ARC: intc: Document arc_request_percpu_irq() better
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0)
92 return;
93
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
99 */
100 cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103
104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
109
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
113
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
120 }
121 return 0;
122 }
123
124 EXPORT_SYMBOL(set_blocksize);
125
126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
135 }
136
137 EXPORT_SYMBOL(sb_set_blocksize);
138
139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
145 }
146
147 EXPORT_SYMBOL(sb_min_blocksize);
148
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
152 {
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
157 }
158
159 static ssize_t
160 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
161 {
162 struct file *file = iocb->ki_filp;
163 struct inode *inode = file->f_mapping->host;
164
165 if (IS_DAX(inode))
166 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
167 NULL, DIO_SKIP_DIO_COUNT);
168 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
169 blkdev_get_block, NULL, NULL,
170 DIO_SKIP_DIO_COUNT);
171 }
172
173 int __sync_blockdev(struct block_device *bdev, int wait)
174 {
175 if (!bdev)
176 return 0;
177 if (!wait)
178 return filemap_flush(bdev->bd_inode->i_mapping);
179 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
180 }
181
182 /*
183 * Write out and wait upon all the dirty data associated with a block
184 * device via its mapping. Does not take the superblock lock.
185 */
186 int sync_blockdev(struct block_device *bdev)
187 {
188 return __sync_blockdev(bdev, 1);
189 }
190 EXPORT_SYMBOL(sync_blockdev);
191
192 /*
193 * Write out and wait upon all dirty data associated with this
194 * device. Filesystem data as well as the underlying block
195 * device. Takes the superblock lock.
196 */
197 int fsync_bdev(struct block_device *bdev)
198 {
199 struct super_block *sb = get_super(bdev);
200 if (sb) {
201 int res = sync_filesystem(sb);
202 drop_super(sb);
203 return res;
204 }
205 return sync_blockdev(bdev);
206 }
207 EXPORT_SYMBOL(fsync_bdev);
208
209 /**
210 * freeze_bdev -- lock a filesystem and force it into a consistent state
211 * @bdev: blockdevice to lock
212 *
213 * If a superblock is found on this device, we take the s_umount semaphore
214 * on it to make sure nobody unmounts until the snapshot creation is done.
215 * The reference counter (bd_fsfreeze_count) guarantees that only the last
216 * unfreeze process can unfreeze the frozen filesystem actually when multiple
217 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
218 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
219 * actually.
220 */
221 struct super_block *freeze_bdev(struct block_device *bdev)
222 {
223 struct super_block *sb;
224 int error = 0;
225
226 mutex_lock(&bdev->bd_fsfreeze_mutex);
227 if (++bdev->bd_fsfreeze_count > 1) {
228 /*
229 * We don't even need to grab a reference - the first call
230 * to freeze_bdev grab an active reference and only the last
231 * thaw_bdev drops it.
232 */
233 sb = get_super(bdev);
234 drop_super(sb);
235 mutex_unlock(&bdev->bd_fsfreeze_mutex);
236 return sb;
237 }
238
239 sb = get_active_super(bdev);
240 if (!sb)
241 goto out;
242 if (sb->s_op->freeze_super)
243 error = sb->s_op->freeze_super(sb);
244 else
245 error = freeze_super(sb);
246 if (error) {
247 deactivate_super(sb);
248 bdev->bd_fsfreeze_count--;
249 mutex_unlock(&bdev->bd_fsfreeze_mutex);
250 return ERR_PTR(error);
251 }
252 deactivate_super(sb);
253 out:
254 sync_blockdev(bdev);
255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
256 return sb; /* thaw_bdev releases s->s_umount */
257 }
258 EXPORT_SYMBOL(freeze_bdev);
259
260 /**
261 * thaw_bdev -- unlock filesystem
262 * @bdev: blockdevice to unlock
263 * @sb: associated superblock
264 *
265 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
266 */
267 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
268 {
269 int error = -EINVAL;
270
271 mutex_lock(&bdev->bd_fsfreeze_mutex);
272 if (!bdev->bd_fsfreeze_count)
273 goto out;
274
275 error = 0;
276 if (--bdev->bd_fsfreeze_count > 0)
277 goto out;
278
279 if (!sb)
280 goto out;
281
282 if (sb->s_op->thaw_super)
283 error = sb->s_op->thaw_super(sb);
284 else
285 error = thaw_super(sb);
286 if (error) {
287 bdev->bd_fsfreeze_count++;
288 mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 return error;
290 }
291 out:
292 mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 return 0;
294 }
295 EXPORT_SYMBOL(thaw_bdev);
296
297 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
298 {
299 return block_write_full_page(page, blkdev_get_block, wbc);
300 }
301
302 static int blkdev_readpage(struct file * file, struct page * page)
303 {
304 return block_read_full_page(page, blkdev_get_block);
305 }
306
307 static int blkdev_readpages(struct file *file, struct address_space *mapping,
308 struct list_head *pages, unsigned nr_pages)
309 {
310 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
311 }
312
313 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
314 loff_t pos, unsigned len, unsigned flags,
315 struct page **pagep, void **fsdata)
316 {
317 return block_write_begin(mapping, pos, len, flags, pagep,
318 blkdev_get_block);
319 }
320
321 static int blkdev_write_end(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned copied,
323 struct page *page, void *fsdata)
324 {
325 int ret;
326 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
327
328 unlock_page(page);
329 page_cache_release(page);
330
331 return ret;
332 }
333
334 /*
335 * private llseek:
336 * for a block special file file_inode(file)->i_size is zero
337 * so we compute the size by hand (just as in block_read/write above)
338 */
339 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
340 {
341 struct inode *bd_inode = file->f_mapping->host;
342 loff_t retval;
343
344 mutex_lock(&bd_inode->i_mutex);
345 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
346 mutex_unlock(&bd_inode->i_mutex);
347 return retval;
348 }
349
350 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
351 {
352 struct inode *bd_inode = filp->f_mapping->host;
353 struct block_device *bdev = I_BDEV(bd_inode);
354 int error;
355
356 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
357 if (error)
358 return error;
359
360 /*
361 * There is no need to serialise calls to blkdev_issue_flush with
362 * i_mutex and doing so causes performance issues with concurrent
363 * O_SYNC writers to a block device.
364 */
365 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
366 if (error == -EOPNOTSUPP)
367 error = 0;
368
369 return error;
370 }
371 EXPORT_SYMBOL(blkdev_fsync);
372
373 /**
374 * bdev_read_page() - Start reading a page from a block device
375 * @bdev: The device to read the page from
376 * @sector: The offset on the device to read the page to (need not be aligned)
377 * @page: The page to read
378 *
379 * On entry, the page should be locked. It will be unlocked when the page
380 * has been read. If the block driver implements rw_page synchronously,
381 * that will be true on exit from this function, but it need not be.
382 *
383 * Errors returned by this function are usually "soft", eg out of memory, or
384 * queue full; callers should try a different route to read this page rather
385 * than propagate an error back up the stack.
386 *
387 * Return: negative errno if an error occurs, 0 if submission was successful.
388 */
389 int bdev_read_page(struct block_device *bdev, sector_t sector,
390 struct page *page)
391 {
392 const struct block_device_operations *ops = bdev->bd_disk->fops;
393 int result = -EOPNOTSUPP;
394
395 if (!ops->rw_page || bdev_get_integrity(bdev))
396 return result;
397
398 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
399 if (result)
400 return result;
401 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
402 blk_queue_exit(bdev->bd_queue);
403 return result;
404 }
405 EXPORT_SYMBOL_GPL(bdev_read_page);
406
407 /**
408 * bdev_write_page() - Start writing a page to a block device
409 * @bdev: The device to write the page to
410 * @sector: The offset on the device to write the page to (need not be aligned)
411 * @page: The page to write
412 * @wbc: The writeback_control for the write
413 *
414 * On entry, the page should be locked and not currently under writeback.
415 * On exit, if the write started successfully, the page will be unlocked and
416 * under writeback. If the write failed already (eg the driver failed to
417 * queue the page to the device), the page will still be locked. If the
418 * caller is a ->writepage implementation, it will need to unlock the page.
419 *
420 * Errors returned by this function are usually "soft", eg out of memory, or
421 * queue full; callers should try a different route to write this page rather
422 * than propagate an error back up the stack.
423 *
424 * Return: negative errno if an error occurs, 0 if submission was successful.
425 */
426 int bdev_write_page(struct block_device *bdev, sector_t sector,
427 struct page *page, struct writeback_control *wbc)
428 {
429 int result;
430 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
431 const struct block_device_operations *ops = bdev->bd_disk->fops;
432
433 if (!ops->rw_page || bdev_get_integrity(bdev))
434 return -EOPNOTSUPP;
435 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
436 if (result)
437 return result;
438
439 set_page_writeback(page);
440 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
441 if (result)
442 end_page_writeback(page);
443 else
444 unlock_page(page);
445 blk_queue_exit(bdev->bd_queue);
446 return result;
447 }
448 EXPORT_SYMBOL_GPL(bdev_write_page);
449
450 /**
451 * bdev_direct_access() - Get the address for directly-accessibly memory
452 * @bdev: The device containing the memory
453 * @sector: The offset within the device
454 * @addr: Where to put the address of the memory
455 * @pfn: The Page Frame Number for the memory
456 * @size: The number of bytes requested
457 *
458 * If a block device is made up of directly addressable memory, this function
459 * will tell the caller the PFN and the address of the memory. The address
460 * may be directly dereferenced within the kernel without the need to call
461 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
462 * page tables.
463 *
464 * Return: negative errno if an error occurs, otherwise the number of bytes
465 * accessible at this address.
466 */
467 long bdev_direct_access(struct block_device *bdev, sector_t sector,
468 void __pmem **addr, unsigned long *pfn, long size)
469 {
470 long avail;
471 const struct block_device_operations *ops = bdev->bd_disk->fops;
472
473 /*
474 * The device driver is allowed to sleep, in order to make the
475 * memory directly accessible.
476 */
477 might_sleep();
478
479 if (size < 0)
480 return size;
481 if (!ops->direct_access)
482 return -EOPNOTSUPP;
483 if ((sector + DIV_ROUND_UP(size, 512)) >
484 part_nr_sects_read(bdev->bd_part))
485 return -ERANGE;
486 sector += get_start_sect(bdev);
487 if (sector % (PAGE_SIZE / 512))
488 return -EINVAL;
489 avail = ops->direct_access(bdev, sector, addr, pfn);
490 if (!avail)
491 return -ERANGE;
492 return min(avail, size);
493 }
494 EXPORT_SYMBOL_GPL(bdev_direct_access);
495
496 /*
497 * pseudo-fs
498 */
499
500 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
501 static struct kmem_cache * bdev_cachep __read_mostly;
502
503 static struct inode *bdev_alloc_inode(struct super_block *sb)
504 {
505 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
506 if (!ei)
507 return NULL;
508 return &ei->vfs_inode;
509 }
510
511 static void bdev_i_callback(struct rcu_head *head)
512 {
513 struct inode *inode = container_of(head, struct inode, i_rcu);
514 struct bdev_inode *bdi = BDEV_I(inode);
515
516 kmem_cache_free(bdev_cachep, bdi);
517 }
518
519 static void bdev_destroy_inode(struct inode *inode)
520 {
521 call_rcu(&inode->i_rcu, bdev_i_callback);
522 }
523
524 static void init_once(void *foo)
525 {
526 struct bdev_inode *ei = (struct bdev_inode *) foo;
527 struct block_device *bdev = &ei->bdev;
528
529 memset(bdev, 0, sizeof(*bdev));
530 mutex_init(&bdev->bd_mutex);
531 INIT_LIST_HEAD(&bdev->bd_inodes);
532 INIT_LIST_HEAD(&bdev->bd_list);
533 #ifdef CONFIG_SYSFS
534 INIT_LIST_HEAD(&bdev->bd_holder_disks);
535 #endif
536 inode_init_once(&ei->vfs_inode);
537 /* Initialize mutex for freeze. */
538 mutex_init(&bdev->bd_fsfreeze_mutex);
539 }
540
541 static inline void __bd_forget(struct inode *inode)
542 {
543 list_del_init(&inode->i_devices);
544 inode->i_bdev = NULL;
545 inode->i_mapping = &inode->i_data;
546 }
547
548 static void bdev_evict_inode(struct inode *inode)
549 {
550 struct block_device *bdev = &BDEV_I(inode)->bdev;
551 struct list_head *p;
552 truncate_inode_pages_final(&inode->i_data);
553 invalidate_inode_buffers(inode); /* is it needed here? */
554 clear_inode(inode);
555 spin_lock(&bdev_lock);
556 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
557 __bd_forget(list_entry(p, struct inode, i_devices));
558 }
559 list_del_init(&bdev->bd_list);
560 spin_unlock(&bdev_lock);
561 }
562
563 static const struct super_operations bdev_sops = {
564 .statfs = simple_statfs,
565 .alloc_inode = bdev_alloc_inode,
566 .destroy_inode = bdev_destroy_inode,
567 .drop_inode = generic_delete_inode,
568 .evict_inode = bdev_evict_inode,
569 };
570
571 static struct dentry *bd_mount(struct file_system_type *fs_type,
572 int flags, const char *dev_name, void *data)
573 {
574 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
575 }
576
577 static struct file_system_type bd_type = {
578 .name = "bdev",
579 .mount = bd_mount,
580 .kill_sb = kill_anon_super,
581 };
582
583 struct super_block *blockdev_superblock __read_mostly;
584 EXPORT_SYMBOL_GPL(blockdev_superblock);
585
586 void __init bdev_cache_init(void)
587 {
588 int err;
589 static struct vfsmount *bd_mnt;
590
591 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
592 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
593 SLAB_MEM_SPREAD|SLAB_PANIC),
594 init_once);
595 err = register_filesystem(&bd_type);
596 if (err)
597 panic("Cannot register bdev pseudo-fs");
598 bd_mnt = kern_mount(&bd_type);
599 if (IS_ERR(bd_mnt))
600 panic("Cannot create bdev pseudo-fs");
601 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
602 }
603
604 /*
605 * Most likely _very_ bad one - but then it's hardly critical for small
606 * /dev and can be fixed when somebody will need really large one.
607 * Keep in mind that it will be fed through icache hash function too.
608 */
609 static inline unsigned long hash(dev_t dev)
610 {
611 return MAJOR(dev)+MINOR(dev);
612 }
613
614 static int bdev_test(struct inode *inode, void *data)
615 {
616 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
617 }
618
619 static int bdev_set(struct inode *inode, void *data)
620 {
621 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
622 return 0;
623 }
624
625 static LIST_HEAD(all_bdevs);
626
627 struct block_device *bdget(dev_t dev)
628 {
629 struct block_device *bdev;
630 struct inode *inode;
631
632 inode = iget5_locked(blockdev_superblock, hash(dev),
633 bdev_test, bdev_set, &dev);
634
635 if (!inode)
636 return NULL;
637
638 bdev = &BDEV_I(inode)->bdev;
639
640 if (inode->i_state & I_NEW) {
641 bdev->bd_contains = NULL;
642 bdev->bd_super = NULL;
643 bdev->bd_inode = inode;
644 bdev->bd_block_size = (1 << inode->i_blkbits);
645 bdev->bd_part_count = 0;
646 bdev->bd_invalidated = 0;
647 inode->i_mode = S_IFBLK;
648 inode->i_rdev = dev;
649 inode->i_bdev = bdev;
650 inode->i_data.a_ops = &def_blk_aops;
651 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
652 spin_lock(&bdev_lock);
653 list_add(&bdev->bd_list, &all_bdevs);
654 spin_unlock(&bdev_lock);
655 unlock_new_inode(inode);
656 }
657 return bdev;
658 }
659
660 EXPORT_SYMBOL(bdget);
661
662 /**
663 * bdgrab -- Grab a reference to an already referenced block device
664 * @bdev: Block device to grab a reference to.
665 */
666 struct block_device *bdgrab(struct block_device *bdev)
667 {
668 ihold(bdev->bd_inode);
669 return bdev;
670 }
671 EXPORT_SYMBOL(bdgrab);
672
673 long nr_blockdev_pages(void)
674 {
675 struct block_device *bdev;
676 long ret = 0;
677 spin_lock(&bdev_lock);
678 list_for_each_entry(bdev, &all_bdevs, bd_list) {
679 ret += bdev->bd_inode->i_mapping->nrpages;
680 }
681 spin_unlock(&bdev_lock);
682 return ret;
683 }
684
685 void bdput(struct block_device *bdev)
686 {
687 iput(bdev->bd_inode);
688 }
689
690 EXPORT_SYMBOL(bdput);
691
692 static struct block_device *bd_acquire(struct inode *inode)
693 {
694 struct block_device *bdev;
695
696 spin_lock(&bdev_lock);
697 bdev = inode->i_bdev;
698 if (bdev) {
699 ihold(bdev->bd_inode);
700 spin_unlock(&bdev_lock);
701 return bdev;
702 }
703 spin_unlock(&bdev_lock);
704
705 bdev = bdget(inode->i_rdev);
706 if (bdev) {
707 spin_lock(&bdev_lock);
708 if (!inode->i_bdev) {
709 /*
710 * We take an additional reference to bd_inode,
711 * and it's released in clear_inode() of inode.
712 * So, we can access it via ->i_mapping always
713 * without igrab().
714 */
715 ihold(bdev->bd_inode);
716 inode->i_bdev = bdev;
717 inode->i_mapping = bdev->bd_inode->i_mapping;
718 list_add(&inode->i_devices, &bdev->bd_inodes);
719 }
720 spin_unlock(&bdev_lock);
721 }
722 return bdev;
723 }
724
725 /* Call when you free inode */
726
727 void bd_forget(struct inode *inode)
728 {
729 struct block_device *bdev = NULL;
730
731 spin_lock(&bdev_lock);
732 if (!sb_is_blkdev_sb(inode->i_sb))
733 bdev = inode->i_bdev;
734 __bd_forget(inode);
735 spin_unlock(&bdev_lock);
736
737 if (bdev)
738 iput(bdev->bd_inode);
739 }
740
741 /**
742 * bd_may_claim - test whether a block device can be claimed
743 * @bdev: block device of interest
744 * @whole: whole block device containing @bdev, may equal @bdev
745 * @holder: holder trying to claim @bdev
746 *
747 * Test whether @bdev can be claimed by @holder.
748 *
749 * CONTEXT:
750 * spin_lock(&bdev_lock).
751 *
752 * RETURNS:
753 * %true if @bdev can be claimed, %false otherwise.
754 */
755 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
756 void *holder)
757 {
758 if (bdev->bd_holder == holder)
759 return true; /* already a holder */
760 else if (bdev->bd_holder != NULL)
761 return false; /* held by someone else */
762 else if (bdev->bd_contains == bdev)
763 return true; /* is a whole device which isn't held */
764
765 else if (whole->bd_holder == bd_may_claim)
766 return true; /* is a partition of a device that is being partitioned */
767 else if (whole->bd_holder != NULL)
768 return false; /* is a partition of a held device */
769 else
770 return true; /* is a partition of an un-held device */
771 }
772
773 /**
774 * bd_prepare_to_claim - prepare to claim a block device
775 * @bdev: block device of interest
776 * @whole: the whole device containing @bdev, may equal @bdev
777 * @holder: holder trying to claim @bdev
778 *
779 * Prepare to claim @bdev. This function fails if @bdev is already
780 * claimed by another holder and waits if another claiming is in
781 * progress. This function doesn't actually claim. On successful
782 * return, the caller has ownership of bd_claiming and bd_holder[s].
783 *
784 * CONTEXT:
785 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
786 * it multiple times.
787 *
788 * RETURNS:
789 * 0 if @bdev can be claimed, -EBUSY otherwise.
790 */
791 static int bd_prepare_to_claim(struct block_device *bdev,
792 struct block_device *whole, void *holder)
793 {
794 retry:
795 /* if someone else claimed, fail */
796 if (!bd_may_claim(bdev, whole, holder))
797 return -EBUSY;
798
799 /* if claiming is already in progress, wait for it to finish */
800 if (whole->bd_claiming) {
801 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
802 DEFINE_WAIT(wait);
803
804 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
805 spin_unlock(&bdev_lock);
806 schedule();
807 finish_wait(wq, &wait);
808 spin_lock(&bdev_lock);
809 goto retry;
810 }
811
812 /* yay, all mine */
813 return 0;
814 }
815
816 /**
817 * bd_start_claiming - start claiming a block device
818 * @bdev: block device of interest
819 * @holder: holder trying to claim @bdev
820 *
821 * @bdev is about to be opened exclusively. Check @bdev can be opened
822 * exclusively and mark that an exclusive open is in progress. Each
823 * successful call to this function must be matched with a call to
824 * either bd_finish_claiming() or bd_abort_claiming() (which do not
825 * fail).
826 *
827 * This function is used to gain exclusive access to the block device
828 * without actually causing other exclusive open attempts to fail. It
829 * should be used when the open sequence itself requires exclusive
830 * access but may subsequently fail.
831 *
832 * CONTEXT:
833 * Might sleep.
834 *
835 * RETURNS:
836 * Pointer to the block device containing @bdev on success, ERR_PTR()
837 * value on failure.
838 */
839 static struct block_device *bd_start_claiming(struct block_device *bdev,
840 void *holder)
841 {
842 struct gendisk *disk;
843 struct block_device *whole;
844 int partno, err;
845
846 might_sleep();
847
848 /*
849 * @bdev might not have been initialized properly yet, look up
850 * and grab the outer block device the hard way.
851 */
852 disk = get_gendisk(bdev->bd_dev, &partno);
853 if (!disk)
854 return ERR_PTR(-ENXIO);
855
856 /*
857 * Normally, @bdev should equal what's returned from bdget_disk()
858 * if partno is 0; however, some drivers (floppy) use multiple
859 * bdev's for the same physical device and @bdev may be one of the
860 * aliases. Keep @bdev if partno is 0. This means claimer
861 * tracking is broken for those devices but it has always been that
862 * way.
863 */
864 if (partno)
865 whole = bdget_disk(disk, 0);
866 else
867 whole = bdgrab(bdev);
868
869 module_put(disk->fops->owner);
870 put_disk(disk);
871 if (!whole)
872 return ERR_PTR(-ENOMEM);
873
874 /* prepare to claim, if successful, mark claiming in progress */
875 spin_lock(&bdev_lock);
876
877 err = bd_prepare_to_claim(bdev, whole, holder);
878 if (err == 0) {
879 whole->bd_claiming = holder;
880 spin_unlock(&bdev_lock);
881 return whole;
882 } else {
883 spin_unlock(&bdev_lock);
884 bdput(whole);
885 return ERR_PTR(err);
886 }
887 }
888
889 #ifdef CONFIG_SYSFS
890 struct bd_holder_disk {
891 struct list_head list;
892 struct gendisk *disk;
893 int refcnt;
894 };
895
896 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
897 struct gendisk *disk)
898 {
899 struct bd_holder_disk *holder;
900
901 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
902 if (holder->disk == disk)
903 return holder;
904 return NULL;
905 }
906
907 static int add_symlink(struct kobject *from, struct kobject *to)
908 {
909 return sysfs_create_link(from, to, kobject_name(to));
910 }
911
912 static void del_symlink(struct kobject *from, struct kobject *to)
913 {
914 sysfs_remove_link(from, kobject_name(to));
915 }
916
917 /**
918 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
919 * @bdev: the claimed slave bdev
920 * @disk: the holding disk
921 *
922 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
923 *
924 * This functions creates the following sysfs symlinks.
925 *
926 * - from "slaves" directory of the holder @disk to the claimed @bdev
927 * - from "holders" directory of the @bdev to the holder @disk
928 *
929 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
930 * passed to bd_link_disk_holder(), then:
931 *
932 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
933 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
934 *
935 * The caller must have claimed @bdev before calling this function and
936 * ensure that both @bdev and @disk are valid during the creation and
937 * lifetime of these symlinks.
938 *
939 * CONTEXT:
940 * Might sleep.
941 *
942 * RETURNS:
943 * 0 on success, -errno on failure.
944 */
945 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
946 {
947 struct bd_holder_disk *holder;
948 int ret = 0;
949
950 mutex_lock(&bdev->bd_mutex);
951
952 WARN_ON_ONCE(!bdev->bd_holder);
953
954 /* FIXME: remove the following once add_disk() handles errors */
955 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
956 goto out_unlock;
957
958 holder = bd_find_holder_disk(bdev, disk);
959 if (holder) {
960 holder->refcnt++;
961 goto out_unlock;
962 }
963
964 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
965 if (!holder) {
966 ret = -ENOMEM;
967 goto out_unlock;
968 }
969
970 INIT_LIST_HEAD(&holder->list);
971 holder->disk = disk;
972 holder->refcnt = 1;
973
974 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
975 if (ret)
976 goto out_free;
977
978 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
979 if (ret)
980 goto out_del;
981 /*
982 * bdev could be deleted beneath us which would implicitly destroy
983 * the holder directory. Hold on to it.
984 */
985 kobject_get(bdev->bd_part->holder_dir);
986
987 list_add(&holder->list, &bdev->bd_holder_disks);
988 goto out_unlock;
989
990 out_del:
991 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
992 out_free:
993 kfree(holder);
994 out_unlock:
995 mutex_unlock(&bdev->bd_mutex);
996 return ret;
997 }
998 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
999
1000 /**
1001 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1002 * @bdev: the calimed slave bdev
1003 * @disk: the holding disk
1004 *
1005 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1006 *
1007 * CONTEXT:
1008 * Might sleep.
1009 */
1010 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1011 {
1012 struct bd_holder_disk *holder;
1013
1014 mutex_lock(&bdev->bd_mutex);
1015
1016 holder = bd_find_holder_disk(bdev, disk);
1017
1018 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1019 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1020 del_symlink(bdev->bd_part->holder_dir,
1021 &disk_to_dev(disk)->kobj);
1022 kobject_put(bdev->bd_part->holder_dir);
1023 list_del_init(&holder->list);
1024 kfree(holder);
1025 }
1026
1027 mutex_unlock(&bdev->bd_mutex);
1028 }
1029 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1030 #endif
1031
1032 /**
1033 * flush_disk - invalidates all buffer-cache entries on a disk
1034 *
1035 * @bdev: struct block device to be flushed
1036 * @kill_dirty: flag to guide handling of dirty inodes
1037 *
1038 * Invalidates all buffer-cache entries on a disk. It should be called
1039 * when a disk has been changed -- either by a media change or online
1040 * resize.
1041 */
1042 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1043 {
1044 if (__invalidate_device(bdev, kill_dirty)) {
1045 char name[BDEVNAME_SIZE] = "";
1046
1047 if (bdev->bd_disk)
1048 disk_name(bdev->bd_disk, 0, name);
1049 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1050 "resized disk %s\n", name);
1051 }
1052
1053 if (!bdev->bd_disk)
1054 return;
1055 if (disk_part_scan_enabled(bdev->bd_disk))
1056 bdev->bd_invalidated = 1;
1057 }
1058
1059 /**
1060 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1061 * @disk: struct gendisk to check
1062 * @bdev: struct bdev to adjust.
1063 *
1064 * This routine checks to see if the bdev size does not match the disk size
1065 * and adjusts it if it differs.
1066 */
1067 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1068 {
1069 loff_t disk_size, bdev_size;
1070
1071 disk_size = (loff_t)get_capacity(disk) << 9;
1072 bdev_size = i_size_read(bdev->bd_inode);
1073 if (disk_size != bdev_size) {
1074 char name[BDEVNAME_SIZE];
1075
1076 disk_name(disk, 0, name);
1077 printk(KERN_INFO
1078 "%s: detected capacity change from %lld to %lld\n",
1079 name, bdev_size, disk_size);
1080 i_size_write(bdev->bd_inode, disk_size);
1081 flush_disk(bdev, false);
1082 }
1083 }
1084 EXPORT_SYMBOL(check_disk_size_change);
1085
1086 /**
1087 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1088 * @disk: struct gendisk to be revalidated
1089 *
1090 * This routine is a wrapper for lower-level driver's revalidate_disk
1091 * call-backs. It is used to do common pre and post operations needed
1092 * for all revalidate_disk operations.
1093 */
1094 int revalidate_disk(struct gendisk *disk)
1095 {
1096 struct block_device *bdev;
1097 int ret = 0;
1098
1099 if (disk->fops->revalidate_disk)
1100 ret = disk->fops->revalidate_disk(disk);
1101 blk_integrity_revalidate(disk);
1102 bdev = bdget_disk(disk, 0);
1103 if (!bdev)
1104 return ret;
1105
1106 mutex_lock(&bdev->bd_mutex);
1107 check_disk_size_change(disk, bdev);
1108 bdev->bd_invalidated = 0;
1109 mutex_unlock(&bdev->bd_mutex);
1110 bdput(bdev);
1111 return ret;
1112 }
1113 EXPORT_SYMBOL(revalidate_disk);
1114
1115 /*
1116 * This routine checks whether a removable media has been changed,
1117 * and invalidates all buffer-cache-entries in that case. This
1118 * is a relatively slow routine, so we have to try to minimize using
1119 * it. Thus it is called only upon a 'mount' or 'open'. This
1120 * is the best way of combining speed and utility, I think.
1121 * People changing diskettes in the middle of an operation deserve
1122 * to lose :-)
1123 */
1124 int check_disk_change(struct block_device *bdev)
1125 {
1126 struct gendisk *disk = bdev->bd_disk;
1127 const struct block_device_operations *bdops = disk->fops;
1128 unsigned int events;
1129
1130 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1131 DISK_EVENT_EJECT_REQUEST);
1132 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1133 return 0;
1134
1135 flush_disk(bdev, true);
1136 if (bdops->revalidate_disk)
1137 bdops->revalidate_disk(bdev->bd_disk);
1138 return 1;
1139 }
1140
1141 EXPORT_SYMBOL(check_disk_change);
1142
1143 void bd_set_size(struct block_device *bdev, loff_t size)
1144 {
1145 unsigned bsize = bdev_logical_block_size(bdev);
1146
1147 mutex_lock(&bdev->bd_inode->i_mutex);
1148 i_size_write(bdev->bd_inode, size);
1149 mutex_unlock(&bdev->bd_inode->i_mutex);
1150 while (bsize < PAGE_CACHE_SIZE) {
1151 if (size & bsize)
1152 break;
1153 bsize <<= 1;
1154 }
1155 bdev->bd_block_size = bsize;
1156 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1157 }
1158 EXPORT_SYMBOL(bd_set_size);
1159
1160 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1161
1162 /*
1163 * bd_mutex locking:
1164 *
1165 * mutex_lock(part->bd_mutex)
1166 * mutex_lock_nested(whole->bd_mutex, 1)
1167 */
1168
1169 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1170 {
1171 struct gendisk *disk;
1172 struct module *owner;
1173 int ret;
1174 int partno;
1175 int perm = 0;
1176
1177 if (mode & FMODE_READ)
1178 perm |= MAY_READ;
1179 if (mode & FMODE_WRITE)
1180 perm |= MAY_WRITE;
1181 /*
1182 * hooks: /n/, see "layering violations".
1183 */
1184 if (!for_part) {
1185 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1186 if (ret != 0) {
1187 bdput(bdev);
1188 return ret;
1189 }
1190 }
1191
1192 restart:
1193
1194 ret = -ENXIO;
1195 disk = get_gendisk(bdev->bd_dev, &partno);
1196 if (!disk)
1197 goto out;
1198 owner = disk->fops->owner;
1199
1200 disk_block_events(disk);
1201 mutex_lock_nested(&bdev->bd_mutex, for_part);
1202 if (!bdev->bd_openers) {
1203 bdev->bd_disk = disk;
1204 bdev->bd_queue = disk->queue;
1205 bdev->bd_contains = bdev;
1206 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1207 if (!partno) {
1208 ret = -ENXIO;
1209 bdev->bd_part = disk_get_part(disk, partno);
1210 if (!bdev->bd_part)
1211 goto out_clear;
1212
1213 ret = 0;
1214 if (disk->fops->open) {
1215 ret = disk->fops->open(bdev, mode);
1216 if (ret == -ERESTARTSYS) {
1217 /* Lost a race with 'disk' being
1218 * deleted, try again.
1219 * See md.c
1220 */
1221 disk_put_part(bdev->bd_part);
1222 bdev->bd_part = NULL;
1223 bdev->bd_disk = NULL;
1224 bdev->bd_queue = NULL;
1225 mutex_unlock(&bdev->bd_mutex);
1226 disk_unblock_events(disk);
1227 put_disk(disk);
1228 module_put(owner);
1229 goto restart;
1230 }
1231 }
1232
1233 if (!ret)
1234 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1235
1236 /*
1237 * If the device is invalidated, rescan partition
1238 * if open succeeded or failed with -ENOMEDIUM.
1239 * The latter is necessary to prevent ghost
1240 * partitions on a removed medium.
1241 */
1242 if (bdev->bd_invalidated) {
1243 if (!ret)
1244 rescan_partitions(disk, bdev);
1245 else if (ret == -ENOMEDIUM)
1246 invalidate_partitions(disk, bdev);
1247 }
1248 if (ret)
1249 goto out_clear;
1250 } else {
1251 struct block_device *whole;
1252 whole = bdget_disk(disk, 0);
1253 ret = -ENOMEM;
1254 if (!whole)
1255 goto out_clear;
1256 BUG_ON(for_part);
1257 ret = __blkdev_get(whole, mode, 1);
1258 if (ret)
1259 goto out_clear;
1260 bdev->bd_contains = whole;
1261 bdev->bd_part = disk_get_part(disk, partno);
1262 if (!(disk->flags & GENHD_FL_UP) ||
1263 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1264 ret = -ENXIO;
1265 goto out_clear;
1266 }
1267 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1268 /*
1269 * If the partition is not aligned on a page
1270 * boundary, we can't do dax I/O to it.
1271 */
1272 if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1273 (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1274 bdev->bd_inode->i_flags &= ~S_DAX;
1275 }
1276 } else {
1277 if (bdev->bd_contains == bdev) {
1278 ret = 0;
1279 if (bdev->bd_disk->fops->open)
1280 ret = bdev->bd_disk->fops->open(bdev, mode);
1281 /* the same as first opener case, read comment there */
1282 if (bdev->bd_invalidated) {
1283 if (!ret)
1284 rescan_partitions(bdev->bd_disk, bdev);
1285 else if (ret == -ENOMEDIUM)
1286 invalidate_partitions(bdev->bd_disk, bdev);
1287 }
1288 if (ret)
1289 goto out_unlock_bdev;
1290 }
1291 /* only one opener holds refs to the module and disk */
1292 put_disk(disk);
1293 module_put(owner);
1294 }
1295 bdev->bd_openers++;
1296 if (for_part)
1297 bdev->bd_part_count++;
1298 mutex_unlock(&bdev->bd_mutex);
1299 disk_unblock_events(disk);
1300 return 0;
1301
1302 out_clear:
1303 disk_put_part(bdev->bd_part);
1304 bdev->bd_disk = NULL;
1305 bdev->bd_part = NULL;
1306 bdev->bd_queue = NULL;
1307 if (bdev != bdev->bd_contains)
1308 __blkdev_put(bdev->bd_contains, mode, 1);
1309 bdev->bd_contains = NULL;
1310 out_unlock_bdev:
1311 mutex_unlock(&bdev->bd_mutex);
1312 disk_unblock_events(disk);
1313 put_disk(disk);
1314 module_put(owner);
1315 out:
1316 bdput(bdev);
1317
1318 return ret;
1319 }
1320
1321 /**
1322 * blkdev_get - open a block device
1323 * @bdev: block_device to open
1324 * @mode: FMODE_* mask
1325 * @holder: exclusive holder identifier
1326 *
1327 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1328 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1329 * @holder is invalid. Exclusive opens may nest for the same @holder.
1330 *
1331 * On success, the reference count of @bdev is unchanged. On failure,
1332 * @bdev is put.
1333 *
1334 * CONTEXT:
1335 * Might sleep.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1341 {
1342 struct block_device *whole = NULL;
1343 int res;
1344
1345 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1346
1347 if ((mode & FMODE_EXCL) && holder) {
1348 whole = bd_start_claiming(bdev, holder);
1349 if (IS_ERR(whole)) {
1350 bdput(bdev);
1351 return PTR_ERR(whole);
1352 }
1353 }
1354
1355 res = __blkdev_get(bdev, mode, 0);
1356
1357 if (whole) {
1358 struct gendisk *disk = whole->bd_disk;
1359
1360 /* finish claiming */
1361 mutex_lock(&bdev->bd_mutex);
1362 spin_lock(&bdev_lock);
1363
1364 if (!res) {
1365 BUG_ON(!bd_may_claim(bdev, whole, holder));
1366 /*
1367 * Note that for a whole device bd_holders
1368 * will be incremented twice, and bd_holder
1369 * will be set to bd_may_claim before being
1370 * set to holder
1371 */
1372 whole->bd_holders++;
1373 whole->bd_holder = bd_may_claim;
1374 bdev->bd_holders++;
1375 bdev->bd_holder = holder;
1376 }
1377
1378 /* tell others that we're done */
1379 BUG_ON(whole->bd_claiming != holder);
1380 whole->bd_claiming = NULL;
1381 wake_up_bit(&whole->bd_claiming, 0);
1382
1383 spin_unlock(&bdev_lock);
1384
1385 /*
1386 * Block event polling for write claims if requested. Any
1387 * write holder makes the write_holder state stick until
1388 * all are released. This is good enough and tracking
1389 * individual writeable reference is too fragile given the
1390 * way @mode is used in blkdev_get/put().
1391 */
1392 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1393 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1394 bdev->bd_write_holder = true;
1395 disk_block_events(disk);
1396 }
1397
1398 mutex_unlock(&bdev->bd_mutex);
1399 bdput(whole);
1400 }
1401
1402 return res;
1403 }
1404 EXPORT_SYMBOL(blkdev_get);
1405
1406 /**
1407 * blkdev_get_by_path - open a block device by name
1408 * @path: path to the block device to open
1409 * @mode: FMODE_* mask
1410 * @holder: exclusive holder identifier
1411 *
1412 * Open the blockdevice described by the device file at @path. @mode
1413 * and @holder are identical to blkdev_get().
1414 *
1415 * On success, the returned block_device has reference count of one.
1416 *
1417 * CONTEXT:
1418 * Might sleep.
1419 *
1420 * RETURNS:
1421 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1422 */
1423 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 void *holder)
1425 {
1426 struct block_device *bdev;
1427 int err;
1428
1429 bdev = lookup_bdev(path);
1430 if (IS_ERR(bdev))
1431 return bdev;
1432
1433 err = blkdev_get(bdev, mode, holder);
1434 if (err)
1435 return ERR_PTR(err);
1436
1437 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438 blkdev_put(bdev, mode);
1439 return ERR_PTR(-EACCES);
1440 }
1441
1442 return bdev;
1443 }
1444 EXPORT_SYMBOL(blkdev_get_by_path);
1445
1446 /**
1447 * blkdev_get_by_dev - open a block device by device number
1448 * @dev: device number of block device to open
1449 * @mode: FMODE_* mask
1450 * @holder: exclusive holder identifier
1451 *
1452 * Open the blockdevice described by device number @dev. @mode and
1453 * @holder are identical to blkdev_get().
1454 *
1455 * Use it ONLY if you really do not have anything better - i.e. when
1456 * you are behind a truly sucky interface and all you are given is a
1457 * device number. _Never_ to be used for internal purposes. If you
1458 * ever need it - reconsider your API.
1459 *
1460 * On success, the returned block_device has reference count of one.
1461 *
1462 * CONTEXT:
1463 * Might sleep.
1464 *
1465 * RETURNS:
1466 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1467 */
1468 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1469 {
1470 struct block_device *bdev;
1471 int err;
1472
1473 bdev = bdget(dev);
1474 if (!bdev)
1475 return ERR_PTR(-ENOMEM);
1476
1477 err = blkdev_get(bdev, mode, holder);
1478 if (err)
1479 return ERR_PTR(err);
1480
1481 return bdev;
1482 }
1483 EXPORT_SYMBOL(blkdev_get_by_dev);
1484
1485 static int blkdev_open(struct inode * inode, struct file * filp)
1486 {
1487 struct block_device *bdev;
1488
1489 /*
1490 * Preserve backwards compatibility and allow large file access
1491 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 * binary needs it. We might want to drop this workaround
1493 * during an unstable branch.
1494 */
1495 filp->f_flags |= O_LARGEFILE;
1496
1497 if (filp->f_flags & O_NDELAY)
1498 filp->f_mode |= FMODE_NDELAY;
1499 if (filp->f_flags & O_EXCL)
1500 filp->f_mode |= FMODE_EXCL;
1501 if ((filp->f_flags & O_ACCMODE) == 3)
1502 filp->f_mode |= FMODE_WRITE_IOCTL;
1503
1504 bdev = bd_acquire(inode);
1505 if (bdev == NULL)
1506 return -ENOMEM;
1507
1508 filp->f_mapping = bdev->bd_inode->i_mapping;
1509
1510 return blkdev_get(bdev, filp->f_mode, filp);
1511 }
1512
1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1514 {
1515 struct gendisk *disk = bdev->bd_disk;
1516 struct block_device *victim = NULL;
1517
1518 mutex_lock_nested(&bdev->bd_mutex, for_part);
1519 if (for_part)
1520 bdev->bd_part_count--;
1521
1522 if (!--bdev->bd_openers) {
1523 WARN_ON_ONCE(bdev->bd_holders);
1524 sync_blockdev(bdev);
1525 kill_bdev(bdev);
1526 /*
1527 * ->release can cause the queue to disappear, so flush all
1528 * dirty data before.
1529 */
1530 bdev_write_inode(bdev);
1531 }
1532 if (bdev->bd_contains == bdev) {
1533 if (disk->fops->release)
1534 disk->fops->release(disk, mode);
1535 }
1536 if (!bdev->bd_openers) {
1537 struct module *owner = disk->fops->owner;
1538
1539 disk_put_part(bdev->bd_part);
1540 bdev->bd_part = NULL;
1541 bdev->bd_disk = NULL;
1542 if (bdev != bdev->bd_contains)
1543 victim = bdev->bd_contains;
1544 bdev->bd_contains = NULL;
1545
1546 put_disk(disk);
1547 module_put(owner);
1548 }
1549 mutex_unlock(&bdev->bd_mutex);
1550 bdput(bdev);
1551 if (victim)
1552 __blkdev_put(victim, mode, 1);
1553 }
1554
1555 void blkdev_put(struct block_device *bdev, fmode_t mode)
1556 {
1557 mutex_lock(&bdev->bd_mutex);
1558
1559 if (mode & FMODE_EXCL) {
1560 bool bdev_free;
1561
1562 /*
1563 * Release a claim on the device. The holder fields
1564 * are protected with bdev_lock. bd_mutex is to
1565 * synchronize disk_holder unlinking.
1566 */
1567 spin_lock(&bdev_lock);
1568
1569 WARN_ON_ONCE(--bdev->bd_holders < 0);
1570 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1571
1572 /* bd_contains might point to self, check in a separate step */
1573 if ((bdev_free = !bdev->bd_holders))
1574 bdev->bd_holder = NULL;
1575 if (!bdev->bd_contains->bd_holders)
1576 bdev->bd_contains->bd_holder = NULL;
1577
1578 spin_unlock(&bdev_lock);
1579
1580 /*
1581 * If this was the last claim, remove holder link and
1582 * unblock evpoll if it was a write holder.
1583 */
1584 if (bdev_free && bdev->bd_write_holder) {
1585 disk_unblock_events(bdev->bd_disk);
1586 bdev->bd_write_holder = false;
1587 }
1588 }
1589
1590 /*
1591 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1592 * event. This is to ensure detection of media removal commanded
1593 * from userland - e.g. eject(1).
1594 */
1595 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1596
1597 mutex_unlock(&bdev->bd_mutex);
1598
1599 __blkdev_put(bdev, mode, 0);
1600 }
1601 EXPORT_SYMBOL(blkdev_put);
1602
1603 static int blkdev_close(struct inode * inode, struct file * filp)
1604 {
1605 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1606 blkdev_put(bdev, filp->f_mode);
1607 return 0;
1608 }
1609
1610 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1611 {
1612 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1613 fmode_t mode = file->f_mode;
1614
1615 /*
1616 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1617 * to updated it before every ioctl.
1618 */
1619 if (file->f_flags & O_NDELAY)
1620 mode |= FMODE_NDELAY;
1621 else
1622 mode &= ~FMODE_NDELAY;
1623
1624 return blkdev_ioctl(bdev, mode, cmd, arg);
1625 }
1626
1627 /*
1628 * Write data to the block device. Only intended for the block device itself
1629 * and the raw driver which basically is a fake block device.
1630 *
1631 * Does not take i_mutex for the write and thus is not for general purpose
1632 * use.
1633 */
1634 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1635 {
1636 struct file *file = iocb->ki_filp;
1637 struct inode *bd_inode = file->f_mapping->host;
1638 loff_t size = i_size_read(bd_inode);
1639 struct blk_plug plug;
1640 ssize_t ret;
1641
1642 if (bdev_read_only(I_BDEV(bd_inode)))
1643 return -EPERM;
1644
1645 if (!iov_iter_count(from))
1646 return 0;
1647
1648 if (iocb->ki_pos >= size)
1649 return -ENOSPC;
1650
1651 iov_iter_truncate(from, size - iocb->ki_pos);
1652
1653 blk_start_plug(&plug);
1654 ret = __generic_file_write_iter(iocb, from);
1655 if (ret > 0) {
1656 ssize_t err;
1657 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1658 if (err < 0)
1659 ret = err;
1660 }
1661 blk_finish_plug(&plug);
1662 return ret;
1663 }
1664 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1665
1666 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1667 {
1668 struct file *file = iocb->ki_filp;
1669 struct inode *bd_inode = file->f_mapping->host;
1670 loff_t size = i_size_read(bd_inode);
1671 loff_t pos = iocb->ki_pos;
1672
1673 if (pos >= size)
1674 return 0;
1675
1676 size -= pos;
1677 iov_iter_truncate(to, size);
1678 return generic_file_read_iter(iocb, to);
1679 }
1680 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1681
1682 /*
1683 * Try to release a page associated with block device when the system
1684 * is under memory pressure.
1685 */
1686 static int blkdev_releasepage(struct page *page, gfp_t wait)
1687 {
1688 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1689
1690 if (super && super->s_op->bdev_try_to_free_page)
1691 return super->s_op->bdev_try_to_free_page(super, page, wait);
1692
1693 return try_to_free_buffers(page);
1694 }
1695
1696 static const struct address_space_operations def_blk_aops = {
1697 .readpage = blkdev_readpage,
1698 .readpages = blkdev_readpages,
1699 .writepage = blkdev_writepage,
1700 .write_begin = blkdev_write_begin,
1701 .write_end = blkdev_write_end,
1702 .writepages = generic_writepages,
1703 .releasepage = blkdev_releasepage,
1704 .direct_IO = blkdev_direct_IO,
1705 .is_dirty_writeback = buffer_check_dirty_writeback,
1706 };
1707
1708 const struct file_operations def_blk_fops = {
1709 .open = blkdev_open,
1710 .release = blkdev_close,
1711 .llseek = block_llseek,
1712 .read_iter = blkdev_read_iter,
1713 .write_iter = blkdev_write_iter,
1714 .mmap = generic_file_mmap,
1715 .fsync = blkdev_fsync,
1716 .unlocked_ioctl = block_ioctl,
1717 #ifdef CONFIG_COMPAT
1718 .compat_ioctl = compat_blkdev_ioctl,
1719 #endif
1720 .splice_read = generic_file_splice_read,
1721 .splice_write = iter_file_splice_write,
1722 };
1723
1724 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1725 {
1726 int res;
1727 mm_segment_t old_fs = get_fs();
1728 set_fs(KERNEL_DS);
1729 res = blkdev_ioctl(bdev, 0, cmd, arg);
1730 set_fs(old_fs);
1731 return res;
1732 }
1733
1734 EXPORT_SYMBOL(ioctl_by_bdev);
1735
1736 /**
1737 * lookup_bdev - lookup a struct block_device by name
1738 * @pathname: special file representing the block device
1739 *
1740 * Get a reference to the blockdevice at @pathname in the current
1741 * namespace if possible and return it. Return ERR_PTR(error)
1742 * otherwise.
1743 */
1744 struct block_device *lookup_bdev(const char *pathname)
1745 {
1746 struct block_device *bdev;
1747 struct inode *inode;
1748 struct path path;
1749 int error;
1750
1751 if (!pathname || !*pathname)
1752 return ERR_PTR(-EINVAL);
1753
1754 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1755 if (error)
1756 return ERR_PTR(error);
1757
1758 inode = d_backing_inode(path.dentry);
1759 error = -ENOTBLK;
1760 if (!S_ISBLK(inode->i_mode))
1761 goto fail;
1762 error = -EACCES;
1763 if (path.mnt->mnt_flags & MNT_NODEV)
1764 goto fail;
1765 error = -ENOMEM;
1766 bdev = bd_acquire(inode);
1767 if (!bdev)
1768 goto fail;
1769 out:
1770 path_put(&path);
1771 return bdev;
1772 fail:
1773 bdev = ERR_PTR(error);
1774 goto out;
1775 }
1776 EXPORT_SYMBOL(lookup_bdev);
1777
1778 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1779 {
1780 struct super_block *sb = get_super(bdev);
1781 int res = 0;
1782
1783 if (sb) {
1784 /*
1785 * no need to lock the super, get_super holds the
1786 * read mutex so the filesystem cannot go away
1787 * under us (->put_super runs with the write lock
1788 * hold).
1789 */
1790 shrink_dcache_sb(sb);
1791 res = invalidate_inodes(sb, kill_dirty);
1792 drop_super(sb);
1793 }
1794 invalidate_bdev(bdev);
1795 return res;
1796 }
1797 EXPORT_SYMBOL(__invalidate_device);
1798
1799 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1800 {
1801 struct inode *inode, *old_inode = NULL;
1802
1803 spin_lock(&blockdev_superblock->s_inode_list_lock);
1804 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1805 struct address_space *mapping = inode->i_mapping;
1806
1807 spin_lock(&inode->i_lock);
1808 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1809 mapping->nrpages == 0) {
1810 spin_unlock(&inode->i_lock);
1811 continue;
1812 }
1813 __iget(inode);
1814 spin_unlock(&inode->i_lock);
1815 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1816 /*
1817 * We hold a reference to 'inode' so it couldn't have been
1818 * removed from s_inodes list while we dropped the
1819 * s_inode_list_lock We cannot iput the inode now as we can
1820 * be holding the last reference and we cannot iput it under
1821 * s_inode_list_lock. So we keep the reference and iput it
1822 * later.
1823 */
1824 iput(old_inode);
1825 old_inode = inode;
1826
1827 func(I_BDEV(inode), arg);
1828
1829 spin_lock(&blockdev_superblock->s_inode_list_lock);
1830 }
1831 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1832 iput(old_inode);
1833 }
This page took 0.07489 seconds and 5 git commands to generate.