block/mm: make bdev_ops->rw_page() take a bool for read/write
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <asm/uaccess.h>
34 #include "internal.h"
35
36 struct bdev_inode {
37 struct block_device bdev;
38 struct inode vfs_inode;
39 };
40
41 static const struct address_space_operations def_blk_aops;
42
43 static inline struct bdev_inode *BDEV_I(struct inode *inode)
44 {
45 return container_of(inode, struct bdev_inode, vfs_inode);
46 }
47
48 struct block_device *I_BDEV(struct inode *inode)
49 {
50 return &BDEV_I(inode)->bdev;
51 }
52 EXPORT_SYMBOL(I_BDEV);
53
54 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
55 {
56 struct va_format vaf;
57 va_list args;
58
59 va_start(args, fmt);
60 vaf.fmt = fmt;
61 vaf.va = &args;
62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
63 va_end(args);
64 }
65
66 static void bdev_write_inode(struct block_device *bdev)
67 {
68 struct inode *inode = bdev->bd_inode;
69 int ret;
70
71 spin_lock(&inode->i_lock);
72 while (inode->i_state & I_DIRTY) {
73 spin_unlock(&inode->i_lock);
74 ret = write_inode_now(inode, true);
75 if (ret) {
76 char name[BDEVNAME_SIZE];
77 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
78 "for block device %s (err=%d).\n",
79 bdevname(bdev, name), ret);
80 }
81 spin_lock(&inode->i_lock);
82 }
83 spin_unlock(&inode->i_lock);
84 }
85
86 /* Kill _all_ buffers and pagecache , dirty or not.. */
87 void kill_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
92 return;
93
94 invalidate_bh_lrus();
95 truncate_inode_pages(mapping, 0);
96 }
97 EXPORT_SYMBOL(kill_bdev);
98
99 /* Invalidate clean unused buffers and pagecache. */
100 void invalidate_bdev(struct block_device *bdev)
101 {
102 struct address_space *mapping = bdev->bd_inode->i_mapping;
103
104 if (mapping->nrpages == 0)
105 return;
106
107 invalidate_bh_lrus();
108 lru_add_drain_all(); /* make sure all lru add caches are flushed */
109 invalidate_mapping_pages(mapping, 0, -1);
110 /* 99% of the time, we don't need to flush the cleancache on the bdev.
111 * But, for the strange corners, lets be cautious
112 */
113 cleancache_invalidate_inode(mapping);
114 }
115 EXPORT_SYMBOL(invalidate_bdev);
116
117 int set_blocksize(struct block_device *bdev, int size)
118 {
119 /* Size must be a power of two, and between 512 and PAGE_SIZE */
120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 return -EINVAL;
122
123 /* Size cannot be smaller than the size supported by the device */
124 if (size < bdev_logical_block_size(bdev))
125 return -EINVAL;
126
127 /* Don't change the size if it is same as current */
128 if (bdev->bd_block_size != size) {
129 sync_blockdev(bdev);
130 bdev->bd_block_size = size;
131 bdev->bd_inode->i_blkbits = blksize_bits(size);
132 kill_bdev(bdev);
133 }
134 return 0;
135 }
136
137 EXPORT_SYMBOL(set_blocksize);
138
139 int sb_set_blocksize(struct super_block *sb, int size)
140 {
141 if (set_blocksize(sb->s_bdev, size))
142 return 0;
143 /* If we get here, we know size is power of two
144 * and it's value is between 512 and PAGE_SIZE */
145 sb->s_blocksize = size;
146 sb->s_blocksize_bits = blksize_bits(size);
147 return sb->s_blocksize;
148 }
149
150 EXPORT_SYMBOL(sb_set_blocksize);
151
152 int sb_min_blocksize(struct super_block *sb, int size)
153 {
154 int minsize = bdev_logical_block_size(sb->s_bdev);
155 if (size < minsize)
156 size = minsize;
157 return sb_set_blocksize(sb, size);
158 }
159
160 EXPORT_SYMBOL(sb_min_blocksize);
161
162 static int
163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 struct buffer_head *bh, int create)
165 {
166 bh->b_bdev = I_BDEV(inode);
167 bh->b_blocknr = iblock;
168 set_buffer_mapped(bh);
169 return 0;
170 }
171
172 static struct inode *bdev_file_inode(struct file *file)
173 {
174 return file->f_mapping->host;
175 }
176
177 static ssize_t
178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
179 {
180 struct file *file = iocb->ki_filp;
181 struct inode *inode = bdev_file_inode(file);
182
183 if (IS_DAX(inode))
184 return dax_do_io(iocb, inode, iter, blkdev_get_block,
185 NULL, DIO_SKIP_DIO_COUNT);
186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
187 blkdev_get_block, NULL, NULL,
188 DIO_SKIP_DIO_COUNT);
189 }
190
191 int __sync_blockdev(struct block_device *bdev, int wait)
192 {
193 if (!bdev)
194 return 0;
195 if (!wait)
196 return filemap_flush(bdev->bd_inode->i_mapping);
197 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
198 }
199
200 /*
201 * Write out and wait upon all the dirty data associated with a block
202 * device via its mapping. Does not take the superblock lock.
203 */
204 int sync_blockdev(struct block_device *bdev)
205 {
206 return __sync_blockdev(bdev, 1);
207 }
208 EXPORT_SYMBOL(sync_blockdev);
209
210 /*
211 * Write out and wait upon all dirty data associated with this
212 * device. Filesystem data as well as the underlying block
213 * device. Takes the superblock lock.
214 */
215 int fsync_bdev(struct block_device *bdev)
216 {
217 struct super_block *sb = get_super(bdev);
218 if (sb) {
219 int res = sync_filesystem(sb);
220 drop_super(sb);
221 return res;
222 }
223 return sync_blockdev(bdev);
224 }
225 EXPORT_SYMBOL(fsync_bdev);
226
227 /**
228 * freeze_bdev -- lock a filesystem and force it into a consistent state
229 * @bdev: blockdevice to lock
230 *
231 * If a superblock is found on this device, we take the s_umount semaphore
232 * on it to make sure nobody unmounts until the snapshot creation is done.
233 * The reference counter (bd_fsfreeze_count) guarantees that only the last
234 * unfreeze process can unfreeze the frozen filesystem actually when multiple
235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
237 * actually.
238 */
239 struct super_block *freeze_bdev(struct block_device *bdev)
240 {
241 struct super_block *sb;
242 int error = 0;
243
244 mutex_lock(&bdev->bd_fsfreeze_mutex);
245 if (++bdev->bd_fsfreeze_count > 1) {
246 /*
247 * We don't even need to grab a reference - the first call
248 * to freeze_bdev grab an active reference and only the last
249 * thaw_bdev drops it.
250 */
251 sb = get_super(bdev);
252 drop_super(sb);
253 mutex_unlock(&bdev->bd_fsfreeze_mutex);
254 return sb;
255 }
256
257 sb = get_active_super(bdev);
258 if (!sb)
259 goto out;
260 if (sb->s_op->freeze_super)
261 error = sb->s_op->freeze_super(sb);
262 else
263 error = freeze_super(sb);
264 if (error) {
265 deactivate_super(sb);
266 bdev->bd_fsfreeze_count--;
267 mutex_unlock(&bdev->bd_fsfreeze_mutex);
268 return ERR_PTR(error);
269 }
270 deactivate_super(sb);
271 out:
272 sync_blockdev(bdev);
273 mutex_unlock(&bdev->bd_fsfreeze_mutex);
274 return sb; /* thaw_bdev releases s->s_umount */
275 }
276 EXPORT_SYMBOL(freeze_bdev);
277
278 /**
279 * thaw_bdev -- unlock filesystem
280 * @bdev: blockdevice to unlock
281 * @sb: associated superblock
282 *
283 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
284 */
285 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
286 {
287 int error = -EINVAL;
288
289 mutex_lock(&bdev->bd_fsfreeze_mutex);
290 if (!bdev->bd_fsfreeze_count)
291 goto out;
292
293 error = 0;
294 if (--bdev->bd_fsfreeze_count > 0)
295 goto out;
296
297 if (!sb)
298 goto out;
299
300 if (sb->s_op->thaw_super)
301 error = sb->s_op->thaw_super(sb);
302 else
303 error = thaw_super(sb);
304 if (error) {
305 bdev->bd_fsfreeze_count++;
306 mutex_unlock(&bdev->bd_fsfreeze_mutex);
307 return error;
308 }
309 out:
310 mutex_unlock(&bdev->bd_fsfreeze_mutex);
311 return 0;
312 }
313 EXPORT_SYMBOL(thaw_bdev);
314
315 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
316 {
317 return block_write_full_page(page, blkdev_get_block, wbc);
318 }
319
320 static int blkdev_readpage(struct file * file, struct page * page)
321 {
322 return block_read_full_page(page, blkdev_get_block);
323 }
324
325 static int blkdev_readpages(struct file *file, struct address_space *mapping,
326 struct list_head *pages, unsigned nr_pages)
327 {
328 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
329 }
330
331 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
332 loff_t pos, unsigned len, unsigned flags,
333 struct page **pagep, void **fsdata)
334 {
335 return block_write_begin(mapping, pos, len, flags, pagep,
336 blkdev_get_block);
337 }
338
339 static int blkdev_write_end(struct file *file, struct address_space *mapping,
340 loff_t pos, unsigned len, unsigned copied,
341 struct page *page, void *fsdata)
342 {
343 int ret;
344 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
345
346 unlock_page(page);
347 put_page(page);
348
349 return ret;
350 }
351
352 /*
353 * private llseek:
354 * for a block special file file_inode(file)->i_size is zero
355 * so we compute the size by hand (just as in block_read/write above)
356 */
357 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
358 {
359 struct inode *bd_inode = bdev_file_inode(file);
360 loff_t retval;
361
362 inode_lock(bd_inode);
363 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
364 inode_unlock(bd_inode);
365 return retval;
366 }
367
368 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
369 {
370 struct inode *bd_inode = bdev_file_inode(filp);
371 struct block_device *bdev = I_BDEV(bd_inode);
372 int error;
373
374 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
375 if (error)
376 return error;
377
378 /*
379 * There is no need to serialise calls to blkdev_issue_flush with
380 * i_mutex and doing so causes performance issues with concurrent
381 * O_SYNC writers to a block device.
382 */
383 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
384 if (error == -EOPNOTSUPP)
385 error = 0;
386
387 return error;
388 }
389 EXPORT_SYMBOL(blkdev_fsync);
390
391 /**
392 * bdev_read_page() - Start reading a page from a block device
393 * @bdev: The device to read the page from
394 * @sector: The offset on the device to read the page to (need not be aligned)
395 * @page: The page to read
396 *
397 * On entry, the page should be locked. It will be unlocked when the page
398 * has been read. If the block driver implements rw_page synchronously,
399 * that will be true on exit from this function, but it need not be.
400 *
401 * Errors returned by this function are usually "soft", eg out of memory, or
402 * queue full; callers should try a different route to read this page rather
403 * than propagate an error back up the stack.
404 *
405 * Return: negative errno if an error occurs, 0 if submission was successful.
406 */
407 int bdev_read_page(struct block_device *bdev, sector_t sector,
408 struct page *page)
409 {
410 const struct block_device_operations *ops = bdev->bd_disk->fops;
411 int result = -EOPNOTSUPP;
412
413 if (!ops->rw_page || bdev_get_integrity(bdev))
414 return result;
415
416 result = blk_queue_enter(bdev->bd_queue, false);
417 if (result)
418 return result;
419 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
420 blk_queue_exit(bdev->bd_queue);
421 return result;
422 }
423 EXPORT_SYMBOL_GPL(bdev_read_page);
424
425 /**
426 * bdev_write_page() - Start writing a page to a block device
427 * @bdev: The device to write the page to
428 * @sector: The offset on the device to write the page to (need not be aligned)
429 * @page: The page to write
430 * @wbc: The writeback_control for the write
431 *
432 * On entry, the page should be locked and not currently under writeback.
433 * On exit, if the write started successfully, the page will be unlocked and
434 * under writeback. If the write failed already (eg the driver failed to
435 * queue the page to the device), the page will still be locked. If the
436 * caller is a ->writepage implementation, it will need to unlock the page.
437 *
438 * Errors returned by this function are usually "soft", eg out of memory, or
439 * queue full; callers should try a different route to write this page rather
440 * than propagate an error back up the stack.
441 *
442 * Return: negative errno if an error occurs, 0 if submission was successful.
443 */
444 int bdev_write_page(struct block_device *bdev, sector_t sector,
445 struct page *page, struct writeback_control *wbc)
446 {
447 int result;
448 const struct block_device_operations *ops = bdev->bd_disk->fops;
449
450 if (!ops->rw_page || bdev_get_integrity(bdev))
451 return -EOPNOTSUPP;
452 result = blk_queue_enter(bdev->bd_queue, false);
453 if (result)
454 return result;
455
456 set_page_writeback(page);
457 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
458 if (result)
459 end_page_writeback(page);
460 else
461 unlock_page(page);
462 blk_queue_exit(bdev->bd_queue);
463 return result;
464 }
465 EXPORT_SYMBOL_GPL(bdev_write_page);
466
467 /**
468 * bdev_direct_access() - Get the address for directly-accessibly memory
469 * @bdev: The device containing the memory
470 * @dax: control and output parameters for ->direct_access
471 *
472 * If a block device is made up of directly addressable memory, this function
473 * will tell the caller the PFN and the address of the memory. The address
474 * may be directly dereferenced within the kernel without the need to call
475 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
476 * page tables.
477 *
478 * Return: negative errno if an error occurs, otherwise the number of bytes
479 * accessible at this address.
480 */
481 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
482 {
483 sector_t sector = dax->sector;
484 long avail, size = dax->size;
485 const struct block_device_operations *ops = bdev->bd_disk->fops;
486
487 /*
488 * The device driver is allowed to sleep, in order to make the
489 * memory directly accessible.
490 */
491 might_sleep();
492
493 if (size < 0)
494 return size;
495 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
496 return -EOPNOTSUPP;
497 if ((sector + DIV_ROUND_UP(size, 512)) >
498 part_nr_sects_read(bdev->bd_part))
499 return -ERANGE;
500 sector += get_start_sect(bdev);
501 if (sector % (PAGE_SIZE / 512))
502 return -EINVAL;
503 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
504 if (!avail)
505 return -ERANGE;
506 if (avail > 0 && avail & ~PAGE_MASK)
507 return -ENXIO;
508 return min(avail, size);
509 }
510 EXPORT_SYMBOL_GPL(bdev_direct_access);
511
512 /**
513 * bdev_dax_supported() - Check if the device supports dax for filesystem
514 * @sb: The superblock of the device
515 * @blocksize: The block size of the device
516 *
517 * This is a library function for filesystems to check if the block device
518 * can be mounted with dax option.
519 *
520 * Return: negative errno if unsupported, 0 if supported.
521 */
522 int bdev_dax_supported(struct super_block *sb, int blocksize)
523 {
524 struct blk_dax_ctl dax = {
525 .sector = 0,
526 .size = PAGE_SIZE,
527 };
528 int err;
529
530 if (blocksize != PAGE_SIZE) {
531 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
532 return -EINVAL;
533 }
534
535 err = bdev_direct_access(sb->s_bdev, &dax);
536 if (err < 0) {
537 switch (err) {
538 case -EOPNOTSUPP:
539 vfs_msg(sb, KERN_ERR,
540 "error: device does not support dax");
541 break;
542 case -EINVAL:
543 vfs_msg(sb, KERN_ERR,
544 "error: unaligned partition for dax");
545 break;
546 default:
547 vfs_msg(sb, KERN_ERR,
548 "error: dax access failed (%d)", err);
549 }
550 return err;
551 }
552
553 return 0;
554 }
555 EXPORT_SYMBOL_GPL(bdev_dax_supported);
556
557 /**
558 * bdev_dax_capable() - Return if the raw device is capable for dax
559 * @bdev: The device for raw block device access
560 */
561 bool bdev_dax_capable(struct block_device *bdev)
562 {
563 struct blk_dax_ctl dax = {
564 .size = PAGE_SIZE,
565 };
566
567 if (!IS_ENABLED(CONFIG_FS_DAX))
568 return false;
569
570 dax.sector = 0;
571 if (bdev_direct_access(bdev, &dax) < 0)
572 return false;
573
574 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
575 if (bdev_direct_access(bdev, &dax) < 0)
576 return false;
577
578 return true;
579 }
580
581 /*
582 * pseudo-fs
583 */
584
585 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
586 static struct kmem_cache * bdev_cachep __read_mostly;
587
588 static struct inode *bdev_alloc_inode(struct super_block *sb)
589 {
590 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
591 if (!ei)
592 return NULL;
593 return &ei->vfs_inode;
594 }
595
596 static void bdev_i_callback(struct rcu_head *head)
597 {
598 struct inode *inode = container_of(head, struct inode, i_rcu);
599 struct bdev_inode *bdi = BDEV_I(inode);
600
601 kmem_cache_free(bdev_cachep, bdi);
602 }
603
604 static void bdev_destroy_inode(struct inode *inode)
605 {
606 call_rcu(&inode->i_rcu, bdev_i_callback);
607 }
608
609 static void init_once(void *foo)
610 {
611 struct bdev_inode *ei = (struct bdev_inode *) foo;
612 struct block_device *bdev = &ei->bdev;
613
614 memset(bdev, 0, sizeof(*bdev));
615 mutex_init(&bdev->bd_mutex);
616 INIT_LIST_HEAD(&bdev->bd_list);
617 #ifdef CONFIG_SYSFS
618 INIT_LIST_HEAD(&bdev->bd_holder_disks);
619 #endif
620 inode_init_once(&ei->vfs_inode);
621 /* Initialize mutex for freeze. */
622 mutex_init(&bdev->bd_fsfreeze_mutex);
623 }
624
625 static void bdev_evict_inode(struct inode *inode)
626 {
627 struct block_device *bdev = &BDEV_I(inode)->bdev;
628 truncate_inode_pages_final(&inode->i_data);
629 invalidate_inode_buffers(inode); /* is it needed here? */
630 clear_inode(inode);
631 spin_lock(&bdev_lock);
632 list_del_init(&bdev->bd_list);
633 spin_unlock(&bdev_lock);
634 }
635
636 static const struct super_operations bdev_sops = {
637 .statfs = simple_statfs,
638 .alloc_inode = bdev_alloc_inode,
639 .destroy_inode = bdev_destroy_inode,
640 .drop_inode = generic_delete_inode,
641 .evict_inode = bdev_evict_inode,
642 };
643
644 static struct dentry *bd_mount(struct file_system_type *fs_type,
645 int flags, const char *dev_name, void *data)
646 {
647 struct dentry *dent;
648 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
649 if (dent)
650 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
651 return dent;
652 }
653
654 static struct file_system_type bd_type = {
655 .name = "bdev",
656 .mount = bd_mount,
657 .kill_sb = kill_anon_super,
658 };
659
660 struct super_block *blockdev_superblock __read_mostly;
661 EXPORT_SYMBOL_GPL(blockdev_superblock);
662
663 void __init bdev_cache_init(void)
664 {
665 int err;
666 static struct vfsmount *bd_mnt;
667
668 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
669 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
670 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
671 init_once);
672 err = register_filesystem(&bd_type);
673 if (err)
674 panic("Cannot register bdev pseudo-fs");
675 bd_mnt = kern_mount(&bd_type);
676 if (IS_ERR(bd_mnt))
677 panic("Cannot create bdev pseudo-fs");
678 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
679 }
680
681 /*
682 * Most likely _very_ bad one - but then it's hardly critical for small
683 * /dev and can be fixed when somebody will need really large one.
684 * Keep in mind that it will be fed through icache hash function too.
685 */
686 static inline unsigned long hash(dev_t dev)
687 {
688 return MAJOR(dev)+MINOR(dev);
689 }
690
691 static int bdev_test(struct inode *inode, void *data)
692 {
693 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
694 }
695
696 static int bdev_set(struct inode *inode, void *data)
697 {
698 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
699 return 0;
700 }
701
702 static LIST_HEAD(all_bdevs);
703
704 struct block_device *bdget(dev_t dev)
705 {
706 struct block_device *bdev;
707 struct inode *inode;
708
709 inode = iget5_locked(blockdev_superblock, hash(dev),
710 bdev_test, bdev_set, &dev);
711
712 if (!inode)
713 return NULL;
714
715 bdev = &BDEV_I(inode)->bdev;
716
717 if (inode->i_state & I_NEW) {
718 bdev->bd_contains = NULL;
719 bdev->bd_super = NULL;
720 bdev->bd_inode = inode;
721 bdev->bd_block_size = (1 << inode->i_blkbits);
722 bdev->bd_part_count = 0;
723 bdev->bd_invalidated = 0;
724 inode->i_mode = S_IFBLK;
725 inode->i_rdev = dev;
726 inode->i_bdev = bdev;
727 inode->i_data.a_ops = &def_blk_aops;
728 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
729 spin_lock(&bdev_lock);
730 list_add(&bdev->bd_list, &all_bdevs);
731 spin_unlock(&bdev_lock);
732 unlock_new_inode(inode);
733 }
734 return bdev;
735 }
736
737 EXPORT_SYMBOL(bdget);
738
739 /**
740 * bdgrab -- Grab a reference to an already referenced block device
741 * @bdev: Block device to grab a reference to.
742 */
743 struct block_device *bdgrab(struct block_device *bdev)
744 {
745 ihold(bdev->bd_inode);
746 return bdev;
747 }
748 EXPORT_SYMBOL(bdgrab);
749
750 long nr_blockdev_pages(void)
751 {
752 struct block_device *bdev;
753 long ret = 0;
754 spin_lock(&bdev_lock);
755 list_for_each_entry(bdev, &all_bdevs, bd_list) {
756 ret += bdev->bd_inode->i_mapping->nrpages;
757 }
758 spin_unlock(&bdev_lock);
759 return ret;
760 }
761
762 void bdput(struct block_device *bdev)
763 {
764 iput(bdev->bd_inode);
765 }
766
767 EXPORT_SYMBOL(bdput);
768
769 static struct block_device *bd_acquire(struct inode *inode)
770 {
771 struct block_device *bdev;
772
773 spin_lock(&bdev_lock);
774 bdev = inode->i_bdev;
775 if (bdev) {
776 bdgrab(bdev);
777 spin_unlock(&bdev_lock);
778 return bdev;
779 }
780 spin_unlock(&bdev_lock);
781
782 bdev = bdget(inode->i_rdev);
783 if (bdev) {
784 spin_lock(&bdev_lock);
785 if (!inode->i_bdev) {
786 /*
787 * We take an additional reference to bd_inode,
788 * and it's released in clear_inode() of inode.
789 * So, we can access it via ->i_mapping always
790 * without igrab().
791 */
792 bdgrab(bdev);
793 inode->i_bdev = bdev;
794 inode->i_mapping = bdev->bd_inode->i_mapping;
795 }
796 spin_unlock(&bdev_lock);
797 }
798 return bdev;
799 }
800
801 /* Call when you free inode */
802
803 void bd_forget(struct inode *inode)
804 {
805 struct block_device *bdev = NULL;
806
807 spin_lock(&bdev_lock);
808 if (!sb_is_blkdev_sb(inode->i_sb))
809 bdev = inode->i_bdev;
810 inode->i_bdev = NULL;
811 inode->i_mapping = &inode->i_data;
812 spin_unlock(&bdev_lock);
813
814 if (bdev)
815 bdput(bdev);
816 }
817
818 /**
819 * bd_may_claim - test whether a block device can be claimed
820 * @bdev: block device of interest
821 * @whole: whole block device containing @bdev, may equal @bdev
822 * @holder: holder trying to claim @bdev
823 *
824 * Test whether @bdev can be claimed by @holder.
825 *
826 * CONTEXT:
827 * spin_lock(&bdev_lock).
828 *
829 * RETURNS:
830 * %true if @bdev can be claimed, %false otherwise.
831 */
832 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
833 void *holder)
834 {
835 if (bdev->bd_holder == holder)
836 return true; /* already a holder */
837 else if (bdev->bd_holder != NULL)
838 return false; /* held by someone else */
839 else if (bdev->bd_contains == bdev)
840 return true; /* is a whole device which isn't held */
841
842 else if (whole->bd_holder == bd_may_claim)
843 return true; /* is a partition of a device that is being partitioned */
844 else if (whole->bd_holder != NULL)
845 return false; /* is a partition of a held device */
846 else
847 return true; /* is a partition of an un-held device */
848 }
849
850 /**
851 * bd_prepare_to_claim - prepare to claim a block device
852 * @bdev: block device of interest
853 * @whole: the whole device containing @bdev, may equal @bdev
854 * @holder: holder trying to claim @bdev
855 *
856 * Prepare to claim @bdev. This function fails if @bdev is already
857 * claimed by another holder and waits if another claiming is in
858 * progress. This function doesn't actually claim. On successful
859 * return, the caller has ownership of bd_claiming and bd_holder[s].
860 *
861 * CONTEXT:
862 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
863 * it multiple times.
864 *
865 * RETURNS:
866 * 0 if @bdev can be claimed, -EBUSY otherwise.
867 */
868 static int bd_prepare_to_claim(struct block_device *bdev,
869 struct block_device *whole, void *holder)
870 {
871 retry:
872 /* if someone else claimed, fail */
873 if (!bd_may_claim(bdev, whole, holder))
874 return -EBUSY;
875
876 /* if claiming is already in progress, wait for it to finish */
877 if (whole->bd_claiming) {
878 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
879 DEFINE_WAIT(wait);
880
881 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
882 spin_unlock(&bdev_lock);
883 schedule();
884 finish_wait(wq, &wait);
885 spin_lock(&bdev_lock);
886 goto retry;
887 }
888
889 /* yay, all mine */
890 return 0;
891 }
892
893 /**
894 * bd_start_claiming - start claiming a block device
895 * @bdev: block device of interest
896 * @holder: holder trying to claim @bdev
897 *
898 * @bdev is about to be opened exclusively. Check @bdev can be opened
899 * exclusively and mark that an exclusive open is in progress. Each
900 * successful call to this function must be matched with a call to
901 * either bd_finish_claiming() or bd_abort_claiming() (which do not
902 * fail).
903 *
904 * This function is used to gain exclusive access to the block device
905 * without actually causing other exclusive open attempts to fail. It
906 * should be used when the open sequence itself requires exclusive
907 * access but may subsequently fail.
908 *
909 * CONTEXT:
910 * Might sleep.
911 *
912 * RETURNS:
913 * Pointer to the block device containing @bdev on success, ERR_PTR()
914 * value on failure.
915 */
916 static struct block_device *bd_start_claiming(struct block_device *bdev,
917 void *holder)
918 {
919 struct gendisk *disk;
920 struct block_device *whole;
921 int partno, err;
922
923 might_sleep();
924
925 /*
926 * @bdev might not have been initialized properly yet, look up
927 * and grab the outer block device the hard way.
928 */
929 disk = get_gendisk(bdev->bd_dev, &partno);
930 if (!disk)
931 return ERR_PTR(-ENXIO);
932
933 /*
934 * Normally, @bdev should equal what's returned from bdget_disk()
935 * if partno is 0; however, some drivers (floppy) use multiple
936 * bdev's for the same physical device and @bdev may be one of the
937 * aliases. Keep @bdev if partno is 0. This means claimer
938 * tracking is broken for those devices but it has always been that
939 * way.
940 */
941 if (partno)
942 whole = bdget_disk(disk, 0);
943 else
944 whole = bdgrab(bdev);
945
946 module_put(disk->fops->owner);
947 put_disk(disk);
948 if (!whole)
949 return ERR_PTR(-ENOMEM);
950
951 /* prepare to claim, if successful, mark claiming in progress */
952 spin_lock(&bdev_lock);
953
954 err = bd_prepare_to_claim(bdev, whole, holder);
955 if (err == 0) {
956 whole->bd_claiming = holder;
957 spin_unlock(&bdev_lock);
958 return whole;
959 } else {
960 spin_unlock(&bdev_lock);
961 bdput(whole);
962 return ERR_PTR(err);
963 }
964 }
965
966 #ifdef CONFIG_SYSFS
967 struct bd_holder_disk {
968 struct list_head list;
969 struct gendisk *disk;
970 int refcnt;
971 };
972
973 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
974 struct gendisk *disk)
975 {
976 struct bd_holder_disk *holder;
977
978 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
979 if (holder->disk == disk)
980 return holder;
981 return NULL;
982 }
983
984 static int add_symlink(struct kobject *from, struct kobject *to)
985 {
986 return sysfs_create_link(from, to, kobject_name(to));
987 }
988
989 static void del_symlink(struct kobject *from, struct kobject *to)
990 {
991 sysfs_remove_link(from, kobject_name(to));
992 }
993
994 /**
995 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
996 * @bdev: the claimed slave bdev
997 * @disk: the holding disk
998 *
999 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1000 *
1001 * This functions creates the following sysfs symlinks.
1002 *
1003 * - from "slaves" directory of the holder @disk to the claimed @bdev
1004 * - from "holders" directory of the @bdev to the holder @disk
1005 *
1006 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1007 * passed to bd_link_disk_holder(), then:
1008 *
1009 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1010 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1011 *
1012 * The caller must have claimed @bdev before calling this function and
1013 * ensure that both @bdev and @disk are valid during the creation and
1014 * lifetime of these symlinks.
1015 *
1016 * CONTEXT:
1017 * Might sleep.
1018 *
1019 * RETURNS:
1020 * 0 on success, -errno on failure.
1021 */
1022 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1023 {
1024 struct bd_holder_disk *holder;
1025 int ret = 0;
1026
1027 mutex_lock(&bdev->bd_mutex);
1028
1029 WARN_ON_ONCE(!bdev->bd_holder);
1030
1031 /* FIXME: remove the following once add_disk() handles errors */
1032 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1033 goto out_unlock;
1034
1035 holder = bd_find_holder_disk(bdev, disk);
1036 if (holder) {
1037 holder->refcnt++;
1038 goto out_unlock;
1039 }
1040
1041 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1042 if (!holder) {
1043 ret = -ENOMEM;
1044 goto out_unlock;
1045 }
1046
1047 INIT_LIST_HEAD(&holder->list);
1048 holder->disk = disk;
1049 holder->refcnt = 1;
1050
1051 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1052 if (ret)
1053 goto out_free;
1054
1055 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1056 if (ret)
1057 goto out_del;
1058 /*
1059 * bdev could be deleted beneath us which would implicitly destroy
1060 * the holder directory. Hold on to it.
1061 */
1062 kobject_get(bdev->bd_part->holder_dir);
1063
1064 list_add(&holder->list, &bdev->bd_holder_disks);
1065 goto out_unlock;
1066
1067 out_del:
1068 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1069 out_free:
1070 kfree(holder);
1071 out_unlock:
1072 mutex_unlock(&bdev->bd_mutex);
1073 return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1076
1077 /**
1078 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1079 * @bdev: the calimed slave bdev
1080 * @disk: the holding disk
1081 *
1082 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1083 *
1084 * CONTEXT:
1085 * Might sleep.
1086 */
1087 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1088 {
1089 struct bd_holder_disk *holder;
1090
1091 mutex_lock(&bdev->bd_mutex);
1092
1093 holder = bd_find_holder_disk(bdev, disk);
1094
1095 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1096 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1097 del_symlink(bdev->bd_part->holder_dir,
1098 &disk_to_dev(disk)->kobj);
1099 kobject_put(bdev->bd_part->holder_dir);
1100 list_del_init(&holder->list);
1101 kfree(holder);
1102 }
1103
1104 mutex_unlock(&bdev->bd_mutex);
1105 }
1106 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1107 #endif
1108
1109 /**
1110 * flush_disk - invalidates all buffer-cache entries on a disk
1111 *
1112 * @bdev: struct block device to be flushed
1113 * @kill_dirty: flag to guide handling of dirty inodes
1114 *
1115 * Invalidates all buffer-cache entries on a disk. It should be called
1116 * when a disk has been changed -- either by a media change or online
1117 * resize.
1118 */
1119 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1120 {
1121 if (__invalidate_device(bdev, kill_dirty)) {
1122 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1123 "resized disk %s\n",
1124 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1125 }
1126
1127 if (!bdev->bd_disk)
1128 return;
1129 if (disk_part_scan_enabled(bdev->bd_disk))
1130 bdev->bd_invalidated = 1;
1131 }
1132
1133 /**
1134 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1135 * @disk: struct gendisk to check
1136 * @bdev: struct bdev to adjust.
1137 *
1138 * This routine checks to see if the bdev size does not match the disk size
1139 * and adjusts it if it differs.
1140 */
1141 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1142 {
1143 loff_t disk_size, bdev_size;
1144
1145 disk_size = (loff_t)get_capacity(disk) << 9;
1146 bdev_size = i_size_read(bdev->bd_inode);
1147 if (disk_size != bdev_size) {
1148 printk(KERN_INFO
1149 "%s: detected capacity change from %lld to %lld\n",
1150 disk->disk_name, bdev_size, disk_size);
1151 i_size_write(bdev->bd_inode, disk_size);
1152 flush_disk(bdev, false);
1153 }
1154 }
1155 EXPORT_SYMBOL(check_disk_size_change);
1156
1157 /**
1158 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1159 * @disk: struct gendisk to be revalidated
1160 *
1161 * This routine is a wrapper for lower-level driver's revalidate_disk
1162 * call-backs. It is used to do common pre and post operations needed
1163 * for all revalidate_disk operations.
1164 */
1165 int revalidate_disk(struct gendisk *disk)
1166 {
1167 struct block_device *bdev;
1168 int ret = 0;
1169
1170 if (disk->fops->revalidate_disk)
1171 ret = disk->fops->revalidate_disk(disk);
1172 blk_integrity_revalidate(disk);
1173 bdev = bdget_disk(disk, 0);
1174 if (!bdev)
1175 return ret;
1176
1177 mutex_lock(&bdev->bd_mutex);
1178 check_disk_size_change(disk, bdev);
1179 bdev->bd_invalidated = 0;
1180 mutex_unlock(&bdev->bd_mutex);
1181 bdput(bdev);
1182 return ret;
1183 }
1184 EXPORT_SYMBOL(revalidate_disk);
1185
1186 /*
1187 * This routine checks whether a removable media has been changed,
1188 * and invalidates all buffer-cache-entries in that case. This
1189 * is a relatively slow routine, so we have to try to minimize using
1190 * it. Thus it is called only upon a 'mount' or 'open'. This
1191 * is the best way of combining speed and utility, I think.
1192 * People changing diskettes in the middle of an operation deserve
1193 * to lose :-)
1194 */
1195 int check_disk_change(struct block_device *bdev)
1196 {
1197 struct gendisk *disk = bdev->bd_disk;
1198 const struct block_device_operations *bdops = disk->fops;
1199 unsigned int events;
1200
1201 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1202 DISK_EVENT_EJECT_REQUEST);
1203 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1204 return 0;
1205
1206 flush_disk(bdev, true);
1207 if (bdops->revalidate_disk)
1208 bdops->revalidate_disk(bdev->bd_disk);
1209 return 1;
1210 }
1211
1212 EXPORT_SYMBOL(check_disk_change);
1213
1214 void bd_set_size(struct block_device *bdev, loff_t size)
1215 {
1216 unsigned bsize = bdev_logical_block_size(bdev);
1217
1218 inode_lock(bdev->bd_inode);
1219 i_size_write(bdev->bd_inode, size);
1220 inode_unlock(bdev->bd_inode);
1221 while (bsize < PAGE_SIZE) {
1222 if (size & bsize)
1223 break;
1224 bsize <<= 1;
1225 }
1226 bdev->bd_block_size = bsize;
1227 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1228 }
1229 EXPORT_SYMBOL(bd_set_size);
1230
1231 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1232
1233 /*
1234 * bd_mutex locking:
1235 *
1236 * mutex_lock(part->bd_mutex)
1237 * mutex_lock_nested(whole->bd_mutex, 1)
1238 */
1239
1240 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1241 {
1242 struct gendisk *disk;
1243 struct module *owner;
1244 int ret;
1245 int partno;
1246 int perm = 0;
1247
1248 if (mode & FMODE_READ)
1249 perm |= MAY_READ;
1250 if (mode & FMODE_WRITE)
1251 perm |= MAY_WRITE;
1252 /*
1253 * hooks: /n/, see "layering violations".
1254 */
1255 if (!for_part) {
1256 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1257 if (ret != 0) {
1258 bdput(bdev);
1259 return ret;
1260 }
1261 }
1262
1263 restart:
1264
1265 ret = -ENXIO;
1266 disk = get_gendisk(bdev->bd_dev, &partno);
1267 if (!disk)
1268 goto out;
1269 owner = disk->fops->owner;
1270
1271 disk_block_events(disk);
1272 mutex_lock_nested(&bdev->bd_mutex, for_part);
1273 if (!bdev->bd_openers) {
1274 bdev->bd_disk = disk;
1275 bdev->bd_queue = disk->queue;
1276 bdev->bd_contains = bdev;
1277 bdev->bd_inode->i_flags = 0;
1278
1279 if (!partno) {
1280 ret = -ENXIO;
1281 bdev->bd_part = disk_get_part(disk, partno);
1282 if (!bdev->bd_part)
1283 goto out_clear;
1284
1285 ret = 0;
1286 if (disk->fops->open) {
1287 ret = disk->fops->open(bdev, mode);
1288 if (ret == -ERESTARTSYS) {
1289 /* Lost a race with 'disk' being
1290 * deleted, try again.
1291 * See md.c
1292 */
1293 disk_put_part(bdev->bd_part);
1294 bdev->bd_part = NULL;
1295 bdev->bd_disk = NULL;
1296 bdev->bd_queue = NULL;
1297 mutex_unlock(&bdev->bd_mutex);
1298 disk_unblock_events(disk);
1299 put_disk(disk);
1300 module_put(owner);
1301 goto restart;
1302 }
1303 }
1304
1305 if (!ret) {
1306 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1307 if (!bdev_dax_capable(bdev))
1308 bdev->bd_inode->i_flags &= ~S_DAX;
1309 }
1310
1311 /*
1312 * If the device is invalidated, rescan partition
1313 * if open succeeded or failed with -ENOMEDIUM.
1314 * The latter is necessary to prevent ghost
1315 * partitions on a removed medium.
1316 */
1317 if (bdev->bd_invalidated) {
1318 if (!ret)
1319 rescan_partitions(disk, bdev);
1320 else if (ret == -ENOMEDIUM)
1321 invalidate_partitions(disk, bdev);
1322 }
1323
1324 if (ret)
1325 goto out_clear;
1326 } else {
1327 struct block_device *whole;
1328 whole = bdget_disk(disk, 0);
1329 ret = -ENOMEM;
1330 if (!whole)
1331 goto out_clear;
1332 BUG_ON(for_part);
1333 ret = __blkdev_get(whole, mode, 1);
1334 if (ret)
1335 goto out_clear;
1336 bdev->bd_contains = whole;
1337 bdev->bd_part = disk_get_part(disk, partno);
1338 if (!(disk->flags & GENHD_FL_UP) ||
1339 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1340 ret = -ENXIO;
1341 goto out_clear;
1342 }
1343 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1344 if (!bdev_dax_capable(bdev))
1345 bdev->bd_inode->i_flags &= ~S_DAX;
1346 }
1347 } else {
1348 if (bdev->bd_contains == bdev) {
1349 ret = 0;
1350 if (bdev->bd_disk->fops->open)
1351 ret = bdev->bd_disk->fops->open(bdev, mode);
1352 /* the same as first opener case, read comment there */
1353 if (bdev->bd_invalidated) {
1354 if (!ret)
1355 rescan_partitions(bdev->bd_disk, bdev);
1356 else if (ret == -ENOMEDIUM)
1357 invalidate_partitions(bdev->bd_disk, bdev);
1358 }
1359 if (ret)
1360 goto out_unlock_bdev;
1361 }
1362 /* only one opener holds refs to the module and disk */
1363 put_disk(disk);
1364 module_put(owner);
1365 }
1366 bdev->bd_openers++;
1367 if (for_part)
1368 bdev->bd_part_count++;
1369 mutex_unlock(&bdev->bd_mutex);
1370 disk_unblock_events(disk);
1371 return 0;
1372
1373 out_clear:
1374 disk_put_part(bdev->bd_part);
1375 bdev->bd_disk = NULL;
1376 bdev->bd_part = NULL;
1377 bdev->bd_queue = NULL;
1378 if (bdev != bdev->bd_contains)
1379 __blkdev_put(bdev->bd_contains, mode, 1);
1380 bdev->bd_contains = NULL;
1381 out_unlock_bdev:
1382 mutex_unlock(&bdev->bd_mutex);
1383 disk_unblock_events(disk);
1384 put_disk(disk);
1385 module_put(owner);
1386 out:
1387 bdput(bdev);
1388
1389 return ret;
1390 }
1391
1392 /**
1393 * blkdev_get - open a block device
1394 * @bdev: block_device to open
1395 * @mode: FMODE_* mask
1396 * @holder: exclusive holder identifier
1397 *
1398 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1399 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1400 * @holder is invalid. Exclusive opens may nest for the same @holder.
1401 *
1402 * On success, the reference count of @bdev is unchanged. On failure,
1403 * @bdev is put.
1404 *
1405 * CONTEXT:
1406 * Might sleep.
1407 *
1408 * RETURNS:
1409 * 0 on success, -errno on failure.
1410 */
1411 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1412 {
1413 struct block_device *whole = NULL;
1414 int res;
1415
1416 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1417
1418 if ((mode & FMODE_EXCL) && holder) {
1419 whole = bd_start_claiming(bdev, holder);
1420 if (IS_ERR(whole)) {
1421 bdput(bdev);
1422 return PTR_ERR(whole);
1423 }
1424 }
1425
1426 res = __blkdev_get(bdev, mode, 0);
1427
1428 if (whole) {
1429 struct gendisk *disk = whole->bd_disk;
1430
1431 /* finish claiming */
1432 mutex_lock(&bdev->bd_mutex);
1433 spin_lock(&bdev_lock);
1434
1435 if (!res) {
1436 BUG_ON(!bd_may_claim(bdev, whole, holder));
1437 /*
1438 * Note that for a whole device bd_holders
1439 * will be incremented twice, and bd_holder
1440 * will be set to bd_may_claim before being
1441 * set to holder
1442 */
1443 whole->bd_holders++;
1444 whole->bd_holder = bd_may_claim;
1445 bdev->bd_holders++;
1446 bdev->bd_holder = holder;
1447 }
1448
1449 /* tell others that we're done */
1450 BUG_ON(whole->bd_claiming != holder);
1451 whole->bd_claiming = NULL;
1452 wake_up_bit(&whole->bd_claiming, 0);
1453
1454 spin_unlock(&bdev_lock);
1455
1456 /*
1457 * Block event polling for write claims if requested. Any
1458 * write holder makes the write_holder state stick until
1459 * all are released. This is good enough and tracking
1460 * individual writeable reference is too fragile given the
1461 * way @mode is used in blkdev_get/put().
1462 */
1463 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1464 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1465 bdev->bd_write_holder = true;
1466 disk_block_events(disk);
1467 }
1468
1469 mutex_unlock(&bdev->bd_mutex);
1470 bdput(whole);
1471 }
1472
1473 return res;
1474 }
1475 EXPORT_SYMBOL(blkdev_get);
1476
1477 /**
1478 * blkdev_get_by_path - open a block device by name
1479 * @path: path to the block device to open
1480 * @mode: FMODE_* mask
1481 * @holder: exclusive holder identifier
1482 *
1483 * Open the blockdevice described by the device file at @path. @mode
1484 * and @holder are identical to blkdev_get().
1485 *
1486 * On success, the returned block_device has reference count of one.
1487 *
1488 * CONTEXT:
1489 * Might sleep.
1490 *
1491 * RETURNS:
1492 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1493 */
1494 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1495 void *holder)
1496 {
1497 struct block_device *bdev;
1498 int err;
1499
1500 bdev = lookup_bdev(path);
1501 if (IS_ERR(bdev))
1502 return bdev;
1503
1504 err = blkdev_get(bdev, mode, holder);
1505 if (err)
1506 return ERR_PTR(err);
1507
1508 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1509 blkdev_put(bdev, mode);
1510 return ERR_PTR(-EACCES);
1511 }
1512
1513 return bdev;
1514 }
1515 EXPORT_SYMBOL(blkdev_get_by_path);
1516
1517 /**
1518 * blkdev_get_by_dev - open a block device by device number
1519 * @dev: device number of block device to open
1520 * @mode: FMODE_* mask
1521 * @holder: exclusive holder identifier
1522 *
1523 * Open the blockdevice described by device number @dev. @mode and
1524 * @holder are identical to blkdev_get().
1525 *
1526 * Use it ONLY if you really do not have anything better - i.e. when
1527 * you are behind a truly sucky interface and all you are given is a
1528 * device number. _Never_ to be used for internal purposes. If you
1529 * ever need it - reconsider your API.
1530 *
1531 * On success, the returned block_device has reference count of one.
1532 *
1533 * CONTEXT:
1534 * Might sleep.
1535 *
1536 * RETURNS:
1537 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1538 */
1539 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1540 {
1541 struct block_device *bdev;
1542 int err;
1543
1544 bdev = bdget(dev);
1545 if (!bdev)
1546 return ERR_PTR(-ENOMEM);
1547
1548 err = blkdev_get(bdev, mode, holder);
1549 if (err)
1550 return ERR_PTR(err);
1551
1552 return bdev;
1553 }
1554 EXPORT_SYMBOL(blkdev_get_by_dev);
1555
1556 static int blkdev_open(struct inode * inode, struct file * filp)
1557 {
1558 struct block_device *bdev;
1559
1560 /*
1561 * Preserve backwards compatibility and allow large file access
1562 * even if userspace doesn't ask for it explicitly. Some mkfs
1563 * binary needs it. We might want to drop this workaround
1564 * during an unstable branch.
1565 */
1566 filp->f_flags |= O_LARGEFILE;
1567
1568 if (filp->f_flags & O_NDELAY)
1569 filp->f_mode |= FMODE_NDELAY;
1570 if (filp->f_flags & O_EXCL)
1571 filp->f_mode |= FMODE_EXCL;
1572 if ((filp->f_flags & O_ACCMODE) == 3)
1573 filp->f_mode |= FMODE_WRITE_IOCTL;
1574
1575 bdev = bd_acquire(inode);
1576 if (bdev == NULL)
1577 return -ENOMEM;
1578
1579 filp->f_mapping = bdev->bd_inode->i_mapping;
1580
1581 return blkdev_get(bdev, filp->f_mode, filp);
1582 }
1583
1584 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1585 {
1586 struct gendisk *disk = bdev->bd_disk;
1587 struct block_device *victim = NULL;
1588
1589 mutex_lock_nested(&bdev->bd_mutex, for_part);
1590 if (for_part)
1591 bdev->bd_part_count--;
1592
1593 if (!--bdev->bd_openers) {
1594 WARN_ON_ONCE(bdev->bd_holders);
1595 sync_blockdev(bdev);
1596 kill_bdev(bdev);
1597
1598 bdev_write_inode(bdev);
1599 /*
1600 * Detaching bdev inode from its wb in __destroy_inode()
1601 * is too late: the queue which embeds its bdi (along with
1602 * root wb) can be gone as soon as we put_disk() below.
1603 */
1604 inode_detach_wb(bdev->bd_inode);
1605 }
1606 if (bdev->bd_contains == bdev) {
1607 if (disk->fops->release)
1608 disk->fops->release(disk, mode);
1609 }
1610 if (!bdev->bd_openers) {
1611 struct module *owner = disk->fops->owner;
1612
1613 disk_put_part(bdev->bd_part);
1614 bdev->bd_part = NULL;
1615 bdev->bd_disk = NULL;
1616 if (bdev != bdev->bd_contains)
1617 victim = bdev->bd_contains;
1618 bdev->bd_contains = NULL;
1619
1620 put_disk(disk);
1621 module_put(owner);
1622 }
1623 mutex_unlock(&bdev->bd_mutex);
1624 bdput(bdev);
1625 if (victim)
1626 __blkdev_put(victim, mode, 1);
1627 }
1628
1629 void blkdev_put(struct block_device *bdev, fmode_t mode)
1630 {
1631 mutex_lock(&bdev->bd_mutex);
1632
1633 if (mode & FMODE_EXCL) {
1634 bool bdev_free;
1635
1636 /*
1637 * Release a claim on the device. The holder fields
1638 * are protected with bdev_lock. bd_mutex is to
1639 * synchronize disk_holder unlinking.
1640 */
1641 spin_lock(&bdev_lock);
1642
1643 WARN_ON_ONCE(--bdev->bd_holders < 0);
1644 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1645
1646 /* bd_contains might point to self, check in a separate step */
1647 if ((bdev_free = !bdev->bd_holders))
1648 bdev->bd_holder = NULL;
1649 if (!bdev->bd_contains->bd_holders)
1650 bdev->bd_contains->bd_holder = NULL;
1651
1652 spin_unlock(&bdev_lock);
1653
1654 /*
1655 * If this was the last claim, remove holder link and
1656 * unblock evpoll if it was a write holder.
1657 */
1658 if (bdev_free && bdev->bd_write_holder) {
1659 disk_unblock_events(bdev->bd_disk);
1660 bdev->bd_write_holder = false;
1661 }
1662 }
1663
1664 /*
1665 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1666 * event. This is to ensure detection of media removal commanded
1667 * from userland - e.g. eject(1).
1668 */
1669 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1670
1671 mutex_unlock(&bdev->bd_mutex);
1672
1673 __blkdev_put(bdev, mode, 0);
1674 }
1675 EXPORT_SYMBOL(blkdev_put);
1676
1677 static int blkdev_close(struct inode * inode, struct file * filp)
1678 {
1679 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1680 blkdev_put(bdev, filp->f_mode);
1681 return 0;
1682 }
1683
1684 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1685 {
1686 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1687 fmode_t mode = file->f_mode;
1688
1689 /*
1690 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1691 * to updated it before every ioctl.
1692 */
1693 if (file->f_flags & O_NDELAY)
1694 mode |= FMODE_NDELAY;
1695 else
1696 mode &= ~FMODE_NDELAY;
1697
1698 return blkdev_ioctl(bdev, mode, cmd, arg);
1699 }
1700
1701 /*
1702 * Write data to the block device. Only intended for the block device itself
1703 * and the raw driver which basically is a fake block device.
1704 *
1705 * Does not take i_mutex for the write and thus is not for general purpose
1706 * use.
1707 */
1708 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1709 {
1710 struct file *file = iocb->ki_filp;
1711 struct inode *bd_inode = bdev_file_inode(file);
1712 loff_t size = i_size_read(bd_inode);
1713 struct blk_plug plug;
1714 ssize_t ret;
1715
1716 if (bdev_read_only(I_BDEV(bd_inode)))
1717 return -EPERM;
1718
1719 if (!iov_iter_count(from))
1720 return 0;
1721
1722 if (iocb->ki_pos >= size)
1723 return -ENOSPC;
1724
1725 iov_iter_truncate(from, size - iocb->ki_pos);
1726
1727 blk_start_plug(&plug);
1728 ret = __generic_file_write_iter(iocb, from);
1729 if (ret > 0)
1730 ret = generic_write_sync(iocb, ret);
1731 blk_finish_plug(&plug);
1732 return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1735
1736 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1737 {
1738 struct file *file = iocb->ki_filp;
1739 struct inode *bd_inode = bdev_file_inode(file);
1740 loff_t size = i_size_read(bd_inode);
1741 loff_t pos = iocb->ki_pos;
1742
1743 if (pos >= size)
1744 return 0;
1745
1746 size -= pos;
1747 iov_iter_truncate(to, size);
1748 return generic_file_read_iter(iocb, to);
1749 }
1750 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1751
1752 /*
1753 * Try to release a page associated with block device when the system
1754 * is under memory pressure.
1755 */
1756 static int blkdev_releasepage(struct page *page, gfp_t wait)
1757 {
1758 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1759
1760 if (super && super->s_op->bdev_try_to_free_page)
1761 return super->s_op->bdev_try_to_free_page(super, page, wait);
1762
1763 return try_to_free_buffers(page);
1764 }
1765
1766 static int blkdev_writepages(struct address_space *mapping,
1767 struct writeback_control *wbc)
1768 {
1769 if (dax_mapping(mapping)) {
1770 struct block_device *bdev = I_BDEV(mapping->host);
1771
1772 return dax_writeback_mapping_range(mapping, bdev, wbc);
1773 }
1774 return generic_writepages(mapping, wbc);
1775 }
1776
1777 static const struct address_space_operations def_blk_aops = {
1778 .readpage = blkdev_readpage,
1779 .readpages = blkdev_readpages,
1780 .writepage = blkdev_writepage,
1781 .write_begin = blkdev_write_begin,
1782 .write_end = blkdev_write_end,
1783 .writepages = blkdev_writepages,
1784 .releasepage = blkdev_releasepage,
1785 .direct_IO = blkdev_direct_IO,
1786 .is_dirty_writeback = buffer_check_dirty_writeback,
1787 };
1788
1789 const struct file_operations def_blk_fops = {
1790 .open = blkdev_open,
1791 .release = blkdev_close,
1792 .llseek = block_llseek,
1793 .read_iter = blkdev_read_iter,
1794 .write_iter = blkdev_write_iter,
1795 .mmap = generic_file_mmap,
1796 .fsync = blkdev_fsync,
1797 .unlocked_ioctl = block_ioctl,
1798 #ifdef CONFIG_COMPAT
1799 .compat_ioctl = compat_blkdev_ioctl,
1800 #endif
1801 .splice_read = generic_file_splice_read,
1802 .splice_write = iter_file_splice_write,
1803 };
1804
1805 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1806 {
1807 int res;
1808 mm_segment_t old_fs = get_fs();
1809 set_fs(KERNEL_DS);
1810 res = blkdev_ioctl(bdev, 0, cmd, arg);
1811 set_fs(old_fs);
1812 return res;
1813 }
1814
1815 EXPORT_SYMBOL(ioctl_by_bdev);
1816
1817 /**
1818 * lookup_bdev - lookup a struct block_device by name
1819 * @pathname: special file representing the block device
1820 *
1821 * Get a reference to the blockdevice at @pathname in the current
1822 * namespace if possible and return it. Return ERR_PTR(error)
1823 * otherwise.
1824 */
1825 struct block_device *lookup_bdev(const char *pathname)
1826 {
1827 struct block_device *bdev;
1828 struct inode *inode;
1829 struct path path;
1830 int error;
1831
1832 if (!pathname || !*pathname)
1833 return ERR_PTR(-EINVAL);
1834
1835 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1836 if (error)
1837 return ERR_PTR(error);
1838
1839 inode = d_backing_inode(path.dentry);
1840 error = -ENOTBLK;
1841 if (!S_ISBLK(inode->i_mode))
1842 goto fail;
1843 error = -EACCES;
1844 if (!may_open_dev(&path))
1845 goto fail;
1846 error = -ENOMEM;
1847 bdev = bd_acquire(inode);
1848 if (!bdev)
1849 goto fail;
1850 out:
1851 path_put(&path);
1852 return bdev;
1853 fail:
1854 bdev = ERR_PTR(error);
1855 goto out;
1856 }
1857 EXPORT_SYMBOL(lookup_bdev);
1858
1859 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1860 {
1861 struct super_block *sb = get_super(bdev);
1862 int res = 0;
1863
1864 if (sb) {
1865 /*
1866 * no need to lock the super, get_super holds the
1867 * read mutex so the filesystem cannot go away
1868 * under us (->put_super runs with the write lock
1869 * hold).
1870 */
1871 shrink_dcache_sb(sb);
1872 res = invalidate_inodes(sb, kill_dirty);
1873 drop_super(sb);
1874 }
1875 invalidate_bdev(bdev);
1876 return res;
1877 }
1878 EXPORT_SYMBOL(__invalidate_device);
1879
1880 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1881 {
1882 struct inode *inode, *old_inode = NULL;
1883
1884 spin_lock(&blockdev_superblock->s_inode_list_lock);
1885 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1886 struct address_space *mapping = inode->i_mapping;
1887
1888 spin_lock(&inode->i_lock);
1889 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1890 mapping->nrpages == 0) {
1891 spin_unlock(&inode->i_lock);
1892 continue;
1893 }
1894 __iget(inode);
1895 spin_unlock(&inode->i_lock);
1896 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1897 /*
1898 * We hold a reference to 'inode' so it couldn't have been
1899 * removed from s_inodes list while we dropped the
1900 * s_inode_list_lock We cannot iput the inode now as we can
1901 * be holding the last reference and we cannot iput it under
1902 * s_inode_list_lock. So we keep the reference and iput it
1903 * later.
1904 */
1905 iput(old_inode);
1906 old_inode = inode;
1907
1908 func(I_BDEV(inode), arg);
1909
1910 spin_lock(&blockdev_superblock->s_inode_list_lock);
1911 }
1912 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1913 iput(old_inode);
1914 }
This page took 0.072371 seconds and 5 git commands to generate.