macvlan: implement ndo_get_iflink
[deliverable/linux.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
50 int, int, unsigned long);
51
52 #ifdef CONFIG_USELIB
53 static int load_elf_library(struct file *);
54 #else
55 #define load_elf_library NULL
56 #endif
57
58 /*
59 * If we don't support core dumping, then supply a NULL so we
60 * don't even try.
61 */
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params *cprm);
64 #else
65 #define elf_core_dump NULL
66 #endif
67
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
70 #else
71 #define ELF_MIN_ALIGN PAGE_SIZE
72 #endif
73
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
76 #endif
77
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
81
82 static struct linux_binfmt elf_format = {
83 .module = THIS_MODULE,
84 .load_binary = load_elf_binary,
85 .load_shlib = load_elf_library,
86 .core_dump = elf_core_dump,
87 .min_coredump = ELF_EXEC_PAGESIZE,
88 };
89
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
91
92 static int set_brk(unsigned long start, unsigned long end)
93 {
94 start = ELF_PAGEALIGN(start);
95 end = ELF_PAGEALIGN(end);
96 if (end > start) {
97 unsigned long addr;
98 addr = vm_brk(start, end - start);
99 if (BAD_ADDR(addr))
100 return addr;
101 }
102 current->mm->start_brk = current->mm->brk = end;
103 return 0;
104 }
105
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
109 be in memory
110 */
111 static int padzero(unsigned long elf_bss)
112 {
113 unsigned long nbyte;
114
115 nbyte = ELF_PAGEOFFSET(elf_bss);
116 if (nbyte) {
117 nbyte = ELF_MIN_ALIGN - nbyte;
118 if (clear_user((void __user *) elf_bss, nbyte))
119 return -EFAULT;
120 }
121 return 0;
122 }
123
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
131 old_sp; })
132 #else
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
137 #endif
138
139 #ifndef ELF_BASE_PLATFORM
140 /*
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
144 */
145 #define ELF_BASE_PLATFORM NULL
146 #endif
147
148 static int
149 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
150 unsigned long load_addr, unsigned long interp_load_addr)
151 {
152 unsigned long p = bprm->p;
153 int argc = bprm->argc;
154 int envc = bprm->envc;
155 elf_addr_t __user *argv;
156 elf_addr_t __user *envp;
157 elf_addr_t __user *sp;
158 elf_addr_t __user *u_platform;
159 elf_addr_t __user *u_base_platform;
160 elf_addr_t __user *u_rand_bytes;
161 const char *k_platform = ELF_PLATFORM;
162 const char *k_base_platform = ELF_BASE_PLATFORM;
163 unsigned char k_rand_bytes[16];
164 int items;
165 elf_addr_t *elf_info;
166 int ei_index = 0;
167 const struct cred *cred = current_cred();
168 struct vm_area_struct *vma;
169
170 /*
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
174 */
175
176 p = arch_align_stack(p);
177
178 /*
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
182 * merely difficult.
183 */
184 u_platform = NULL;
185 if (k_platform) {
186 size_t len = strlen(k_platform) + 1;
187
188 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
189 if (__copy_to_user(u_platform, k_platform, len))
190 return -EFAULT;
191 }
192
193 /*
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
196 */
197 u_base_platform = NULL;
198 if (k_base_platform) {
199 size_t len = strlen(k_base_platform) + 1;
200
201 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 if (__copy_to_user(u_base_platform, k_base_platform, len))
203 return -EFAULT;
204 }
205
206 /*
207 * Generate 16 random bytes for userspace PRNG seeding.
208 */
209 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
210 u_rand_bytes = (elf_addr_t __user *)
211 STACK_ALLOC(p, sizeof(k_rand_bytes));
212 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
213 return -EFAULT;
214
215 /* Create the ELF interpreter info */
216 elf_info = (elf_addr_t *)current->mm->saved_auxv;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
219 do { \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
222 } while (0)
223
224 #ifdef ARCH_DLINFO
225 /*
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
227 * AUXV.
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
230 */
231 ARCH_DLINFO;
232 #endif
233 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
234 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
235 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
236 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
237 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
238 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
239 NEW_AUX_ENT(AT_BASE, interp_load_addr);
240 NEW_AUX_ENT(AT_FLAGS, 0);
241 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
242 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
243 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
244 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
245 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
246 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
247 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
248 #ifdef ELF_HWCAP2
249 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
250 #endif
251 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
252 if (k_platform) {
253 NEW_AUX_ENT(AT_PLATFORM,
254 (elf_addr_t)(unsigned long)u_platform);
255 }
256 if (k_base_platform) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM,
258 (elf_addr_t)(unsigned long)u_base_platform);
259 }
260 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
261 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
262 }
263 #undef NEW_AUX_ENT
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info[ei_index], 0,
266 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
267
268 /* And advance past the AT_NULL entry. */
269 ei_index += 2;
270
271 sp = STACK_ADD(p, ei_index);
272
273 items = (argc + 1) + (envc + 1) + 1;
274 bprm->p = STACK_ROUND(sp, items);
275
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
279 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
280 #else
281 sp = (elf_addr_t __user *)bprm->p;
282 #endif
283
284
285 /*
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
288 */
289 vma = find_extend_vma(current->mm, bprm->p);
290 if (!vma)
291 return -EFAULT;
292
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc, sp++))
295 return -EFAULT;
296 argv = sp;
297 envp = argv + argc + 1;
298
299 /* Populate argv and envp */
300 p = current->mm->arg_end = current->mm->arg_start;
301 while (argc-- > 0) {
302 size_t len;
303 if (__put_user((elf_addr_t)p, argv++))
304 return -EFAULT;
305 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
306 if (!len || len > MAX_ARG_STRLEN)
307 return -EINVAL;
308 p += len;
309 }
310 if (__put_user(0, argv))
311 return -EFAULT;
312 current->mm->arg_end = current->mm->env_start = p;
313 while (envc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, envp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
321 }
322 if (__put_user(0, envp))
323 return -EFAULT;
324 current->mm->env_end = p;
325
326 /* Put the elf_info on the stack in the right place. */
327 sp = (elf_addr_t __user *)envp + 1;
328 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
329 return -EFAULT;
330 return 0;
331 }
332
333 #ifndef elf_map
334
335 static unsigned long elf_map(struct file *filep, unsigned long addr,
336 struct elf_phdr *eppnt, int prot, int type,
337 unsigned long total_size)
338 {
339 unsigned long map_addr;
340 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
341 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
342 addr = ELF_PAGESTART(addr);
343 size = ELF_PAGEALIGN(size);
344
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
347 if (!size)
348 return addr;
349
350 /*
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
357 */
358 if (total_size) {
359 total_size = ELF_PAGEALIGN(total_size);
360 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
361 if (!BAD_ADDR(map_addr))
362 vm_munmap(map_addr+size, total_size-size);
363 } else
364 map_addr = vm_mmap(filep, addr, size, prot, type, off);
365
366 return(map_addr);
367 }
368
369 #endif /* !elf_map */
370
371 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
372 {
373 int i, first_idx = -1, last_idx = -1;
374
375 for (i = 0; i < nr; i++) {
376 if (cmds[i].p_type == PT_LOAD) {
377 last_idx = i;
378 if (first_idx == -1)
379 first_idx = i;
380 }
381 }
382 if (first_idx == -1)
383 return 0;
384
385 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
386 ELF_PAGESTART(cmds[first_idx].p_vaddr);
387 }
388
389 /**
390 * load_elf_phdrs() - load ELF program headers
391 * @elf_ex: ELF header of the binary whose program headers should be loaded
392 * @elf_file: the opened ELF binary file
393 *
394 * Loads ELF program headers from the binary file elf_file, which has the ELF
395 * header pointed to by elf_ex, into a newly allocated array. The caller is
396 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
397 */
398 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
399 struct file *elf_file)
400 {
401 struct elf_phdr *elf_phdata = NULL;
402 int retval, size, err = -1;
403
404 /*
405 * If the size of this structure has changed, then punt, since
406 * we will be doing the wrong thing.
407 */
408 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
409 goto out;
410
411 /* Sanity check the number of program headers... */
412 if (elf_ex->e_phnum < 1 ||
413 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
414 goto out;
415
416 /* ...and their total size. */
417 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
418 if (size > ELF_MIN_ALIGN)
419 goto out;
420
421 elf_phdata = kmalloc(size, GFP_KERNEL);
422 if (!elf_phdata)
423 goto out;
424
425 /* Read in the program headers */
426 retval = kernel_read(elf_file, elf_ex->e_phoff,
427 (char *)elf_phdata, size);
428 if (retval != size) {
429 err = (retval < 0) ? retval : -EIO;
430 goto out;
431 }
432
433 /* Success! */
434 err = 0;
435 out:
436 if (err) {
437 kfree(elf_phdata);
438 elf_phdata = NULL;
439 }
440 return elf_phdata;
441 }
442
443 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
444
445 /**
446 * struct arch_elf_state - arch-specific ELF loading state
447 *
448 * This structure is used to preserve architecture specific data during
449 * the loading of an ELF file, throughout the checking of architecture
450 * specific ELF headers & through to the point where the ELF load is
451 * known to be proceeding (ie. SET_PERSONALITY).
452 *
453 * This implementation is a dummy for architectures which require no
454 * specific state.
455 */
456 struct arch_elf_state {
457 };
458
459 #define INIT_ARCH_ELF_STATE {}
460
461 /**
462 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
463 * @ehdr: The main ELF header
464 * @phdr: The program header to check
465 * @elf: The open ELF file
466 * @is_interp: True if the phdr is from the interpreter of the ELF being
467 * loaded, else false.
468 * @state: Architecture-specific state preserved throughout the process
469 * of loading the ELF.
470 *
471 * Inspects the program header phdr to validate its correctness and/or
472 * suitability for the system. Called once per ELF program header in the
473 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
474 * interpreter.
475 *
476 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
477 * with that return code.
478 */
479 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
480 struct elf_phdr *phdr,
481 struct file *elf, bool is_interp,
482 struct arch_elf_state *state)
483 {
484 /* Dummy implementation, always proceed */
485 return 0;
486 }
487
488 /**
489 * arch_check_elf() - check a PT_LOPROC..PT_HIPROC ELF program header
490 * @ehdr: The main ELF header
491 * @has_interp: True if the ELF has an interpreter, else false.
492 * @state: Architecture-specific state preserved throughout the process
493 * of loading the ELF.
494 *
495 * Provides a final opportunity for architecture code to reject the loading
496 * of the ELF & cause an exec syscall to return an error. This is called after
497 * all program headers to be checked by arch_elf_pt_proc have been.
498 *
499 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
500 * with that return code.
501 */
502 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
503 struct arch_elf_state *state)
504 {
505 /* Dummy implementation, always proceed */
506 return 0;
507 }
508
509 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
510
511 /* This is much more generalized than the library routine read function,
512 so we keep this separate. Technically the library read function
513 is only provided so that we can read a.out libraries that have
514 an ELF header */
515
516 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
517 struct file *interpreter, unsigned long *interp_map_addr,
518 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
519 {
520 struct elf_phdr *eppnt;
521 unsigned long load_addr = 0;
522 int load_addr_set = 0;
523 unsigned long last_bss = 0, elf_bss = 0;
524 unsigned long error = ~0UL;
525 unsigned long total_size;
526 int i;
527
528 /* First of all, some simple consistency checks */
529 if (interp_elf_ex->e_type != ET_EXEC &&
530 interp_elf_ex->e_type != ET_DYN)
531 goto out;
532 if (!elf_check_arch(interp_elf_ex))
533 goto out;
534 if (!interpreter->f_op->mmap)
535 goto out;
536
537 total_size = total_mapping_size(interp_elf_phdata,
538 interp_elf_ex->e_phnum);
539 if (!total_size) {
540 error = -EINVAL;
541 goto out;
542 }
543
544 eppnt = interp_elf_phdata;
545 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
546 if (eppnt->p_type == PT_LOAD) {
547 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
548 int elf_prot = 0;
549 unsigned long vaddr = 0;
550 unsigned long k, map_addr;
551
552 if (eppnt->p_flags & PF_R)
553 elf_prot = PROT_READ;
554 if (eppnt->p_flags & PF_W)
555 elf_prot |= PROT_WRITE;
556 if (eppnt->p_flags & PF_X)
557 elf_prot |= PROT_EXEC;
558 vaddr = eppnt->p_vaddr;
559 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
560 elf_type |= MAP_FIXED;
561 else if (no_base && interp_elf_ex->e_type == ET_DYN)
562 load_addr = -vaddr;
563
564 map_addr = elf_map(interpreter, load_addr + vaddr,
565 eppnt, elf_prot, elf_type, total_size);
566 total_size = 0;
567 if (!*interp_map_addr)
568 *interp_map_addr = map_addr;
569 error = map_addr;
570 if (BAD_ADDR(map_addr))
571 goto out;
572
573 if (!load_addr_set &&
574 interp_elf_ex->e_type == ET_DYN) {
575 load_addr = map_addr - ELF_PAGESTART(vaddr);
576 load_addr_set = 1;
577 }
578
579 /*
580 * Check to see if the section's size will overflow the
581 * allowed task size. Note that p_filesz must always be
582 * <= p_memsize so it's only necessary to check p_memsz.
583 */
584 k = load_addr + eppnt->p_vaddr;
585 if (BAD_ADDR(k) ||
586 eppnt->p_filesz > eppnt->p_memsz ||
587 eppnt->p_memsz > TASK_SIZE ||
588 TASK_SIZE - eppnt->p_memsz < k) {
589 error = -ENOMEM;
590 goto out;
591 }
592
593 /*
594 * Find the end of the file mapping for this phdr, and
595 * keep track of the largest address we see for this.
596 */
597 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
598 if (k > elf_bss)
599 elf_bss = k;
600
601 /*
602 * Do the same thing for the memory mapping - between
603 * elf_bss and last_bss is the bss section.
604 */
605 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
606 if (k > last_bss)
607 last_bss = k;
608 }
609 }
610
611 if (last_bss > elf_bss) {
612 /*
613 * Now fill out the bss section. First pad the last page up
614 * to the page boundary, and then perform a mmap to make sure
615 * that there are zero-mapped pages up to and including the
616 * last bss page.
617 */
618 if (padzero(elf_bss)) {
619 error = -EFAULT;
620 goto out;
621 }
622
623 /* What we have mapped so far */
624 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
625
626 /* Map the last of the bss segment */
627 error = vm_brk(elf_bss, last_bss - elf_bss);
628 if (BAD_ADDR(error))
629 goto out;
630 }
631
632 error = load_addr;
633 out:
634 return error;
635 }
636
637 /*
638 * These are the functions used to load ELF style executables and shared
639 * libraries. There is no binary dependent code anywhere else.
640 */
641
642 #ifndef STACK_RND_MASK
643 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
644 #endif
645
646 static unsigned long randomize_stack_top(unsigned long stack_top)
647 {
648 unsigned long random_variable = 0;
649
650 if ((current->flags & PF_RANDOMIZE) &&
651 !(current->personality & ADDR_NO_RANDOMIZE)) {
652 random_variable = (unsigned long) get_random_int();
653 random_variable &= STACK_RND_MASK;
654 random_variable <<= PAGE_SHIFT;
655 }
656 #ifdef CONFIG_STACK_GROWSUP
657 return PAGE_ALIGN(stack_top) + random_variable;
658 #else
659 return PAGE_ALIGN(stack_top) - random_variable;
660 #endif
661 }
662
663 static int load_elf_binary(struct linux_binprm *bprm)
664 {
665 struct file *interpreter = NULL; /* to shut gcc up */
666 unsigned long load_addr = 0, load_bias = 0;
667 int load_addr_set = 0;
668 char * elf_interpreter = NULL;
669 unsigned long error;
670 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
671 unsigned long elf_bss, elf_brk;
672 int retval, i;
673 unsigned long elf_entry;
674 unsigned long interp_load_addr = 0;
675 unsigned long start_code, end_code, start_data, end_data;
676 unsigned long reloc_func_desc __maybe_unused = 0;
677 int executable_stack = EXSTACK_DEFAULT;
678 struct pt_regs *regs = current_pt_regs();
679 struct {
680 struct elfhdr elf_ex;
681 struct elfhdr interp_elf_ex;
682 } *loc;
683 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
684
685 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
686 if (!loc) {
687 retval = -ENOMEM;
688 goto out_ret;
689 }
690
691 /* Get the exec-header */
692 loc->elf_ex = *((struct elfhdr *)bprm->buf);
693
694 retval = -ENOEXEC;
695 /* First of all, some simple consistency checks */
696 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
697 goto out;
698
699 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
700 goto out;
701 if (!elf_check_arch(&loc->elf_ex))
702 goto out;
703 if (!bprm->file->f_op->mmap)
704 goto out;
705
706 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
707 if (!elf_phdata)
708 goto out;
709
710 elf_ppnt = elf_phdata;
711 elf_bss = 0;
712 elf_brk = 0;
713
714 start_code = ~0UL;
715 end_code = 0;
716 start_data = 0;
717 end_data = 0;
718
719 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
720 if (elf_ppnt->p_type == PT_INTERP) {
721 /* This is the program interpreter used for
722 * shared libraries - for now assume that this
723 * is an a.out format binary
724 */
725 retval = -ENOEXEC;
726 if (elf_ppnt->p_filesz > PATH_MAX ||
727 elf_ppnt->p_filesz < 2)
728 goto out_free_ph;
729
730 retval = -ENOMEM;
731 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
732 GFP_KERNEL);
733 if (!elf_interpreter)
734 goto out_free_ph;
735
736 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
737 elf_interpreter,
738 elf_ppnt->p_filesz);
739 if (retval != elf_ppnt->p_filesz) {
740 if (retval >= 0)
741 retval = -EIO;
742 goto out_free_interp;
743 }
744 /* make sure path is NULL terminated */
745 retval = -ENOEXEC;
746 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
747 goto out_free_interp;
748
749 interpreter = open_exec(elf_interpreter);
750 retval = PTR_ERR(interpreter);
751 if (IS_ERR(interpreter))
752 goto out_free_interp;
753
754 /*
755 * If the binary is not readable then enforce
756 * mm->dumpable = 0 regardless of the interpreter's
757 * permissions.
758 */
759 would_dump(bprm, interpreter);
760
761 retval = kernel_read(interpreter, 0, bprm->buf,
762 BINPRM_BUF_SIZE);
763 if (retval != BINPRM_BUF_SIZE) {
764 if (retval >= 0)
765 retval = -EIO;
766 goto out_free_dentry;
767 }
768
769 /* Get the exec headers */
770 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
771 break;
772 }
773 elf_ppnt++;
774 }
775
776 elf_ppnt = elf_phdata;
777 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
778 switch (elf_ppnt->p_type) {
779 case PT_GNU_STACK:
780 if (elf_ppnt->p_flags & PF_X)
781 executable_stack = EXSTACK_ENABLE_X;
782 else
783 executable_stack = EXSTACK_DISABLE_X;
784 break;
785
786 case PT_LOPROC ... PT_HIPROC:
787 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
788 bprm->file, false,
789 &arch_state);
790 if (retval)
791 goto out_free_dentry;
792 break;
793 }
794
795 /* Some simple consistency checks for the interpreter */
796 if (elf_interpreter) {
797 retval = -ELIBBAD;
798 /* Not an ELF interpreter */
799 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
800 goto out_free_dentry;
801 /* Verify the interpreter has a valid arch */
802 if (!elf_check_arch(&loc->interp_elf_ex))
803 goto out_free_dentry;
804
805 /* Load the interpreter program headers */
806 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
807 interpreter);
808 if (!interp_elf_phdata)
809 goto out_free_dentry;
810
811 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
812 elf_ppnt = interp_elf_phdata;
813 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
814 switch (elf_ppnt->p_type) {
815 case PT_LOPROC ... PT_HIPROC:
816 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
817 elf_ppnt, interpreter,
818 true, &arch_state);
819 if (retval)
820 goto out_free_dentry;
821 break;
822 }
823 }
824
825 /*
826 * Allow arch code to reject the ELF at this point, whilst it's
827 * still possible to return an error to the code that invoked
828 * the exec syscall.
829 */
830 retval = arch_check_elf(&loc->elf_ex, !!interpreter, &arch_state);
831 if (retval)
832 goto out_free_dentry;
833
834 /* Flush all traces of the currently running executable */
835 retval = flush_old_exec(bprm);
836 if (retval)
837 goto out_free_dentry;
838
839 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
840 may depend on the personality. */
841 SET_PERSONALITY2(loc->elf_ex, &arch_state);
842 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
843 current->personality |= READ_IMPLIES_EXEC;
844
845 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
846 current->flags |= PF_RANDOMIZE;
847
848 setup_new_exec(bprm);
849
850 /* Do this so that we can load the interpreter, if need be. We will
851 change some of these later */
852 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
853 executable_stack);
854 if (retval < 0)
855 goto out_free_dentry;
856
857 current->mm->start_stack = bprm->p;
858
859 /* Now we do a little grungy work by mmapping the ELF image into
860 the correct location in memory. */
861 for(i = 0, elf_ppnt = elf_phdata;
862 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
863 int elf_prot = 0, elf_flags;
864 unsigned long k, vaddr;
865
866 if (elf_ppnt->p_type != PT_LOAD)
867 continue;
868
869 if (unlikely (elf_brk > elf_bss)) {
870 unsigned long nbyte;
871
872 /* There was a PT_LOAD segment with p_memsz > p_filesz
873 before this one. Map anonymous pages, if needed,
874 and clear the area. */
875 retval = set_brk(elf_bss + load_bias,
876 elf_brk + load_bias);
877 if (retval)
878 goto out_free_dentry;
879 nbyte = ELF_PAGEOFFSET(elf_bss);
880 if (nbyte) {
881 nbyte = ELF_MIN_ALIGN - nbyte;
882 if (nbyte > elf_brk - elf_bss)
883 nbyte = elf_brk - elf_bss;
884 if (clear_user((void __user *)elf_bss +
885 load_bias, nbyte)) {
886 /*
887 * This bss-zeroing can fail if the ELF
888 * file specifies odd protections. So
889 * we don't check the return value
890 */
891 }
892 }
893 }
894
895 if (elf_ppnt->p_flags & PF_R)
896 elf_prot |= PROT_READ;
897 if (elf_ppnt->p_flags & PF_W)
898 elf_prot |= PROT_WRITE;
899 if (elf_ppnt->p_flags & PF_X)
900 elf_prot |= PROT_EXEC;
901
902 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
903
904 vaddr = elf_ppnt->p_vaddr;
905 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
906 elf_flags |= MAP_FIXED;
907 } else if (loc->elf_ex.e_type == ET_DYN) {
908 /* Try and get dynamic programs out of the way of the
909 * default mmap base, as well as whatever program they
910 * might try to exec. This is because the brk will
911 * follow the loader, and is not movable. */
912 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
913 /* Memory randomization might have been switched off
914 * in runtime via sysctl or explicit setting of
915 * personality flags.
916 * If that is the case, retain the original non-zero
917 * load_bias value in order to establish proper
918 * non-randomized mappings.
919 */
920 if (current->flags & PF_RANDOMIZE)
921 load_bias = 0;
922 else
923 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
924 #else
925 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
926 #endif
927 }
928
929 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
930 elf_prot, elf_flags, 0);
931 if (BAD_ADDR(error)) {
932 retval = IS_ERR((void *)error) ?
933 PTR_ERR((void*)error) : -EINVAL;
934 goto out_free_dentry;
935 }
936
937 if (!load_addr_set) {
938 load_addr_set = 1;
939 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
940 if (loc->elf_ex.e_type == ET_DYN) {
941 load_bias += error -
942 ELF_PAGESTART(load_bias + vaddr);
943 load_addr += load_bias;
944 reloc_func_desc = load_bias;
945 }
946 }
947 k = elf_ppnt->p_vaddr;
948 if (k < start_code)
949 start_code = k;
950 if (start_data < k)
951 start_data = k;
952
953 /*
954 * Check to see if the section's size will overflow the
955 * allowed task size. Note that p_filesz must always be
956 * <= p_memsz so it is only necessary to check p_memsz.
957 */
958 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
959 elf_ppnt->p_memsz > TASK_SIZE ||
960 TASK_SIZE - elf_ppnt->p_memsz < k) {
961 /* set_brk can never work. Avoid overflows. */
962 retval = -EINVAL;
963 goto out_free_dentry;
964 }
965
966 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
967
968 if (k > elf_bss)
969 elf_bss = k;
970 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
971 end_code = k;
972 if (end_data < k)
973 end_data = k;
974 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
975 if (k > elf_brk)
976 elf_brk = k;
977 }
978
979 loc->elf_ex.e_entry += load_bias;
980 elf_bss += load_bias;
981 elf_brk += load_bias;
982 start_code += load_bias;
983 end_code += load_bias;
984 start_data += load_bias;
985 end_data += load_bias;
986
987 /* Calling set_brk effectively mmaps the pages that we need
988 * for the bss and break sections. We must do this before
989 * mapping in the interpreter, to make sure it doesn't wind
990 * up getting placed where the bss needs to go.
991 */
992 retval = set_brk(elf_bss, elf_brk);
993 if (retval)
994 goto out_free_dentry;
995 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
996 retval = -EFAULT; /* Nobody gets to see this, but.. */
997 goto out_free_dentry;
998 }
999
1000 if (elf_interpreter) {
1001 unsigned long interp_map_addr = 0;
1002
1003 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1004 interpreter,
1005 &interp_map_addr,
1006 load_bias, interp_elf_phdata);
1007 if (!IS_ERR((void *)elf_entry)) {
1008 /*
1009 * load_elf_interp() returns relocation
1010 * adjustment
1011 */
1012 interp_load_addr = elf_entry;
1013 elf_entry += loc->interp_elf_ex.e_entry;
1014 }
1015 if (BAD_ADDR(elf_entry)) {
1016 retval = IS_ERR((void *)elf_entry) ?
1017 (int)elf_entry : -EINVAL;
1018 goto out_free_dentry;
1019 }
1020 reloc_func_desc = interp_load_addr;
1021
1022 allow_write_access(interpreter);
1023 fput(interpreter);
1024 kfree(elf_interpreter);
1025 } else {
1026 elf_entry = loc->elf_ex.e_entry;
1027 if (BAD_ADDR(elf_entry)) {
1028 retval = -EINVAL;
1029 goto out_free_dentry;
1030 }
1031 }
1032
1033 kfree(interp_elf_phdata);
1034 kfree(elf_phdata);
1035
1036 set_binfmt(&elf_format);
1037
1038 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1039 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1040 if (retval < 0)
1041 goto out;
1042 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1043
1044 install_exec_creds(bprm);
1045 retval = create_elf_tables(bprm, &loc->elf_ex,
1046 load_addr, interp_load_addr);
1047 if (retval < 0)
1048 goto out;
1049 /* N.B. passed_fileno might not be initialized? */
1050 current->mm->end_code = end_code;
1051 current->mm->start_code = start_code;
1052 current->mm->start_data = start_data;
1053 current->mm->end_data = end_data;
1054 current->mm->start_stack = bprm->p;
1055
1056 #ifdef arch_randomize_brk
1057 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1058 current->mm->brk = current->mm->start_brk =
1059 arch_randomize_brk(current->mm);
1060 #ifdef CONFIG_COMPAT_BRK
1061 current->brk_randomized = 1;
1062 #endif
1063 }
1064 #endif
1065
1066 if (current->personality & MMAP_PAGE_ZERO) {
1067 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1068 and some applications "depend" upon this behavior.
1069 Since we do not have the power to recompile these, we
1070 emulate the SVr4 behavior. Sigh. */
1071 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1072 MAP_FIXED | MAP_PRIVATE, 0);
1073 }
1074
1075 #ifdef ELF_PLAT_INIT
1076 /*
1077 * The ABI may specify that certain registers be set up in special
1078 * ways (on i386 %edx is the address of a DT_FINI function, for
1079 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1080 * that the e_entry field is the address of the function descriptor
1081 * for the startup routine, rather than the address of the startup
1082 * routine itself. This macro performs whatever initialization to
1083 * the regs structure is required as well as any relocations to the
1084 * function descriptor entries when executing dynamically links apps.
1085 */
1086 ELF_PLAT_INIT(regs, reloc_func_desc);
1087 #endif
1088
1089 start_thread(regs, elf_entry, bprm->p);
1090 retval = 0;
1091 out:
1092 kfree(loc);
1093 out_ret:
1094 return retval;
1095
1096 /* error cleanup */
1097 out_free_dentry:
1098 kfree(interp_elf_phdata);
1099 allow_write_access(interpreter);
1100 if (interpreter)
1101 fput(interpreter);
1102 out_free_interp:
1103 kfree(elf_interpreter);
1104 out_free_ph:
1105 kfree(elf_phdata);
1106 goto out;
1107 }
1108
1109 #ifdef CONFIG_USELIB
1110 /* This is really simpleminded and specialized - we are loading an
1111 a.out library that is given an ELF header. */
1112 static int load_elf_library(struct file *file)
1113 {
1114 struct elf_phdr *elf_phdata;
1115 struct elf_phdr *eppnt;
1116 unsigned long elf_bss, bss, len;
1117 int retval, error, i, j;
1118 struct elfhdr elf_ex;
1119
1120 error = -ENOEXEC;
1121 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1122 if (retval != sizeof(elf_ex))
1123 goto out;
1124
1125 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1126 goto out;
1127
1128 /* First of all, some simple consistency checks */
1129 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1130 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1131 goto out;
1132
1133 /* Now read in all of the header information */
1134
1135 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1136 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1137
1138 error = -ENOMEM;
1139 elf_phdata = kmalloc(j, GFP_KERNEL);
1140 if (!elf_phdata)
1141 goto out;
1142
1143 eppnt = elf_phdata;
1144 error = -ENOEXEC;
1145 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1146 if (retval != j)
1147 goto out_free_ph;
1148
1149 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1150 if ((eppnt + i)->p_type == PT_LOAD)
1151 j++;
1152 if (j != 1)
1153 goto out_free_ph;
1154
1155 while (eppnt->p_type != PT_LOAD)
1156 eppnt++;
1157
1158 /* Now use mmap to map the library into memory. */
1159 error = vm_mmap(file,
1160 ELF_PAGESTART(eppnt->p_vaddr),
1161 (eppnt->p_filesz +
1162 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1163 PROT_READ | PROT_WRITE | PROT_EXEC,
1164 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1165 (eppnt->p_offset -
1166 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1167 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1168 goto out_free_ph;
1169
1170 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1171 if (padzero(elf_bss)) {
1172 error = -EFAULT;
1173 goto out_free_ph;
1174 }
1175
1176 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1177 ELF_MIN_ALIGN - 1);
1178 bss = eppnt->p_memsz + eppnt->p_vaddr;
1179 if (bss > len)
1180 vm_brk(len, bss - len);
1181 error = 0;
1182
1183 out_free_ph:
1184 kfree(elf_phdata);
1185 out:
1186 return error;
1187 }
1188 #endif /* #ifdef CONFIG_USELIB */
1189
1190 #ifdef CONFIG_ELF_CORE
1191 /*
1192 * ELF core dumper
1193 *
1194 * Modelled on fs/exec.c:aout_core_dump()
1195 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1196 */
1197
1198 /*
1199 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1200 * that are useful for post-mortem analysis are included in every core dump.
1201 * In that way we ensure that the core dump is fully interpretable later
1202 * without matching up the same kernel and hardware config to see what PC values
1203 * meant. These special mappings include - vDSO, vsyscall, and other
1204 * architecture specific mappings
1205 */
1206 static bool always_dump_vma(struct vm_area_struct *vma)
1207 {
1208 /* Any vsyscall mappings? */
1209 if (vma == get_gate_vma(vma->vm_mm))
1210 return true;
1211
1212 /*
1213 * Assume that all vmas with a .name op should always be dumped.
1214 * If this changes, a new vm_ops field can easily be added.
1215 */
1216 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1217 return true;
1218
1219 /*
1220 * arch_vma_name() returns non-NULL for special architecture mappings,
1221 * such as vDSO sections.
1222 */
1223 if (arch_vma_name(vma))
1224 return true;
1225
1226 return false;
1227 }
1228
1229 /*
1230 * Decide what to dump of a segment, part, all or none.
1231 */
1232 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1233 unsigned long mm_flags)
1234 {
1235 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1236
1237 /* always dump the vdso and vsyscall sections */
1238 if (always_dump_vma(vma))
1239 goto whole;
1240
1241 if (vma->vm_flags & VM_DONTDUMP)
1242 return 0;
1243
1244 /* Hugetlb memory check */
1245 if (vma->vm_flags & VM_HUGETLB) {
1246 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1247 goto whole;
1248 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1249 goto whole;
1250 return 0;
1251 }
1252
1253 /* Do not dump I/O mapped devices or special mappings */
1254 if (vma->vm_flags & VM_IO)
1255 return 0;
1256
1257 /* By default, dump shared memory if mapped from an anonymous file. */
1258 if (vma->vm_flags & VM_SHARED) {
1259 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1260 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1261 goto whole;
1262 return 0;
1263 }
1264
1265 /* Dump segments that have been written to. */
1266 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1267 goto whole;
1268 if (vma->vm_file == NULL)
1269 return 0;
1270
1271 if (FILTER(MAPPED_PRIVATE))
1272 goto whole;
1273
1274 /*
1275 * If this looks like the beginning of a DSO or executable mapping,
1276 * check for an ELF header. If we find one, dump the first page to
1277 * aid in determining what was mapped here.
1278 */
1279 if (FILTER(ELF_HEADERS) &&
1280 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1281 u32 __user *header = (u32 __user *) vma->vm_start;
1282 u32 word;
1283 mm_segment_t fs = get_fs();
1284 /*
1285 * Doing it this way gets the constant folded by GCC.
1286 */
1287 union {
1288 u32 cmp;
1289 char elfmag[SELFMAG];
1290 } magic;
1291 BUILD_BUG_ON(SELFMAG != sizeof word);
1292 magic.elfmag[EI_MAG0] = ELFMAG0;
1293 magic.elfmag[EI_MAG1] = ELFMAG1;
1294 magic.elfmag[EI_MAG2] = ELFMAG2;
1295 magic.elfmag[EI_MAG3] = ELFMAG3;
1296 /*
1297 * Switch to the user "segment" for get_user(),
1298 * then put back what elf_core_dump() had in place.
1299 */
1300 set_fs(USER_DS);
1301 if (unlikely(get_user(word, header)))
1302 word = 0;
1303 set_fs(fs);
1304 if (word == magic.cmp)
1305 return PAGE_SIZE;
1306 }
1307
1308 #undef FILTER
1309
1310 return 0;
1311
1312 whole:
1313 return vma->vm_end - vma->vm_start;
1314 }
1315
1316 /* An ELF note in memory */
1317 struct memelfnote
1318 {
1319 const char *name;
1320 int type;
1321 unsigned int datasz;
1322 void *data;
1323 };
1324
1325 static int notesize(struct memelfnote *en)
1326 {
1327 int sz;
1328
1329 sz = sizeof(struct elf_note);
1330 sz += roundup(strlen(en->name) + 1, 4);
1331 sz += roundup(en->datasz, 4);
1332
1333 return sz;
1334 }
1335
1336 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1337 {
1338 struct elf_note en;
1339 en.n_namesz = strlen(men->name) + 1;
1340 en.n_descsz = men->datasz;
1341 en.n_type = men->type;
1342
1343 return dump_emit(cprm, &en, sizeof(en)) &&
1344 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1345 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1346 }
1347
1348 static void fill_elf_header(struct elfhdr *elf, int segs,
1349 u16 machine, u32 flags)
1350 {
1351 memset(elf, 0, sizeof(*elf));
1352
1353 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1354 elf->e_ident[EI_CLASS] = ELF_CLASS;
1355 elf->e_ident[EI_DATA] = ELF_DATA;
1356 elf->e_ident[EI_VERSION] = EV_CURRENT;
1357 elf->e_ident[EI_OSABI] = ELF_OSABI;
1358
1359 elf->e_type = ET_CORE;
1360 elf->e_machine = machine;
1361 elf->e_version = EV_CURRENT;
1362 elf->e_phoff = sizeof(struct elfhdr);
1363 elf->e_flags = flags;
1364 elf->e_ehsize = sizeof(struct elfhdr);
1365 elf->e_phentsize = sizeof(struct elf_phdr);
1366 elf->e_phnum = segs;
1367
1368 return;
1369 }
1370
1371 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1372 {
1373 phdr->p_type = PT_NOTE;
1374 phdr->p_offset = offset;
1375 phdr->p_vaddr = 0;
1376 phdr->p_paddr = 0;
1377 phdr->p_filesz = sz;
1378 phdr->p_memsz = 0;
1379 phdr->p_flags = 0;
1380 phdr->p_align = 0;
1381 return;
1382 }
1383
1384 static void fill_note(struct memelfnote *note, const char *name, int type,
1385 unsigned int sz, void *data)
1386 {
1387 note->name = name;
1388 note->type = type;
1389 note->datasz = sz;
1390 note->data = data;
1391 return;
1392 }
1393
1394 /*
1395 * fill up all the fields in prstatus from the given task struct, except
1396 * registers which need to be filled up separately.
1397 */
1398 static void fill_prstatus(struct elf_prstatus *prstatus,
1399 struct task_struct *p, long signr)
1400 {
1401 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1402 prstatus->pr_sigpend = p->pending.signal.sig[0];
1403 prstatus->pr_sighold = p->blocked.sig[0];
1404 rcu_read_lock();
1405 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1406 rcu_read_unlock();
1407 prstatus->pr_pid = task_pid_vnr(p);
1408 prstatus->pr_pgrp = task_pgrp_vnr(p);
1409 prstatus->pr_sid = task_session_vnr(p);
1410 if (thread_group_leader(p)) {
1411 struct task_cputime cputime;
1412
1413 /*
1414 * This is the record for the group leader. It shows the
1415 * group-wide total, not its individual thread total.
1416 */
1417 thread_group_cputime(p, &cputime);
1418 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1419 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1420 } else {
1421 cputime_t utime, stime;
1422
1423 task_cputime(p, &utime, &stime);
1424 cputime_to_timeval(utime, &prstatus->pr_utime);
1425 cputime_to_timeval(stime, &prstatus->pr_stime);
1426 }
1427 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1428 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1429 }
1430
1431 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1432 struct mm_struct *mm)
1433 {
1434 const struct cred *cred;
1435 unsigned int i, len;
1436
1437 /* first copy the parameters from user space */
1438 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1439
1440 len = mm->arg_end - mm->arg_start;
1441 if (len >= ELF_PRARGSZ)
1442 len = ELF_PRARGSZ-1;
1443 if (copy_from_user(&psinfo->pr_psargs,
1444 (const char __user *)mm->arg_start, len))
1445 return -EFAULT;
1446 for(i = 0; i < len; i++)
1447 if (psinfo->pr_psargs[i] == 0)
1448 psinfo->pr_psargs[i] = ' ';
1449 psinfo->pr_psargs[len] = 0;
1450
1451 rcu_read_lock();
1452 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1453 rcu_read_unlock();
1454 psinfo->pr_pid = task_pid_vnr(p);
1455 psinfo->pr_pgrp = task_pgrp_vnr(p);
1456 psinfo->pr_sid = task_session_vnr(p);
1457
1458 i = p->state ? ffz(~p->state) + 1 : 0;
1459 psinfo->pr_state = i;
1460 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1461 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1462 psinfo->pr_nice = task_nice(p);
1463 psinfo->pr_flag = p->flags;
1464 rcu_read_lock();
1465 cred = __task_cred(p);
1466 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1467 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1468 rcu_read_unlock();
1469 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1470
1471 return 0;
1472 }
1473
1474 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1475 {
1476 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1477 int i = 0;
1478 do
1479 i += 2;
1480 while (auxv[i - 2] != AT_NULL);
1481 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1482 }
1483
1484 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1485 const siginfo_t *siginfo)
1486 {
1487 mm_segment_t old_fs = get_fs();
1488 set_fs(KERNEL_DS);
1489 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1490 set_fs(old_fs);
1491 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1492 }
1493
1494 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1495 /*
1496 * Format of NT_FILE note:
1497 *
1498 * long count -- how many files are mapped
1499 * long page_size -- units for file_ofs
1500 * array of [COUNT] elements of
1501 * long start
1502 * long end
1503 * long file_ofs
1504 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1505 */
1506 static int fill_files_note(struct memelfnote *note)
1507 {
1508 struct vm_area_struct *vma;
1509 unsigned count, size, names_ofs, remaining, n;
1510 user_long_t *data;
1511 user_long_t *start_end_ofs;
1512 char *name_base, *name_curpos;
1513
1514 /* *Estimated* file count and total data size needed */
1515 count = current->mm->map_count;
1516 size = count * 64;
1517
1518 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1519 alloc:
1520 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1521 return -EINVAL;
1522 size = round_up(size, PAGE_SIZE);
1523 data = vmalloc(size);
1524 if (!data)
1525 return -ENOMEM;
1526
1527 start_end_ofs = data + 2;
1528 name_base = name_curpos = ((char *)data) + names_ofs;
1529 remaining = size - names_ofs;
1530 count = 0;
1531 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1532 struct file *file;
1533 const char *filename;
1534
1535 file = vma->vm_file;
1536 if (!file)
1537 continue;
1538 filename = d_path(&file->f_path, name_curpos, remaining);
1539 if (IS_ERR(filename)) {
1540 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1541 vfree(data);
1542 size = size * 5 / 4;
1543 goto alloc;
1544 }
1545 continue;
1546 }
1547
1548 /* d_path() fills at the end, move name down */
1549 /* n = strlen(filename) + 1: */
1550 n = (name_curpos + remaining) - filename;
1551 remaining = filename - name_curpos;
1552 memmove(name_curpos, filename, n);
1553 name_curpos += n;
1554
1555 *start_end_ofs++ = vma->vm_start;
1556 *start_end_ofs++ = vma->vm_end;
1557 *start_end_ofs++ = vma->vm_pgoff;
1558 count++;
1559 }
1560
1561 /* Now we know exact count of files, can store it */
1562 data[0] = count;
1563 data[1] = PAGE_SIZE;
1564 /*
1565 * Count usually is less than current->mm->map_count,
1566 * we need to move filenames down.
1567 */
1568 n = current->mm->map_count - count;
1569 if (n != 0) {
1570 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1571 memmove(name_base - shift_bytes, name_base,
1572 name_curpos - name_base);
1573 name_curpos -= shift_bytes;
1574 }
1575
1576 size = name_curpos - (char *)data;
1577 fill_note(note, "CORE", NT_FILE, size, data);
1578 return 0;
1579 }
1580
1581 #ifdef CORE_DUMP_USE_REGSET
1582 #include <linux/regset.h>
1583
1584 struct elf_thread_core_info {
1585 struct elf_thread_core_info *next;
1586 struct task_struct *task;
1587 struct elf_prstatus prstatus;
1588 struct memelfnote notes[0];
1589 };
1590
1591 struct elf_note_info {
1592 struct elf_thread_core_info *thread;
1593 struct memelfnote psinfo;
1594 struct memelfnote signote;
1595 struct memelfnote auxv;
1596 struct memelfnote files;
1597 user_siginfo_t csigdata;
1598 size_t size;
1599 int thread_notes;
1600 };
1601
1602 /*
1603 * When a regset has a writeback hook, we call it on each thread before
1604 * dumping user memory. On register window machines, this makes sure the
1605 * user memory backing the register data is up to date before we read it.
1606 */
1607 static void do_thread_regset_writeback(struct task_struct *task,
1608 const struct user_regset *regset)
1609 {
1610 if (regset->writeback)
1611 regset->writeback(task, regset, 1);
1612 }
1613
1614 #ifndef PR_REG_SIZE
1615 #define PR_REG_SIZE(S) sizeof(S)
1616 #endif
1617
1618 #ifndef PRSTATUS_SIZE
1619 #define PRSTATUS_SIZE(S) sizeof(S)
1620 #endif
1621
1622 #ifndef PR_REG_PTR
1623 #define PR_REG_PTR(S) (&((S)->pr_reg))
1624 #endif
1625
1626 #ifndef SET_PR_FPVALID
1627 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1628 #endif
1629
1630 static int fill_thread_core_info(struct elf_thread_core_info *t,
1631 const struct user_regset_view *view,
1632 long signr, size_t *total)
1633 {
1634 unsigned int i;
1635
1636 /*
1637 * NT_PRSTATUS is the one special case, because the regset data
1638 * goes into the pr_reg field inside the note contents, rather
1639 * than being the whole note contents. We fill the reset in here.
1640 * We assume that regset 0 is NT_PRSTATUS.
1641 */
1642 fill_prstatus(&t->prstatus, t->task, signr);
1643 (void) view->regsets[0].get(t->task, &view->regsets[0],
1644 0, PR_REG_SIZE(t->prstatus.pr_reg),
1645 PR_REG_PTR(&t->prstatus), NULL);
1646
1647 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1648 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1649 *total += notesize(&t->notes[0]);
1650
1651 do_thread_regset_writeback(t->task, &view->regsets[0]);
1652
1653 /*
1654 * Each other regset might generate a note too. For each regset
1655 * that has no core_note_type or is inactive, we leave t->notes[i]
1656 * all zero and we'll know to skip writing it later.
1657 */
1658 for (i = 1; i < view->n; ++i) {
1659 const struct user_regset *regset = &view->regsets[i];
1660 do_thread_regset_writeback(t->task, regset);
1661 if (regset->core_note_type && regset->get &&
1662 (!regset->active || regset->active(t->task, regset))) {
1663 int ret;
1664 size_t size = regset->n * regset->size;
1665 void *data = kmalloc(size, GFP_KERNEL);
1666 if (unlikely(!data))
1667 return 0;
1668 ret = regset->get(t->task, regset,
1669 0, size, data, NULL);
1670 if (unlikely(ret))
1671 kfree(data);
1672 else {
1673 if (regset->core_note_type != NT_PRFPREG)
1674 fill_note(&t->notes[i], "LINUX",
1675 regset->core_note_type,
1676 size, data);
1677 else {
1678 SET_PR_FPVALID(&t->prstatus, 1);
1679 fill_note(&t->notes[i], "CORE",
1680 NT_PRFPREG, size, data);
1681 }
1682 *total += notesize(&t->notes[i]);
1683 }
1684 }
1685 }
1686
1687 return 1;
1688 }
1689
1690 static int fill_note_info(struct elfhdr *elf, int phdrs,
1691 struct elf_note_info *info,
1692 const siginfo_t *siginfo, struct pt_regs *regs)
1693 {
1694 struct task_struct *dump_task = current;
1695 const struct user_regset_view *view = task_user_regset_view(dump_task);
1696 struct elf_thread_core_info *t;
1697 struct elf_prpsinfo *psinfo;
1698 struct core_thread *ct;
1699 unsigned int i;
1700
1701 info->size = 0;
1702 info->thread = NULL;
1703
1704 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1705 if (psinfo == NULL) {
1706 info->psinfo.data = NULL; /* So we don't free this wrongly */
1707 return 0;
1708 }
1709
1710 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1711
1712 /*
1713 * Figure out how many notes we're going to need for each thread.
1714 */
1715 info->thread_notes = 0;
1716 for (i = 0; i < view->n; ++i)
1717 if (view->regsets[i].core_note_type != 0)
1718 ++info->thread_notes;
1719
1720 /*
1721 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1722 * since it is our one special case.
1723 */
1724 if (unlikely(info->thread_notes == 0) ||
1725 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1726 WARN_ON(1);
1727 return 0;
1728 }
1729
1730 /*
1731 * Initialize the ELF file header.
1732 */
1733 fill_elf_header(elf, phdrs,
1734 view->e_machine, view->e_flags);
1735
1736 /*
1737 * Allocate a structure for each thread.
1738 */
1739 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1740 t = kzalloc(offsetof(struct elf_thread_core_info,
1741 notes[info->thread_notes]),
1742 GFP_KERNEL);
1743 if (unlikely(!t))
1744 return 0;
1745
1746 t->task = ct->task;
1747 if (ct->task == dump_task || !info->thread) {
1748 t->next = info->thread;
1749 info->thread = t;
1750 } else {
1751 /*
1752 * Make sure to keep the original task at
1753 * the head of the list.
1754 */
1755 t->next = info->thread->next;
1756 info->thread->next = t;
1757 }
1758 }
1759
1760 /*
1761 * Now fill in each thread's information.
1762 */
1763 for (t = info->thread; t != NULL; t = t->next)
1764 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1765 return 0;
1766
1767 /*
1768 * Fill in the two process-wide notes.
1769 */
1770 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1771 info->size += notesize(&info->psinfo);
1772
1773 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1774 info->size += notesize(&info->signote);
1775
1776 fill_auxv_note(&info->auxv, current->mm);
1777 info->size += notesize(&info->auxv);
1778
1779 if (fill_files_note(&info->files) == 0)
1780 info->size += notesize(&info->files);
1781
1782 return 1;
1783 }
1784
1785 static size_t get_note_info_size(struct elf_note_info *info)
1786 {
1787 return info->size;
1788 }
1789
1790 /*
1791 * Write all the notes for each thread. When writing the first thread, the
1792 * process-wide notes are interleaved after the first thread-specific note.
1793 */
1794 static int write_note_info(struct elf_note_info *info,
1795 struct coredump_params *cprm)
1796 {
1797 bool first = true;
1798 struct elf_thread_core_info *t = info->thread;
1799
1800 do {
1801 int i;
1802
1803 if (!writenote(&t->notes[0], cprm))
1804 return 0;
1805
1806 if (first && !writenote(&info->psinfo, cprm))
1807 return 0;
1808 if (first && !writenote(&info->signote, cprm))
1809 return 0;
1810 if (first && !writenote(&info->auxv, cprm))
1811 return 0;
1812 if (first && info->files.data &&
1813 !writenote(&info->files, cprm))
1814 return 0;
1815
1816 for (i = 1; i < info->thread_notes; ++i)
1817 if (t->notes[i].data &&
1818 !writenote(&t->notes[i], cprm))
1819 return 0;
1820
1821 first = false;
1822 t = t->next;
1823 } while (t);
1824
1825 return 1;
1826 }
1827
1828 static void free_note_info(struct elf_note_info *info)
1829 {
1830 struct elf_thread_core_info *threads = info->thread;
1831 while (threads) {
1832 unsigned int i;
1833 struct elf_thread_core_info *t = threads;
1834 threads = t->next;
1835 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1836 for (i = 1; i < info->thread_notes; ++i)
1837 kfree(t->notes[i].data);
1838 kfree(t);
1839 }
1840 kfree(info->psinfo.data);
1841 vfree(info->files.data);
1842 }
1843
1844 #else
1845
1846 /* Here is the structure in which status of each thread is captured. */
1847 struct elf_thread_status
1848 {
1849 struct list_head list;
1850 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1851 elf_fpregset_t fpu; /* NT_PRFPREG */
1852 struct task_struct *thread;
1853 #ifdef ELF_CORE_COPY_XFPREGS
1854 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1855 #endif
1856 struct memelfnote notes[3];
1857 int num_notes;
1858 };
1859
1860 /*
1861 * In order to add the specific thread information for the elf file format,
1862 * we need to keep a linked list of every threads pr_status and then create
1863 * a single section for them in the final core file.
1864 */
1865 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1866 {
1867 int sz = 0;
1868 struct task_struct *p = t->thread;
1869 t->num_notes = 0;
1870
1871 fill_prstatus(&t->prstatus, p, signr);
1872 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1873
1874 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1875 &(t->prstatus));
1876 t->num_notes++;
1877 sz += notesize(&t->notes[0]);
1878
1879 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1880 &t->fpu))) {
1881 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1882 &(t->fpu));
1883 t->num_notes++;
1884 sz += notesize(&t->notes[1]);
1885 }
1886
1887 #ifdef ELF_CORE_COPY_XFPREGS
1888 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1889 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1890 sizeof(t->xfpu), &t->xfpu);
1891 t->num_notes++;
1892 sz += notesize(&t->notes[2]);
1893 }
1894 #endif
1895 return sz;
1896 }
1897
1898 struct elf_note_info {
1899 struct memelfnote *notes;
1900 struct memelfnote *notes_files;
1901 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1902 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1903 struct list_head thread_list;
1904 elf_fpregset_t *fpu;
1905 #ifdef ELF_CORE_COPY_XFPREGS
1906 elf_fpxregset_t *xfpu;
1907 #endif
1908 user_siginfo_t csigdata;
1909 int thread_status_size;
1910 int numnote;
1911 };
1912
1913 static int elf_note_info_init(struct elf_note_info *info)
1914 {
1915 memset(info, 0, sizeof(*info));
1916 INIT_LIST_HEAD(&info->thread_list);
1917
1918 /* Allocate space for ELF notes */
1919 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1920 if (!info->notes)
1921 return 0;
1922 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1923 if (!info->psinfo)
1924 return 0;
1925 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1926 if (!info->prstatus)
1927 return 0;
1928 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1929 if (!info->fpu)
1930 return 0;
1931 #ifdef ELF_CORE_COPY_XFPREGS
1932 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1933 if (!info->xfpu)
1934 return 0;
1935 #endif
1936 return 1;
1937 }
1938
1939 static int fill_note_info(struct elfhdr *elf, int phdrs,
1940 struct elf_note_info *info,
1941 const siginfo_t *siginfo, struct pt_regs *regs)
1942 {
1943 struct list_head *t;
1944 struct core_thread *ct;
1945 struct elf_thread_status *ets;
1946
1947 if (!elf_note_info_init(info))
1948 return 0;
1949
1950 for (ct = current->mm->core_state->dumper.next;
1951 ct; ct = ct->next) {
1952 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1953 if (!ets)
1954 return 0;
1955
1956 ets->thread = ct->task;
1957 list_add(&ets->list, &info->thread_list);
1958 }
1959
1960 list_for_each(t, &info->thread_list) {
1961 int sz;
1962
1963 ets = list_entry(t, struct elf_thread_status, list);
1964 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1965 info->thread_status_size += sz;
1966 }
1967 /* now collect the dump for the current */
1968 memset(info->prstatus, 0, sizeof(*info->prstatus));
1969 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1970 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1971
1972 /* Set up header */
1973 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1974
1975 /*
1976 * Set up the notes in similar form to SVR4 core dumps made
1977 * with info from their /proc.
1978 */
1979
1980 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1981 sizeof(*info->prstatus), info->prstatus);
1982 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1983 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1984 sizeof(*info->psinfo), info->psinfo);
1985
1986 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1987 fill_auxv_note(info->notes + 3, current->mm);
1988 info->numnote = 4;
1989
1990 if (fill_files_note(info->notes + info->numnote) == 0) {
1991 info->notes_files = info->notes + info->numnote;
1992 info->numnote++;
1993 }
1994
1995 /* Try to dump the FPU. */
1996 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1997 info->fpu);
1998 if (info->prstatus->pr_fpvalid)
1999 fill_note(info->notes + info->numnote++,
2000 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2001 #ifdef ELF_CORE_COPY_XFPREGS
2002 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2003 fill_note(info->notes + info->numnote++,
2004 "LINUX", ELF_CORE_XFPREG_TYPE,
2005 sizeof(*info->xfpu), info->xfpu);
2006 #endif
2007
2008 return 1;
2009 }
2010
2011 static size_t get_note_info_size(struct elf_note_info *info)
2012 {
2013 int sz = 0;
2014 int i;
2015
2016 for (i = 0; i < info->numnote; i++)
2017 sz += notesize(info->notes + i);
2018
2019 sz += info->thread_status_size;
2020
2021 return sz;
2022 }
2023
2024 static int write_note_info(struct elf_note_info *info,
2025 struct coredump_params *cprm)
2026 {
2027 int i;
2028 struct list_head *t;
2029
2030 for (i = 0; i < info->numnote; i++)
2031 if (!writenote(info->notes + i, cprm))
2032 return 0;
2033
2034 /* write out the thread status notes section */
2035 list_for_each(t, &info->thread_list) {
2036 struct elf_thread_status *tmp =
2037 list_entry(t, struct elf_thread_status, list);
2038
2039 for (i = 0; i < tmp->num_notes; i++)
2040 if (!writenote(&tmp->notes[i], cprm))
2041 return 0;
2042 }
2043
2044 return 1;
2045 }
2046
2047 static void free_note_info(struct elf_note_info *info)
2048 {
2049 while (!list_empty(&info->thread_list)) {
2050 struct list_head *tmp = info->thread_list.next;
2051 list_del(tmp);
2052 kfree(list_entry(tmp, struct elf_thread_status, list));
2053 }
2054
2055 /* Free data possibly allocated by fill_files_note(): */
2056 if (info->notes_files)
2057 vfree(info->notes_files->data);
2058
2059 kfree(info->prstatus);
2060 kfree(info->psinfo);
2061 kfree(info->notes);
2062 kfree(info->fpu);
2063 #ifdef ELF_CORE_COPY_XFPREGS
2064 kfree(info->xfpu);
2065 #endif
2066 }
2067
2068 #endif
2069
2070 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2071 struct vm_area_struct *gate_vma)
2072 {
2073 struct vm_area_struct *ret = tsk->mm->mmap;
2074
2075 if (ret)
2076 return ret;
2077 return gate_vma;
2078 }
2079 /*
2080 * Helper function for iterating across a vma list. It ensures that the caller
2081 * will visit `gate_vma' prior to terminating the search.
2082 */
2083 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2084 struct vm_area_struct *gate_vma)
2085 {
2086 struct vm_area_struct *ret;
2087
2088 ret = this_vma->vm_next;
2089 if (ret)
2090 return ret;
2091 if (this_vma == gate_vma)
2092 return NULL;
2093 return gate_vma;
2094 }
2095
2096 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2097 elf_addr_t e_shoff, int segs)
2098 {
2099 elf->e_shoff = e_shoff;
2100 elf->e_shentsize = sizeof(*shdr4extnum);
2101 elf->e_shnum = 1;
2102 elf->e_shstrndx = SHN_UNDEF;
2103
2104 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2105
2106 shdr4extnum->sh_type = SHT_NULL;
2107 shdr4extnum->sh_size = elf->e_shnum;
2108 shdr4extnum->sh_link = elf->e_shstrndx;
2109 shdr4extnum->sh_info = segs;
2110 }
2111
2112 /*
2113 * Actual dumper
2114 *
2115 * This is a two-pass process; first we find the offsets of the bits,
2116 * and then they are actually written out. If we run out of core limit
2117 * we just truncate.
2118 */
2119 static int elf_core_dump(struct coredump_params *cprm)
2120 {
2121 int has_dumped = 0;
2122 mm_segment_t fs;
2123 int segs, i;
2124 size_t vma_data_size = 0;
2125 struct vm_area_struct *vma, *gate_vma;
2126 struct elfhdr *elf = NULL;
2127 loff_t offset = 0, dataoff;
2128 struct elf_note_info info = { };
2129 struct elf_phdr *phdr4note = NULL;
2130 struct elf_shdr *shdr4extnum = NULL;
2131 Elf_Half e_phnum;
2132 elf_addr_t e_shoff;
2133 elf_addr_t *vma_filesz = NULL;
2134
2135 /*
2136 * We no longer stop all VM operations.
2137 *
2138 * This is because those proceses that could possibly change map_count
2139 * or the mmap / vma pages are now blocked in do_exit on current
2140 * finishing this core dump.
2141 *
2142 * Only ptrace can touch these memory addresses, but it doesn't change
2143 * the map_count or the pages allocated. So no possibility of crashing
2144 * exists while dumping the mm->vm_next areas to the core file.
2145 */
2146
2147 /* alloc memory for large data structures: too large to be on stack */
2148 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2149 if (!elf)
2150 goto out;
2151 /*
2152 * The number of segs are recored into ELF header as 16bit value.
2153 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2154 */
2155 segs = current->mm->map_count;
2156 segs += elf_core_extra_phdrs();
2157
2158 gate_vma = get_gate_vma(current->mm);
2159 if (gate_vma != NULL)
2160 segs++;
2161
2162 /* for notes section */
2163 segs++;
2164
2165 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2166 * this, kernel supports extended numbering. Have a look at
2167 * include/linux/elf.h for further information. */
2168 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2169
2170 /*
2171 * Collect all the non-memory information about the process for the
2172 * notes. This also sets up the file header.
2173 */
2174 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2175 goto cleanup;
2176
2177 has_dumped = 1;
2178
2179 fs = get_fs();
2180 set_fs(KERNEL_DS);
2181
2182 offset += sizeof(*elf); /* Elf header */
2183 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2184
2185 /* Write notes phdr entry */
2186 {
2187 size_t sz = get_note_info_size(&info);
2188
2189 sz += elf_coredump_extra_notes_size();
2190
2191 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2192 if (!phdr4note)
2193 goto end_coredump;
2194
2195 fill_elf_note_phdr(phdr4note, sz, offset);
2196 offset += sz;
2197 }
2198
2199 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2200
2201 vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2202 if (!vma_filesz)
2203 goto end_coredump;
2204
2205 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2206 vma = next_vma(vma, gate_vma)) {
2207 unsigned long dump_size;
2208
2209 dump_size = vma_dump_size(vma, cprm->mm_flags);
2210 vma_filesz[i++] = dump_size;
2211 vma_data_size += dump_size;
2212 }
2213
2214 offset += vma_data_size;
2215 offset += elf_core_extra_data_size();
2216 e_shoff = offset;
2217
2218 if (e_phnum == PN_XNUM) {
2219 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2220 if (!shdr4extnum)
2221 goto end_coredump;
2222 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2223 }
2224
2225 offset = dataoff;
2226
2227 if (!dump_emit(cprm, elf, sizeof(*elf)))
2228 goto end_coredump;
2229
2230 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2231 goto end_coredump;
2232
2233 /* Write program headers for segments dump */
2234 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2235 vma = next_vma(vma, gate_vma)) {
2236 struct elf_phdr phdr;
2237
2238 phdr.p_type = PT_LOAD;
2239 phdr.p_offset = offset;
2240 phdr.p_vaddr = vma->vm_start;
2241 phdr.p_paddr = 0;
2242 phdr.p_filesz = vma_filesz[i++];
2243 phdr.p_memsz = vma->vm_end - vma->vm_start;
2244 offset += phdr.p_filesz;
2245 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2246 if (vma->vm_flags & VM_WRITE)
2247 phdr.p_flags |= PF_W;
2248 if (vma->vm_flags & VM_EXEC)
2249 phdr.p_flags |= PF_X;
2250 phdr.p_align = ELF_EXEC_PAGESIZE;
2251
2252 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2253 goto end_coredump;
2254 }
2255
2256 if (!elf_core_write_extra_phdrs(cprm, offset))
2257 goto end_coredump;
2258
2259 /* write out the notes section */
2260 if (!write_note_info(&info, cprm))
2261 goto end_coredump;
2262
2263 if (elf_coredump_extra_notes_write(cprm))
2264 goto end_coredump;
2265
2266 /* Align to page */
2267 if (!dump_skip(cprm, dataoff - cprm->written))
2268 goto end_coredump;
2269
2270 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2271 vma = next_vma(vma, gate_vma)) {
2272 unsigned long addr;
2273 unsigned long end;
2274
2275 end = vma->vm_start + vma_filesz[i++];
2276
2277 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2278 struct page *page;
2279 int stop;
2280
2281 page = get_dump_page(addr);
2282 if (page) {
2283 void *kaddr = kmap(page);
2284 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2285 kunmap(page);
2286 page_cache_release(page);
2287 } else
2288 stop = !dump_skip(cprm, PAGE_SIZE);
2289 if (stop)
2290 goto end_coredump;
2291 }
2292 }
2293
2294 if (!elf_core_write_extra_data(cprm))
2295 goto end_coredump;
2296
2297 if (e_phnum == PN_XNUM) {
2298 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2299 goto end_coredump;
2300 }
2301
2302 end_coredump:
2303 set_fs(fs);
2304
2305 cleanup:
2306 free_note_info(&info);
2307 kfree(shdr4extnum);
2308 kfree(vma_filesz);
2309 kfree(phdr4note);
2310 kfree(elf);
2311 out:
2312 return has_dumped;
2313 }
2314
2315 #endif /* CONFIG_ELF_CORE */
2316
2317 static int __init init_elf_binfmt(void)
2318 {
2319 register_binfmt(&elf_format);
2320 return 0;
2321 }
2322
2323 static void __exit exit_elf_binfmt(void)
2324 {
2325 /* Remove the COFF and ELF loaders. */
2326 unregister_binfmt(&elf_format);
2327 }
2328
2329 core_initcall(init_elf_binfmt);
2330 module_exit(exit_elf_binfmt);
2331 MODULE_LICENSE("GPL");
This page took 0.08212 seconds and 5 git commands to generate.