include/linux/memblock.h: fix ordering of 'flags' argument in comments
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0)
92 return;
93
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
99 */
100 cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103
104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
109
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
113
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
120 }
121 return 0;
122 }
123
124 EXPORT_SYMBOL(set_blocksize);
125
126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
135 }
136
137 EXPORT_SYMBOL(sb_set_blocksize);
138
139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
145 }
146
147 EXPORT_SYMBOL(sb_min_blocksize);
148
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
152 {
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
157 }
158
159 static struct inode *bdev_file_inode(struct file *file)
160 {
161 return file->f_mapping->host;
162 }
163
164 static ssize_t
165 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
166 {
167 struct file *file = iocb->ki_filp;
168 struct inode *inode = bdev_file_inode(file);
169
170 if (IS_DAX(inode))
171 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
172 NULL, DIO_SKIP_DIO_COUNT);
173 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
174 blkdev_get_block, NULL, NULL,
175 DIO_SKIP_DIO_COUNT);
176 }
177
178 int __sync_blockdev(struct block_device *bdev, int wait)
179 {
180 if (!bdev)
181 return 0;
182 if (!wait)
183 return filemap_flush(bdev->bd_inode->i_mapping);
184 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
185 }
186
187 /*
188 * Write out and wait upon all the dirty data associated with a block
189 * device via its mapping. Does not take the superblock lock.
190 */
191 int sync_blockdev(struct block_device *bdev)
192 {
193 return __sync_blockdev(bdev, 1);
194 }
195 EXPORT_SYMBOL(sync_blockdev);
196
197 /*
198 * Write out and wait upon all dirty data associated with this
199 * device. Filesystem data as well as the underlying block
200 * device. Takes the superblock lock.
201 */
202 int fsync_bdev(struct block_device *bdev)
203 {
204 struct super_block *sb = get_super(bdev);
205 if (sb) {
206 int res = sync_filesystem(sb);
207 drop_super(sb);
208 return res;
209 }
210 return sync_blockdev(bdev);
211 }
212 EXPORT_SYMBOL(fsync_bdev);
213
214 /**
215 * freeze_bdev -- lock a filesystem and force it into a consistent state
216 * @bdev: blockdevice to lock
217 *
218 * If a superblock is found on this device, we take the s_umount semaphore
219 * on it to make sure nobody unmounts until the snapshot creation is done.
220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
224 * actually.
225 */
226 struct super_block *freeze_bdev(struct block_device *bdev)
227 {
228 struct super_block *sb;
229 int error = 0;
230
231 mutex_lock(&bdev->bd_fsfreeze_mutex);
232 if (++bdev->bd_fsfreeze_count > 1) {
233 /*
234 * We don't even need to grab a reference - the first call
235 * to freeze_bdev grab an active reference and only the last
236 * thaw_bdev drops it.
237 */
238 sb = get_super(bdev);
239 drop_super(sb);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return sb;
242 }
243
244 sb = get_active_super(bdev);
245 if (!sb)
246 goto out;
247 if (sb->s_op->freeze_super)
248 error = sb->s_op->freeze_super(sb);
249 else
250 error = freeze_super(sb);
251 if (error) {
252 deactivate_super(sb);
253 bdev->bd_fsfreeze_count--;
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return ERR_PTR(error);
256 }
257 deactivate_super(sb);
258 out:
259 sync_blockdev(bdev);
260 mutex_unlock(&bdev->bd_fsfreeze_mutex);
261 return sb; /* thaw_bdev releases s->s_umount */
262 }
263 EXPORT_SYMBOL(freeze_bdev);
264
265 /**
266 * thaw_bdev -- unlock filesystem
267 * @bdev: blockdevice to unlock
268 * @sb: associated superblock
269 *
270 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
271 */
272 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
273 {
274 int error = -EINVAL;
275
276 mutex_lock(&bdev->bd_fsfreeze_mutex);
277 if (!bdev->bd_fsfreeze_count)
278 goto out;
279
280 error = 0;
281 if (--bdev->bd_fsfreeze_count > 0)
282 goto out;
283
284 if (!sb)
285 goto out;
286
287 if (sb->s_op->thaw_super)
288 error = sb->s_op->thaw_super(sb);
289 else
290 error = thaw_super(sb);
291 if (error) {
292 bdev->bd_fsfreeze_count++;
293 mutex_unlock(&bdev->bd_fsfreeze_mutex);
294 return error;
295 }
296 out:
297 mutex_unlock(&bdev->bd_fsfreeze_mutex);
298 return 0;
299 }
300 EXPORT_SYMBOL(thaw_bdev);
301
302 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
303 {
304 return block_write_full_page(page, blkdev_get_block, wbc);
305 }
306
307 static int blkdev_readpage(struct file * file, struct page * page)
308 {
309 return block_read_full_page(page, blkdev_get_block);
310 }
311
312 static int blkdev_readpages(struct file *file, struct address_space *mapping,
313 struct list_head *pages, unsigned nr_pages)
314 {
315 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
316 }
317
318 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
319 loff_t pos, unsigned len, unsigned flags,
320 struct page **pagep, void **fsdata)
321 {
322 return block_write_begin(mapping, pos, len, flags, pagep,
323 blkdev_get_block);
324 }
325
326 static int blkdev_write_end(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct page *page, void *fsdata)
329 {
330 int ret;
331 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
332
333 unlock_page(page);
334 page_cache_release(page);
335
336 return ret;
337 }
338
339 /*
340 * private llseek:
341 * for a block special file file_inode(file)->i_size is zero
342 * so we compute the size by hand (just as in block_read/write above)
343 */
344 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
345 {
346 struct inode *bd_inode = bdev_file_inode(file);
347 loff_t retval;
348
349 mutex_lock(&bd_inode->i_mutex);
350 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
351 mutex_unlock(&bd_inode->i_mutex);
352 return retval;
353 }
354
355 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
356 {
357 struct inode *bd_inode = bdev_file_inode(filp);
358 struct block_device *bdev = I_BDEV(bd_inode);
359 int error;
360
361 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
362 if (error)
363 return error;
364
365 /*
366 * There is no need to serialise calls to blkdev_issue_flush with
367 * i_mutex and doing so causes performance issues with concurrent
368 * O_SYNC writers to a block device.
369 */
370 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
371 if (error == -EOPNOTSUPP)
372 error = 0;
373
374 return error;
375 }
376 EXPORT_SYMBOL(blkdev_fsync);
377
378 /**
379 * bdev_read_page() - Start reading a page from a block device
380 * @bdev: The device to read the page from
381 * @sector: The offset on the device to read the page to (need not be aligned)
382 * @page: The page to read
383 *
384 * On entry, the page should be locked. It will be unlocked when the page
385 * has been read. If the block driver implements rw_page synchronously,
386 * that will be true on exit from this function, but it need not be.
387 *
388 * Errors returned by this function are usually "soft", eg out of memory, or
389 * queue full; callers should try a different route to read this page rather
390 * than propagate an error back up the stack.
391 *
392 * Return: negative errno if an error occurs, 0 if submission was successful.
393 */
394 int bdev_read_page(struct block_device *bdev, sector_t sector,
395 struct page *page)
396 {
397 const struct block_device_operations *ops = bdev->bd_disk->fops;
398 int result = -EOPNOTSUPP;
399
400 if (!ops->rw_page || bdev_get_integrity(bdev))
401 return result;
402
403 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
404 if (result)
405 return result;
406 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
407 blk_queue_exit(bdev->bd_queue);
408 return result;
409 }
410 EXPORT_SYMBOL_GPL(bdev_read_page);
411
412 /**
413 * bdev_write_page() - Start writing a page to a block device
414 * @bdev: The device to write the page to
415 * @sector: The offset on the device to write the page to (need not be aligned)
416 * @page: The page to write
417 * @wbc: The writeback_control for the write
418 *
419 * On entry, the page should be locked and not currently under writeback.
420 * On exit, if the write started successfully, the page will be unlocked and
421 * under writeback. If the write failed already (eg the driver failed to
422 * queue the page to the device), the page will still be locked. If the
423 * caller is a ->writepage implementation, it will need to unlock the page.
424 *
425 * Errors returned by this function are usually "soft", eg out of memory, or
426 * queue full; callers should try a different route to write this page rather
427 * than propagate an error back up the stack.
428 *
429 * Return: negative errno if an error occurs, 0 if submission was successful.
430 */
431 int bdev_write_page(struct block_device *bdev, sector_t sector,
432 struct page *page, struct writeback_control *wbc)
433 {
434 int result;
435 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
436 const struct block_device_operations *ops = bdev->bd_disk->fops;
437
438 if (!ops->rw_page || bdev_get_integrity(bdev))
439 return -EOPNOTSUPP;
440 result = blk_queue_enter(bdev->bd_queue, GFP_NOIO);
441 if (result)
442 return result;
443
444 set_page_writeback(page);
445 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
446 if (result)
447 end_page_writeback(page);
448 else
449 unlock_page(page);
450 blk_queue_exit(bdev->bd_queue);
451 return result;
452 }
453 EXPORT_SYMBOL_GPL(bdev_write_page);
454
455 /**
456 * bdev_direct_access() - Get the address for directly-accessibly memory
457 * @bdev: The device containing the memory
458 * @sector: The offset within the device
459 * @addr: Where to put the address of the memory
460 * @pfn: The Page Frame Number for the memory
461 * @size: The number of bytes requested
462 *
463 * If a block device is made up of directly addressable memory, this function
464 * will tell the caller the PFN and the address of the memory. The address
465 * may be directly dereferenced within the kernel without the need to call
466 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
467 * page tables.
468 *
469 * Return: negative errno if an error occurs, otherwise the number of bytes
470 * accessible at this address.
471 */
472 long bdev_direct_access(struct block_device *bdev, sector_t sector,
473 void __pmem **addr, unsigned long *pfn, long size)
474 {
475 long avail;
476 const struct block_device_operations *ops = bdev->bd_disk->fops;
477
478 /*
479 * The device driver is allowed to sleep, in order to make the
480 * memory directly accessible.
481 */
482 might_sleep();
483
484 if (size < 0)
485 return size;
486 if (!ops->direct_access)
487 return -EOPNOTSUPP;
488 if ((sector + DIV_ROUND_UP(size, 512)) >
489 part_nr_sects_read(bdev->bd_part))
490 return -ERANGE;
491 sector += get_start_sect(bdev);
492 if (sector % (PAGE_SIZE / 512))
493 return -EINVAL;
494 avail = ops->direct_access(bdev, sector, addr, pfn);
495 if (!avail)
496 return -ERANGE;
497 return min(avail, size);
498 }
499 EXPORT_SYMBOL_GPL(bdev_direct_access);
500
501 /*
502 * pseudo-fs
503 */
504
505 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
506 static struct kmem_cache * bdev_cachep __read_mostly;
507
508 static struct inode *bdev_alloc_inode(struct super_block *sb)
509 {
510 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
511 if (!ei)
512 return NULL;
513 return &ei->vfs_inode;
514 }
515
516 static void bdev_i_callback(struct rcu_head *head)
517 {
518 struct inode *inode = container_of(head, struct inode, i_rcu);
519 struct bdev_inode *bdi = BDEV_I(inode);
520
521 kmem_cache_free(bdev_cachep, bdi);
522 }
523
524 static void bdev_destroy_inode(struct inode *inode)
525 {
526 call_rcu(&inode->i_rcu, bdev_i_callback);
527 }
528
529 static void init_once(void *foo)
530 {
531 struct bdev_inode *ei = (struct bdev_inode *) foo;
532 struct block_device *bdev = &ei->bdev;
533
534 memset(bdev, 0, sizeof(*bdev));
535 mutex_init(&bdev->bd_mutex);
536 INIT_LIST_HEAD(&bdev->bd_inodes);
537 INIT_LIST_HEAD(&bdev->bd_list);
538 #ifdef CONFIG_SYSFS
539 INIT_LIST_HEAD(&bdev->bd_holder_disks);
540 #endif
541 inode_init_once(&ei->vfs_inode);
542 /* Initialize mutex for freeze. */
543 mutex_init(&bdev->bd_fsfreeze_mutex);
544 }
545
546 static inline void __bd_forget(struct inode *inode)
547 {
548 list_del_init(&inode->i_devices);
549 inode->i_bdev = NULL;
550 inode->i_mapping = &inode->i_data;
551 }
552
553 static void bdev_evict_inode(struct inode *inode)
554 {
555 struct block_device *bdev = &BDEV_I(inode)->bdev;
556 struct list_head *p;
557 truncate_inode_pages_final(&inode->i_data);
558 invalidate_inode_buffers(inode); /* is it needed here? */
559 clear_inode(inode);
560 spin_lock(&bdev_lock);
561 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
562 __bd_forget(list_entry(p, struct inode, i_devices));
563 }
564 list_del_init(&bdev->bd_list);
565 spin_unlock(&bdev_lock);
566 }
567
568 static const struct super_operations bdev_sops = {
569 .statfs = simple_statfs,
570 .alloc_inode = bdev_alloc_inode,
571 .destroy_inode = bdev_destroy_inode,
572 .drop_inode = generic_delete_inode,
573 .evict_inode = bdev_evict_inode,
574 };
575
576 static struct dentry *bd_mount(struct file_system_type *fs_type,
577 int flags, const char *dev_name, void *data)
578 {
579 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
580 }
581
582 static struct file_system_type bd_type = {
583 .name = "bdev",
584 .mount = bd_mount,
585 .kill_sb = kill_anon_super,
586 };
587
588 struct super_block *blockdev_superblock __read_mostly;
589 EXPORT_SYMBOL_GPL(blockdev_superblock);
590
591 void __init bdev_cache_init(void)
592 {
593 int err;
594 static struct vfsmount *bd_mnt;
595
596 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
597 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
598 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
599 init_once);
600 err = register_filesystem(&bd_type);
601 if (err)
602 panic("Cannot register bdev pseudo-fs");
603 bd_mnt = kern_mount(&bd_type);
604 if (IS_ERR(bd_mnt))
605 panic("Cannot create bdev pseudo-fs");
606 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
607 }
608
609 /*
610 * Most likely _very_ bad one - but then it's hardly critical for small
611 * /dev and can be fixed when somebody will need really large one.
612 * Keep in mind that it will be fed through icache hash function too.
613 */
614 static inline unsigned long hash(dev_t dev)
615 {
616 return MAJOR(dev)+MINOR(dev);
617 }
618
619 static int bdev_test(struct inode *inode, void *data)
620 {
621 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
622 }
623
624 static int bdev_set(struct inode *inode, void *data)
625 {
626 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
627 return 0;
628 }
629
630 static LIST_HEAD(all_bdevs);
631
632 struct block_device *bdget(dev_t dev)
633 {
634 struct block_device *bdev;
635 struct inode *inode;
636
637 inode = iget5_locked(blockdev_superblock, hash(dev),
638 bdev_test, bdev_set, &dev);
639
640 if (!inode)
641 return NULL;
642
643 bdev = &BDEV_I(inode)->bdev;
644
645 if (inode->i_state & I_NEW) {
646 bdev->bd_contains = NULL;
647 bdev->bd_super = NULL;
648 bdev->bd_inode = inode;
649 bdev->bd_block_size = (1 << inode->i_blkbits);
650 bdev->bd_part_count = 0;
651 bdev->bd_invalidated = 0;
652 inode->i_mode = S_IFBLK;
653 inode->i_rdev = dev;
654 inode->i_bdev = bdev;
655 inode->i_data.a_ops = &def_blk_aops;
656 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
657 spin_lock(&bdev_lock);
658 list_add(&bdev->bd_list, &all_bdevs);
659 spin_unlock(&bdev_lock);
660 unlock_new_inode(inode);
661 }
662 return bdev;
663 }
664
665 EXPORT_SYMBOL(bdget);
666
667 /**
668 * bdgrab -- Grab a reference to an already referenced block device
669 * @bdev: Block device to grab a reference to.
670 */
671 struct block_device *bdgrab(struct block_device *bdev)
672 {
673 ihold(bdev->bd_inode);
674 return bdev;
675 }
676 EXPORT_SYMBOL(bdgrab);
677
678 long nr_blockdev_pages(void)
679 {
680 struct block_device *bdev;
681 long ret = 0;
682 spin_lock(&bdev_lock);
683 list_for_each_entry(bdev, &all_bdevs, bd_list) {
684 ret += bdev->bd_inode->i_mapping->nrpages;
685 }
686 spin_unlock(&bdev_lock);
687 return ret;
688 }
689
690 void bdput(struct block_device *bdev)
691 {
692 iput(bdev->bd_inode);
693 }
694
695 EXPORT_SYMBOL(bdput);
696
697 static struct block_device *bd_acquire(struct inode *inode)
698 {
699 struct block_device *bdev;
700
701 spin_lock(&bdev_lock);
702 bdev = inode->i_bdev;
703 if (bdev) {
704 ihold(bdev->bd_inode);
705 spin_unlock(&bdev_lock);
706 return bdev;
707 }
708 spin_unlock(&bdev_lock);
709
710 bdev = bdget(inode->i_rdev);
711 if (bdev) {
712 spin_lock(&bdev_lock);
713 if (!inode->i_bdev) {
714 /*
715 * We take an additional reference to bd_inode,
716 * and it's released in clear_inode() of inode.
717 * So, we can access it via ->i_mapping always
718 * without igrab().
719 */
720 ihold(bdev->bd_inode);
721 inode->i_bdev = bdev;
722 inode->i_mapping = bdev->bd_inode->i_mapping;
723 list_add(&inode->i_devices, &bdev->bd_inodes);
724 }
725 spin_unlock(&bdev_lock);
726 }
727 return bdev;
728 }
729
730 /* Call when you free inode */
731
732 void bd_forget(struct inode *inode)
733 {
734 struct block_device *bdev = NULL;
735
736 spin_lock(&bdev_lock);
737 if (!sb_is_blkdev_sb(inode->i_sb))
738 bdev = inode->i_bdev;
739 __bd_forget(inode);
740 spin_unlock(&bdev_lock);
741
742 if (bdev)
743 iput(bdev->bd_inode);
744 }
745
746 /**
747 * bd_may_claim - test whether a block device can be claimed
748 * @bdev: block device of interest
749 * @whole: whole block device containing @bdev, may equal @bdev
750 * @holder: holder trying to claim @bdev
751 *
752 * Test whether @bdev can be claimed by @holder.
753 *
754 * CONTEXT:
755 * spin_lock(&bdev_lock).
756 *
757 * RETURNS:
758 * %true if @bdev can be claimed, %false otherwise.
759 */
760 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
761 void *holder)
762 {
763 if (bdev->bd_holder == holder)
764 return true; /* already a holder */
765 else if (bdev->bd_holder != NULL)
766 return false; /* held by someone else */
767 else if (bdev->bd_contains == bdev)
768 return true; /* is a whole device which isn't held */
769
770 else if (whole->bd_holder == bd_may_claim)
771 return true; /* is a partition of a device that is being partitioned */
772 else if (whole->bd_holder != NULL)
773 return false; /* is a partition of a held device */
774 else
775 return true; /* is a partition of an un-held device */
776 }
777
778 /**
779 * bd_prepare_to_claim - prepare to claim a block device
780 * @bdev: block device of interest
781 * @whole: the whole device containing @bdev, may equal @bdev
782 * @holder: holder trying to claim @bdev
783 *
784 * Prepare to claim @bdev. This function fails if @bdev is already
785 * claimed by another holder and waits if another claiming is in
786 * progress. This function doesn't actually claim. On successful
787 * return, the caller has ownership of bd_claiming and bd_holder[s].
788 *
789 * CONTEXT:
790 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
791 * it multiple times.
792 *
793 * RETURNS:
794 * 0 if @bdev can be claimed, -EBUSY otherwise.
795 */
796 static int bd_prepare_to_claim(struct block_device *bdev,
797 struct block_device *whole, void *holder)
798 {
799 retry:
800 /* if someone else claimed, fail */
801 if (!bd_may_claim(bdev, whole, holder))
802 return -EBUSY;
803
804 /* if claiming is already in progress, wait for it to finish */
805 if (whole->bd_claiming) {
806 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
807 DEFINE_WAIT(wait);
808
809 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
810 spin_unlock(&bdev_lock);
811 schedule();
812 finish_wait(wq, &wait);
813 spin_lock(&bdev_lock);
814 goto retry;
815 }
816
817 /* yay, all mine */
818 return 0;
819 }
820
821 /**
822 * bd_start_claiming - start claiming a block device
823 * @bdev: block device of interest
824 * @holder: holder trying to claim @bdev
825 *
826 * @bdev is about to be opened exclusively. Check @bdev can be opened
827 * exclusively and mark that an exclusive open is in progress. Each
828 * successful call to this function must be matched with a call to
829 * either bd_finish_claiming() or bd_abort_claiming() (which do not
830 * fail).
831 *
832 * This function is used to gain exclusive access to the block device
833 * without actually causing other exclusive open attempts to fail. It
834 * should be used when the open sequence itself requires exclusive
835 * access but may subsequently fail.
836 *
837 * CONTEXT:
838 * Might sleep.
839 *
840 * RETURNS:
841 * Pointer to the block device containing @bdev on success, ERR_PTR()
842 * value on failure.
843 */
844 static struct block_device *bd_start_claiming(struct block_device *bdev,
845 void *holder)
846 {
847 struct gendisk *disk;
848 struct block_device *whole;
849 int partno, err;
850
851 might_sleep();
852
853 /*
854 * @bdev might not have been initialized properly yet, look up
855 * and grab the outer block device the hard way.
856 */
857 disk = get_gendisk(bdev->bd_dev, &partno);
858 if (!disk)
859 return ERR_PTR(-ENXIO);
860
861 /*
862 * Normally, @bdev should equal what's returned from bdget_disk()
863 * if partno is 0; however, some drivers (floppy) use multiple
864 * bdev's for the same physical device and @bdev may be one of the
865 * aliases. Keep @bdev if partno is 0. This means claimer
866 * tracking is broken for those devices but it has always been that
867 * way.
868 */
869 if (partno)
870 whole = bdget_disk(disk, 0);
871 else
872 whole = bdgrab(bdev);
873
874 module_put(disk->fops->owner);
875 put_disk(disk);
876 if (!whole)
877 return ERR_PTR(-ENOMEM);
878
879 /* prepare to claim, if successful, mark claiming in progress */
880 spin_lock(&bdev_lock);
881
882 err = bd_prepare_to_claim(bdev, whole, holder);
883 if (err == 0) {
884 whole->bd_claiming = holder;
885 spin_unlock(&bdev_lock);
886 return whole;
887 } else {
888 spin_unlock(&bdev_lock);
889 bdput(whole);
890 return ERR_PTR(err);
891 }
892 }
893
894 #ifdef CONFIG_SYSFS
895 struct bd_holder_disk {
896 struct list_head list;
897 struct gendisk *disk;
898 int refcnt;
899 };
900
901 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
902 struct gendisk *disk)
903 {
904 struct bd_holder_disk *holder;
905
906 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
907 if (holder->disk == disk)
908 return holder;
909 return NULL;
910 }
911
912 static int add_symlink(struct kobject *from, struct kobject *to)
913 {
914 return sysfs_create_link(from, to, kobject_name(to));
915 }
916
917 static void del_symlink(struct kobject *from, struct kobject *to)
918 {
919 sysfs_remove_link(from, kobject_name(to));
920 }
921
922 /**
923 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
924 * @bdev: the claimed slave bdev
925 * @disk: the holding disk
926 *
927 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
928 *
929 * This functions creates the following sysfs symlinks.
930 *
931 * - from "slaves" directory of the holder @disk to the claimed @bdev
932 * - from "holders" directory of the @bdev to the holder @disk
933 *
934 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
935 * passed to bd_link_disk_holder(), then:
936 *
937 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
938 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
939 *
940 * The caller must have claimed @bdev before calling this function and
941 * ensure that both @bdev and @disk are valid during the creation and
942 * lifetime of these symlinks.
943 *
944 * CONTEXT:
945 * Might sleep.
946 *
947 * RETURNS:
948 * 0 on success, -errno on failure.
949 */
950 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
951 {
952 struct bd_holder_disk *holder;
953 int ret = 0;
954
955 mutex_lock(&bdev->bd_mutex);
956
957 WARN_ON_ONCE(!bdev->bd_holder);
958
959 /* FIXME: remove the following once add_disk() handles errors */
960 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
961 goto out_unlock;
962
963 holder = bd_find_holder_disk(bdev, disk);
964 if (holder) {
965 holder->refcnt++;
966 goto out_unlock;
967 }
968
969 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
970 if (!holder) {
971 ret = -ENOMEM;
972 goto out_unlock;
973 }
974
975 INIT_LIST_HEAD(&holder->list);
976 holder->disk = disk;
977 holder->refcnt = 1;
978
979 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
980 if (ret)
981 goto out_free;
982
983 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
984 if (ret)
985 goto out_del;
986 /*
987 * bdev could be deleted beneath us which would implicitly destroy
988 * the holder directory. Hold on to it.
989 */
990 kobject_get(bdev->bd_part->holder_dir);
991
992 list_add(&holder->list, &bdev->bd_holder_disks);
993 goto out_unlock;
994
995 out_del:
996 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
997 out_free:
998 kfree(holder);
999 out_unlock:
1000 mutex_unlock(&bdev->bd_mutex);
1001 return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1004
1005 /**
1006 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1007 * @bdev: the calimed slave bdev
1008 * @disk: the holding disk
1009 *
1010 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1011 *
1012 * CONTEXT:
1013 * Might sleep.
1014 */
1015 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1016 {
1017 struct bd_holder_disk *holder;
1018
1019 mutex_lock(&bdev->bd_mutex);
1020
1021 holder = bd_find_holder_disk(bdev, disk);
1022
1023 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1024 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1025 del_symlink(bdev->bd_part->holder_dir,
1026 &disk_to_dev(disk)->kobj);
1027 kobject_put(bdev->bd_part->holder_dir);
1028 list_del_init(&holder->list);
1029 kfree(holder);
1030 }
1031
1032 mutex_unlock(&bdev->bd_mutex);
1033 }
1034 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1035 #endif
1036
1037 /**
1038 * flush_disk - invalidates all buffer-cache entries on a disk
1039 *
1040 * @bdev: struct block device to be flushed
1041 * @kill_dirty: flag to guide handling of dirty inodes
1042 *
1043 * Invalidates all buffer-cache entries on a disk. It should be called
1044 * when a disk has been changed -- either by a media change or online
1045 * resize.
1046 */
1047 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1048 {
1049 if (__invalidate_device(bdev, kill_dirty)) {
1050 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1051 "resized disk %s\n",
1052 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1053 }
1054
1055 if (!bdev->bd_disk)
1056 return;
1057 if (disk_part_scan_enabled(bdev->bd_disk))
1058 bdev->bd_invalidated = 1;
1059 }
1060
1061 /**
1062 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1063 * @disk: struct gendisk to check
1064 * @bdev: struct bdev to adjust.
1065 *
1066 * This routine checks to see if the bdev size does not match the disk size
1067 * and adjusts it if it differs.
1068 */
1069 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1070 {
1071 loff_t disk_size, bdev_size;
1072
1073 disk_size = (loff_t)get_capacity(disk) << 9;
1074 bdev_size = i_size_read(bdev->bd_inode);
1075 if (disk_size != bdev_size) {
1076 printk(KERN_INFO
1077 "%s: detected capacity change from %lld to %lld\n",
1078 disk->disk_name, bdev_size, disk_size);
1079 i_size_write(bdev->bd_inode, disk_size);
1080 flush_disk(bdev, false);
1081 }
1082 }
1083 EXPORT_SYMBOL(check_disk_size_change);
1084
1085 /**
1086 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1087 * @disk: struct gendisk to be revalidated
1088 *
1089 * This routine is a wrapper for lower-level driver's revalidate_disk
1090 * call-backs. It is used to do common pre and post operations needed
1091 * for all revalidate_disk operations.
1092 */
1093 int revalidate_disk(struct gendisk *disk)
1094 {
1095 struct block_device *bdev;
1096 int ret = 0;
1097
1098 if (disk->fops->revalidate_disk)
1099 ret = disk->fops->revalidate_disk(disk);
1100 blk_integrity_revalidate(disk);
1101 bdev = bdget_disk(disk, 0);
1102 if (!bdev)
1103 return ret;
1104
1105 mutex_lock(&bdev->bd_mutex);
1106 check_disk_size_change(disk, bdev);
1107 bdev->bd_invalidated = 0;
1108 mutex_unlock(&bdev->bd_mutex);
1109 bdput(bdev);
1110 return ret;
1111 }
1112 EXPORT_SYMBOL(revalidate_disk);
1113
1114 /*
1115 * This routine checks whether a removable media has been changed,
1116 * and invalidates all buffer-cache-entries in that case. This
1117 * is a relatively slow routine, so we have to try to minimize using
1118 * it. Thus it is called only upon a 'mount' or 'open'. This
1119 * is the best way of combining speed and utility, I think.
1120 * People changing diskettes in the middle of an operation deserve
1121 * to lose :-)
1122 */
1123 int check_disk_change(struct block_device *bdev)
1124 {
1125 struct gendisk *disk = bdev->bd_disk;
1126 const struct block_device_operations *bdops = disk->fops;
1127 unsigned int events;
1128
1129 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1130 DISK_EVENT_EJECT_REQUEST);
1131 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1132 return 0;
1133
1134 flush_disk(bdev, true);
1135 if (bdops->revalidate_disk)
1136 bdops->revalidate_disk(bdev->bd_disk);
1137 return 1;
1138 }
1139
1140 EXPORT_SYMBOL(check_disk_change);
1141
1142 void bd_set_size(struct block_device *bdev, loff_t size)
1143 {
1144 unsigned bsize = bdev_logical_block_size(bdev);
1145
1146 mutex_lock(&bdev->bd_inode->i_mutex);
1147 i_size_write(bdev->bd_inode, size);
1148 mutex_unlock(&bdev->bd_inode->i_mutex);
1149 while (bsize < PAGE_CACHE_SIZE) {
1150 if (size & bsize)
1151 break;
1152 bsize <<= 1;
1153 }
1154 bdev->bd_block_size = bsize;
1155 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1156 }
1157 EXPORT_SYMBOL(bd_set_size);
1158
1159 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1160
1161 /*
1162 * bd_mutex locking:
1163 *
1164 * mutex_lock(part->bd_mutex)
1165 * mutex_lock_nested(whole->bd_mutex, 1)
1166 */
1167
1168 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1169 {
1170 struct gendisk *disk;
1171 struct module *owner;
1172 int ret;
1173 int partno;
1174 int perm = 0;
1175
1176 if (mode & FMODE_READ)
1177 perm |= MAY_READ;
1178 if (mode & FMODE_WRITE)
1179 perm |= MAY_WRITE;
1180 /*
1181 * hooks: /n/, see "layering violations".
1182 */
1183 if (!for_part) {
1184 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1185 if (ret != 0) {
1186 bdput(bdev);
1187 return ret;
1188 }
1189 }
1190
1191 restart:
1192
1193 ret = -ENXIO;
1194 disk = get_gendisk(bdev->bd_dev, &partno);
1195 if (!disk)
1196 goto out;
1197 owner = disk->fops->owner;
1198
1199 disk_block_events(disk);
1200 mutex_lock_nested(&bdev->bd_mutex, for_part);
1201 if (!bdev->bd_openers) {
1202 bdev->bd_disk = disk;
1203 bdev->bd_queue = disk->queue;
1204 bdev->bd_contains = bdev;
1205 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1206 if (!partno) {
1207 ret = -ENXIO;
1208 bdev->bd_part = disk_get_part(disk, partno);
1209 if (!bdev->bd_part)
1210 goto out_clear;
1211
1212 ret = 0;
1213 if (disk->fops->open) {
1214 ret = disk->fops->open(bdev, mode);
1215 if (ret == -ERESTARTSYS) {
1216 /* Lost a race with 'disk' being
1217 * deleted, try again.
1218 * See md.c
1219 */
1220 disk_put_part(bdev->bd_part);
1221 bdev->bd_part = NULL;
1222 bdev->bd_disk = NULL;
1223 bdev->bd_queue = NULL;
1224 mutex_unlock(&bdev->bd_mutex);
1225 disk_unblock_events(disk);
1226 put_disk(disk);
1227 module_put(owner);
1228 goto restart;
1229 }
1230 }
1231
1232 if (!ret) {
1233 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1234 if (!blkdev_dax_capable(bdev))
1235 bdev->bd_inode->i_flags &= ~S_DAX;
1236 }
1237
1238 /*
1239 * If the device is invalidated, rescan partition
1240 * if open succeeded or failed with -ENOMEDIUM.
1241 * The latter is necessary to prevent ghost
1242 * partitions on a removed medium.
1243 */
1244 if (bdev->bd_invalidated) {
1245 if (!ret)
1246 rescan_partitions(disk, bdev);
1247 else if (ret == -ENOMEDIUM)
1248 invalidate_partitions(disk, bdev);
1249 }
1250
1251 if (ret)
1252 goto out_clear;
1253 } else {
1254 struct block_device *whole;
1255 whole = bdget_disk(disk, 0);
1256 ret = -ENOMEM;
1257 if (!whole)
1258 goto out_clear;
1259 BUG_ON(for_part);
1260 ret = __blkdev_get(whole, mode, 1);
1261 if (ret)
1262 goto out_clear;
1263 bdev->bd_contains = whole;
1264 bdev->bd_part = disk_get_part(disk, partno);
1265 if (!(disk->flags & GENHD_FL_UP) ||
1266 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1267 ret = -ENXIO;
1268 goto out_clear;
1269 }
1270 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1271 if (!blkdev_dax_capable(bdev))
1272 bdev->bd_inode->i_flags &= ~S_DAX;
1273 }
1274 } else {
1275 if (bdev->bd_contains == bdev) {
1276 ret = 0;
1277 if (bdev->bd_disk->fops->open)
1278 ret = bdev->bd_disk->fops->open(bdev, mode);
1279 /* the same as first opener case, read comment there */
1280 if (bdev->bd_invalidated) {
1281 if (!ret)
1282 rescan_partitions(bdev->bd_disk, bdev);
1283 else if (ret == -ENOMEDIUM)
1284 invalidate_partitions(bdev->bd_disk, bdev);
1285 }
1286 if (ret)
1287 goto out_unlock_bdev;
1288 }
1289 /* only one opener holds refs to the module and disk */
1290 put_disk(disk);
1291 module_put(owner);
1292 }
1293 bdev->bd_openers++;
1294 if (for_part)
1295 bdev->bd_part_count++;
1296 mutex_unlock(&bdev->bd_mutex);
1297 disk_unblock_events(disk);
1298 return 0;
1299
1300 out_clear:
1301 disk_put_part(bdev->bd_part);
1302 bdev->bd_disk = NULL;
1303 bdev->bd_part = NULL;
1304 bdev->bd_queue = NULL;
1305 if (bdev != bdev->bd_contains)
1306 __blkdev_put(bdev->bd_contains, mode, 1);
1307 bdev->bd_contains = NULL;
1308 out_unlock_bdev:
1309 mutex_unlock(&bdev->bd_mutex);
1310 disk_unblock_events(disk);
1311 put_disk(disk);
1312 module_put(owner);
1313 out:
1314 bdput(bdev);
1315
1316 return ret;
1317 }
1318
1319 /**
1320 * blkdev_get - open a block device
1321 * @bdev: block_device to open
1322 * @mode: FMODE_* mask
1323 * @holder: exclusive holder identifier
1324 *
1325 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1326 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1327 * @holder is invalid. Exclusive opens may nest for the same @holder.
1328 *
1329 * On success, the reference count of @bdev is unchanged. On failure,
1330 * @bdev is put.
1331 *
1332 * CONTEXT:
1333 * Might sleep.
1334 *
1335 * RETURNS:
1336 * 0 on success, -errno on failure.
1337 */
1338 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1339 {
1340 struct block_device *whole = NULL;
1341 int res;
1342
1343 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1344
1345 if ((mode & FMODE_EXCL) && holder) {
1346 whole = bd_start_claiming(bdev, holder);
1347 if (IS_ERR(whole)) {
1348 bdput(bdev);
1349 return PTR_ERR(whole);
1350 }
1351 }
1352
1353 res = __blkdev_get(bdev, mode, 0);
1354
1355 if (whole) {
1356 struct gendisk *disk = whole->bd_disk;
1357
1358 /* finish claiming */
1359 mutex_lock(&bdev->bd_mutex);
1360 spin_lock(&bdev_lock);
1361
1362 if (!res) {
1363 BUG_ON(!bd_may_claim(bdev, whole, holder));
1364 /*
1365 * Note that for a whole device bd_holders
1366 * will be incremented twice, and bd_holder
1367 * will be set to bd_may_claim before being
1368 * set to holder
1369 */
1370 whole->bd_holders++;
1371 whole->bd_holder = bd_may_claim;
1372 bdev->bd_holders++;
1373 bdev->bd_holder = holder;
1374 }
1375
1376 /* tell others that we're done */
1377 BUG_ON(whole->bd_claiming != holder);
1378 whole->bd_claiming = NULL;
1379 wake_up_bit(&whole->bd_claiming, 0);
1380
1381 spin_unlock(&bdev_lock);
1382
1383 /*
1384 * Block event polling for write claims if requested. Any
1385 * write holder makes the write_holder state stick until
1386 * all are released. This is good enough and tracking
1387 * individual writeable reference is too fragile given the
1388 * way @mode is used in blkdev_get/put().
1389 */
1390 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1391 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1392 bdev->bd_write_holder = true;
1393 disk_block_events(disk);
1394 }
1395
1396 mutex_unlock(&bdev->bd_mutex);
1397 bdput(whole);
1398 }
1399
1400 return res;
1401 }
1402 EXPORT_SYMBOL(blkdev_get);
1403
1404 /**
1405 * blkdev_get_by_path - open a block device by name
1406 * @path: path to the block device to open
1407 * @mode: FMODE_* mask
1408 * @holder: exclusive holder identifier
1409 *
1410 * Open the blockdevice described by the device file at @path. @mode
1411 * and @holder are identical to blkdev_get().
1412 *
1413 * On success, the returned block_device has reference count of one.
1414 *
1415 * CONTEXT:
1416 * Might sleep.
1417 *
1418 * RETURNS:
1419 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1420 */
1421 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1422 void *holder)
1423 {
1424 struct block_device *bdev;
1425 int err;
1426
1427 bdev = lookup_bdev(path);
1428 if (IS_ERR(bdev))
1429 return bdev;
1430
1431 err = blkdev_get(bdev, mode, holder);
1432 if (err)
1433 return ERR_PTR(err);
1434
1435 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1436 blkdev_put(bdev, mode);
1437 return ERR_PTR(-EACCES);
1438 }
1439
1440 return bdev;
1441 }
1442 EXPORT_SYMBOL(blkdev_get_by_path);
1443
1444 /**
1445 * blkdev_get_by_dev - open a block device by device number
1446 * @dev: device number of block device to open
1447 * @mode: FMODE_* mask
1448 * @holder: exclusive holder identifier
1449 *
1450 * Open the blockdevice described by device number @dev. @mode and
1451 * @holder are identical to blkdev_get().
1452 *
1453 * Use it ONLY if you really do not have anything better - i.e. when
1454 * you are behind a truly sucky interface and all you are given is a
1455 * device number. _Never_ to be used for internal purposes. If you
1456 * ever need it - reconsider your API.
1457 *
1458 * On success, the returned block_device has reference count of one.
1459 *
1460 * CONTEXT:
1461 * Might sleep.
1462 *
1463 * RETURNS:
1464 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1465 */
1466 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1467 {
1468 struct block_device *bdev;
1469 int err;
1470
1471 bdev = bdget(dev);
1472 if (!bdev)
1473 return ERR_PTR(-ENOMEM);
1474
1475 err = blkdev_get(bdev, mode, holder);
1476 if (err)
1477 return ERR_PTR(err);
1478
1479 return bdev;
1480 }
1481 EXPORT_SYMBOL(blkdev_get_by_dev);
1482
1483 static int blkdev_open(struct inode * inode, struct file * filp)
1484 {
1485 struct block_device *bdev;
1486
1487 /*
1488 * Preserve backwards compatibility and allow large file access
1489 * even if userspace doesn't ask for it explicitly. Some mkfs
1490 * binary needs it. We might want to drop this workaround
1491 * during an unstable branch.
1492 */
1493 filp->f_flags |= O_LARGEFILE;
1494
1495 if (filp->f_flags & O_NDELAY)
1496 filp->f_mode |= FMODE_NDELAY;
1497 if (filp->f_flags & O_EXCL)
1498 filp->f_mode |= FMODE_EXCL;
1499 if ((filp->f_flags & O_ACCMODE) == 3)
1500 filp->f_mode |= FMODE_WRITE_IOCTL;
1501
1502 bdev = bd_acquire(inode);
1503 if (bdev == NULL)
1504 return -ENOMEM;
1505
1506 filp->f_mapping = bdev->bd_inode->i_mapping;
1507
1508 return blkdev_get(bdev, filp->f_mode, filp);
1509 }
1510
1511 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1512 {
1513 struct gendisk *disk = bdev->bd_disk;
1514 struct block_device *victim = NULL;
1515
1516 mutex_lock_nested(&bdev->bd_mutex, for_part);
1517 if (for_part)
1518 bdev->bd_part_count--;
1519
1520 if (!--bdev->bd_openers) {
1521 WARN_ON_ONCE(bdev->bd_holders);
1522 sync_blockdev(bdev);
1523 kill_bdev(bdev);
1524
1525 bdev_write_inode(bdev);
1526 /*
1527 * Detaching bdev inode from its wb in __destroy_inode()
1528 * is too late: the queue which embeds its bdi (along with
1529 * root wb) can be gone as soon as we put_disk() below.
1530 */
1531 inode_detach_wb(bdev->bd_inode);
1532 }
1533 if (bdev->bd_contains == bdev) {
1534 if (disk->fops->release)
1535 disk->fops->release(disk, mode);
1536 }
1537 if (!bdev->bd_openers) {
1538 struct module *owner = disk->fops->owner;
1539
1540 disk_put_part(bdev->bd_part);
1541 bdev->bd_part = NULL;
1542 bdev->bd_disk = NULL;
1543 if (bdev != bdev->bd_contains)
1544 victim = bdev->bd_contains;
1545 bdev->bd_contains = NULL;
1546
1547 put_disk(disk);
1548 module_put(owner);
1549 }
1550 mutex_unlock(&bdev->bd_mutex);
1551 bdput(bdev);
1552 if (victim)
1553 __blkdev_put(victim, mode, 1);
1554 }
1555
1556 void blkdev_put(struct block_device *bdev, fmode_t mode)
1557 {
1558 mutex_lock(&bdev->bd_mutex);
1559
1560 if (mode & FMODE_EXCL) {
1561 bool bdev_free;
1562
1563 /*
1564 * Release a claim on the device. The holder fields
1565 * are protected with bdev_lock. bd_mutex is to
1566 * synchronize disk_holder unlinking.
1567 */
1568 spin_lock(&bdev_lock);
1569
1570 WARN_ON_ONCE(--bdev->bd_holders < 0);
1571 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1572
1573 /* bd_contains might point to self, check in a separate step */
1574 if ((bdev_free = !bdev->bd_holders))
1575 bdev->bd_holder = NULL;
1576 if (!bdev->bd_contains->bd_holders)
1577 bdev->bd_contains->bd_holder = NULL;
1578
1579 spin_unlock(&bdev_lock);
1580
1581 /*
1582 * If this was the last claim, remove holder link and
1583 * unblock evpoll if it was a write holder.
1584 */
1585 if (bdev_free && bdev->bd_write_holder) {
1586 disk_unblock_events(bdev->bd_disk);
1587 bdev->bd_write_holder = false;
1588 }
1589 }
1590
1591 /*
1592 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1593 * event. This is to ensure detection of media removal commanded
1594 * from userland - e.g. eject(1).
1595 */
1596 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1597
1598 mutex_unlock(&bdev->bd_mutex);
1599
1600 __blkdev_put(bdev, mode, 0);
1601 }
1602 EXPORT_SYMBOL(blkdev_put);
1603
1604 static int blkdev_close(struct inode * inode, struct file * filp)
1605 {
1606 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1607 blkdev_put(bdev, filp->f_mode);
1608 return 0;
1609 }
1610
1611 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1612 {
1613 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1614 fmode_t mode = file->f_mode;
1615
1616 /*
1617 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1618 * to updated it before every ioctl.
1619 */
1620 if (file->f_flags & O_NDELAY)
1621 mode |= FMODE_NDELAY;
1622 else
1623 mode &= ~FMODE_NDELAY;
1624
1625 return blkdev_ioctl(bdev, mode, cmd, arg);
1626 }
1627
1628 /*
1629 * Write data to the block device. Only intended for the block device itself
1630 * and the raw driver which basically is a fake block device.
1631 *
1632 * Does not take i_mutex for the write and thus is not for general purpose
1633 * use.
1634 */
1635 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1636 {
1637 struct file *file = iocb->ki_filp;
1638 struct inode *bd_inode = bdev_file_inode(file);
1639 loff_t size = i_size_read(bd_inode);
1640 struct blk_plug plug;
1641 ssize_t ret;
1642
1643 if (bdev_read_only(I_BDEV(bd_inode)))
1644 return -EPERM;
1645
1646 if (!iov_iter_count(from))
1647 return 0;
1648
1649 if (iocb->ki_pos >= size)
1650 return -ENOSPC;
1651
1652 iov_iter_truncate(from, size - iocb->ki_pos);
1653
1654 blk_start_plug(&plug);
1655 ret = __generic_file_write_iter(iocb, from);
1656 if (ret > 0) {
1657 ssize_t err;
1658 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1659 if (err < 0)
1660 ret = err;
1661 }
1662 blk_finish_plug(&plug);
1663 return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1666
1667 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1668 {
1669 struct file *file = iocb->ki_filp;
1670 struct inode *bd_inode = bdev_file_inode(file);
1671 loff_t size = i_size_read(bd_inode);
1672 loff_t pos = iocb->ki_pos;
1673
1674 if (pos >= size)
1675 return 0;
1676
1677 size -= pos;
1678 iov_iter_truncate(to, size);
1679 return generic_file_read_iter(iocb, to);
1680 }
1681 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1682
1683 /*
1684 * Try to release a page associated with block device when the system
1685 * is under memory pressure.
1686 */
1687 static int blkdev_releasepage(struct page *page, gfp_t wait)
1688 {
1689 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1690
1691 if (super && super->s_op->bdev_try_to_free_page)
1692 return super->s_op->bdev_try_to_free_page(super, page, wait);
1693
1694 return try_to_free_buffers(page);
1695 }
1696
1697 static const struct address_space_operations def_blk_aops = {
1698 .readpage = blkdev_readpage,
1699 .readpages = blkdev_readpages,
1700 .writepage = blkdev_writepage,
1701 .write_begin = blkdev_write_begin,
1702 .write_end = blkdev_write_end,
1703 .writepages = generic_writepages,
1704 .releasepage = blkdev_releasepage,
1705 .direct_IO = blkdev_direct_IO,
1706 .is_dirty_writeback = buffer_check_dirty_writeback,
1707 };
1708
1709 #ifdef CONFIG_FS_DAX
1710 /*
1711 * In the raw block case we do not need to contend with truncation nor
1712 * unwritten file extents. Without those concerns there is no need for
1713 * additional locking beyond the mmap_sem context that these routines
1714 * are already executing under.
1715 *
1716 * Note, there is no protection if the block device is dynamically
1717 * resized (partition grow/shrink) during a fault. A stable block device
1718 * size is already not enforced in the blkdev_direct_IO path.
1719 *
1720 * For DAX, it is the responsibility of the block device driver to
1721 * ensure the whole-disk device size is stable while requests are in
1722 * flight.
1723 *
1724 * Finally, unlike the filemap_page_mkwrite() case there is no
1725 * filesystem superblock to sync against freezing. We still include a
1726 * pfn_mkwrite callback for dax drivers to receive write fault
1727 * notifications.
1728 */
1729 static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1730 {
1731 return __dax_fault(vma, vmf, blkdev_get_block, NULL);
1732 }
1733
1734 static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1735 pmd_t *pmd, unsigned int flags)
1736 {
1737 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL);
1738 }
1739
1740 static void blkdev_vm_open(struct vm_area_struct *vma)
1741 {
1742 struct inode *bd_inode = bdev_file_inode(vma->vm_file);
1743 struct block_device *bdev = I_BDEV(bd_inode);
1744
1745 mutex_lock(&bd_inode->i_mutex);
1746 bdev->bd_map_count++;
1747 mutex_unlock(&bd_inode->i_mutex);
1748 }
1749
1750 static void blkdev_vm_close(struct vm_area_struct *vma)
1751 {
1752 struct inode *bd_inode = bdev_file_inode(vma->vm_file);
1753 struct block_device *bdev = I_BDEV(bd_inode);
1754
1755 mutex_lock(&bd_inode->i_mutex);
1756 bdev->bd_map_count--;
1757 mutex_unlock(&bd_inode->i_mutex);
1758 }
1759
1760 static const struct vm_operations_struct blkdev_dax_vm_ops = {
1761 .open = blkdev_vm_open,
1762 .close = blkdev_vm_close,
1763 .fault = blkdev_dax_fault,
1764 .pmd_fault = blkdev_dax_pmd_fault,
1765 .pfn_mkwrite = blkdev_dax_fault,
1766 };
1767
1768 static const struct vm_operations_struct blkdev_default_vm_ops = {
1769 .open = blkdev_vm_open,
1770 .close = blkdev_vm_close,
1771 .fault = filemap_fault,
1772 .map_pages = filemap_map_pages,
1773 };
1774
1775 static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1776 {
1777 struct inode *bd_inode = bdev_file_inode(file);
1778 struct block_device *bdev = I_BDEV(bd_inode);
1779
1780 file_accessed(file);
1781 mutex_lock(&bd_inode->i_mutex);
1782 bdev->bd_map_count++;
1783 if (IS_DAX(bd_inode)) {
1784 vma->vm_ops = &blkdev_dax_vm_ops;
1785 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1786 } else {
1787 vma->vm_ops = &blkdev_default_vm_ops;
1788 }
1789 mutex_unlock(&bd_inode->i_mutex);
1790
1791 return 0;
1792 }
1793 #else
1794 #define blkdev_mmap generic_file_mmap
1795 #endif
1796
1797 const struct file_operations def_blk_fops = {
1798 .open = blkdev_open,
1799 .release = blkdev_close,
1800 .llseek = block_llseek,
1801 .read_iter = blkdev_read_iter,
1802 .write_iter = blkdev_write_iter,
1803 .mmap = blkdev_mmap,
1804 .fsync = blkdev_fsync,
1805 .unlocked_ioctl = block_ioctl,
1806 #ifdef CONFIG_COMPAT
1807 .compat_ioctl = compat_blkdev_ioctl,
1808 #endif
1809 .splice_read = generic_file_splice_read,
1810 .splice_write = iter_file_splice_write,
1811 };
1812
1813 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1814 {
1815 int res;
1816 mm_segment_t old_fs = get_fs();
1817 set_fs(KERNEL_DS);
1818 res = blkdev_ioctl(bdev, 0, cmd, arg);
1819 set_fs(old_fs);
1820 return res;
1821 }
1822
1823 EXPORT_SYMBOL(ioctl_by_bdev);
1824
1825 /**
1826 * lookup_bdev - lookup a struct block_device by name
1827 * @pathname: special file representing the block device
1828 *
1829 * Get a reference to the blockdevice at @pathname in the current
1830 * namespace if possible and return it. Return ERR_PTR(error)
1831 * otherwise.
1832 */
1833 struct block_device *lookup_bdev(const char *pathname)
1834 {
1835 struct block_device *bdev;
1836 struct inode *inode;
1837 struct path path;
1838 int error;
1839
1840 if (!pathname || !*pathname)
1841 return ERR_PTR(-EINVAL);
1842
1843 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1844 if (error)
1845 return ERR_PTR(error);
1846
1847 inode = d_backing_inode(path.dentry);
1848 error = -ENOTBLK;
1849 if (!S_ISBLK(inode->i_mode))
1850 goto fail;
1851 error = -EACCES;
1852 if (path.mnt->mnt_flags & MNT_NODEV)
1853 goto fail;
1854 error = -ENOMEM;
1855 bdev = bd_acquire(inode);
1856 if (!bdev)
1857 goto fail;
1858 out:
1859 path_put(&path);
1860 return bdev;
1861 fail:
1862 bdev = ERR_PTR(error);
1863 goto out;
1864 }
1865 EXPORT_SYMBOL(lookup_bdev);
1866
1867 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1868 {
1869 struct super_block *sb = get_super(bdev);
1870 int res = 0;
1871
1872 if (sb) {
1873 /*
1874 * no need to lock the super, get_super holds the
1875 * read mutex so the filesystem cannot go away
1876 * under us (->put_super runs with the write lock
1877 * hold).
1878 */
1879 shrink_dcache_sb(sb);
1880 res = invalidate_inodes(sb, kill_dirty);
1881 drop_super(sb);
1882 }
1883 invalidate_bdev(bdev);
1884 return res;
1885 }
1886 EXPORT_SYMBOL(__invalidate_device);
1887
1888 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1889 {
1890 struct inode *inode, *old_inode = NULL;
1891
1892 spin_lock(&blockdev_superblock->s_inode_list_lock);
1893 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1894 struct address_space *mapping = inode->i_mapping;
1895
1896 spin_lock(&inode->i_lock);
1897 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1898 mapping->nrpages == 0) {
1899 spin_unlock(&inode->i_lock);
1900 continue;
1901 }
1902 __iget(inode);
1903 spin_unlock(&inode->i_lock);
1904 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1905 /*
1906 * We hold a reference to 'inode' so it couldn't have been
1907 * removed from s_inodes list while we dropped the
1908 * s_inode_list_lock We cannot iput the inode now as we can
1909 * be holding the last reference and we cannot iput it under
1910 * s_inode_list_lock. So we keep the reference and iput it
1911 * later.
1912 */
1913 iput(old_inode);
1914 old_inode = inode;
1915
1916 func(I_BDEV(inode), arg);
1917
1918 spin_lock(&blockdev_superblock->s_inode_list_lock);
1919 }
1920 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1921 iput(old_inode);
1922 }
This page took 0.070739 seconds and 5 git commands to generate.