packet for IN endpoints */
3293 if (usb_urb_dir_in(urb))
3294 field |= TRB_ISP;
3295
3296 /* Set the TRB length, TD size, and interrupter fields. */
3297 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3298 full_len, urb, more_trbs_coming);
3299
3300 length_field = TRB_LEN(trb_buff_len) |
3301 TRB_TD_SIZE(remainder) |
3302 TRB_INTR_TARGET(0);
3303
3304 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3305 lower_32_bits(send_addr),
3306 upper_32_bits(send_addr),
3307 length_field,
3308 field);
3309
3310 addr += trb_buff_len;
3311 sent_len = trb_buff_len;
3312
3313 while (sg && sent_len >= block_len) {
3314 /* New sg entry */
3315 --num_sgs;
3316 sent_len -= block_len;
3317 if (num_sgs != 0) {
3318 sg = sg_next(sg);
3319 block_len = sg_dma_len(sg);
3320 addr = (u64) sg_dma_address(sg);
3321 addr += sent_len;
3322 }
3323 }
3324 block_len -= sent_len;
3325 send_addr = addr;
3326 }
3327
3328 if (need_zero_pkt) {
3329 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3330 ep_index, urb->stream_id,
3331 1, urb, 1, mem_flags);
3332 urb_priv->td[1]->last_trb = ring->enqueue;
3333 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3334 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3335 }
3336
3337 check_trb_math(urb, enqd_len);
3338 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3339 start_cycle, start_trb);
3340 return 0;
3341 }
3342
3343 /* Caller must have locked xhci->lock */
3344 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3345 struct urb *urb, int slot_id, unsigned int ep_index)
3346 {
3347 struct xhci_ring *ep_ring;
3348 int num_trbs;
3349 int ret;
3350 struct usb_ctrlrequest *setup;
3351 struct xhci_generic_trb *start_trb;
3352 int start_cycle;
3353 u32 field, length_field, remainder;
3354 struct urb_priv *urb_priv;
3355 struct xhci_td *td;
3356
3357 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3358 if (!ep_ring)
3359 return -EINVAL;
3360
3361 /*
3362 * Need to copy setup packet into setup TRB, so we can't use the setup
3363 * DMA address.
3364 */
3365 if (!urb->setup_packet)
3366 return -EINVAL;
3367
3368 /* 1 TRB for setup, 1 for status */
3369 num_trbs = 2;
3370 /*
3371 * Don't need to check if we need additional event data and normal TRBs,
3372 * since data in control transfers will never get bigger than 16MB
3373 * XXX: can we get a buffer that crosses 64KB boundaries?
3374 */
3375 if (urb->transfer_buffer_length > 0)
3376 num_trbs++;
3377 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3378 ep_index, urb->stream_id,
3379 num_trbs, urb, 0, mem_flags);
3380 if (ret < 0)
3381 return ret;
3382
3383 urb_priv = urb->hcpriv;
3384 td = urb_priv->td[0];
3385
3386 /*
3387 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3388 * until we've finished creating all the other TRBs. The ring's cycle
3389 * state may change as we enqueue the other TRBs, so save it too.
3390 */
3391 start_trb = &ep_ring->enqueue->generic;
3392 start_cycle = ep_ring->cycle_state;
3393
3394 /* Queue setup TRB - see section 6.4.1.2.1 */
3395 /* FIXME better way to translate setup_packet into two u32 fields? */
3396 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3397 field = 0;
3398 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3399 if (start_cycle == 0)
3400 field |= 0x1;
3401
3402 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3403 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3404 if (urb->transfer_buffer_length > 0) {
3405 if (setup->bRequestType & USB_DIR_IN)
3406 field |= TRB_TX_TYPE(TRB_DATA_IN);
3407 else
3408 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3409 }
3410 }
3411
3412 queue_trb(xhci, ep_ring, true,
3413 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3414 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3415 TRB_LEN(8) | TRB_INTR_TARGET(0),
3416 /* Immediate data in pointer */
3417 field);
3418
3419 /* If there's data, queue data TRBs */
3420 /* Only set interrupt on short packet for IN endpoints */
3421 if (usb_urb_dir_in(urb))
3422 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3423 else
3424 field = TRB_TYPE(TRB_DATA);
3425
3426 remainder = xhci_td_remainder(xhci, 0,
3427 urb->transfer_buffer_length,
3428 urb->transfer_buffer_length,
3429 urb, 1);
3430
3431 length_field = TRB_LEN(urb->transfer_buffer_length) |
3432 TRB_TD_SIZE(remainder) |
3433 TRB_INTR_TARGET(0);
3434
3435 if (urb->transfer_buffer_length > 0) {
3436 if (setup->bRequestType & USB_DIR_IN)
3437 field |= TRB_DIR_IN;
3438 queue_trb(xhci, ep_ring, true,
3439 lower_32_bits(urb->transfer_dma),
3440 upper_32_bits(urb->transfer_dma),
3441 length_field,
3442 field | ep_ring->cycle_state);
3443 }
3444
3445 /* Save the DMA address of the last TRB in the TD */
3446 td->last_trb = ep_ring->enqueue;
3447
3448 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3449 /* If the device sent data, the status stage is an OUT transfer */
3450 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3451 field = 0;
3452 else
3453 field = TRB_DIR_IN;
3454 queue_trb(xhci, ep_ring, false,
3455 0,
3456 0,
3457 TRB_INTR_TARGET(0),
3458 /* Event on completion */
3459 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3460
3461 giveback_first_trb(xhci, slot_id, ep_index, 0,
3462 start_cycle, start_trb);
3463 return 0;
3464 }
3465
3466 /*
3467 * The transfer burst count field of the isochronous TRB defines the number of
3468 * bursts that are required to move all packets in this TD. Only SuperSpeed
3469 * devices can burst up to bMaxBurst number of packets per service interval.
3470 * This field is zero based, meaning a value of zero in the field means one
3471 * burst. Basically, for everything but SuperSpeed devices, this field will be
3472 * zero. Only xHCI 1.0 host controllers support this field.
3473 */
3474 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3475 struct urb *urb, unsigned int total_packet_count)
3476 {
3477 unsigned int max_burst;
3478
3479 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3480 return 0;
3481
3482 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3483 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3484 }
3485
3486 /*
3487 * Returns the number of packets in the last "burst" of packets. This field is
3488 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3489 * the last burst packet count is equal to the total number of packets in the
3490 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3491 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3492 * contain 1 to (bMaxBurst + 1) packets.
3493 */
3494 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3495 struct urb *urb, unsigned int total_packet_count)
3496 {
3497 unsigned int max_burst;
3498 unsigned int residue;
3499
3500 if (xhci->hci_version < 0x100)
3501 return 0;
3502
3503 if (urb->dev->speed >= USB_SPEED_SUPER) {
3504 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3505 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3506 residue = total_packet_count % (max_burst + 1);
3507 /* If residue is zero, the last burst contains (max_burst + 1)
3508 * number of packets, but the TLBPC field is zero-based.
3509 */
3510 if (residue == 0)
3511 return max_burst;
3512 return residue - 1;
3513 }
3514 if (total_packet_count == 0)
3515 return 0;
3516 return total_packet_count - 1;
3517 }
3518
3519 /*
3520 * Calculates Frame ID field of the isochronous TRB identifies the
3521 * target frame that the Interval associated with this Isochronous
3522 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3523 *
3524 * Returns actual frame id on success, negative value on error.
3525 */
3526 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3527 struct urb *urb, int index)
3528 {
3529 int start_frame, ist, ret = 0;
3530 int start_frame_id, end_frame_id, current_frame_id;
3531
3532 if (urb->dev->speed == USB_SPEED_LOW ||
3533 urb->dev->speed == USB_SPEED_FULL)
3534 start_frame = urb->start_frame + index * urb->interval;
3535 else
3536 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3537
3538 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3539 *
3540 * If bit [3] of IST is cleared to '0', software can add a TRB no
3541 * later than IST[2:0] Microframes before that TRB is scheduled to
3542 * be executed.
3543 * If bit [3] of IST is set to '1', software can add a TRB no later
3544 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3545 */
3546 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3547 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3548 ist <<= 3;
3549
3550 /* Software shall not schedule an Isoch TD with a Frame ID value that
3551 * is less than the Start Frame ID or greater than the End Frame ID,
3552 * where:
3553 *
3554 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3555 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3556 *
3557 * Both the End Frame ID and Start Frame ID values are calculated
3558 * in microframes. When software determines the valid Frame ID value;
3559 * The End Frame ID value should be rounded down to the nearest Frame
3560 * boundary, and the Start Frame ID value should be rounded up to the
3561 * nearest Frame boundary.
3562 */
3563 current_frame_id = readl(&xhci->run_regs->microframe_index);
3564 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3565 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3566
3567 start_frame &= 0x7ff;
3568 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3569 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3570
3571 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3572 __func__, index, readl(&xhci->run_regs->microframe_index),
3573 start_frame_id, end_frame_id, start_frame);
3574
3575 if (start_frame_id < end_frame_id) {
3576 if (start_frame > end_frame_id ||
3577 start_frame < start_frame_id)
3578 ret = -EINVAL;
3579 } else if (start_frame_id > end_frame_id) {
3580 if ((start_frame > end_frame_id &&
3581 start_frame < start_frame_id))
3582 ret = -EINVAL;
3583 } else {
3584 ret = -EINVAL;
3585 }
3586
3587 if (index == 0) {
3588 if (ret == -EINVAL || start_frame == start_frame_id) {
3589 start_frame = start_frame_id + 1;
3590 if (urb->dev->speed == USB_SPEED_LOW ||
3591 urb->dev->speed == USB_SPEED_FULL)
3592 urb->start_frame = start_frame;
3593 else
3594 urb->start_frame = start_frame << 3;
3595 ret = 0;
3596 }
3597 }
3598
3599 if (ret) {
3600 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3601 start_frame, current_frame_id, index,
3602 start_frame_id, end_frame_id);
3603 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3604 return ret;
3605 }
3606
3607 return start_frame;
3608 }
3609
3610 /* This is for isoc transfer */
3611 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3612 struct urb *urb, int slot_id, unsigned int ep_index)
3613 {
3614 struct xhci_ring *ep_ring;
3615 struct urb_priv *urb_priv;
3616 struct xhci_td *td;
3617 int num_tds, trbs_per_td;
3618 struct xhci_generic_trb *start_trb;
3619 bool first_trb;
3620 int start_cycle;
3621 u32 field, length_field;
3622 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3623 u64 start_addr, addr;
3624 int i, j;
3625 bool more_trbs_coming;
3626 struct xhci_virt_ep *xep;
3627 int frame_id;
3628
3629 xep = &xhci->devs[slot_id]->eps[ep_index];
3630 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3631
3632 num_tds = urb->number_of_packets;
3633 if (num_tds < 1) {
3634 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3635 return -EINVAL;
3636 }
3637 start_addr = (u64) urb->transfer_dma;
3638 start_trb = &ep_ring->enqueue->generic;
3639 start_cycle = ep_ring->cycle_state;
3640
3641 urb_priv = urb->hcpriv;
3642 /* Queue the TRBs for each TD, even if they are zero-length */
3643 for (i = 0; i < num_tds; i++) {
3644 unsigned int total_pkt_count, max_pkt;
3645 unsigned int burst_count, last_burst_pkt_count;
3646 u32 sia_frame_id;
3647
3648 first_trb = true;
3649 running_total = 0;
3650 addr = start_addr + urb->iso_frame_desc[i].offset;
3651 td_len = urb->iso_frame_desc[i].length;
3652 td_remain_len = td_len;
3653 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3654 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3655
3656 /* A zero-length transfer still involves at least one packet. */
3657 if (total_pkt_count == 0)
3658 total_pkt_count++;
3659 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3660 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3661 urb, total_pkt_count);
3662
3663 trbs_per_td = count_isoc_trbs_needed(urb, i);
3664
3665 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3666 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3667 if (ret < 0) {
3668 if (i == 0)
3669 return ret;
3670 goto cleanup;
3671 }
3672 td = urb_priv->td[i];
3673
3674 /* use SIA as default, if frame id is used overwrite it */
3675 sia_frame_id = TRB_SIA;
3676 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3677 HCC_CFC(xhci->hcc_params)) {
3678 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3679 if (frame_id >= 0)
3680 sia_frame_id = TRB_FRAME_ID(frame_id);
3681 }
3682 /*
3683 * Set isoc specific data for the first TRB in a TD.
3684 * Prevent HW from getting the TRBs by keeping the cycle state
3685 * inverted in the first TDs isoc TRB.
3686 */
3687 field = TRB_TYPE(TRB_ISOC) |
3688 TRB_TLBPC(last_burst_pkt_count) |
3689 sia_frame_id |
3690 (i ? ep_ring->cycle_state : !start_cycle);
3691
3692 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3693 if (!xep->use_extended_tbc)
3694 field |= TRB_TBC(burst_count);
3695
3696 /* fill the rest of the TRB fields, and remaining normal TRBs */
3697 for (j = 0; j < trbs_per_td; j++) {
3698 u32 remainder = 0;
3699
3700 /* only first TRB is isoc, overwrite otherwise */
3701 if (!first_trb)
3702 field = TRB_TYPE(TRB_NORMAL) |
3703 ep_ring->cycle_state;
3704
3705 /* Only set interrupt on short packet for IN EPs */
3706 if (usb_urb_dir_in(urb))
3707 field |= TRB_ISP;
3708
3709 /* Set the chain bit for all except the last TRB */
3710 if (j < trbs_per_td - 1) {
3711 more_trbs_coming = true;
3712 field |= TRB_CHAIN;
3713 } else {
3714 more_trbs_coming = false;
3715 td->last_trb = ep_ring->enqueue;
3716 field |= TRB_IOC;
3717 /* set BEI, except for the last TD */
3718 if (xhci->hci_version >= 0x100 &&
3719 !(xhci->quirks & XHCI_AVOID_BEI) &&
3720 i < num_tds - 1)
3721 field |= TRB_BEI;
3722 }
3723 /* Calculate TRB length */
3724 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3725 if (trb_buff_len > td_remain_len)
3726 trb_buff_len = td_remain_len;
3727
3728 /* Set the TRB length, TD size, & interrupter fields. */
3729 remainder = xhci_td_remainder(xhci, running_total,
3730 trb_buff_len, td_len,
3731 urb, more_trbs_coming);
3732
3733 length_field = TRB_LEN(trb_buff_len) |
3734 TRB_INTR_TARGET(0);
3735
3736 /* xhci 1.1 with ETE uses TD Size field for TBC */
3737 if (first_trb && xep->use_extended_tbc)
3738 length_field |= TRB_TD_SIZE_TBC(burst_count);
3739 else
3740 length_field |= TRB_TD_SIZE(remainder);
3741 first_trb = false;
3742
3743 queue_trb(xhci, ep_ring, more_trbs_coming,
3744 lower_32_bits(addr),
3745 upper_32_bits(addr),
3746 length_field,
3747 field);
3748 running_total += trb_buff_len;
3749
3750 addr += trb_buff_len;
3751 td_remain_len -= trb_buff_len;
3752 }
3753
3754 /* Check TD length */
3755 if (running_total != td_len) {
3756 xhci_err(xhci, "ISOC TD length unmatch\n");
3757 ret = -EINVAL;
3758 goto cleanup;
3759 }
3760 }
3761
3762 /* store the next frame id */
3763 if (HCC_CFC(xhci->hcc_params))
3764 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3765
3766 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3767 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3768 usb_amd_quirk_pll_disable();
3769 }
3770 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3771
3772 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3773 start_cycle, start_trb);
3774 return 0;
3775 cleanup:
3776 /* Clean up a partially enqueued isoc transfer. */
3777
3778 for (i--; i >= 0; i--)
3779 list_del_init(&urb_priv->td[i]->td_list);
3780
3781 /* Use the first TD as a temporary variable to turn the TDs we've queued
3782 * into No-ops with a software-owned cycle bit. That way the hardware
3783 * won't accidentally start executing bogus TDs when we partially
3784 * overwrite them. td->first_trb and td->start_seg are already set.
3785 */
3786 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3787 /* Every TRB except the first & last will have its cycle bit flipped. */
3788 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3789
3790 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3791 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3792 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3793 ep_ring->cycle_state = start_cycle;
3794 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3795 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3796 return ret;
3797 }
3798
3799 /*
3800 * Check transfer ring to guarantee there is enough room for the urb.
3801 * Update ISO URB start_frame and interval.
3802 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3803 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3804 * Contiguous Frame ID is not supported by HC.
3805 */
3806 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3807 struct urb *urb, int slot_id, unsigned int ep_index)
3808 {
3809 struct xhci_virt_device *xdev;
3810 struct xhci_ring *ep_ring;
3811 struct xhci_ep_ctx *ep_ctx;
3812 int start_frame;
3813 int num_tds, num_trbs, i;
3814 int ret;
3815 struct xhci_virt_ep *xep;
3816 int ist;
3817
3818 xdev = xhci->devs[slot_id];
3819 xep = &xhci->devs[slot_id]->eps[ep_index];
3820 ep_ring = xdev->eps[ep_index].ring;
3821 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3822
3823 num_trbs = 0;
3824 num_tds = urb->number_of_packets;
3825 for (i = 0; i < num_tds; i++)
3826 num_trbs += count_isoc_trbs_needed(urb, i);
3827
3828 /* Check the ring to guarantee there is enough room for the whole urb.
3829 * Do not insert any td of the urb to the ring if the check failed.
3830 */
3831 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3832 num_trbs, mem_flags);
3833 if (ret)
3834 return ret;
3835
3836 /*
3837 * Check interval value. This should be done before we start to
3838 * calculate the start frame value.
3839 */
3840 check_interval(xhci, urb, ep_ctx);
3841
3842 /* Calculate the start frame and put it in urb->start_frame. */
3843 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3844 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3845 EP_STATE_RUNNING) {
3846 urb->start_frame = xep->next_frame_id;
3847 goto skip_start_over;
3848 }
3849 }
3850
3851 start_frame = readl(&xhci->run_regs->microframe_index);
3852 start_frame &= 0x3fff;
3853 /*
3854 * Round up to the next frame and consider the time before trb really
3855 * gets scheduled by hardare.
3856 */
3857 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3858 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3859 ist <<= 3;
3860 start_frame += ist + XHCI_CFC_DELAY;
3861 start_frame = roundup(start_frame, 8);
3862
3863 /*
3864 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3865 * is greate than 8 microframes.
3866 */
3867 if (urb->dev->speed == USB_SPEED_LOW ||
3868 urb->dev->speed == USB_SPEED_FULL) {
3869 start_frame = roundup(start_frame, urb->interval << 3);
3870 urb->start_frame = start_frame >> 3;
3871 } else {
3872 start_frame = roundup(start_frame, urb->interval);
3873 urb->start_frame = start_frame;
3874 }
3875
3876 skip_start_over:
3877 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3878
3879 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3880 }
3881
3882 /**** Command Ring Operations ****/
3883
3884 /* Generic function for queueing a command TRB on the command ring.
3885 * Check to make sure there's room on the command ring for one command TRB.
3886 * Also check that there's room reserved for commands that must not fail.
3887 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3888 * then only check for the number of reserved spots.
3889 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3890 * because the command event handler may want to resubmit a failed command.
3891 */
3892 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3893 u32 field1, u32 field2,
3894 u32 field3, u32 field4, bool command_must_succeed)
3895 {
3896 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3897 int ret;
3898
3899 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3900 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3901 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3902 return -ESHUTDOWN;
3903 }
3904
3905 if (!command_must_succeed)
3906 reserved_trbs++;
3907
3908 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3909 reserved_trbs, GFP_ATOMIC);
3910 if (ret < 0) {
3911 xhci_err(xhci, "ERR: No room for command on command ring\n");
3912 if (command_must_succeed)
3913 xhci_err(xhci, "ERR: Reserved TRB counting for "
3914 "unfailable commands failed.\n");
3915 return ret;
3916 }
3917
3918 cmd->command_trb = xhci->cmd_ring->enqueue;
3919 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3920
3921 /* if there are no other commands queued we start the timeout timer */
3922 if (xhci->cmd_list.next == &cmd->cmd_list &&
3923 !timer_pending(&xhci->cmd_timer)) {
3924 xhci->current_cmd = cmd;
3925 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3926 }
3927
3928 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3929 field4 | xhci->cmd_ring->cycle_state);
3930 return 0;
3931 }
3932
3933 /* Queue a slot enable or disable request on the command ring */
3934 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3935 u32 trb_type, u32 slot_id)
3936 {
3937 return queue_command(xhci, cmd, 0, 0, 0,
3938 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3939 }
3940
3941 /* Queue an address device command TRB */
3942 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3943 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3944 {
3945 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3946 upper_32_bits(in_ctx_ptr), 0,
3947 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3948 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3949 }
3950
3951 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3952 u32 field1, u32 field2, u32 field3, u32 field4)
3953 {
3954 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3955 }
3956
3957 /* Queue a reset device command TRB */
3958 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3959 u32 slot_id)
3960 {
3961 return queue_command(xhci, cmd, 0, 0, 0,
3962 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3963 false);
3964 }
3965
3966 /* Queue a configure endpoint command TRB */
3967 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3968 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3969 u32 slot_id, bool command_must_succeed)
3970 {
3971 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3972 upper_32_bits(in_ctx_ptr), 0,
3973 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3974 command_must_succeed);
3975 }
3976
3977 /* Queue an evaluate context command TRB */
3978 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3979 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3980 {
3981 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3982 upper_32_bits(in_ctx_ptr), 0,
3983 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3984 command_must_succeed);
3985 }
3986
3987 /*
3988 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3989 * activity on an endpoint that is about to be suspended.
3990 */
3991 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 int slot_id, unsigned int ep_index, int suspend)
3993 {
3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3996 u32 type = TRB_TYPE(TRB_STOP_RING);
3997 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3998
3999 return queue_command(xhci, cmd, 0, 0, 0,
4000 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4001 }
4002
4003 /* Set Transfer Ring Dequeue Pointer command */
4004 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4005 unsigned int slot_id, unsigned int ep_index,
4006 unsigned int stream_id,
4007 struct xhci_dequeue_state *deq_state)
4008 {
4009 dma_addr_t addr;
4010 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4011 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4012 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4013 u32 trb_sct = 0;
4014 u32 type = TRB_TYPE(TRB_SET_DEQ);
4015 struct xhci_virt_ep *ep;
4016 struct xhci_command *cmd;
4017 int ret;
4018
4019 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4020 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4021 deq_state->new_deq_seg,
4022 (unsigned long long)deq_state->new_deq_seg->dma,
4023 deq_state->new_deq_ptr,
4024 (unsigned long long)xhci_trb_virt_to_dma(
4025 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4026 deq_state->new_cycle_state);
4027
4028 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4029 deq_state->new_deq_ptr);
4030 if (addr == 0) {
4031 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4032 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4033 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4034 return;
4035 }
4036 ep = &xhci->devs[slot_id]->eps[ep_index];
4037 if ((ep->ep_state & SET_DEQ_PENDING)) {
4038 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4039 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4040 return;
4041 }
4042
4043 /* This function gets called from contexts where it cannot sleep */
4044 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4045 if (!cmd) {
4046 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
4047 return;
4048 }
4049
4050 ep->queued_deq_seg = deq_state->new_deq_seg;
4051 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4052 if (stream_id)
4053 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4054 ret = queue_command(xhci, cmd,
4055 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4056 upper_32_bits(addr), trb_stream_id,
4057 trb_slot_id | trb_ep_index | type, false);
4058 if (ret < 0) {
4059 xhci_free_command(xhci, cmd);
4060 return;
4061 }
4062
4063 /* Stop the TD queueing code from ringing the doorbell until
4064 * this command completes. The HC won't set the dequeue pointer
4065 * if the ring is running, and ringing the doorbell starts the
4066 * ring running.
4067 */
4068 ep->ep_state |= SET_DEQ_PENDING;
4069 }
4070
4071 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4072 int slot_id, unsigned int ep_index)
4073 {
4074 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4075 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4076 u32 type = TRB_TYPE(TRB_RESET_EP);
4077
4078 return queue_command(xhci, cmd, 0, 0, 0,
4079 trb_slot_id | trb_ep_index | type, false);
4080 }
This page took 0.182922 seconds and 5 git commands to generate.