ipvs: Pass ipvs into ip_vs_out
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct inode *inode)
54 {
55 spin_lock(&inode->i_lock);
56 while (inode->i_state & I_DIRTY) {
57 spin_unlock(&inode->i_lock);
58 WARN_ON_ONCE(write_inode_now(inode, true));
59 spin_lock(&inode->i_lock);
60 }
61 spin_unlock(&inode->i_lock);
62 }
63
64 /* Kill _all_ buffers and pagecache , dirty or not.. */
65 void kill_bdev(struct block_device *bdev)
66 {
67 struct address_space *mapping = bdev->bd_inode->i_mapping;
68
69 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
70 return;
71
72 invalidate_bh_lrus();
73 truncate_inode_pages(mapping, 0);
74 }
75 EXPORT_SYMBOL(kill_bdev);
76
77 /* Invalidate clean unused buffers and pagecache. */
78 void invalidate_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0)
83 return;
84
85 invalidate_bh_lrus();
86 lru_add_drain_all(); /* make sure all lru add caches are flushed */
87 invalidate_mapping_pages(mapping, 0, -1);
88 /* 99% of the time, we don't need to flush the cleancache on the bdev.
89 * But, for the strange corners, lets be cautious
90 */
91 cleancache_invalidate_inode(mapping);
92 }
93 EXPORT_SYMBOL(invalidate_bdev);
94
95 int set_blocksize(struct block_device *bdev, int size)
96 {
97 /* Size must be a power of two, and between 512 and PAGE_SIZE */
98 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
99 return -EINVAL;
100
101 /* Size cannot be smaller than the size supported by the device */
102 if (size < bdev_logical_block_size(bdev))
103 return -EINVAL;
104
105 /* Don't change the size if it is same as current */
106 if (bdev->bd_block_size != size) {
107 sync_blockdev(bdev);
108 bdev->bd_block_size = size;
109 bdev->bd_inode->i_blkbits = blksize_bits(size);
110 kill_bdev(bdev);
111 }
112 return 0;
113 }
114
115 EXPORT_SYMBOL(set_blocksize);
116
117 int sb_set_blocksize(struct super_block *sb, int size)
118 {
119 if (set_blocksize(sb->s_bdev, size))
120 return 0;
121 /* If we get here, we know size is power of two
122 * and it's value is between 512 and PAGE_SIZE */
123 sb->s_blocksize = size;
124 sb->s_blocksize_bits = blksize_bits(size);
125 return sb->s_blocksize;
126 }
127
128 EXPORT_SYMBOL(sb_set_blocksize);
129
130 int sb_min_blocksize(struct super_block *sb, int size)
131 {
132 int minsize = bdev_logical_block_size(sb->s_bdev);
133 if (size < minsize)
134 size = minsize;
135 return sb_set_blocksize(sb, size);
136 }
137
138 EXPORT_SYMBOL(sb_min_blocksize);
139
140 static int
141 blkdev_get_block(struct inode *inode, sector_t iblock,
142 struct buffer_head *bh, int create)
143 {
144 bh->b_bdev = I_BDEV(inode);
145 bh->b_blocknr = iblock;
146 set_buffer_mapped(bh);
147 return 0;
148 }
149
150 static ssize_t
151 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
152 {
153 struct file *file = iocb->ki_filp;
154 struct inode *inode = file->f_mapping->host;
155
156 if (IS_DAX(inode))
157 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
158 NULL, DIO_SKIP_DIO_COUNT);
159 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
160 blkdev_get_block, NULL, NULL,
161 DIO_SKIP_DIO_COUNT);
162 }
163
164 int __sync_blockdev(struct block_device *bdev, int wait)
165 {
166 if (!bdev)
167 return 0;
168 if (!wait)
169 return filemap_flush(bdev->bd_inode->i_mapping);
170 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
171 }
172
173 /*
174 * Write out and wait upon all the dirty data associated with a block
175 * device via its mapping. Does not take the superblock lock.
176 */
177 int sync_blockdev(struct block_device *bdev)
178 {
179 return __sync_blockdev(bdev, 1);
180 }
181 EXPORT_SYMBOL(sync_blockdev);
182
183 /*
184 * Write out and wait upon all dirty data associated with this
185 * device. Filesystem data as well as the underlying block
186 * device. Takes the superblock lock.
187 */
188 int fsync_bdev(struct block_device *bdev)
189 {
190 struct super_block *sb = get_super(bdev);
191 if (sb) {
192 int res = sync_filesystem(sb);
193 drop_super(sb);
194 return res;
195 }
196 return sync_blockdev(bdev);
197 }
198 EXPORT_SYMBOL(fsync_bdev);
199
200 /**
201 * freeze_bdev -- lock a filesystem and force it into a consistent state
202 * @bdev: blockdevice to lock
203 *
204 * If a superblock is found on this device, we take the s_umount semaphore
205 * on it to make sure nobody unmounts until the snapshot creation is done.
206 * The reference counter (bd_fsfreeze_count) guarantees that only the last
207 * unfreeze process can unfreeze the frozen filesystem actually when multiple
208 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
209 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
210 * actually.
211 */
212 struct super_block *freeze_bdev(struct block_device *bdev)
213 {
214 struct super_block *sb;
215 int error = 0;
216
217 mutex_lock(&bdev->bd_fsfreeze_mutex);
218 if (++bdev->bd_fsfreeze_count > 1) {
219 /*
220 * We don't even need to grab a reference - the first call
221 * to freeze_bdev grab an active reference and only the last
222 * thaw_bdev drops it.
223 */
224 sb = get_super(bdev);
225 drop_super(sb);
226 mutex_unlock(&bdev->bd_fsfreeze_mutex);
227 return sb;
228 }
229
230 sb = get_active_super(bdev);
231 if (!sb)
232 goto out;
233 if (sb->s_op->freeze_super)
234 error = sb->s_op->freeze_super(sb);
235 else
236 error = freeze_super(sb);
237 if (error) {
238 deactivate_super(sb);
239 bdev->bd_fsfreeze_count--;
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return ERR_PTR(error);
242 }
243 deactivate_super(sb);
244 out:
245 sync_blockdev(bdev);
246 mutex_unlock(&bdev->bd_fsfreeze_mutex);
247 return sb; /* thaw_bdev releases s->s_umount */
248 }
249 EXPORT_SYMBOL(freeze_bdev);
250
251 /**
252 * thaw_bdev -- unlock filesystem
253 * @bdev: blockdevice to unlock
254 * @sb: associated superblock
255 *
256 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
257 */
258 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
259 {
260 int error = -EINVAL;
261
262 mutex_lock(&bdev->bd_fsfreeze_mutex);
263 if (!bdev->bd_fsfreeze_count)
264 goto out;
265
266 error = 0;
267 if (--bdev->bd_fsfreeze_count > 0)
268 goto out;
269
270 if (!sb)
271 goto out;
272
273 if (sb->s_op->thaw_super)
274 error = sb->s_op->thaw_super(sb);
275 else
276 error = thaw_super(sb);
277 if (error) {
278 bdev->bd_fsfreeze_count++;
279 mutex_unlock(&bdev->bd_fsfreeze_mutex);
280 return error;
281 }
282 out:
283 mutex_unlock(&bdev->bd_fsfreeze_mutex);
284 return 0;
285 }
286 EXPORT_SYMBOL(thaw_bdev);
287
288 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
289 {
290 return block_write_full_page(page, blkdev_get_block, wbc);
291 }
292
293 static int blkdev_readpage(struct file * file, struct page * page)
294 {
295 return block_read_full_page(page, blkdev_get_block);
296 }
297
298 static int blkdev_readpages(struct file *file, struct address_space *mapping,
299 struct list_head *pages, unsigned nr_pages)
300 {
301 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
302 }
303
304 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
305 loff_t pos, unsigned len, unsigned flags,
306 struct page **pagep, void **fsdata)
307 {
308 return block_write_begin(mapping, pos, len, flags, pagep,
309 blkdev_get_block);
310 }
311
312 static int blkdev_write_end(struct file *file, struct address_space *mapping,
313 loff_t pos, unsigned len, unsigned copied,
314 struct page *page, void *fsdata)
315 {
316 int ret;
317 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
318
319 unlock_page(page);
320 page_cache_release(page);
321
322 return ret;
323 }
324
325 /*
326 * private llseek:
327 * for a block special file file_inode(file)->i_size is zero
328 * so we compute the size by hand (just as in block_read/write above)
329 */
330 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
331 {
332 struct inode *bd_inode = file->f_mapping->host;
333 loff_t retval;
334
335 mutex_lock(&bd_inode->i_mutex);
336 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
337 mutex_unlock(&bd_inode->i_mutex);
338 return retval;
339 }
340
341 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
342 {
343 struct inode *bd_inode = filp->f_mapping->host;
344 struct block_device *bdev = I_BDEV(bd_inode);
345 int error;
346
347 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
348 if (error)
349 return error;
350
351 /*
352 * There is no need to serialise calls to blkdev_issue_flush with
353 * i_mutex and doing so causes performance issues with concurrent
354 * O_SYNC writers to a block device.
355 */
356 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
357 if (error == -EOPNOTSUPP)
358 error = 0;
359
360 return error;
361 }
362 EXPORT_SYMBOL(blkdev_fsync);
363
364 /**
365 * bdev_read_page() - Start reading a page from a block device
366 * @bdev: The device to read the page from
367 * @sector: The offset on the device to read the page to (need not be aligned)
368 * @page: The page to read
369 *
370 * On entry, the page should be locked. It will be unlocked when the page
371 * has been read. If the block driver implements rw_page synchronously,
372 * that will be true on exit from this function, but it need not be.
373 *
374 * Errors returned by this function are usually "soft", eg out of memory, or
375 * queue full; callers should try a different route to read this page rather
376 * than propagate an error back up the stack.
377 *
378 * Return: negative errno if an error occurs, 0 if submission was successful.
379 */
380 int bdev_read_page(struct block_device *bdev, sector_t sector,
381 struct page *page)
382 {
383 const struct block_device_operations *ops = bdev->bd_disk->fops;
384 if (!ops->rw_page || bdev_get_integrity(bdev))
385 return -EOPNOTSUPP;
386 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
387 }
388 EXPORT_SYMBOL_GPL(bdev_read_page);
389
390 /**
391 * bdev_write_page() - Start writing a page to a block device
392 * @bdev: The device to write the page to
393 * @sector: The offset on the device to write the page to (need not be aligned)
394 * @page: The page to write
395 * @wbc: The writeback_control for the write
396 *
397 * On entry, the page should be locked and not currently under writeback.
398 * On exit, if the write started successfully, the page will be unlocked and
399 * under writeback. If the write failed already (eg the driver failed to
400 * queue the page to the device), the page will still be locked. If the
401 * caller is a ->writepage implementation, it will need to unlock the page.
402 *
403 * Errors returned by this function are usually "soft", eg out of memory, or
404 * queue full; callers should try a different route to write this page rather
405 * than propagate an error back up the stack.
406 *
407 * Return: negative errno if an error occurs, 0 if submission was successful.
408 */
409 int bdev_write_page(struct block_device *bdev, sector_t sector,
410 struct page *page, struct writeback_control *wbc)
411 {
412 int result;
413 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
414 const struct block_device_operations *ops = bdev->bd_disk->fops;
415 if (!ops->rw_page || bdev_get_integrity(bdev))
416 return -EOPNOTSUPP;
417 set_page_writeback(page);
418 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
419 if (result)
420 end_page_writeback(page);
421 else
422 unlock_page(page);
423 return result;
424 }
425 EXPORT_SYMBOL_GPL(bdev_write_page);
426
427 /**
428 * bdev_direct_access() - Get the address for directly-accessibly memory
429 * @bdev: The device containing the memory
430 * @sector: The offset within the device
431 * @addr: Where to put the address of the memory
432 * @pfn: The Page Frame Number for the memory
433 * @size: The number of bytes requested
434 *
435 * If a block device is made up of directly addressable memory, this function
436 * will tell the caller the PFN and the address of the memory. The address
437 * may be directly dereferenced within the kernel without the need to call
438 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
439 * page tables.
440 *
441 * Return: negative errno if an error occurs, otherwise the number of bytes
442 * accessible at this address.
443 */
444 long bdev_direct_access(struct block_device *bdev, sector_t sector,
445 void __pmem **addr, unsigned long *pfn, long size)
446 {
447 long avail;
448 const struct block_device_operations *ops = bdev->bd_disk->fops;
449
450 /*
451 * The device driver is allowed to sleep, in order to make the
452 * memory directly accessible.
453 */
454 might_sleep();
455
456 if (size < 0)
457 return size;
458 if (!ops->direct_access)
459 return -EOPNOTSUPP;
460 if ((sector + DIV_ROUND_UP(size, 512)) >
461 part_nr_sects_read(bdev->bd_part))
462 return -ERANGE;
463 sector += get_start_sect(bdev);
464 if (sector % (PAGE_SIZE / 512))
465 return -EINVAL;
466 avail = ops->direct_access(bdev, sector, addr, pfn);
467 if (!avail)
468 return -ERANGE;
469 return min(avail, size);
470 }
471 EXPORT_SYMBOL_GPL(bdev_direct_access);
472
473 /*
474 * pseudo-fs
475 */
476
477 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
478 static struct kmem_cache * bdev_cachep __read_mostly;
479
480 static struct inode *bdev_alloc_inode(struct super_block *sb)
481 {
482 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
483 if (!ei)
484 return NULL;
485 return &ei->vfs_inode;
486 }
487
488 static void bdev_i_callback(struct rcu_head *head)
489 {
490 struct inode *inode = container_of(head, struct inode, i_rcu);
491 struct bdev_inode *bdi = BDEV_I(inode);
492
493 kmem_cache_free(bdev_cachep, bdi);
494 }
495
496 static void bdev_destroy_inode(struct inode *inode)
497 {
498 call_rcu(&inode->i_rcu, bdev_i_callback);
499 }
500
501 static void init_once(void *foo)
502 {
503 struct bdev_inode *ei = (struct bdev_inode *) foo;
504 struct block_device *bdev = &ei->bdev;
505
506 memset(bdev, 0, sizeof(*bdev));
507 mutex_init(&bdev->bd_mutex);
508 INIT_LIST_HEAD(&bdev->bd_inodes);
509 INIT_LIST_HEAD(&bdev->bd_list);
510 #ifdef CONFIG_SYSFS
511 INIT_LIST_HEAD(&bdev->bd_holder_disks);
512 #endif
513 inode_init_once(&ei->vfs_inode);
514 /* Initialize mutex for freeze. */
515 mutex_init(&bdev->bd_fsfreeze_mutex);
516 }
517
518 static inline void __bd_forget(struct inode *inode)
519 {
520 list_del_init(&inode->i_devices);
521 inode->i_bdev = NULL;
522 inode->i_mapping = &inode->i_data;
523 }
524
525 static void bdev_evict_inode(struct inode *inode)
526 {
527 struct block_device *bdev = &BDEV_I(inode)->bdev;
528 struct list_head *p;
529 truncate_inode_pages_final(&inode->i_data);
530 invalidate_inode_buffers(inode); /* is it needed here? */
531 clear_inode(inode);
532 spin_lock(&bdev_lock);
533 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
534 __bd_forget(list_entry(p, struct inode, i_devices));
535 }
536 list_del_init(&bdev->bd_list);
537 spin_unlock(&bdev_lock);
538 }
539
540 static const struct super_operations bdev_sops = {
541 .statfs = simple_statfs,
542 .alloc_inode = bdev_alloc_inode,
543 .destroy_inode = bdev_destroy_inode,
544 .drop_inode = generic_delete_inode,
545 .evict_inode = bdev_evict_inode,
546 };
547
548 static struct dentry *bd_mount(struct file_system_type *fs_type,
549 int flags, const char *dev_name, void *data)
550 {
551 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
552 }
553
554 static struct file_system_type bd_type = {
555 .name = "bdev",
556 .mount = bd_mount,
557 .kill_sb = kill_anon_super,
558 };
559
560 struct super_block *blockdev_superblock __read_mostly;
561 EXPORT_SYMBOL_GPL(blockdev_superblock);
562
563 void __init bdev_cache_init(void)
564 {
565 int err;
566 static struct vfsmount *bd_mnt;
567
568 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
569 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
570 SLAB_MEM_SPREAD|SLAB_PANIC),
571 init_once);
572 err = register_filesystem(&bd_type);
573 if (err)
574 panic("Cannot register bdev pseudo-fs");
575 bd_mnt = kern_mount(&bd_type);
576 if (IS_ERR(bd_mnt))
577 panic("Cannot create bdev pseudo-fs");
578 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
579 }
580
581 /*
582 * Most likely _very_ bad one - but then it's hardly critical for small
583 * /dev and can be fixed when somebody will need really large one.
584 * Keep in mind that it will be fed through icache hash function too.
585 */
586 static inline unsigned long hash(dev_t dev)
587 {
588 return MAJOR(dev)+MINOR(dev);
589 }
590
591 static int bdev_test(struct inode *inode, void *data)
592 {
593 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
594 }
595
596 static int bdev_set(struct inode *inode, void *data)
597 {
598 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
599 return 0;
600 }
601
602 static LIST_HEAD(all_bdevs);
603
604 struct block_device *bdget(dev_t dev)
605 {
606 struct block_device *bdev;
607 struct inode *inode;
608
609 inode = iget5_locked(blockdev_superblock, hash(dev),
610 bdev_test, bdev_set, &dev);
611
612 if (!inode)
613 return NULL;
614
615 bdev = &BDEV_I(inode)->bdev;
616
617 if (inode->i_state & I_NEW) {
618 bdev->bd_contains = NULL;
619 bdev->bd_super = NULL;
620 bdev->bd_inode = inode;
621 bdev->bd_block_size = (1 << inode->i_blkbits);
622 bdev->bd_part_count = 0;
623 bdev->bd_invalidated = 0;
624 inode->i_mode = S_IFBLK;
625 inode->i_rdev = dev;
626 inode->i_bdev = bdev;
627 inode->i_data.a_ops = &def_blk_aops;
628 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
629 spin_lock(&bdev_lock);
630 list_add(&bdev->bd_list, &all_bdevs);
631 spin_unlock(&bdev_lock);
632 unlock_new_inode(inode);
633 }
634 return bdev;
635 }
636
637 EXPORT_SYMBOL(bdget);
638
639 /**
640 * bdgrab -- Grab a reference to an already referenced block device
641 * @bdev: Block device to grab a reference to.
642 */
643 struct block_device *bdgrab(struct block_device *bdev)
644 {
645 ihold(bdev->bd_inode);
646 return bdev;
647 }
648 EXPORT_SYMBOL(bdgrab);
649
650 long nr_blockdev_pages(void)
651 {
652 struct block_device *bdev;
653 long ret = 0;
654 spin_lock(&bdev_lock);
655 list_for_each_entry(bdev, &all_bdevs, bd_list) {
656 ret += bdev->bd_inode->i_mapping->nrpages;
657 }
658 spin_unlock(&bdev_lock);
659 return ret;
660 }
661
662 void bdput(struct block_device *bdev)
663 {
664 iput(bdev->bd_inode);
665 }
666
667 EXPORT_SYMBOL(bdput);
668
669 static struct block_device *bd_acquire(struct inode *inode)
670 {
671 struct block_device *bdev;
672
673 spin_lock(&bdev_lock);
674 bdev = inode->i_bdev;
675 if (bdev) {
676 ihold(bdev->bd_inode);
677 spin_unlock(&bdev_lock);
678 return bdev;
679 }
680 spin_unlock(&bdev_lock);
681
682 bdev = bdget(inode->i_rdev);
683 if (bdev) {
684 spin_lock(&bdev_lock);
685 if (!inode->i_bdev) {
686 /*
687 * We take an additional reference to bd_inode,
688 * and it's released in clear_inode() of inode.
689 * So, we can access it via ->i_mapping always
690 * without igrab().
691 */
692 ihold(bdev->bd_inode);
693 inode->i_bdev = bdev;
694 inode->i_mapping = bdev->bd_inode->i_mapping;
695 list_add(&inode->i_devices, &bdev->bd_inodes);
696 }
697 spin_unlock(&bdev_lock);
698 }
699 return bdev;
700 }
701
702 /* Call when you free inode */
703
704 void bd_forget(struct inode *inode)
705 {
706 struct block_device *bdev = NULL;
707
708 spin_lock(&bdev_lock);
709 if (!sb_is_blkdev_sb(inode->i_sb))
710 bdev = inode->i_bdev;
711 __bd_forget(inode);
712 spin_unlock(&bdev_lock);
713
714 if (bdev)
715 iput(bdev->bd_inode);
716 }
717
718 /**
719 * bd_may_claim - test whether a block device can be claimed
720 * @bdev: block device of interest
721 * @whole: whole block device containing @bdev, may equal @bdev
722 * @holder: holder trying to claim @bdev
723 *
724 * Test whether @bdev can be claimed by @holder.
725 *
726 * CONTEXT:
727 * spin_lock(&bdev_lock).
728 *
729 * RETURNS:
730 * %true if @bdev can be claimed, %false otherwise.
731 */
732 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
733 void *holder)
734 {
735 if (bdev->bd_holder == holder)
736 return true; /* already a holder */
737 else if (bdev->bd_holder != NULL)
738 return false; /* held by someone else */
739 else if (bdev->bd_contains == bdev)
740 return true; /* is a whole device which isn't held */
741
742 else if (whole->bd_holder == bd_may_claim)
743 return true; /* is a partition of a device that is being partitioned */
744 else if (whole->bd_holder != NULL)
745 return false; /* is a partition of a held device */
746 else
747 return true; /* is a partition of an un-held device */
748 }
749
750 /**
751 * bd_prepare_to_claim - prepare to claim a block device
752 * @bdev: block device of interest
753 * @whole: the whole device containing @bdev, may equal @bdev
754 * @holder: holder trying to claim @bdev
755 *
756 * Prepare to claim @bdev. This function fails if @bdev is already
757 * claimed by another holder and waits if another claiming is in
758 * progress. This function doesn't actually claim. On successful
759 * return, the caller has ownership of bd_claiming and bd_holder[s].
760 *
761 * CONTEXT:
762 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
763 * it multiple times.
764 *
765 * RETURNS:
766 * 0 if @bdev can be claimed, -EBUSY otherwise.
767 */
768 static int bd_prepare_to_claim(struct block_device *bdev,
769 struct block_device *whole, void *holder)
770 {
771 retry:
772 /* if someone else claimed, fail */
773 if (!bd_may_claim(bdev, whole, holder))
774 return -EBUSY;
775
776 /* if claiming is already in progress, wait for it to finish */
777 if (whole->bd_claiming) {
778 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
779 DEFINE_WAIT(wait);
780
781 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
782 spin_unlock(&bdev_lock);
783 schedule();
784 finish_wait(wq, &wait);
785 spin_lock(&bdev_lock);
786 goto retry;
787 }
788
789 /* yay, all mine */
790 return 0;
791 }
792
793 /**
794 * bd_start_claiming - start claiming a block device
795 * @bdev: block device of interest
796 * @holder: holder trying to claim @bdev
797 *
798 * @bdev is about to be opened exclusively. Check @bdev can be opened
799 * exclusively and mark that an exclusive open is in progress. Each
800 * successful call to this function must be matched with a call to
801 * either bd_finish_claiming() or bd_abort_claiming() (which do not
802 * fail).
803 *
804 * This function is used to gain exclusive access to the block device
805 * without actually causing other exclusive open attempts to fail. It
806 * should be used when the open sequence itself requires exclusive
807 * access but may subsequently fail.
808 *
809 * CONTEXT:
810 * Might sleep.
811 *
812 * RETURNS:
813 * Pointer to the block device containing @bdev on success, ERR_PTR()
814 * value on failure.
815 */
816 static struct block_device *bd_start_claiming(struct block_device *bdev,
817 void *holder)
818 {
819 struct gendisk *disk;
820 struct block_device *whole;
821 int partno, err;
822
823 might_sleep();
824
825 /*
826 * @bdev might not have been initialized properly yet, look up
827 * and grab the outer block device the hard way.
828 */
829 disk = get_gendisk(bdev->bd_dev, &partno);
830 if (!disk)
831 return ERR_PTR(-ENXIO);
832
833 /*
834 * Normally, @bdev should equal what's returned from bdget_disk()
835 * if partno is 0; however, some drivers (floppy) use multiple
836 * bdev's for the same physical device and @bdev may be one of the
837 * aliases. Keep @bdev if partno is 0. This means claimer
838 * tracking is broken for those devices but it has always been that
839 * way.
840 */
841 if (partno)
842 whole = bdget_disk(disk, 0);
843 else
844 whole = bdgrab(bdev);
845
846 module_put(disk->fops->owner);
847 put_disk(disk);
848 if (!whole)
849 return ERR_PTR(-ENOMEM);
850
851 /* prepare to claim, if successful, mark claiming in progress */
852 spin_lock(&bdev_lock);
853
854 err = bd_prepare_to_claim(bdev, whole, holder);
855 if (err == 0) {
856 whole->bd_claiming = holder;
857 spin_unlock(&bdev_lock);
858 return whole;
859 } else {
860 spin_unlock(&bdev_lock);
861 bdput(whole);
862 return ERR_PTR(err);
863 }
864 }
865
866 #ifdef CONFIG_SYSFS
867 struct bd_holder_disk {
868 struct list_head list;
869 struct gendisk *disk;
870 int refcnt;
871 };
872
873 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
874 struct gendisk *disk)
875 {
876 struct bd_holder_disk *holder;
877
878 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
879 if (holder->disk == disk)
880 return holder;
881 return NULL;
882 }
883
884 static int add_symlink(struct kobject *from, struct kobject *to)
885 {
886 return sysfs_create_link(from, to, kobject_name(to));
887 }
888
889 static void del_symlink(struct kobject *from, struct kobject *to)
890 {
891 sysfs_remove_link(from, kobject_name(to));
892 }
893
894 /**
895 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
896 * @bdev: the claimed slave bdev
897 * @disk: the holding disk
898 *
899 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
900 *
901 * This functions creates the following sysfs symlinks.
902 *
903 * - from "slaves" directory of the holder @disk to the claimed @bdev
904 * - from "holders" directory of the @bdev to the holder @disk
905 *
906 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
907 * passed to bd_link_disk_holder(), then:
908 *
909 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
910 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
911 *
912 * The caller must have claimed @bdev before calling this function and
913 * ensure that both @bdev and @disk are valid during the creation and
914 * lifetime of these symlinks.
915 *
916 * CONTEXT:
917 * Might sleep.
918 *
919 * RETURNS:
920 * 0 on success, -errno on failure.
921 */
922 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
923 {
924 struct bd_holder_disk *holder;
925 int ret = 0;
926
927 mutex_lock(&bdev->bd_mutex);
928
929 WARN_ON_ONCE(!bdev->bd_holder);
930
931 /* FIXME: remove the following once add_disk() handles errors */
932 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
933 goto out_unlock;
934
935 holder = bd_find_holder_disk(bdev, disk);
936 if (holder) {
937 holder->refcnt++;
938 goto out_unlock;
939 }
940
941 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
942 if (!holder) {
943 ret = -ENOMEM;
944 goto out_unlock;
945 }
946
947 INIT_LIST_HEAD(&holder->list);
948 holder->disk = disk;
949 holder->refcnt = 1;
950
951 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
952 if (ret)
953 goto out_free;
954
955 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
956 if (ret)
957 goto out_del;
958 /*
959 * bdev could be deleted beneath us which would implicitly destroy
960 * the holder directory. Hold on to it.
961 */
962 kobject_get(bdev->bd_part->holder_dir);
963
964 list_add(&holder->list, &bdev->bd_holder_disks);
965 goto out_unlock;
966
967 out_del:
968 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
969 out_free:
970 kfree(holder);
971 out_unlock:
972 mutex_unlock(&bdev->bd_mutex);
973 return ret;
974 }
975 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
976
977 /**
978 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
979 * @bdev: the calimed slave bdev
980 * @disk: the holding disk
981 *
982 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
983 *
984 * CONTEXT:
985 * Might sleep.
986 */
987 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
988 {
989 struct bd_holder_disk *holder;
990
991 mutex_lock(&bdev->bd_mutex);
992
993 holder = bd_find_holder_disk(bdev, disk);
994
995 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
996 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
997 del_symlink(bdev->bd_part->holder_dir,
998 &disk_to_dev(disk)->kobj);
999 kobject_put(bdev->bd_part->holder_dir);
1000 list_del_init(&holder->list);
1001 kfree(holder);
1002 }
1003
1004 mutex_unlock(&bdev->bd_mutex);
1005 }
1006 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1007 #endif
1008
1009 /**
1010 * flush_disk - invalidates all buffer-cache entries on a disk
1011 *
1012 * @bdev: struct block device to be flushed
1013 * @kill_dirty: flag to guide handling of dirty inodes
1014 *
1015 * Invalidates all buffer-cache entries on a disk. It should be called
1016 * when a disk has been changed -- either by a media change or online
1017 * resize.
1018 */
1019 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1020 {
1021 if (__invalidate_device(bdev, kill_dirty)) {
1022 char name[BDEVNAME_SIZE] = "";
1023
1024 if (bdev->bd_disk)
1025 disk_name(bdev->bd_disk, 0, name);
1026 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1027 "resized disk %s\n", name);
1028 }
1029
1030 if (!bdev->bd_disk)
1031 return;
1032 if (disk_part_scan_enabled(bdev->bd_disk))
1033 bdev->bd_invalidated = 1;
1034 }
1035
1036 /**
1037 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1038 * @disk: struct gendisk to check
1039 * @bdev: struct bdev to adjust.
1040 *
1041 * This routine checks to see if the bdev size does not match the disk size
1042 * and adjusts it if it differs.
1043 */
1044 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1045 {
1046 loff_t disk_size, bdev_size;
1047
1048 disk_size = (loff_t)get_capacity(disk) << 9;
1049 bdev_size = i_size_read(bdev->bd_inode);
1050 if (disk_size != bdev_size) {
1051 char name[BDEVNAME_SIZE];
1052
1053 disk_name(disk, 0, name);
1054 printk(KERN_INFO
1055 "%s: detected capacity change from %lld to %lld\n",
1056 name, bdev_size, disk_size);
1057 i_size_write(bdev->bd_inode, disk_size);
1058 flush_disk(bdev, false);
1059 }
1060 }
1061 EXPORT_SYMBOL(check_disk_size_change);
1062
1063 /**
1064 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1065 * @disk: struct gendisk to be revalidated
1066 *
1067 * This routine is a wrapper for lower-level driver's revalidate_disk
1068 * call-backs. It is used to do common pre and post operations needed
1069 * for all revalidate_disk operations.
1070 */
1071 int revalidate_disk(struct gendisk *disk)
1072 {
1073 struct block_device *bdev;
1074 int ret = 0;
1075
1076 if (disk->fops->revalidate_disk)
1077 ret = disk->fops->revalidate_disk(disk);
1078
1079 bdev = bdget_disk(disk, 0);
1080 if (!bdev)
1081 return ret;
1082
1083 mutex_lock(&bdev->bd_mutex);
1084 check_disk_size_change(disk, bdev);
1085 bdev->bd_invalidated = 0;
1086 mutex_unlock(&bdev->bd_mutex);
1087 bdput(bdev);
1088 return ret;
1089 }
1090 EXPORT_SYMBOL(revalidate_disk);
1091
1092 /*
1093 * This routine checks whether a removable media has been changed,
1094 * and invalidates all buffer-cache-entries in that case. This
1095 * is a relatively slow routine, so we have to try to minimize using
1096 * it. Thus it is called only upon a 'mount' or 'open'. This
1097 * is the best way of combining speed and utility, I think.
1098 * People changing diskettes in the middle of an operation deserve
1099 * to lose :-)
1100 */
1101 int check_disk_change(struct block_device *bdev)
1102 {
1103 struct gendisk *disk = bdev->bd_disk;
1104 const struct block_device_operations *bdops = disk->fops;
1105 unsigned int events;
1106
1107 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1108 DISK_EVENT_EJECT_REQUEST);
1109 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1110 return 0;
1111
1112 flush_disk(bdev, true);
1113 if (bdops->revalidate_disk)
1114 bdops->revalidate_disk(bdev->bd_disk);
1115 return 1;
1116 }
1117
1118 EXPORT_SYMBOL(check_disk_change);
1119
1120 void bd_set_size(struct block_device *bdev, loff_t size)
1121 {
1122 unsigned bsize = bdev_logical_block_size(bdev);
1123
1124 mutex_lock(&bdev->bd_inode->i_mutex);
1125 i_size_write(bdev->bd_inode, size);
1126 mutex_unlock(&bdev->bd_inode->i_mutex);
1127 while (bsize < PAGE_CACHE_SIZE) {
1128 if (size & bsize)
1129 break;
1130 bsize <<= 1;
1131 }
1132 bdev->bd_block_size = bsize;
1133 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1134 }
1135 EXPORT_SYMBOL(bd_set_size);
1136
1137 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1138
1139 /*
1140 * bd_mutex locking:
1141 *
1142 * mutex_lock(part->bd_mutex)
1143 * mutex_lock_nested(whole->bd_mutex, 1)
1144 */
1145
1146 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1147 {
1148 struct gendisk *disk;
1149 struct module *owner;
1150 int ret;
1151 int partno;
1152 int perm = 0;
1153
1154 if (mode & FMODE_READ)
1155 perm |= MAY_READ;
1156 if (mode & FMODE_WRITE)
1157 perm |= MAY_WRITE;
1158 /*
1159 * hooks: /n/, see "layering violations".
1160 */
1161 if (!for_part) {
1162 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1163 if (ret != 0) {
1164 bdput(bdev);
1165 return ret;
1166 }
1167 }
1168
1169 restart:
1170
1171 ret = -ENXIO;
1172 disk = get_gendisk(bdev->bd_dev, &partno);
1173 if (!disk)
1174 goto out;
1175 owner = disk->fops->owner;
1176
1177 disk_block_events(disk);
1178 mutex_lock_nested(&bdev->bd_mutex, for_part);
1179 if (!bdev->bd_openers) {
1180 bdev->bd_disk = disk;
1181 bdev->bd_queue = disk->queue;
1182 bdev->bd_contains = bdev;
1183 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1184 if (!partno) {
1185 ret = -ENXIO;
1186 bdev->bd_part = disk_get_part(disk, partno);
1187 if (!bdev->bd_part)
1188 goto out_clear;
1189
1190 ret = 0;
1191 if (disk->fops->open) {
1192 ret = disk->fops->open(bdev, mode);
1193 if (ret == -ERESTARTSYS) {
1194 /* Lost a race with 'disk' being
1195 * deleted, try again.
1196 * See md.c
1197 */
1198 disk_put_part(bdev->bd_part);
1199 bdev->bd_part = NULL;
1200 bdev->bd_disk = NULL;
1201 bdev->bd_queue = NULL;
1202 mutex_unlock(&bdev->bd_mutex);
1203 disk_unblock_events(disk);
1204 put_disk(disk);
1205 module_put(owner);
1206 goto restart;
1207 }
1208 }
1209
1210 if (!ret)
1211 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1212
1213 /*
1214 * If the device is invalidated, rescan partition
1215 * if open succeeded or failed with -ENOMEDIUM.
1216 * The latter is necessary to prevent ghost
1217 * partitions on a removed medium.
1218 */
1219 if (bdev->bd_invalidated) {
1220 if (!ret)
1221 rescan_partitions(disk, bdev);
1222 else if (ret == -ENOMEDIUM)
1223 invalidate_partitions(disk, bdev);
1224 }
1225 if (ret)
1226 goto out_clear;
1227 } else {
1228 struct block_device *whole;
1229 whole = bdget_disk(disk, 0);
1230 ret = -ENOMEM;
1231 if (!whole)
1232 goto out_clear;
1233 BUG_ON(for_part);
1234 ret = __blkdev_get(whole, mode, 1);
1235 if (ret)
1236 goto out_clear;
1237 bdev->bd_contains = whole;
1238 bdev->bd_part = disk_get_part(disk, partno);
1239 if (!(disk->flags & GENHD_FL_UP) ||
1240 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1241 ret = -ENXIO;
1242 goto out_clear;
1243 }
1244 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1245 }
1246 } else {
1247 if (bdev->bd_contains == bdev) {
1248 ret = 0;
1249 if (bdev->bd_disk->fops->open)
1250 ret = bdev->bd_disk->fops->open(bdev, mode);
1251 /* the same as first opener case, read comment there */
1252 if (bdev->bd_invalidated) {
1253 if (!ret)
1254 rescan_partitions(bdev->bd_disk, bdev);
1255 else if (ret == -ENOMEDIUM)
1256 invalidate_partitions(bdev->bd_disk, bdev);
1257 }
1258 if (ret)
1259 goto out_unlock_bdev;
1260 }
1261 /* only one opener holds refs to the module and disk */
1262 put_disk(disk);
1263 module_put(owner);
1264 }
1265 bdev->bd_openers++;
1266 if (for_part)
1267 bdev->bd_part_count++;
1268 mutex_unlock(&bdev->bd_mutex);
1269 disk_unblock_events(disk);
1270 return 0;
1271
1272 out_clear:
1273 disk_put_part(bdev->bd_part);
1274 bdev->bd_disk = NULL;
1275 bdev->bd_part = NULL;
1276 bdev->bd_queue = NULL;
1277 if (bdev != bdev->bd_contains)
1278 __blkdev_put(bdev->bd_contains, mode, 1);
1279 bdev->bd_contains = NULL;
1280 out_unlock_bdev:
1281 mutex_unlock(&bdev->bd_mutex);
1282 disk_unblock_events(disk);
1283 put_disk(disk);
1284 module_put(owner);
1285 out:
1286 bdput(bdev);
1287
1288 return ret;
1289 }
1290
1291 /**
1292 * blkdev_get - open a block device
1293 * @bdev: block_device to open
1294 * @mode: FMODE_* mask
1295 * @holder: exclusive holder identifier
1296 *
1297 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1298 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1299 * @holder is invalid. Exclusive opens may nest for the same @holder.
1300 *
1301 * On success, the reference count of @bdev is unchanged. On failure,
1302 * @bdev is put.
1303 *
1304 * CONTEXT:
1305 * Might sleep.
1306 *
1307 * RETURNS:
1308 * 0 on success, -errno on failure.
1309 */
1310 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1311 {
1312 struct block_device *whole = NULL;
1313 int res;
1314
1315 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1316
1317 if ((mode & FMODE_EXCL) && holder) {
1318 whole = bd_start_claiming(bdev, holder);
1319 if (IS_ERR(whole)) {
1320 bdput(bdev);
1321 return PTR_ERR(whole);
1322 }
1323 }
1324
1325 res = __blkdev_get(bdev, mode, 0);
1326
1327 if (whole) {
1328 struct gendisk *disk = whole->bd_disk;
1329
1330 /* finish claiming */
1331 mutex_lock(&bdev->bd_mutex);
1332 spin_lock(&bdev_lock);
1333
1334 if (!res) {
1335 BUG_ON(!bd_may_claim(bdev, whole, holder));
1336 /*
1337 * Note that for a whole device bd_holders
1338 * will be incremented twice, and bd_holder
1339 * will be set to bd_may_claim before being
1340 * set to holder
1341 */
1342 whole->bd_holders++;
1343 whole->bd_holder = bd_may_claim;
1344 bdev->bd_holders++;
1345 bdev->bd_holder = holder;
1346 }
1347
1348 /* tell others that we're done */
1349 BUG_ON(whole->bd_claiming != holder);
1350 whole->bd_claiming = NULL;
1351 wake_up_bit(&whole->bd_claiming, 0);
1352
1353 spin_unlock(&bdev_lock);
1354
1355 /*
1356 * Block event polling for write claims if requested. Any
1357 * write holder makes the write_holder state stick until
1358 * all are released. This is good enough and tracking
1359 * individual writeable reference is too fragile given the
1360 * way @mode is used in blkdev_get/put().
1361 */
1362 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1363 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1364 bdev->bd_write_holder = true;
1365 disk_block_events(disk);
1366 }
1367
1368 mutex_unlock(&bdev->bd_mutex);
1369 bdput(whole);
1370 }
1371
1372 return res;
1373 }
1374 EXPORT_SYMBOL(blkdev_get);
1375
1376 /**
1377 * blkdev_get_by_path - open a block device by name
1378 * @path: path to the block device to open
1379 * @mode: FMODE_* mask
1380 * @holder: exclusive holder identifier
1381 *
1382 * Open the blockdevice described by the device file at @path. @mode
1383 * and @holder are identical to blkdev_get().
1384 *
1385 * On success, the returned block_device has reference count of one.
1386 *
1387 * CONTEXT:
1388 * Might sleep.
1389 *
1390 * RETURNS:
1391 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1392 */
1393 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1394 void *holder)
1395 {
1396 struct block_device *bdev;
1397 int err;
1398
1399 bdev = lookup_bdev(path);
1400 if (IS_ERR(bdev))
1401 return bdev;
1402
1403 err = blkdev_get(bdev, mode, holder);
1404 if (err)
1405 return ERR_PTR(err);
1406
1407 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1408 blkdev_put(bdev, mode);
1409 return ERR_PTR(-EACCES);
1410 }
1411
1412 return bdev;
1413 }
1414 EXPORT_SYMBOL(blkdev_get_by_path);
1415
1416 /**
1417 * blkdev_get_by_dev - open a block device by device number
1418 * @dev: device number of block device to open
1419 * @mode: FMODE_* mask
1420 * @holder: exclusive holder identifier
1421 *
1422 * Open the blockdevice described by device number @dev. @mode and
1423 * @holder are identical to blkdev_get().
1424 *
1425 * Use it ONLY if you really do not have anything better - i.e. when
1426 * you are behind a truly sucky interface and all you are given is a
1427 * device number. _Never_ to be used for internal purposes. If you
1428 * ever need it - reconsider your API.
1429 *
1430 * On success, the returned block_device has reference count of one.
1431 *
1432 * CONTEXT:
1433 * Might sleep.
1434 *
1435 * RETURNS:
1436 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1437 */
1438 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1439 {
1440 struct block_device *bdev;
1441 int err;
1442
1443 bdev = bdget(dev);
1444 if (!bdev)
1445 return ERR_PTR(-ENOMEM);
1446
1447 err = blkdev_get(bdev, mode, holder);
1448 if (err)
1449 return ERR_PTR(err);
1450
1451 return bdev;
1452 }
1453 EXPORT_SYMBOL(blkdev_get_by_dev);
1454
1455 static int blkdev_open(struct inode * inode, struct file * filp)
1456 {
1457 struct block_device *bdev;
1458
1459 /*
1460 * Preserve backwards compatibility and allow large file access
1461 * even if userspace doesn't ask for it explicitly. Some mkfs
1462 * binary needs it. We might want to drop this workaround
1463 * during an unstable branch.
1464 */
1465 filp->f_flags |= O_LARGEFILE;
1466
1467 if (filp->f_flags & O_NDELAY)
1468 filp->f_mode |= FMODE_NDELAY;
1469 if (filp->f_flags & O_EXCL)
1470 filp->f_mode |= FMODE_EXCL;
1471 if ((filp->f_flags & O_ACCMODE) == 3)
1472 filp->f_mode |= FMODE_WRITE_IOCTL;
1473
1474 bdev = bd_acquire(inode);
1475 if (bdev == NULL)
1476 return -ENOMEM;
1477
1478 filp->f_mapping = bdev->bd_inode->i_mapping;
1479
1480 return blkdev_get(bdev, filp->f_mode, filp);
1481 }
1482
1483 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1484 {
1485 struct gendisk *disk = bdev->bd_disk;
1486 struct block_device *victim = NULL;
1487
1488 mutex_lock_nested(&bdev->bd_mutex, for_part);
1489 if (for_part)
1490 bdev->bd_part_count--;
1491
1492 if (!--bdev->bd_openers) {
1493 WARN_ON_ONCE(bdev->bd_holders);
1494 sync_blockdev(bdev);
1495 kill_bdev(bdev);
1496 /*
1497 * ->release can cause the queue to disappear, so flush all
1498 * dirty data before.
1499 */
1500 bdev_write_inode(bdev->bd_inode);
1501 }
1502 if (bdev->bd_contains == bdev) {
1503 if (disk->fops->release)
1504 disk->fops->release(disk, mode);
1505 }
1506 if (!bdev->bd_openers) {
1507 struct module *owner = disk->fops->owner;
1508
1509 disk_put_part(bdev->bd_part);
1510 bdev->bd_part = NULL;
1511 bdev->bd_disk = NULL;
1512 if (bdev != bdev->bd_contains)
1513 victim = bdev->bd_contains;
1514 bdev->bd_contains = NULL;
1515
1516 put_disk(disk);
1517 module_put(owner);
1518 }
1519 mutex_unlock(&bdev->bd_mutex);
1520 bdput(bdev);
1521 if (victim)
1522 __blkdev_put(victim, mode, 1);
1523 }
1524
1525 void blkdev_put(struct block_device *bdev, fmode_t mode)
1526 {
1527 mutex_lock(&bdev->bd_mutex);
1528
1529 if (mode & FMODE_EXCL) {
1530 bool bdev_free;
1531
1532 /*
1533 * Release a claim on the device. The holder fields
1534 * are protected with bdev_lock. bd_mutex is to
1535 * synchronize disk_holder unlinking.
1536 */
1537 spin_lock(&bdev_lock);
1538
1539 WARN_ON_ONCE(--bdev->bd_holders < 0);
1540 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1541
1542 /* bd_contains might point to self, check in a separate step */
1543 if ((bdev_free = !bdev->bd_holders))
1544 bdev->bd_holder = NULL;
1545 if (!bdev->bd_contains->bd_holders)
1546 bdev->bd_contains->bd_holder = NULL;
1547
1548 spin_unlock(&bdev_lock);
1549
1550 /*
1551 * If this was the last claim, remove holder link and
1552 * unblock evpoll if it was a write holder.
1553 */
1554 if (bdev_free && bdev->bd_write_holder) {
1555 disk_unblock_events(bdev->bd_disk);
1556 bdev->bd_write_holder = false;
1557 }
1558 }
1559
1560 /*
1561 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1562 * event. This is to ensure detection of media removal commanded
1563 * from userland - e.g. eject(1).
1564 */
1565 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1566
1567 mutex_unlock(&bdev->bd_mutex);
1568
1569 __blkdev_put(bdev, mode, 0);
1570 }
1571 EXPORT_SYMBOL(blkdev_put);
1572
1573 static int blkdev_close(struct inode * inode, struct file * filp)
1574 {
1575 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1576 blkdev_put(bdev, filp->f_mode);
1577 return 0;
1578 }
1579
1580 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1581 {
1582 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1583 fmode_t mode = file->f_mode;
1584
1585 /*
1586 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1587 * to updated it before every ioctl.
1588 */
1589 if (file->f_flags & O_NDELAY)
1590 mode |= FMODE_NDELAY;
1591 else
1592 mode &= ~FMODE_NDELAY;
1593
1594 return blkdev_ioctl(bdev, mode, cmd, arg);
1595 }
1596
1597 /*
1598 * Write data to the block device. Only intended for the block device itself
1599 * and the raw driver which basically is a fake block device.
1600 *
1601 * Does not take i_mutex for the write and thus is not for general purpose
1602 * use.
1603 */
1604 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1605 {
1606 struct file *file = iocb->ki_filp;
1607 struct inode *bd_inode = file->f_mapping->host;
1608 loff_t size = i_size_read(bd_inode);
1609 struct blk_plug plug;
1610 ssize_t ret;
1611
1612 if (bdev_read_only(I_BDEV(bd_inode)))
1613 return -EPERM;
1614
1615 if (!iov_iter_count(from))
1616 return 0;
1617
1618 if (iocb->ki_pos >= size)
1619 return -ENOSPC;
1620
1621 iov_iter_truncate(from, size - iocb->ki_pos);
1622
1623 blk_start_plug(&plug);
1624 ret = __generic_file_write_iter(iocb, from);
1625 if (ret > 0) {
1626 ssize_t err;
1627 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1628 if (err < 0)
1629 ret = err;
1630 }
1631 blk_finish_plug(&plug);
1632 return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1635
1636 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1637 {
1638 struct file *file = iocb->ki_filp;
1639 struct inode *bd_inode = file->f_mapping->host;
1640 loff_t size = i_size_read(bd_inode);
1641 loff_t pos = iocb->ki_pos;
1642
1643 if (pos >= size)
1644 return 0;
1645
1646 size -= pos;
1647 iov_iter_truncate(to, size);
1648 return generic_file_read_iter(iocb, to);
1649 }
1650 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1651
1652 /*
1653 * Try to release a page associated with block device when the system
1654 * is under memory pressure.
1655 */
1656 static int blkdev_releasepage(struct page *page, gfp_t wait)
1657 {
1658 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1659
1660 if (super && super->s_op->bdev_try_to_free_page)
1661 return super->s_op->bdev_try_to_free_page(super, page, wait);
1662
1663 return try_to_free_buffers(page);
1664 }
1665
1666 static const struct address_space_operations def_blk_aops = {
1667 .readpage = blkdev_readpage,
1668 .readpages = blkdev_readpages,
1669 .writepage = blkdev_writepage,
1670 .write_begin = blkdev_write_begin,
1671 .write_end = blkdev_write_end,
1672 .writepages = generic_writepages,
1673 .releasepage = blkdev_releasepage,
1674 .direct_IO = blkdev_direct_IO,
1675 .is_dirty_writeback = buffer_check_dirty_writeback,
1676 };
1677
1678 const struct file_operations def_blk_fops = {
1679 .open = blkdev_open,
1680 .release = blkdev_close,
1681 .llseek = block_llseek,
1682 .read_iter = blkdev_read_iter,
1683 .write_iter = blkdev_write_iter,
1684 .mmap = generic_file_mmap,
1685 .fsync = blkdev_fsync,
1686 .unlocked_ioctl = block_ioctl,
1687 #ifdef CONFIG_COMPAT
1688 .compat_ioctl = compat_blkdev_ioctl,
1689 #endif
1690 .splice_read = generic_file_splice_read,
1691 .splice_write = iter_file_splice_write,
1692 };
1693
1694 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1695 {
1696 int res;
1697 mm_segment_t old_fs = get_fs();
1698 set_fs(KERNEL_DS);
1699 res = blkdev_ioctl(bdev, 0, cmd, arg);
1700 set_fs(old_fs);
1701 return res;
1702 }
1703
1704 EXPORT_SYMBOL(ioctl_by_bdev);
1705
1706 /**
1707 * lookup_bdev - lookup a struct block_device by name
1708 * @pathname: special file representing the block device
1709 *
1710 * Get a reference to the blockdevice at @pathname in the current
1711 * namespace if possible and return it. Return ERR_PTR(error)
1712 * otherwise.
1713 */
1714 struct block_device *lookup_bdev(const char *pathname)
1715 {
1716 struct block_device *bdev;
1717 struct inode *inode;
1718 struct path path;
1719 int error;
1720
1721 if (!pathname || !*pathname)
1722 return ERR_PTR(-EINVAL);
1723
1724 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1725 if (error)
1726 return ERR_PTR(error);
1727
1728 inode = d_backing_inode(path.dentry);
1729 error = -ENOTBLK;
1730 if (!S_ISBLK(inode->i_mode))
1731 goto fail;
1732 error = -EACCES;
1733 if (path.mnt->mnt_flags & MNT_NODEV)
1734 goto fail;
1735 error = -ENOMEM;
1736 bdev = bd_acquire(inode);
1737 if (!bdev)
1738 goto fail;
1739 out:
1740 path_put(&path);
1741 return bdev;
1742 fail:
1743 bdev = ERR_PTR(error);
1744 goto out;
1745 }
1746 EXPORT_SYMBOL(lookup_bdev);
1747
1748 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1749 {
1750 struct super_block *sb = get_super(bdev);
1751 int res = 0;
1752
1753 if (sb) {
1754 /*
1755 * no need to lock the super, get_super holds the
1756 * read mutex so the filesystem cannot go away
1757 * under us (->put_super runs with the write lock
1758 * hold).
1759 */
1760 shrink_dcache_sb(sb);
1761 res = invalidate_inodes(sb, kill_dirty);
1762 drop_super(sb);
1763 }
1764 invalidate_bdev(bdev);
1765 return res;
1766 }
1767 EXPORT_SYMBOL(__invalidate_device);
1768
1769 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1770 {
1771 struct inode *inode, *old_inode = NULL;
1772
1773 spin_lock(&blockdev_superblock->s_inode_list_lock);
1774 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1775 struct address_space *mapping = inode->i_mapping;
1776
1777 spin_lock(&inode->i_lock);
1778 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1779 mapping->nrpages == 0) {
1780 spin_unlock(&inode->i_lock);
1781 continue;
1782 }
1783 __iget(inode);
1784 spin_unlock(&inode->i_lock);
1785 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1786 /*
1787 * We hold a reference to 'inode' so it couldn't have been
1788 * removed from s_inodes list while we dropped the
1789 * s_inode_list_lock We cannot iput the inode now as we can
1790 * be holding the last reference and we cannot iput it under
1791 * s_inode_list_lock. So we keep the reference and iput it
1792 * later.
1793 */
1794 iput(old_inode);
1795 old_inode = inode;
1796
1797 func(I_BDEV(inode), arg);
1798
1799 spin_lock(&blockdev_superblock->s_inode_list_lock);
1800 }
1801 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1802 iput(old_inode);
1803 }
This page took 0.065611 seconds and 5 git commands to generate.