dt-bindings: mailbox: Add Amlogic Meson MHU Bindings
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51 }
52
53 /*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69 }
70
71 /*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81 {
82 int i;
83
84 if (held) {
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 }
91 btrfs_set_path_blocking(p);
92
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
100 }
101 }
102
103 if (held)
104 btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110 if (!p)
111 return;
112 btrfs_release_path(p);
113 kmem_cache_free(btrfs_path_cachep, p);
114 }
115
116 /*
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
119 *
120 * It is safe to call this on paths that no locks or extent buffers held.
121 */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124 int i;
125
126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 p->slots[i] = 0;
128 if (!p->nodes[i])
129 continue;
130 if (p->locks[i]) {
131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 p->locks[i] = 0;
133 }
134 free_extent_buffer(p->nodes[i]);
135 p->nodes[i] = NULL;
136 }
137 }
138
139 /*
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
143 * looping required.
144 *
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
148 */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151 struct extent_buffer *eb;
152
153 while (1) {
154 rcu_read_lock();
155 eb = rcu_dereference(root->node);
156
157 /*
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
162 */
163 if (atomic_inc_not_zero(&eb->refs)) {
164 rcu_read_unlock();
165 break;
166 }
167 rcu_read_unlock();
168 synchronize_rcu();
169 }
170 return eb;
171 }
172
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
176 */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179 struct extent_buffer *eb;
180
181 while (1) {
182 eb = btrfs_root_node(root);
183 btrfs_tree_lock(eb);
184 if (eb == root->node)
185 break;
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
188 }
189 return eb;
190 }
191
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
195 */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198 struct extent_buffer *eb;
199
200 while (1) {
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
204 break;
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
207 }
208 return eb;
209 }
210
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
214 */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 return;
220
221 spin_lock(&root->fs_info->trans_lock);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
227 else
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
230 }
231 spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
238 */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 struct extent_buffer *cow;
245 int ret = 0;
246 int level;
247 struct btrfs_disk_key disk_key;
248
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
262 if (IS_ERR(cow))
263 return PTR_ERR(cow);
264
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
275
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 BTRFS_FSID_SIZE);
278
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1);
282 else
283 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285 if (ret)
286 return ret;
287
288 btrfs_mark_buffer_dirty(cow);
289 *cow_ret = cow;
290 return 0;
291 }
292
293 enum mod_log_op {
294 MOD_LOG_KEY_REPLACE,
295 MOD_LOG_KEY_ADD,
296 MOD_LOG_KEY_REMOVE,
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 MOD_LOG_MOVE_KEYS,
300 MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304 int dst_slot;
305 int nr_items;
306 };
307
308 struct tree_mod_root {
309 u64 logical;
310 u8 level;
311 };
312
313 struct tree_mod_elem {
314 struct rb_node node;
315 u64 logical;
316 u64 seq;
317 enum mod_log_op op;
318
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 int slot;
321
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 u64 generation;
324
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
327 u64 blockptr;
328
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
331
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357 * Pull a new tree mod seq number for our operation.
358 */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363
364 /*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
374 {
375 tree_mod_log_write_lock(fs_info);
376 spin_lock(&fs_info->tree_mod_seq_lock);
377 if (!elem->seq) {
378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 }
381 spin_unlock(&fs_info->tree_mod_seq_lock);
382 tree_mod_log_write_unlock(fs_info);
383
384 return elem->seq;
385 }
386
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
389 {
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
397
398 if (!seq_putting)
399 return;
400
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
403 elem->seq = 0;
404
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 if (cur_elem->seq < min_seq) {
407 if (seq_putting > cur_elem->seq) {
408 /*
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
411 */
412 spin_unlock(&fs_info->tree_mod_seq_lock);
413 return;
414 }
415 min_seq = cur_elem->seq;
416 }
417 }
418 spin_unlock(&fs_info->tree_mod_seq_lock);
419
420 /*
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
423 */
424 tree_mod_log_write_lock(fs_info);
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
429 if (tm->seq > min_seq)
430 continue;
431 rb_erase(node, tm_root);
432 kfree(tm);
433 }
434 tree_mod_log_write_unlock(fs_info);
435 }
436
437 /*
438 * key order of the log:
439 * node/leaf start address -> sequence
440 *
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
444 *
445 * Note: must be called with write lock (tree_mod_log_write_lock).
446 */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm);
456
457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
461 while (*new) {
462 cur = container_of(*new, struct tree_mod_elem, node);
463 parent = *new;
464 if (cur->logical < tm->logical)
465 new = &((*new)->rb_left);
466 else if (cur->logical > tm->logical)
467 new = &((*new)->rb_right);
468 else if (cur->seq < tm->seq)
469 new = &((*new)->rb_left);
470 else if (cur->seq > tm->seq)
471 new = &((*new)->rb_right);
472 else
473 return -EEXIST;
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479 }
480
481 /*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
498 return 1;
499 }
500
501 return 0;
502 }
503
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
507 {
508 smp_mb();
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
510 return 0;
511 if (eb && btrfs_header_level(eb) == 0)
512 return 0;
513
514 return 1;
515 }
516
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
520 {
521 struct tree_mod_elem *tm;
522
523 tm = kzalloc(sizeof(*tm), flags);
524 if (!tm)
525 return NULL;
526
527 tm->logical = eb->start;
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 }
532 tm->op = op;
533 tm->slot = slot;
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
535 RB_CLEAR_NODE(&tm->node);
536
537 return tm;
538 }
539
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
544 {
545 struct tree_mod_elem *tm;
546 int ret;
547
548 if (!tree_mod_need_log(fs_info, eb))
549 return 0;
550
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 if (!tm)
553 return -ENOMEM;
554
555 if (tree_mod_dont_log(fs_info, eb)) {
556 kfree(tm);
557 return 0;
558 }
559
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
562 if (ret)
563 kfree(tm);
564
565 return ret;
566 }
567
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
572 {
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
575 int ret = 0;
576 int i;
577 int locked = 0;
578
579 if (!tree_mod_need_log(fs_info, eb))
580 return 0;
581
582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 if (!tm_list)
584 return -ENOMEM;
585
586 tm = kzalloc(sizeof(*tm), flags);
587 if (!tm) {
588 ret = -ENOMEM;
589 goto free_tms;
590 }
591
592 tm->logical = eb->start;
593 tm->slot = src_slot;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
597
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 if (!tm_list[i]) {
602 ret = -ENOMEM;
603 goto free_tms;
604 }
605 }
606
607 if (tree_mod_dont_log(fs_info, eb))
608 goto free_tms;
609 locked = 1;
610
611 /*
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
615 */
616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 if (ret)
619 goto free_tms;
620 }
621
622 ret = __tree_mod_log_insert(fs_info, tm);
623 if (ret)
624 goto free_tms;
625 tree_mod_log_write_unlock(fs_info);
626 kfree(tm_list);
627
628 return 0;
629 free_tms:
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 kfree(tm_list[i]);
634 }
635 if (locked)
636 tree_mod_log_write_unlock(fs_info);
637 kfree(tm_list);
638 kfree(tm);
639
640 return ret;
641 }
642
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
646 int nritems)
647 {
648 int i, j;
649 int ret;
650
651 for (i = nritems - 1; i >= 0; i--) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 if (ret) {
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
657 return ret;
658 }
659 }
660
661 return 0;
662 }
663
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
667 struct extent_buffer *new_root, gfp_t flags,
668 int log_removal)
669 {
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
672 int nritems = 0;
673 int ret = 0;
674 int i;
675
676 if (!tree_mod_need_log(fs_info, NULL))
677 return 0;
678
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 flags);
683 if (!tm_list) {
684 ret = -ENOMEM;
685 goto free_tms;
686 }
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 if (!tm_list[i]) {
691 ret = -ENOMEM;
692 goto free_tms;
693 }
694 }
695 }
696
697 tm = kzalloc(sizeof(*tm), flags);
698 if (!tm) {
699 ret = -ENOMEM;
700 goto free_tms;
701 }
702
703 tm->logical = new_root->start;
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
708
709 if (tree_mod_dont_log(fs_info, NULL))
710 goto free_tms;
711
712 if (tm_list)
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 if (!ret)
715 ret = __tree_mod_log_insert(fs_info, tm);
716
717 tree_mod_log_write_unlock(fs_info);
718 if (ret)
719 goto free_tms;
720 kfree(tm_list);
721
722 return ret;
723
724 free_tms:
725 if (tm_list) {
726 for (i = 0; i < nritems; i++)
727 kfree(tm_list[i]);
728 kfree(tm_list);
729 }
730 kfree(tm);
731
732 return ret;
733 }
734
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 int smallest)
738 {
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->logical < start) {
750 node = node->rb_left;
751 } else if (cur->logical > start) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775 }
776
777 /*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785 {
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804 {
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874 {
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884 {
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
944 {
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
949 }
950
951 /*
952 * check if the tree block can be shared by multiple trees
953 */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956 {
957 /*
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
982 {
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079 }
1080
1081 /*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099 {
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1106
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
1110 btrfs_assert_tree_locked(buf);
1111
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1116
1117 level = btrfs_header_level(buf);
1118
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1137
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1153
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, ret);
1157 return ret;
1158 }
1159
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, ret);
1164 return ret;
1165 }
1166 }
1167
1168 if (buf == root->node) {
1169 WARN_ON(parent && parent != buf);
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1173 else
1174 parent_start = 0;
1175
1176 extent_buffer_get(cow);
1177 tree_mod_log_set_root_pointer(root, cow, 1);
1178 rcu_assign_pointer(root->node, cow);
1179
1180 btrfs_free_tree_block(trans, root, buf, parent_start,
1181 last_ref);
1182 free_extent_buffer(buf);
1183 add_root_to_dirty_list(root);
1184 } else {
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1187 else
1188 parent_start = 0;
1189
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 btrfs_set_node_blockptr(parent, parent_slot,
1194 cow->start);
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1196 trans->transid);
1197 btrfs_mark_buffer_dirty(parent);
1198 if (last_ref) {
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 if (ret) {
1201 btrfs_abort_transaction(trans, ret);
1202 return ret;
1203 }
1204 }
1205 btrfs_free_tree_block(trans, root, buf, parent_start,
1206 last_ref);
1207 }
1208 if (unlock_orig)
1209 btrfs_tree_unlock(buf);
1210 free_extent_buffer_stale(buf);
1211 btrfs_mark_buffer_dirty(cow);
1212 *cow_ret = cow;
1213 return 0;
1214 }
1215
1216 /*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
1226 u64 root_logical = eb_root->start;
1227 int looped = 0;
1228
1229 if (!time_seq)
1230 return NULL;
1231
1232 /*
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1237 */
1238 while (1) {
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 time_seq);
1241 if (!looped && !tm)
1242 return NULL;
1243 /*
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1246 * level 0.
1247 */
1248 if (!tm)
1249 break;
1250
1251 /*
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 */
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 break;
1258
1259 found = tm;
1260 root_logical = tm->old_root.logical;
1261 looped = 1;
1262 }
1263
1264 /* if there's no old root to return, return what we found instead */
1265 if (!found)
1266 found = tm;
1267
1268 return found;
1269 }
1270
1271 /*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1274 * time_seq).
1275 */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280 u32 n;
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) {
1290 /*
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1294 */
1295 switch (tm->op) {
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1298 /* Fallthrough */
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1304 tm->generation);
1305 n++;
1306 break;
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1312 tm->generation);
1313 break;
1314 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */
1316 n--;
1317 break;
1318 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size);
1323 break;
1324 case MOD_LOG_ROOT_REPLACE:
1325 /*
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1333 */
1334 break;
1335 }
1336 next = rb_next(&tm->node);
1337 if (!next)
1338 break;
1339 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->logical != first_tm->logical)
1341 break;
1342 }
1343 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
1357 {
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1360
1361 if (!time_seq)
1362 return eb;
1363
1364 if (btrfs_header_level(eb) == 0)
1365 return eb;
1366
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 if (!tm)
1369 return eb;
1370
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377 eb->len);
1378 if (!eb_rewin) {
1379 btrfs_tree_read_unlock_blocking(eb);
1380 free_extent_buffer(eb);
1381 return NULL;
1382 }
1383 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388 } else {
1389 eb_rewin = btrfs_clone_extent_buffer(eb);
1390 if (!eb_rewin) {
1391 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb);
1393 return NULL;
1394 }
1395 }
1396
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb);
1399 free_extent_buffer(eb);
1400
1401 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin);
1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407 return eb_rewin;
1408 }
1409
1410 /*
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1416 */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420 struct tree_mod_elem *tm;
1421 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root;
1423 struct extent_buffer *old;
1424 struct tree_mod_root *old_root = NULL;
1425 u64 old_generation = 0;
1426 u64 logical;
1427
1428 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430 if (!tm)
1431 return eb_root;
1432
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root;
1435 old_generation = tm->generation;
1436 logical = old_root->logical;
1437 } else {
1438 logical = eb_root->start;
1439 }
1440
1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root);
1445 old = read_tree_block(root, logical, 0);
1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447 if (!IS_ERR(old))
1448 free_extent_buffer(old);
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
1451 } else {
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
1454 }
1455 } else if (old_root) {
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459 root->nodesize);
1460 } else {
1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 eb = btrfs_clone_extent_buffer(eb_root);
1463 btrfs_tree_read_unlock_blocking(eb_root);
1464 free_extent_buffer(eb_root);
1465 }
1466
1467 if (!eb)
1468 return NULL;
1469 extent_buffer_get(eb);
1470 btrfs_tree_read_lock(eb);
1471 if (old_root) {
1472 btrfs_set_header_bytenr(eb, eb->start);
1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 btrfs_set_header_level(eb, old_root->level);
1476 btrfs_set_header_generation(eb, old_generation);
1477 }
1478 if (tm)
1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 else
1481 WARN_ON(btrfs_header_level(eb) != 0);
1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484 return eb;
1485 }
1486
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489 struct tree_mod_elem *tm;
1490 int level;
1491 struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 level = tm->old_root.level;
1496 } else {
1497 level = btrfs_header_level(eb_root);
1498 }
1499 free_extent_buffer(eb_root);
1500
1501 return level;
1502 }
1503
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *root,
1506 struct extent_buffer *buf)
1507 {
1508 if (btrfs_is_testing(root->fs_info))
1509 return 0;
1510
1511 /* ensure we can see the force_cow */
1512 smp_rmb();
1513
1514 /*
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1519 *
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1524 */
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 return 0;
1531 return 1;
1532 }
1533
1534 /*
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1538 */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
1542 struct extent_buffer **cow_ret)
1543 {
1544 u64 search_start;
1545 int ret;
1546
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 trans->transid,
1550 root->fs_info->running_transaction->transid);
1551
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 trans->transid, root->fs_info->generation);
1555
1556 if (!should_cow_block(trans, root, buf)) {
1557 trans->dirty = true;
1558 *cow_ret = buf;
1559 return 0;
1560 }
1561
1562 search_start = buf->start & ~((u64)SZ_1G - 1);
1563
1564 if (parent)
1565 btrfs_set_lock_blocking(parent);
1566 btrfs_set_lock_blocking(buf);
1567
1568 ret = __btrfs_cow_block(trans, root, buf, parent,
1569 parent_slot, cow_ret, search_start, 0);
1570
1571 trace_btrfs_cow_block(root, buf, *cow_ret);
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1579 */
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581 {
1582 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583 return 1;
1584 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585 return 1;
1586 return 0;
1587 }
1588
1589 /*
1590 * compare two keys in a memcmp fashion
1591 */
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593 {
1594 struct btrfs_key k1;
1595
1596 btrfs_disk_key_to_cpu(&k1, disk);
1597
1598 return btrfs_comp_cpu_keys(&k1, k2);
1599 }
1600
1601 /*
1602 * same as comp_keys only with two btrfs_key's
1603 */
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605 {
1606 if (k1->objectid > k2->objectid)
1607 return 1;
1608 if (k1->objectid < k2->objectid)
1609 return -1;
1610 if (k1->type > k2->type)
1611 return 1;
1612 if (k1->type < k2->type)
1613 return -1;
1614 if (k1->offset > k2->offset)
1615 return 1;
1616 if (k1->offset < k2->offset)
1617 return -1;
1618 return 0;
1619 }
1620
1621 /*
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1625 */
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627 struct btrfs_root *root, struct extent_buffer *parent,
1628 int start_slot, u64 *last_ret,
1629 struct btrfs_key *progress)
1630 {
1631 struct extent_buffer *cur;
1632 u64 blocknr;
1633 u64 gen;
1634 u64 search_start = *last_ret;
1635 u64 last_block = 0;
1636 u64 other;
1637 u32 parent_nritems;
1638 int end_slot;
1639 int i;
1640 int err = 0;
1641 int parent_level;
1642 int uptodate;
1643 u32 blocksize;
1644 int progress_passed = 0;
1645 struct btrfs_disk_key disk_key;
1646
1647 parent_level = btrfs_header_level(parent);
1648
1649 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 WARN_ON(trans->transid != root->fs_info->generation);
1651
1652 parent_nritems = btrfs_header_nritems(parent);
1653 blocksize = root->nodesize;
1654 end_slot = parent_nritems - 1;
1655
1656 if (parent_nritems <= 1)
1657 return 0;
1658
1659 btrfs_set_lock_blocking(parent);
1660
1661 for (i = start_slot; i <= end_slot; i++) {
1662 int close = 1;
1663
1664 btrfs_node_key(parent, &disk_key, i);
1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666 continue;
1667
1668 progress_passed = 1;
1669 blocknr = btrfs_node_blockptr(parent, i);
1670 gen = btrfs_node_ptr_generation(parent, i);
1671 if (last_block == 0)
1672 last_block = blocknr;
1673
1674 if (i > 0) {
1675 other = btrfs_node_blockptr(parent, i - 1);
1676 close = close_blocks(blocknr, other, blocksize);
1677 }
1678 if (!close && i < end_slot) {
1679 other = btrfs_node_blockptr(parent, i + 1);
1680 close = close_blocks(blocknr, other, blocksize);
1681 }
1682 if (close) {
1683 last_block = blocknr;
1684 continue;
1685 }
1686
1687 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688 if (cur)
1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690 else
1691 uptodate = 0;
1692 if (!cur || !uptodate) {
1693 if (!cur) {
1694 cur = read_tree_block(root, blocknr, gen);
1695 if (IS_ERR(cur)) {
1696 return PTR_ERR(cur);
1697 } else if (!extent_buffer_uptodate(cur)) {
1698 free_extent_buffer(cur);
1699 return -EIO;
1700 }
1701 } else if (!uptodate) {
1702 err = btrfs_read_buffer(cur, gen);
1703 if (err) {
1704 free_extent_buffer(cur);
1705 return err;
1706 }
1707 }
1708 }
1709 if (search_start == 0)
1710 search_start = last_block;
1711
1712 btrfs_tree_lock(cur);
1713 btrfs_set_lock_blocking(cur);
1714 err = __btrfs_cow_block(trans, root, cur, parent, i,
1715 &cur, search_start,
1716 min(16 * blocksize,
1717 (end_slot - i) * blocksize));
1718 if (err) {
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
1721 break;
1722 }
1723 search_start = cur->start;
1724 last_block = cur->start;
1725 *last_ret = search_start;
1726 btrfs_tree_unlock(cur);
1727 free_extent_buffer(cur);
1728 }
1729 return err;
1730 }
1731
1732 /*
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1736 */
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738 struct extent_buffer *leaf)
1739 {
1740 u32 nr = btrfs_header_nritems(leaf);
1741 if (nr == 0)
1742 return BTRFS_LEAF_DATA_SIZE(root);
1743 return btrfs_item_offset_nr(leaf, nr - 1);
1744 }
1745
1746
1747 /*
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1750 *
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1753 * the array.
1754 *
1755 * slot may point to max if the key is bigger than all of the keys
1756 */
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1758 unsigned long p,
1759 int item_size, struct btrfs_key *key,
1760 int max, int *slot)
1761 {
1762 int low = 0;
1763 int high = max;
1764 int mid;
1765 int ret;
1766 struct btrfs_disk_key *tmp = NULL;
1767 struct btrfs_disk_key unaligned;
1768 unsigned long offset;
1769 char *kaddr = NULL;
1770 unsigned long map_start = 0;
1771 unsigned long map_len = 0;
1772 int err;
1773
1774 if (low > high) {
1775 btrfs_err(eb->fs_info,
1776 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1777 __func__, low, high, eb->start,
1778 btrfs_header_owner(eb), btrfs_header_level(eb));
1779 return -EINVAL;
1780 }
1781
1782 while (low < high) {
1783 mid = (low + high) / 2;
1784 offset = p + mid * item_size;
1785
1786 if (!kaddr || offset < map_start ||
1787 (offset + sizeof(struct btrfs_disk_key)) >
1788 map_start + map_len) {
1789
1790 err = map_private_extent_buffer(eb, offset,
1791 sizeof(struct btrfs_disk_key),
1792 &kaddr, &map_start, &map_len);
1793
1794 if (!err) {
1795 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796 map_start);
1797 } else if (err == 1) {
1798 read_extent_buffer(eb, &unaligned,
1799 offset, sizeof(unaligned));
1800 tmp = &unaligned;
1801 } else {
1802 return err;
1803 }
1804
1805 } else {
1806 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1807 map_start);
1808 }
1809 ret = comp_keys(tmp, key);
1810
1811 if (ret < 0)
1812 low = mid + 1;
1813 else if (ret > 0)
1814 high = mid;
1815 else {
1816 *slot = mid;
1817 return 0;
1818 }
1819 }
1820 *slot = low;
1821 return 1;
1822 }
1823
1824 /*
1825 * simple bin_search frontend that does the right thing for
1826 * leaves vs nodes
1827 */
1828 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1829 int level, int *slot)
1830 {
1831 if (level == 0)
1832 return generic_bin_search(eb,
1833 offsetof(struct btrfs_leaf, items),
1834 sizeof(struct btrfs_item),
1835 key, btrfs_header_nritems(eb),
1836 slot);
1837 else
1838 return generic_bin_search(eb,
1839 offsetof(struct btrfs_node, ptrs),
1840 sizeof(struct btrfs_key_ptr),
1841 key, btrfs_header_nritems(eb),
1842 slot);
1843 }
1844
1845 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1846 int level, int *slot)
1847 {
1848 return bin_search(eb, key, level, slot);
1849 }
1850
1851 static void root_add_used(struct btrfs_root *root, u32 size)
1852 {
1853 spin_lock(&root->accounting_lock);
1854 btrfs_set_root_used(&root->root_item,
1855 btrfs_root_used(&root->root_item) + size);
1856 spin_unlock(&root->accounting_lock);
1857 }
1858
1859 static void root_sub_used(struct btrfs_root *root, u32 size)
1860 {
1861 spin_lock(&root->accounting_lock);
1862 btrfs_set_root_used(&root->root_item,
1863 btrfs_root_used(&root->root_item) - size);
1864 spin_unlock(&root->accounting_lock);
1865 }
1866
1867 /* given a node and slot number, this reads the blocks it points to. The
1868 * extent buffer is returned with a reference taken (but unlocked).
1869 */
1870 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1871 struct extent_buffer *parent, int slot)
1872 {
1873 int level = btrfs_header_level(parent);
1874 struct extent_buffer *eb;
1875
1876 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1877 return ERR_PTR(-ENOENT);
1878
1879 BUG_ON(level == 0);
1880
1881 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1882 btrfs_node_ptr_generation(parent, slot));
1883 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1884 free_extent_buffer(eb);
1885 eb = ERR_PTR(-EIO);
1886 }
1887
1888 return eb;
1889 }
1890
1891 /*
1892 * node level balancing, used to make sure nodes are in proper order for
1893 * item deletion. We balance from the top down, so we have to make sure
1894 * that a deletion won't leave an node completely empty later on.
1895 */
1896 static noinline int balance_level(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path, int level)
1899 {
1900 struct extent_buffer *right = NULL;
1901 struct extent_buffer *mid;
1902 struct extent_buffer *left = NULL;
1903 struct extent_buffer *parent = NULL;
1904 int ret = 0;
1905 int wret;
1906 int pslot;
1907 int orig_slot = path->slots[level];
1908 u64 orig_ptr;
1909
1910 if (level == 0)
1911 return 0;
1912
1913 mid = path->nodes[level];
1914
1915 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1916 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1917 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1918
1919 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1920
1921 if (level < BTRFS_MAX_LEVEL - 1) {
1922 parent = path->nodes[level + 1];
1923 pslot = path->slots[level + 1];
1924 }
1925
1926 /*
1927 * deal with the case where there is only one pointer in the root
1928 * by promoting the node below to a root
1929 */
1930 if (!parent) {
1931 struct extent_buffer *child;
1932
1933 if (btrfs_header_nritems(mid) != 1)
1934 return 0;
1935
1936 /* promote the child to a root */
1937 child = read_node_slot(root, mid, 0);
1938 if (IS_ERR(child)) {
1939 ret = PTR_ERR(child);
1940 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1941 goto enospc;
1942 }
1943
1944 btrfs_tree_lock(child);
1945 btrfs_set_lock_blocking(child);
1946 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1947 if (ret) {
1948 btrfs_tree_unlock(child);
1949 free_extent_buffer(child);
1950 goto enospc;
1951 }
1952
1953 tree_mod_log_set_root_pointer(root, child, 1);
1954 rcu_assign_pointer(root->node, child);
1955
1956 add_root_to_dirty_list(root);
1957 btrfs_tree_unlock(child);
1958
1959 path->locks[level] = 0;
1960 path->nodes[level] = NULL;
1961 clean_tree_block(trans, root->fs_info, mid);
1962 btrfs_tree_unlock(mid);
1963 /* once for the path */
1964 free_extent_buffer(mid);
1965
1966 root_sub_used(root, mid->len);
1967 btrfs_free_tree_block(trans, root, mid, 0, 1);
1968 /* once for the root ptr */
1969 free_extent_buffer_stale(mid);
1970 return 0;
1971 }
1972 if (btrfs_header_nritems(mid) >
1973 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1974 return 0;
1975
1976 left = read_node_slot(root, parent, pslot - 1);
1977 if (IS_ERR(left))
1978 left = NULL;
1979
1980 if (left) {
1981 btrfs_tree_lock(left);
1982 btrfs_set_lock_blocking(left);
1983 wret = btrfs_cow_block(trans, root, left,
1984 parent, pslot - 1, &left);
1985 if (wret) {
1986 ret = wret;
1987 goto enospc;
1988 }
1989 }
1990
1991 right = read_node_slot(root, parent, pslot + 1);
1992 if (IS_ERR(right))
1993 right = NULL;
1994
1995 if (right) {
1996 btrfs_tree_lock(right);
1997 btrfs_set_lock_blocking(right);
1998 wret = btrfs_cow_block(trans, root, right,
1999 parent, pslot + 1, &right);
2000 if (wret) {
2001 ret = wret;
2002 goto enospc;
2003 }
2004 }
2005
2006 /* first, try to make some room in the middle buffer */
2007 if (left) {
2008 orig_slot += btrfs_header_nritems(left);
2009 wret = push_node_left(trans, root, left, mid, 1);
2010 if (wret < 0)
2011 ret = wret;
2012 }
2013
2014 /*
2015 * then try to empty the right most buffer into the middle
2016 */
2017 if (right) {
2018 wret = push_node_left(trans, root, mid, right, 1);
2019 if (wret < 0 && wret != -ENOSPC)
2020 ret = wret;
2021 if (btrfs_header_nritems(right) == 0) {
2022 clean_tree_block(trans, root->fs_info, right);
2023 btrfs_tree_unlock(right);
2024 del_ptr(root, path, level + 1, pslot + 1);
2025 root_sub_used(root, right->len);
2026 btrfs_free_tree_block(trans, root, right, 0, 1);
2027 free_extent_buffer_stale(right);
2028 right = NULL;
2029 } else {
2030 struct btrfs_disk_key right_key;
2031 btrfs_node_key(right, &right_key, 0);
2032 tree_mod_log_set_node_key(root->fs_info, parent,
2033 pslot + 1, 0);
2034 btrfs_set_node_key(parent, &right_key, pslot + 1);
2035 btrfs_mark_buffer_dirty(parent);
2036 }
2037 }
2038 if (btrfs_header_nritems(mid) == 1) {
2039 /*
2040 * we're not allowed to leave a node with one item in the
2041 * tree during a delete. A deletion from lower in the tree
2042 * could try to delete the only pointer in this node.
2043 * So, pull some keys from the left.
2044 * There has to be a left pointer at this point because
2045 * otherwise we would have pulled some pointers from the
2046 * right
2047 */
2048 if (!left) {
2049 ret = -EROFS;
2050 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2051 goto enospc;
2052 }
2053 wret = balance_node_right(trans, root, mid, left);
2054 if (wret < 0) {
2055 ret = wret;
2056 goto enospc;
2057 }
2058 if (wret == 1) {
2059 wret = push_node_left(trans, root, left, mid, 1);
2060 if (wret < 0)
2061 ret = wret;
2062 }
2063 BUG_ON(wret == 1);
2064 }
2065 if (btrfs_header_nritems(mid) == 0) {
2066 clean_tree_block(trans, root->fs_info, mid);
2067 btrfs_tree_unlock(mid);
2068 del_ptr(root, path, level + 1, pslot);
2069 root_sub_used(root, mid->len);
2070 btrfs_free_tree_block(trans, root, mid, 0, 1);
2071 free_extent_buffer_stale(mid);
2072 mid = NULL;
2073 } else {
2074 /* update the parent key to reflect our changes */
2075 struct btrfs_disk_key mid_key;
2076 btrfs_node_key(mid, &mid_key, 0);
2077 tree_mod_log_set_node_key(root->fs_info, parent,
2078 pslot, 0);
2079 btrfs_set_node_key(parent, &mid_key, pslot);
2080 btrfs_mark_buffer_dirty(parent);
2081 }
2082
2083 /* update the path */
2084 if (left) {
2085 if (btrfs_header_nritems(left) > orig_slot) {
2086 extent_buffer_get(left);
2087 /* left was locked after cow */
2088 path->nodes[level] = left;
2089 path->slots[level + 1] -= 1;
2090 path->slots[level] = orig_slot;
2091 if (mid) {
2092 btrfs_tree_unlock(mid);
2093 free_extent_buffer(mid);
2094 }
2095 } else {
2096 orig_slot -= btrfs_header_nritems(left);
2097 path->slots[level] = orig_slot;
2098 }
2099 }
2100 /* double check we haven't messed things up */
2101 if (orig_ptr !=
2102 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2103 BUG();
2104 enospc:
2105 if (right) {
2106 btrfs_tree_unlock(right);
2107 free_extent_buffer(right);
2108 }
2109 if (left) {
2110 if (path->nodes[level] != left)
2111 btrfs_tree_unlock(left);
2112 free_extent_buffer(left);
2113 }
2114 return ret;
2115 }
2116
2117 /* Node balancing for insertion. Here we only split or push nodes around
2118 * when they are completely full. This is also done top down, so we
2119 * have to be pessimistic.
2120 */
2121 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2122 struct btrfs_root *root,
2123 struct btrfs_path *path, int level)
2124 {
2125 struct extent_buffer *right = NULL;
2126 struct extent_buffer *mid;
2127 struct extent_buffer *left = NULL;
2128 struct extent_buffer *parent = NULL;
2129 int ret = 0;
2130 int wret;
2131 int pslot;
2132 int orig_slot = path->slots[level];
2133
2134 if (level == 0)
2135 return 1;
2136
2137 mid = path->nodes[level];
2138 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2139
2140 if (level < BTRFS_MAX_LEVEL - 1) {
2141 parent = path->nodes[level + 1];
2142 pslot = path->slots[level + 1];
2143 }
2144
2145 if (!parent)
2146 return 1;
2147
2148 left = read_node_slot(root, parent, pslot - 1);
2149 if (IS_ERR(left))
2150 left = NULL;
2151
2152 /* first, try to make some room in the middle buffer */
2153 if (left) {
2154 u32 left_nr;
2155
2156 btrfs_tree_lock(left);
2157 btrfs_set_lock_blocking(left);
2158
2159 left_nr = btrfs_header_nritems(left);
2160 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2161 wret = 1;
2162 } else {
2163 ret = btrfs_cow_block(trans, root, left, parent,
2164 pslot - 1, &left);
2165 if (ret)
2166 wret = 1;
2167 else {
2168 wret = push_node_left(trans, root,
2169 left, mid, 0);
2170 }
2171 }
2172 if (wret < 0)
2173 ret = wret;
2174 if (wret == 0) {
2175 struct btrfs_disk_key disk_key;
2176 orig_slot += left_nr;
2177 btrfs_node_key(mid, &disk_key, 0);
2178 tree_mod_log_set_node_key(root->fs_info, parent,
2179 pslot, 0);
2180 btrfs_set_node_key(parent, &disk_key, pslot);
2181 btrfs_mark_buffer_dirty(parent);
2182 if (btrfs_header_nritems(left) > orig_slot) {
2183 path->nodes[level] = left;
2184 path->slots[level + 1] -= 1;
2185 path->slots[level] = orig_slot;
2186 btrfs_tree_unlock(mid);
2187 free_extent_buffer(mid);
2188 } else {
2189 orig_slot -=
2190 btrfs_header_nritems(left);
2191 path->slots[level] = orig_slot;
2192 btrfs_tree_unlock(left);
2193 free_extent_buffer(left);
2194 }
2195 return 0;
2196 }
2197 btrfs_tree_unlock(left);
2198 free_extent_buffer(left);
2199 }
2200 right = read_node_slot(root, parent, pslot + 1);
2201 if (IS_ERR(right))
2202 right = NULL;
2203
2204 /*
2205 * then try to empty the right most buffer into the middle
2206 */
2207 if (right) {
2208 u32 right_nr;
2209
2210 btrfs_tree_lock(right);
2211 btrfs_set_lock_blocking(right);
2212
2213 right_nr = btrfs_header_nritems(right);
2214 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2215 wret = 1;
2216 } else {
2217 ret = btrfs_cow_block(trans, root, right,
2218 parent, pslot + 1,
2219 &right);
2220 if (ret)
2221 wret = 1;
2222 else {
2223 wret = balance_node_right(trans, root,
2224 right, mid);
2225 }
2226 }
2227 if (wret < 0)
2228 ret = wret;
2229 if (wret == 0) {
2230 struct btrfs_disk_key disk_key;
2231
2232 btrfs_node_key(right, &disk_key, 0);
2233 tree_mod_log_set_node_key(root->fs_info, parent,
2234 pslot + 1, 0);
2235 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2236 btrfs_mark_buffer_dirty(parent);
2237
2238 if (btrfs_header_nritems(mid) <= orig_slot) {
2239 path->nodes[level] = right;
2240 path->slots[level + 1] += 1;
2241 path->slots[level] = orig_slot -
2242 btrfs_header_nritems(mid);
2243 btrfs_tree_unlock(mid);
2244 free_extent_buffer(mid);
2245 } else {
2246 btrfs_tree_unlock(right);
2247 free_extent_buffer(right);
2248 }
2249 return 0;
2250 }
2251 btrfs_tree_unlock(right);
2252 free_extent_buffer(right);
2253 }
2254 return 1;
2255 }
2256
2257 /*
2258 * readahead one full node of leaves, finding things that are close
2259 * to the block in 'slot', and triggering ra on them.
2260 */
2261 static void reada_for_search(struct btrfs_root *root,
2262 struct btrfs_path *path,
2263 int level, int slot, u64 objectid)
2264 {
2265 struct extent_buffer *node;
2266 struct btrfs_disk_key disk_key;
2267 u32 nritems;
2268 u64 search;
2269 u64 target;
2270 u64 nread = 0;
2271 u64 gen;
2272 struct extent_buffer *eb;
2273 u32 nr;
2274 u32 blocksize;
2275 u32 nscan = 0;
2276
2277 if (level != 1)
2278 return;
2279
2280 if (!path->nodes[level])
2281 return;
2282
2283 node = path->nodes[level];
2284
2285 search = btrfs_node_blockptr(node, slot);
2286 blocksize = root->nodesize;
2287 eb = btrfs_find_tree_block(root->fs_info, search);
2288 if (eb) {
2289 free_extent_buffer(eb);
2290 return;
2291 }
2292
2293 target = search;
2294
2295 nritems = btrfs_header_nritems(node);
2296 nr = slot;
2297
2298 while (1) {
2299 if (path->reada == READA_BACK) {
2300 if (nr == 0)
2301 break;
2302 nr--;
2303 } else if (path->reada == READA_FORWARD) {
2304 nr++;
2305 if (nr >= nritems)
2306 break;
2307 }
2308 if (path->reada == READA_BACK && objectid) {
2309 btrfs_node_key(node, &disk_key, nr);
2310 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2311 break;
2312 }
2313 search = btrfs_node_blockptr(node, nr);
2314 if ((search <= target && target - search <= 65536) ||
2315 (search > target && search - target <= 65536)) {
2316 gen = btrfs_node_ptr_generation(node, nr);
2317 readahead_tree_block(root, search);
2318 nread += blocksize;
2319 }
2320 nscan++;
2321 if ((nread > 65536 || nscan > 32))
2322 break;
2323 }
2324 }
2325
2326 static noinline void reada_for_balance(struct btrfs_root *root,
2327 struct btrfs_path *path, int level)
2328 {
2329 int slot;
2330 int nritems;
2331 struct extent_buffer *parent;
2332 struct extent_buffer *eb;
2333 u64 gen;
2334 u64 block1 = 0;
2335 u64 block2 = 0;
2336
2337 parent = path->nodes[level + 1];
2338 if (!parent)
2339 return;
2340
2341 nritems = btrfs_header_nritems(parent);
2342 slot = path->slots[level + 1];
2343
2344 if (slot > 0) {
2345 block1 = btrfs_node_blockptr(parent, slot - 1);
2346 gen = btrfs_node_ptr_generation(parent, slot - 1);
2347 eb = btrfs_find_tree_block(root->fs_info, block1);
2348 /*
2349 * if we get -eagain from btrfs_buffer_uptodate, we
2350 * don't want to return eagain here. That will loop
2351 * forever
2352 */
2353 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2354 block1 = 0;
2355 free_extent_buffer(eb);
2356 }
2357 if (slot + 1 < nritems) {
2358 block2 = btrfs_node_blockptr(parent, slot + 1);
2359 gen = btrfs_node_ptr_generation(parent, slot + 1);
2360 eb = btrfs_find_tree_block(root->fs_info, block2);
2361 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2362 block2 = 0;
2363 free_extent_buffer(eb);
2364 }
2365
2366 if (block1)
2367 readahead_tree_block(root, block1);
2368 if (block2)
2369 readahead_tree_block(root, block2);
2370 }
2371
2372
2373 /*
2374 * when we walk down the tree, it is usually safe to unlock the higher layers
2375 * in the tree. The exceptions are when our path goes through slot 0, because
2376 * operations on the tree might require changing key pointers higher up in the
2377 * tree.
2378 *
2379 * callers might also have set path->keep_locks, which tells this code to keep
2380 * the lock if the path points to the last slot in the block. This is part of
2381 * walking through the tree, and selecting the next slot in the higher block.
2382 *
2383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2384 * if lowest_unlock is 1, level 0 won't be unlocked
2385 */
2386 static noinline void unlock_up(struct btrfs_path *path, int level,
2387 int lowest_unlock, int min_write_lock_level,
2388 int *write_lock_level)
2389 {
2390 int i;
2391 int skip_level = level;
2392 int no_skips = 0;
2393 struct extent_buffer *t;
2394
2395 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2396 if (!path->nodes[i])
2397 break;
2398 if (!path->locks[i])
2399 break;
2400 if (!no_skips && path->slots[i] == 0) {
2401 skip_level = i + 1;
2402 continue;
2403 }
2404 if (!no_skips && path->keep_locks) {
2405 u32 nritems;
2406 t = path->nodes[i];
2407 nritems = btrfs_header_nritems(t);
2408 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2409 skip_level = i + 1;
2410 continue;
2411 }
2412 }
2413 if (skip_level < i && i >= lowest_unlock)
2414 no_skips = 1;
2415
2416 t = path->nodes[i];
2417 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2418 btrfs_tree_unlock_rw(t, path->locks[i]);
2419 path->locks[i] = 0;
2420 if (write_lock_level &&
2421 i > min_write_lock_level &&
2422 i <= *write_lock_level) {
2423 *write_lock_level = i - 1;
2424 }
2425 }
2426 }
2427 }
2428
2429 /*
2430 * This releases any locks held in the path starting at level and
2431 * going all the way up to the root.
2432 *
2433 * btrfs_search_slot will keep the lock held on higher nodes in a few
2434 * corner cases, such as COW of the block at slot zero in the node. This
2435 * ignores those rules, and it should only be called when there are no
2436 * more updates to be done higher up in the tree.
2437 */
2438 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2439 {
2440 int i;
2441
2442 if (path->keep_locks)
2443 return;
2444
2445 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2446 if (!path->nodes[i])
2447 continue;
2448 if (!path->locks[i])
2449 continue;
2450 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2451 path->locks[i] = 0;
2452 }
2453 }
2454
2455 /*
2456 * helper function for btrfs_search_slot. The goal is to find a block
2457 * in cache without setting the path to blocking. If we find the block
2458 * we return zero and the path is unchanged.
2459 *
2460 * If we can't find the block, we set the path blocking and do some
2461 * reada. -EAGAIN is returned and the search must be repeated.
2462 */
2463 static int
2464 read_block_for_search(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root, struct btrfs_path *p,
2466 struct extent_buffer **eb_ret, int level, int slot,
2467 struct btrfs_key *key, u64 time_seq)
2468 {
2469 u64 blocknr;
2470 u64 gen;
2471 struct extent_buffer *b = *eb_ret;
2472 struct extent_buffer *tmp;
2473 int ret;
2474
2475 blocknr = btrfs_node_blockptr(b, slot);
2476 gen = btrfs_node_ptr_generation(b, slot);
2477
2478 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2479 if (tmp) {
2480 /* first we do an atomic uptodate check */
2481 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2482 *eb_ret = tmp;
2483 return 0;
2484 }
2485
2486 /* the pages were up to date, but we failed
2487 * the generation number check. Do a full
2488 * read for the generation number that is correct.
2489 * We must do this without dropping locks so
2490 * we can trust our generation number
2491 */
2492 btrfs_set_path_blocking(p);
2493
2494 /* now we're allowed to do a blocking uptodate check */
2495 ret = btrfs_read_buffer(tmp, gen);
2496 if (!ret) {
2497 *eb_ret = tmp;
2498 return 0;
2499 }
2500 free_extent_buffer(tmp);
2501 btrfs_release_path(p);
2502 return -EIO;
2503 }
2504
2505 /*
2506 * reduce lock contention at high levels
2507 * of the btree by dropping locks before
2508 * we read. Don't release the lock on the current
2509 * level because we need to walk this node to figure
2510 * out which blocks to read.
2511 */
2512 btrfs_unlock_up_safe(p, level + 1);
2513 btrfs_set_path_blocking(p);
2514
2515 free_extent_buffer(tmp);
2516 if (p->reada != READA_NONE)
2517 reada_for_search(root, p, level, slot, key->objectid);
2518
2519 btrfs_release_path(p);
2520
2521 ret = -EAGAIN;
2522 tmp = read_tree_block(root, blocknr, 0);
2523 if (!IS_ERR(tmp)) {
2524 /*
2525 * If the read above didn't mark this buffer up to date,
2526 * it will never end up being up to date. Set ret to EIO now
2527 * and give up so that our caller doesn't loop forever
2528 * on our EAGAINs.
2529 */
2530 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2531 ret = -EIO;
2532 free_extent_buffer(tmp);
2533 } else {
2534 ret = PTR_ERR(tmp);
2535 }
2536 return ret;
2537 }
2538
2539 /*
2540 * helper function for btrfs_search_slot. This does all of the checks
2541 * for node-level blocks and does any balancing required based on
2542 * the ins_len.
2543 *
2544 * If no extra work was required, zero is returned. If we had to
2545 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2546 * start over
2547 */
2548 static int
2549 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2550 struct btrfs_root *root, struct btrfs_path *p,
2551 struct extent_buffer *b, int level, int ins_len,
2552 int *write_lock_level)
2553 {
2554 int ret;
2555 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2556 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2557 int sret;
2558
2559 if (*write_lock_level < level + 1) {
2560 *write_lock_level = level + 1;
2561 btrfs_release_path(p);
2562 goto again;
2563 }
2564
2565 btrfs_set_path_blocking(p);
2566 reada_for_balance(root, p, level);
2567 sret = split_node(trans, root, p, level);
2568 btrfs_clear_path_blocking(p, NULL, 0);
2569
2570 BUG_ON(sret > 0);
2571 if (sret) {
2572 ret = sret;
2573 goto done;
2574 }
2575 b = p->nodes[level];
2576 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2577 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2578 int sret;
2579
2580 if (*write_lock_level < level + 1) {
2581 *write_lock_level = level + 1;
2582 btrfs_release_path(p);
2583 goto again;
2584 }
2585
2586 btrfs_set_path_blocking(p);
2587 reada_for_balance(root, p, level);
2588 sret = balance_level(trans, root, p, level);
2589 btrfs_clear_path_blocking(p, NULL, 0);
2590
2591 if (sret) {
2592 ret = sret;
2593 goto done;
2594 }
2595 b = p->nodes[level];
2596 if (!b) {
2597 btrfs_release_path(p);
2598 goto again;
2599 }
2600 BUG_ON(btrfs_header_nritems(b) == 1);
2601 }
2602 return 0;
2603
2604 again:
2605 ret = -EAGAIN;
2606 done:
2607 return ret;
2608 }
2609
2610 static void key_search_validate(struct extent_buffer *b,
2611 struct btrfs_key *key,
2612 int level)
2613 {
2614 #ifdef CONFIG_BTRFS_ASSERT
2615 struct btrfs_disk_key disk_key;
2616
2617 btrfs_cpu_key_to_disk(&disk_key, key);
2618
2619 if (level == 0)
2620 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2621 offsetof(struct btrfs_leaf, items[0].key),
2622 sizeof(disk_key)));
2623 else
2624 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2625 offsetof(struct btrfs_node, ptrs[0].key),
2626 sizeof(disk_key)));
2627 #endif
2628 }
2629
2630 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2631 int level, int *prev_cmp, int *slot)
2632 {
2633 if (*prev_cmp != 0) {
2634 *prev_cmp = bin_search(b, key, level, slot);
2635 return *prev_cmp;
2636 }
2637
2638 key_search_validate(b, key, level);
2639 *slot = 0;
2640
2641 return 0;
2642 }
2643
2644 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2645 u64 iobjectid, u64 ioff, u8 key_type,
2646 struct btrfs_key *found_key)
2647 {
2648 int ret;
2649 struct btrfs_key key;
2650 struct extent_buffer *eb;
2651
2652 ASSERT(path);
2653 ASSERT(found_key);
2654
2655 key.type = key_type;
2656 key.objectid = iobjectid;
2657 key.offset = ioff;
2658
2659 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2660 if (ret < 0)
2661 return ret;
2662
2663 eb = path->nodes[0];
2664 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2665 ret = btrfs_next_leaf(fs_root, path);
2666 if (ret)
2667 return ret;
2668 eb = path->nodes[0];
2669 }
2670
2671 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2672 if (found_key->type != key.type ||
2673 found_key->objectid != key.objectid)
2674 return 1;
2675
2676 return 0;
2677 }
2678
2679 /*
2680 * look for key in the tree. path is filled in with nodes along the way
2681 * if key is found, we return zero and you can find the item in the leaf
2682 * level of the path (level 0)
2683 *
2684 * If the key isn't found, the path points to the slot where it should
2685 * be inserted, and 1 is returned. If there are other errors during the
2686 * search a negative error number is returned.
2687 *
2688 * if ins_len > 0, nodes and leaves will be split as we walk down the
2689 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2690 * possible)
2691 */
2692 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2693 *root, struct btrfs_key *key, struct btrfs_path *p, int
2694 ins_len, int cow)
2695 {
2696 struct extent_buffer *b;
2697 int slot;
2698 int ret;
2699 int err;
2700 int level;
2701 int lowest_unlock = 1;
2702 int root_lock;
2703 /* everything at write_lock_level or lower must be write locked */
2704 int write_lock_level = 0;
2705 u8 lowest_level = 0;
2706 int min_write_lock_level;
2707 int prev_cmp;
2708
2709 lowest_level = p->lowest_level;
2710 WARN_ON(lowest_level && ins_len > 0);
2711 WARN_ON(p->nodes[0] != NULL);
2712 BUG_ON(!cow && ins_len);
2713
2714 if (ins_len < 0) {
2715 lowest_unlock = 2;
2716
2717 /* when we are removing items, we might have to go up to level
2718 * two as we update tree pointers Make sure we keep write
2719 * for those levels as well
2720 */
2721 write_lock_level = 2;
2722 } else if (ins_len > 0) {
2723 /*
2724 * for inserting items, make sure we have a write lock on
2725 * level 1 so we can update keys
2726 */
2727 write_lock_level = 1;
2728 }
2729
2730 if (!cow)
2731 write_lock_level = -1;
2732
2733 if (cow && (p->keep_locks || p->lowest_level))
2734 write_lock_level = BTRFS_MAX_LEVEL;
2735
2736 min_write_lock_level = write_lock_level;
2737
2738 again:
2739 prev_cmp = -1;
2740 /*
2741 * we try very hard to do read locks on the root
2742 */
2743 root_lock = BTRFS_READ_LOCK;
2744 level = 0;
2745 if (p->search_commit_root) {
2746 /*
2747 * the commit roots are read only
2748 * so we always do read locks
2749 */
2750 if (p->need_commit_sem)
2751 down_read(&root->fs_info->commit_root_sem);
2752 b = root->commit_root;
2753 extent_buffer_get(b);
2754 level = btrfs_header_level(b);
2755 if (p->need_commit_sem)
2756 up_read(&root->fs_info->commit_root_sem);
2757 if (!p->skip_locking)
2758 btrfs_tree_read_lock(b);
2759 } else {
2760 if (p->skip_locking) {
2761 b = btrfs_root_node(root);
2762 level = btrfs_header_level(b);
2763 } else {
2764 /* we don't know the level of the root node
2765 * until we actually have it read locked
2766 */
2767 b = btrfs_read_lock_root_node(root);
2768 level = btrfs_header_level(b);
2769 if (level <= write_lock_level) {
2770 /* whoops, must trade for write lock */
2771 btrfs_tree_read_unlock(b);
2772 free_extent_buffer(b);
2773 b = btrfs_lock_root_node(root);
2774 root_lock = BTRFS_WRITE_LOCK;
2775
2776 /* the level might have changed, check again */
2777 level = btrfs_header_level(b);
2778 }
2779 }
2780 }
2781 p->nodes[level] = b;
2782 if (!p->skip_locking)
2783 p->locks[level] = root_lock;
2784
2785 while (b) {
2786 level = btrfs_header_level(b);
2787
2788 /*
2789 * setup the path here so we can release it under lock
2790 * contention with the cow code
2791 */
2792 if (cow) {
2793 /*
2794 * if we don't really need to cow this block
2795 * then we don't want to set the path blocking,
2796 * so we test it here
2797 */
2798 if (!should_cow_block(trans, root, b)) {
2799 trans->dirty = true;
2800 goto cow_done;
2801 }
2802
2803 /*
2804 * must have write locks on this node and the
2805 * parent
2806 */
2807 if (level > write_lock_level ||
2808 (level + 1 > write_lock_level &&
2809 level + 1 < BTRFS_MAX_LEVEL &&
2810 p->nodes[level + 1])) {
2811 write_lock_level = level + 1;
2812 btrfs_release_path(p);
2813 goto again;
2814 }
2815
2816 btrfs_set_path_blocking(p);
2817 err = btrfs_cow_block(trans, root, b,
2818 p->nodes[level + 1],
2819 p->slots[level + 1], &b);
2820 if (err) {
2821 ret = err;
2822 goto done;
2823 }
2824 }
2825 cow_done:
2826 p->nodes[level] = b;
2827 btrfs_clear_path_blocking(p, NULL, 0);
2828
2829 /*
2830 * we have a lock on b and as long as we aren't changing
2831 * the tree, there is no way to for the items in b to change.
2832 * It is safe to drop the lock on our parent before we
2833 * go through the expensive btree search on b.
2834 *
2835 * If we're inserting or deleting (ins_len != 0), then we might
2836 * be changing slot zero, which may require changing the parent.
2837 * So, we can't drop the lock until after we know which slot
2838 * we're operating on.
2839 */
2840 if (!ins_len && !p->keep_locks) {
2841 int u = level + 1;
2842
2843 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2844 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2845 p->locks[u] = 0;
2846 }
2847 }
2848
2849 ret = key_search(b, key, level, &prev_cmp, &slot);
2850 if (ret < 0)
2851 goto done;
2852
2853 if (level != 0) {
2854 int dec = 0;
2855 if (ret && slot > 0) {
2856 dec = 1;
2857 slot -= 1;
2858 }
2859 p->slots[level] = slot;
2860 err = setup_nodes_for_search(trans, root, p, b, level,
2861 ins_len, &write_lock_level);
2862 if (err == -EAGAIN)
2863 goto again;
2864 if (err) {
2865 ret = err;
2866 goto done;
2867 }
2868 b = p->nodes[level];
2869 slot = p->slots[level];
2870
2871 /*
2872 * slot 0 is special, if we change the key
2873 * we have to update the parent pointer
2874 * which means we must have a write lock
2875 * on the parent
2876 */
2877 if (slot == 0 && ins_len &&
2878 write_lock_level < level + 1) {
2879 write_lock_level = level + 1;
2880 btrfs_release_path(p);
2881 goto again;
2882 }
2883
2884 unlock_up(p, level, lowest_unlock,
2885 min_write_lock_level, &write_lock_level);
2886
2887 if (level == lowest_level) {
2888 if (dec)
2889 p->slots[level]++;
2890 goto done;
2891 }
2892
2893 err = read_block_for_search(trans, root, p,
2894 &b, level, slot, key, 0);
2895 if (err == -EAGAIN)
2896 goto again;
2897 if (err) {
2898 ret = err;
2899 goto done;
2900 }
2901
2902 if (!p->skip_locking) {
2903 level = btrfs_header_level(b);
2904 if (level <= write_lock_level) {
2905 err = btrfs_try_tree_write_lock(b);
2906 if (!err) {
2907 btrfs_set_path_blocking(p);
2908 btrfs_tree_lock(b);
2909 btrfs_clear_path_blocking(p, b,
2910 BTRFS_WRITE_LOCK);
2911 }
2912 p->locks[level] = BTRFS_WRITE_LOCK;
2913 } else {
2914 err = btrfs_tree_read_lock_atomic(b);
2915 if (!err) {
2916 btrfs_set_path_blocking(p);
2917 btrfs_tree_read_lock(b);
2918 btrfs_clear_path_blocking(p, b,
2919 BTRFS_READ_LOCK);
2920 }
2921 p->locks[level] = BTRFS_READ_LOCK;
2922 }
2923 p->nodes[level] = b;
2924 }
2925 } else {
2926 p->slots[level] = slot;
2927 if (ins_len > 0 &&
2928 btrfs_leaf_free_space(root, b) < ins_len) {
2929 if (write_lock_level < 1) {
2930 write_lock_level = 1;
2931 btrfs_release_path(p);
2932 goto again;
2933 }
2934
2935 btrfs_set_path_blocking(p);
2936 err = split_leaf(trans, root, key,
2937 p, ins_len, ret == 0);
2938 btrfs_clear_path_blocking(p, NULL, 0);
2939
2940 BUG_ON(err > 0);
2941 if (err) {
2942 ret = err;
2943 goto done;
2944 }
2945 }
2946 if (!p->search_for_split)
2947 unlock_up(p, level, lowest_unlock,
2948 min_write_lock_level, &write_lock_level);
2949 goto done;
2950 }
2951 }
2952 ret = 1;
2953 done:
2954 /*
2955 * we don't really know what they plan on doing with the path
2956 * from here on, so for now just mark it as blocking
2957 */
2958 if (!p->leave_spinning)
2959 btrfs_set_path_blocking(p);
2960 if (ret < 0 && !p->skip_release_on_error)
2961 btrfs_release_path(p);
2962 return ret;
2963 }
2964
2965 /*
2966 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2967 * current state of the tree together with the operations recorded in the tree
2968 * modification log to search for the key in a previous version of this tree, as
2969 * denoted by the time_seq parameter.
2970 *
2971 * Naturally, there is no support for insert, delete or cow operations.
2972 *
2973 * The resulting path and return value will be set up as if we called
2974 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2975 */
2976 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2977 struct btrfs_path *p, u64 time_seq)
2978 {
2979 struct extent_buffer *b;
2980 int slot;
2981 int ret;
2982 int err;
2983 int level;
2984 int lowest_unlock = 1;
2985 u8 lowest_level = 0;
2986 int prev_cmp = -1;
2987
2988 lowest_level = p->lowest_level;
2989 WARN_ON(p->nodes[0] != NULL);
2990
2991 if (p->search_commit_root) {
2992 BUG_ON(time_seq);
2993 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2994 }
2995
2996 again:
2997 b = get_old_root(root, time_seq);
2998 level = btrfs_header_level(b);
2999 p->locks[level] = BTRFS_READ_LOCK;
3000
3001 while (b) {
3002 level = btrfs_header_level(b);
3003 p->nodes[level] = b;
3004 btrfs_clear_path_blocking(p, NULL, 0);
3005
3006 /*
3007 * we have a lock on b and as long as we aren't changing
3008 * the tree, there is no way to for the items in b to change.
3009 * It is safe to drop the lock on our parent before we
3010 * go through the expensive btree search on b.
3011 */
3012 btrfs_unlock_up_safe(p, level + 1);
3013
3014 /*
3015 * Since we can unwind ebs we want to do a real search every
3016 * time.
3017 */
3018 prev_cmp = -1;
3019 ret = key_search(b, key, level, &prev_cmp, &slot);
3020
3021 if (level != 0) {
3022 int dec = 0;
3023 if (ret && slot > 0) {
3024 dec = 1;
3025 slot -= 1;
3026 }
3027 p->slots[level] = slot;
3028 unlock_up(p, level, lowest_unlock, 0, NULL);
3029
3030 if (level == lowest_level) {
3031 if (dec)
3032 p->slots[level]++;
3033 goto done;
3034 }
3035
3036 err = read_block_for_search(NULL, root, p, &b, level,
3037 slot, key, time_seq);
3038 if (err == -EAGAIN)
3039 goto again;
3040 if (err) {
3041 ret = err;
3042 goto done;
3043 }
3044
3045 level = btrfs_header_level(b);
3046 err = btrfs_tree_read_lock_atomic(b);
3047 if (!err) {
3048 btrfs_set_path_blocking(p);
3049 btrfs_tree_read_lock(b);
3050 btrfs_clear_path_blocking(p, b,
3051 BTRFS_READ_LOCK);
3052 }
3053 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3054 if (!b) {
3055 ret = -ENOMEM;
3056 goto done;
3057 }
3058 p->locks[level] = BTRFS_READ_LOCK;
3059 p->nodes[level] = b;
3060 } else {
3061 p->slots[level] = slot;
3062 unlock_up(p, level, lowest_unlock, 0, NULL);
3063 goto done;
3064 }
3065 }
3066 ret = 1;
3067 done:
3068 if (!p->leave_spinning)
3069 btrfs_set_path_blocking(p);
3070 if (ret < 0)
3071 btrfs_release_path(p);
3072
3073 return ret;
3074 }
3075
3076 /*
3077 * helper to use instead of search slot if no exact match is needed but
3078 * instead the next or previous item should be returned.
3079 * When find_higher is true, the next higher item is returned, the next lower
3080 * otherwise.
3081 * When return_any and find_higher are both true, and no higher item is found,
3082 * return the next lower instead.
3083 * When return_any is true and find_higher is false, and no lower item is found,
3084 * return the next higher instead.
3085 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3086 * < 0 on error
3087 */
3088 int btrfs_search_slot_for_read(struct btrfs_root *root,
3089 struct btrfs_key *key, struct btrfs_path *p,
3090 int find_higher, int return_any)
3091 {
3092 int ret;
3093 struct extent_buffer *leaf;
3094
3095 again:
3096 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3097 if (ret <= 0)
3098 return ret;
3099 /*
3100 * a return value of 1 means the path is at the position where the
3101 * item should be inserted. Normally this is the next bigger item,
3102 * but in case the previous item is the last in a leaf, path points
3103 * to the first free slot in the previous leaf, i.e. at an invalid
3104 * item.
3105 */
3106 leaf = p->nodes[0];
3107
3108 if (find_higher) {
3109 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3110 ret = btrfs_next_leaf(root, p);
3111 if (ret <= 0)
3112 return ret;
3113 if (!return_any)
3114 return 1;
3115 /*
3116 * no higher item found, return the next
3117 * lower instead
3118 */
3119 return_any = 0;
3120 find_higher = 0;
3121 btrfs_release_path(p);
3122 goto again;
3123 }
3124 } else {
3125 if (p->slots[0] == 0) {
3126 ret = btrfs_prev_leaf(root, p);
3127 if (ret < 0)
3128 return ret;
3129 if (!ret) {
3130 leaf = p->nodes[0];
3131 if (p->slots[0] == btrfs_header_nritems(leaf))
3132 p->slots[0]--;
3133 return 0;
3134 }
3135 if (!return_any)
3136 return 1;
3137 /*
3138 * no lower item found, return the next
3139 * higher instead
3140 */
3141 return_any = 0;
3142 find_higher = 1;
3143 btrfs_release_path(p);
3144 goto again;
3145 } else {
3146 --p->slots[0];
3147 }
3148 }
3149 return 0;
3150 }
3151
3152 /*
3153 * adjust the pointers going up the tree, starting at level
3154 * making sure the right key of each node is points to 'key'.
3155 * This is used after shifting pointers to the left, so it stops
3156 * fixing up pointers when a given leaf/node is not in slot 0 of the
3157 * higher levels
3158 *
3159 */
3160 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3161 struct btrfs_path *path,
3162 struct btrfs_disk_key *key, int level)
3163 {
3164 int i;
3165 struct extent_buffer *t;
3166
3167 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3168 int tslot = path->slots[i];
3169 if (!path->nodes[i])
3170 break;
3171 t = path->nodes[i];
3172 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3173 btrfs_set_node_key(t, key, tslot);
3174 btrfs_mark_buffer_dirty(path->nodes[i]);
3175 if (tslot != 0)
3176 break;
3177 }
3178 }
3179
3180 /*
3181 * update item key.
3182 *
3183 * This function isn't completely safe. It's the caller's responsibility
3184 * that the new key won't break the order
3185 */
3186 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3187 struct btrfs_path *path,
3188 struct btrfs_key *new_key)
3189 {
3190 struct btrfs_disk_key disk_key;
3191 struct extent_buffer *eb;
3192 int slot;
3193
3194 eb = path->nodes[0];
3195 slot = path->slots[0];
3196 if (slot > 0) {
3197 btrfs_item_key(eb, &disk_key, slot - 1);
3198 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3199 }
3200 if (slot < btrfs_header_nritems(eb) - 1) {
3201 btrfs_item_key(eb, &disk_key, slot + 1);
3202 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3203 }
3204
3205 btrfs_cpu_key_to_disk(&disk_key, new_key);
3206 btrfs_set_item_key(eb, &disk_key, slot);
3207 btrfs_mark_buffer_dirty(eb);
3208 if (slot == 0)
3209 fixup_low_keys(fs_info, path, &disk_key, 1);
3210 }
3211
3212 /*
3213 * try to push data from one node into the next node left in the
3214 * tree.
3215 *
3216 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3217 * error, and > 0 if there was no room in the left hand block.
3218 */
3219 static int push_node_left(struct btrfs_trans_handle *trans,
3220 struct btrfs_root *root, struct extent_buffer *dst,
3221 struct extent_buffer *src, int empty)
3222 {
3223 int push_items = 0;
3224 int src_nritems;
3225 int dst_nritems;
3226 int ret = 0;
3227
3228 src_nritems = btrfs_header_nritems(src);
3229 dst_nritems = btrfs_header_nritems(dst);
3230 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3231 WARN_ON(btrfs_header_generation(src) != trans->transid);
3232 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3233
3234 if (!empty && src_nritems <= 8)
3235 return 1;
3236
3237 if (push_items <= 0)
3238 return 1;
3239
3240 if (empty) {
3241 push_items = min(src_nritems, push_items);
3242 if (push_items < src_nritems) {
3243 /* leave at least 8 pointers in the node if
3244 * we aren't going to empty it
3245 */
3246 if (src_nritems - push_items < 8) {
3247 if (push_items <= 8)
3248 return 1;
3249 push_items -= 8;
3250 }
3251 }
3252 } else
3253 push_items = min(src_nritems - 8, push_items);
3254
3255 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3256 push_items);
3257 if (ret) {
3258 btrfs_abort_transaction(trans, ret);
3259 return ret;
3260 }
3261 copy_extent_buffer(dst, src,
3262 btrfs_node_key_ptr_offset(dst_nritems),
3263 btrfs_node_key_ptr_offset(0),
3264 push_items * sizeof(struct btrfs_key_ptr));
3265
3266 if (push_items < src_nritems) {
3267 /*
3268 * don't call tree_mod_log_eb_move here, key removal was already
3269 * fully logged by tree_mod_log_eb_copy above.
3270 */
3271 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(push_items),
3273 (src_nritems - push_items) *
3274 sizeof(struct btrfs_key_ptr));
3275 }
3276 btrfs_set_header_nritems(src, src_nritems - push_items);
3277 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3278 btrfs_mark_buffer_dirty(src);
3279 btrfs_mark_buffer_dirty(dst);
3280
3281 return ret;
3282 }
3283
3284 /*
3285 * try to push data from one node into the next node right in the
3286 * tree.
3287 *
3288 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3289 * error, and > 0 if there was no room in the right hand block.
3290 *
3291 * this will only push up to 1/2 the contents of the left node over
3292 */
3293 static int balance_node_right(struct btrfs_trans_handle *trans,
3294 struct btrfs_root *root,
3295 struct extent_buffer *dst,
3296 struct extent_buffer *src)
3297 {
3298 int push_items = 0;
3299 int max_push;
3300 int src_nritems;
3301 int dst_nritems;
3302 int ret = 0;
3303
3304 WARN_ON(btrfs_header_generation(src) != trans->transid);
3305 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3306
3307 src_nritems = btrfs_header_nritems(src);
3308 dst_nritems = btrfs_header_nritems(dst);
3309 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3310 if (push_items <= 0)
3311 return 1;
3312
3313 if (src_nritems < 4)
3314 return 1;
3315
3316 max_push = src_nritems / 2 + 1;
3317 /* don't try to empty the node */
3318 if (max_push >= src_nritems)
3319 return 1;
3320
3321 if (max_push < push_items)
3322 push_items = max_push;
3323
3324 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3325 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3326 btrfs_node_key_ptr_offset(0),
3327 (dst_nritems) *
3328 sizeof(struct btrfs_key_ptr));
3329
3330 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3331 src_nritems - push_items, push_items);
3332 if (ret) {
3333 btrfs_abort_transaction(trans, ret);
3334 return ret;
3335 }
3336 copy_extent_buffer(dst, src,
3337 btrfs_node_key_ptr_offset(0),
3338 btrfs_node_key_ptr_offset(src_nritems - push_items),
3339 push_items * sizeof(struct btrfs_key_ptr));
3340
3341 btrfs_set_header_nritems(src, src_nritems - push_items);
3342 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3343
3344 btrfs_mark_buffer_dirty(src);
3345 btrfs_mark_buffer_dirty(dst);
3346
3347 return ret;
3348 }
3349
3350 /*
3351 * helper function to insert a new root level in the tree.
3352 * A new node is allocated, and a single item is inserted to
3353 * point to the existing root
3354 *
3355 * returns zero on success or < 0 on failure.
3356 */
3357 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3358 struct btrfs_root *root,
3359 struct btrfs_path *path, int level)
3360 {
3361 u64 lower_gen;
3362 struct extent_buffer *lower;
3363 struct extent_buffer *c;
3364 struct extent_buffer *old;
3365 struct btrfs_disk_key lower_key;
3366
3367 BUG_ON(path->nodes[level]);
3368 BUG_ON(path->nodes[level-1] != root->node);
3369
3370 lower = path->nodes[level-1];
3371 if (level == 1)
3372 btrfs_item_key(lower, &lower_key, 0);
3373 else
3374 btrfs_node_key(lower, &lower_key, 0);
3375
3376 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3377 &lower_key, level, root->node->start, 0);
3378 if (IS_ERR(c))
3379 return PTR_ERR(c);
3380
3381 root_add_used(root, root->nodesize);
3382
3383 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3384 btrfs_set_header_nritems(c, 1);
3385 btrfs_set_header_level(c, level);
3386 btrfs_set_header_bytenr(c, c->start);
3387 btrfs_set_header_generation(c, trans->transid);
3388 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3389 btrfs_set_header_owner(c, root->root_key.objectid);
3390
3391 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3392 BTRFS_FSID_SIZE);
3393
3394 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3395 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3396
3397 btrfs_set_node_key(c, &lower_key, 0);
3398 btrfs_set_node_blockptr(c, 0, lower->start);
3399 lower_gen = btrfs_header_generation(lower);
3400 WARN_ON(lower_gen != trans->transid);
3401
3402 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3403
3404 btrfs_mark_buffer_dirty(c);
3405
3406 old = root->node;
3407 tree_mod_log_set_root_pointer(root, c, 0);
3408 rcu_assign_pointer(root->node, c);
3409
3410 /* the super has an extra ref to root->node */
3411 free_extent_buffer(old);
3412
3413 add_root_to_dirty_list(root);
3414 extent_buffer_get(c);
3415 path->nodes[level] = c;
3416 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3417 path->slots[level] = 0;
3418 return 0;
3419 }
3420
3421 /*
3422 * worker function to insert a single pointer in a node.
3423 * the node should have enough room for the pointer already
3424 *
3425 * slot and level indicate where you want the key to go, and
3426 * blocknr is the block the key points to.
3427 */
3428 static void insert_ptr(struct btrfs_trans_handle *trans,
3429 struct btrfs_root *root, struct btrfs_path *path,
3430 struct btrfs_disk_key *key, u64 bytenr,
3431 int slot, int level)
3432 {
3433 struct extent_buffer *lower;
3434 int nritems;
3435 int ret;
3436
3437 BUG_ON(!path->nodes[level]);
3438 btrfs_assert_tree_locked(path->nodes[level]);
3439 lower = path->nodes[level];
3440 nritems = btrfs_header_nritems(lower);
3441 BUG_ON(slot > nritems);
3442 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3443 if (slot != nritems) {
3444 if (level)
3445 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3446 slot, nritems - slot);
3447 memmove_extent_buffer(lower,
3448 btrfs_node_key_ptr_offset(slot + 1),
3449 btrfs_node_key_ptr_offset(slot),
3450 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3451 }
3452 if (level) {
3453 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3454 MOD_LOG_KEY_ADD, GFP_NOFS);
3455 BUG_ON(ret < 0);
3456 }
3457 btrfs_set_node_key(lower, key, slot);
3458 btrfs_set_node_blockptr(lower, slot, bytenr);
3459 WARN_ON(trans->transid == 0);
3460 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3461 btrfs_set_header_nritems(lower, nritems + 1);
3462 btrfs_mark_buffer_dirty(lower);
3463 }
3464
3465 /*
3466 * split the node at the specified level in path in two.
3467 * The path is corrected to point to the appropriate node after the split
3468 *
3469 * Before splitting this tries to make some room in the node by pushing
3470 * left and right, if either one works, it returns right away.
3471 *
3472 * returns 0 on success and < 0 on failure
3473 */
3474 static noinline int split_node(struct btrfs_trans_handle *trans,
3475 struct btrfs_root *root,
3476 struct btrfs_path *path, int level)
3477 {
3478 struct extent_buffer *c;
3479 struct extent_buffer *split;
3480 struct btrfs_disk_key disk_key;
3481 int mid;
3482 int ret;
3483 u32 c_nritems;
3484
3485 c = path->nodes[level];
3486 WARN_ON(btrfs_header_generation(c) != trans->transid);
3487 if (c == root->node) {
3488 /*
3489 * trying to split the root, lets make a new one
3490 *
3491 * tree mod log: We don't log_removal old root in
3492 * insert_new_root, because that root buffer will be kept as a
3493 * normal node. We are going to log removal of half of the
3494 * elements below with tree_mod_log_eb_copy. We're holding a
3495 * tree lock on the buffer, which is why we cannot race with
3496 * other tree_mod_log users.
3497 */
3498 ret = insert_new_root(trans, root, path, level + 1);
3499 if (ret)
3500 return ret;
3501 } else {
3502 ret = push_nodes_for_insert(trans, root, path, level);
3503 c = path->nodes[level];
3504 if (!ret && btrfs_header_nritems(c) <
3505 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3506 return 0;
3507 if (ret < 0)
3508 return ret;
3509 }
3510
3511 c_nritems = btrfs_header_nritems(c);
3512 mid = (c_nritems + 1) / 2;
3513 btrfs_node_key(c, &disk_key, mid);
3514
3515 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3516 &disk_key, level, c->start, 0);
3517 if (IS_ERR(split))
3518 return PTR_ERR(split);
3519
3520 root_add_used(root, root->nodesize);
3521
3522 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3523 btrfs_set_header_level(split, btrfs_header_level(c));
3524 btrfs_set_header_bytenr(split, split->start);
3525 btrfs_set_header_generation(split, trans->transid);
3526 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3527 btrfs_set_header_owner(split, root->root_key.objectid);
3528 write_extent_buffer(split, root->fs_info->fsid,
3529 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3530 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3531 btrfs_header_chunk_tree_uuid(split),
3532 BTRFS_UUID_SIZE);
3533
3534 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3535 mid, c_nritems - mid);
3536 if (ret) {
3537 btrfs_abort_transaction(trans, ret);
3538 return ret;
3539 }
3540 copy_extent_buffer(split, c,
3541 btrfs_node_key_ptr_offset(0),
3542 btrfs_node_key_ptr_offset(mid),
3543 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3544 btrfs_set_header_nritems(split, c_nritems - mid);
3545 btrfs_set_header_nritems(c, mid);
3546 ret = 0;
3547
3548 btrfs_mark_buffer_dirty(c);
3549 btrfs_mark_buffer_dirty(split);
3550
3551 insert_ptr(trans, root, path, &disk_key, split->start,
3552 path->slots[level + 1] + 1, level + 1);
3553
3554 if (path->slots[level] >= mid) {
3555 path->slots[level] -= mid;
3556 btrfs_tree_unlock(c);
3557 free_extent_buffer(c);
3558 path->nodes[level] = split;
3559 path->slots[level + 1] += 1;
3560 } else {
3561 btrfs_tree_unlock(split);
3562 free_extent_buffer(split);
3563 }
3564 return ret;
3565 }
3566
3567 /*
3568 * how many bytes are required to store the items in a leaf. start
3569 * and nr indicate which items in the leaf to check. This totals up the
3570 * space used both by the item structs and the item data
3571 */
3572 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3573 {
3574 struct btrfs_item *start_item;
3575 struct btrfs_item *end_item;
3576 struct btrfs_map_token token;
3577 int data_len;
3578 int nritems = btrfs_header_nritems(l);
3579 int end = min(nritems, start + nr) - 1;
3580
3581 if (!nr)
3582 return 0;
3583 btrfs_init_map_token(&token);
3584 start_item = btrfs_item_nr(start);
3585 end_item = btrfs_item_nr(end);
3586 data_len = btrfs_token_item_offset(l, start_item, &token) +
3587 btrfs_token_item_size(l, start_item, &token);
3588 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3589 data_len += sizeof(struct btrfs_item) * nr;
3590 WARN_ON(data_len < 0);
3591 return data_len;
3592 }
3593
3594 /*
3595 * The space between the end of the leaf items and
3596 * the start of the leaf data. IOW, how much room
3597 * the leaf has left for both items and data
3598 */
3599 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3600 struct extent_buffer *leaf)
3601 {
3602 int nritems = btrfs_header_nritems(leaf);
3603 int ret;
3604 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3605 if (ret < 0) {
3606 btrfs_crit(root->fs_info,
3607 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3608 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3609 leaf_space_used(leaf, 0, nritems), nritems);
3610 }
3611 return ret;
3612 }
3613
3614 /*
3615 * min slot controls the lowest index we're willing to push to the
3616 * right. We'll push up to and including min_slot, but no lower
3617 */
3618 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3619 struct btrfs_root *root,
3620 struct btrfs_path *path,
3621 int data_size, int empty,
3622 struct extent_buffer *right,
3623 int free_space, u32 left_nritems,
3624 u32 min_slot)
3625 {
3626 struct extent_buffer *left = path->nodes[0];
3627 struct extent_buffer *upper = path->nodes[1];
3628 struct btrfs_map_token token;
3629 struct btrfs_disk_key disk_key;
3630 int slot;
3631 u32 i;
3632 int push_space = 0;
3633 int push_items = 0;
3634 struct btrfs_item *item;
3635 u32 nr;
3636 u32 right_nritems;
3637 u32 data_end;
3638 u32 this_item_size;
3639
3640 btrfs_init_map_token(&token);
3641
3642 if (empty)
3643 nr = 0;
3644 else
3645 nr = max_t(u32, 1, min_slot);
3646
3647 if (path->slots[0] >= left_nritems)
3648 push_space += data_size;
3649
3650 slot = path->slots[1];
3651 i = left_nritems - 1;
3652 while (i >= nr) {
3653 item = btrfs_item_nr(i);
3654
3655 if (!empty && push_items > 0) {
3656 if (path->slots[0] > i)
3657 break;
3658 if (path->slots[0] == i) {
3659 int space = btrfs_leaf_free_space(root, left);
3660 if (space + push_space * 2 > free_space)
3661 break;
3662 }
3663 }
3664
3665 if (path->slots[0] == i)
3666 push_space += data_size;
3667
3668 this_item_size = btrfs_item_size(left, item);
3669 if (this_item_size + sizeof(*item) + push_space > free_space)
3670 break;
3671
3672 push_items++;
3673 push_space += this_item_size + sizeof(*item);
3674 if (i == 0)
3675 break;
3676 i--;
3677 }
3678
3679 if (push_items == 0)
3680 goto out_unlock;
3681
3682 WARN_ON(!empty && push_items == left_nritems);
3683
3684 /* push left to right */
3685 right_nritems = btrfs_header_nritems(right);
3686
3687 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3688 push_space -= leaf_data_end(root, left);
3689
3690 /* make room in the right data area */
3691 data_end = leaf_data_end(root, right);
3692 memmove_extent_buffer(right,
3693 btrfs_leaf_data(right) + data_end - push_space,
3694 btrfs_leaf_data(right) + data_end,
3695 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3696
3697 /* copy from the left data area */
3698 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3699 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3700 btrfs_leaf_data(left) + leaf_data_end(root, left),
3701 push_space);
3702
3703 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3704 btrfs_item_nr_offset(0),
3705 right_nritems * sizeof(struct btrfs_item));
3706
3707 /* copy the items from left to right */
3708 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3709 btrfs_item_nr_offset(left_nritems - push_items),
3710 push_items * sizeof(struct btrfs_item));
3711
3712 /* update the item pointers */
3713 right_nritems += push_items;
3714 btrfs_set_header_nritems(right, right_nritems);
3715 push_space = BTRFS_LEAF_DATA_SIZE(root);
3716 for (i = 0; i < right_nritems; i++) {
3717 item = btrfs_item_nr(i);
3718 push_space -= btrfs_token_item_size(right, item, &token);
3719 btrfs_set_token_item_offset(right, item, push_space, &token);
3720 }
3721
3722 left_nritems -= push_items;
3723 btrfs_set_header_nritems(left, left_nritems);
3724
3725 if (left_nritems)
3726 btrfs_mark_buffer_dirty(left);
3727 else
3728 clean_tree_block(trans, root->fs_info, left);
3729
3730 btrfs_mark_buffer_dirty(right);
3731
3732 btrfs_item_key(right, &disk_key, 0);
3733 btrfs_set_node_key(upper, &disk_key, slot + 1);
3734 btrfs_mark_buffer_dirty(upper);
3735
3736 /* then fixup the leaf pointer in the path */
3737 if (path->slots[0] >= left_nritems) {
3738 path->slots[0] -= left_nritems;
3739 if (btrfs_header_nritems(path->nodes[0]) == 0)
3740 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3741 btrfs_tree_unlock(path->nodes[0]);
3742 free_extent_buffer(path->nodes[0]);
3743 path->nodes[0] = right;
3744 path->slots[1] += 1;
3745 } else {
3746 btrfs_tree_unlock(right);
3747 free_extent_buffer(right);
3748 }
3749 return 0;
3750
3751 out_unlock:
3752 btrfs_tree_unlock(right);
3753 free_extent_buffer(right);
3754 return 1;
3755 }
3756
3757 /*
3758 * push some data in the path leaf to the right, trying to free up at
3759 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3760 *
3761 * returns 1 if the push failed because the other node didn't have enough
3762 * room, 0 if everything worked out and < 0 if there were major errors.
3763 *
3764 * this will push starting from min_slot to the end of the leaf. It won't
3765 * push any slot lower than min_slot
3766 */
3767 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3768 *root, struct btrfs_path *path,
3769 int min_data_size, int data_size,
3770 int empty, u32 min_slot)
3771 {
3772 struct extent_buffer *left = path->nodes[0];
3773 struct extent_buffer *right;
3774 struct extent_buffer *upper;
3775 int slot;
3776 int free_space;
3777 u32 left_nritems;
3778 int ret;
3779
3780 if (!path->nodes[1])
3781 return 1;
3782
3783 slot = path->slots[1];
3784 upper = path->nodes[1];
3785 if (slot >= btrfs_header_nritems(upper) - 1)
3786 return 1;
3787
3788 btrfs_assert_tree_locked(path->nodes[1]);
3789
3790 right = read_node_slot(root, upper, slot + 1);
3791 /*
3792 * slot + 1 is not valid or we fail to read the right node,
3793 * no big deal, just return.
3794 */
3795 if (IS_ERR(right))
3796 return 1;
3797
3798 btrfs_tree_lock(right);
3799 btrfs_set_lock_blocking(right);
3800
3801 free_space = btrfs_leaf_free_space(root, right);
3802 if (free_space < data_size)
3803 goto out_unlock;
3804
3805 /* cow and double check */
3806 ret = btrfs_cow_block(trans, root, right, upper,
3807 slot + 1, &right);
3808 if (ret)
3809 goto out_unlock;
3810
3811 free_space = btrfs_leaf_free_space(root, right);
3812 if (free_space < data_size)
3813 goto out_unlock;
3814
3815 left_nritems = btrfs_header_nritems(left);
3816 if (left_nritems == 0)
3817 goto out_unlock;
3818
3819 if (path->slots[0] == left_nritems && !empty) {
3820 /* Key greater than all keys in the leaf, right neighbor has
3821 * enough room for it and we're not emptying our leaf to delete
3822 * it, therefore use right neighbor to insert the new item and
3823 * no need to touch/dirty our left leaft. */
3824 btrfs_tree_unlock(left);
3825 free_extent_buffer(left);
3826 path->nodes[0] = right;
3827 path->slots[0] = 0;
3828 path->slots[1]++;
3829 return 0;
3830 }
3831
3832 return __push_leaf_right(trans, root, path, min_data_size, empty,
3833 right, free_space, left_nritems, min_slot);
3834 out_unlock:
3835 btrfs_tree_unlock(right);
3836 free_extent_buffer(right);
3837 return 1;
3838 }
3839
3840 /*
3841 * push some data in the path leaf to the left, trying to free up at
3842 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3843 *
3844 * max_slot can put a limit on how far into the leaf we'll push items. The
3845 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3846 * items
3847 */
3848 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root,
3850 struct btrfs_path *path, int data_size,
3851 int empty, struct extent_buffer *left,
3852 int free_space, u32 right_nritems,
3853 u32 max_slot)
3854 {
3855 struct btrfs_disk_key disk_key;
3856 struct extent_buffer *right = path->nodes[0];
3857 int i;
3858 int push_space = 0;
3859 int push_items = 0;
3860 struct btrfs_item *item;
3861 u32 old_left_nritems;
3862 u32 nr;
3863 int ret = 0;
3864 u32 this_item_size;
3865 u32 old_left_item_size;
3866 struct btrfs_map_token token;
3867
3868 btrfs_init_map_token(&token);
3869
3870 if (empty)
3871 nr = min(right_nritems, max_slot);
3872 else
3873 nr = min(right_nritems - 1, max_slot);
3874
3875 for (i = 0; i < nr; i++) {
3876 item = btrfs_item_nr(i);
3877
3878 if (!empty && push_items > 0) {
3879 if (path->slots[0] < i)
3880 break;
3881 if (path->slots[0] == i) {
3882 int space = btrfs_leaf_free_space(root, right);
3883 if (space + push_space * 2 > free_space)
3884 break;
3885 }
3886 }
3887
3888 if (path->slots[0] == i)
3889 push_space += data_size;
3890
3891 this_item_size = btrfs_item_size(right, item);
3892 if (this_item_size + sizeof(*item) + push_space > free_space)
3893 break;
3894
3895 push_items++;
3896 push_space += this_item_size + sizeof(*item);
3897 }
3898
3899 if (push_items == 0) {
3900 ret = 1;
3901 goto out;
3902 }
3903 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3904
3905 /* push data from right to left */
3906 copy_extent_buffer(left, right,
3907 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3908 btrfs_item_nr_offset(0),
3909 push_items * sizeof(struct btrfs_item));
3910
3911 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3912 btrfs_item_offset_nr(right, push_items - 1);
3913
3914 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3915 leaf_data_end(root, left) - push_space,
3916 btrfs_leaf_data(right) +
3917 btrfs_item_offset_nr(right, push_items - 1),
3918 push_space);
3919 old_left_nritems = btrfs_header_nritems(left);
3920 BUG_ON(old_left_nritems <= 0);
3921
3922 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3923 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3924 u32 ioff;
3925
3926 item = btrfs_item_nr(i);
3927
3928 ioff = btrfs_token_item_offset(left, item, &token);
3929 btrfs_set_token_item_offset(left, item,
3930 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3931 &token);
3932 }
3933 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3934
3935 /* fixup right node */
3936 if (push_items > right_nritems)
3937 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3938 right_nritems);
3939
3940 if (push_items < right_nritems) {
3941 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3942 leaf_data_end(root, right);
3943 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3944 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3945 btrfs_leaf_data(right) +
3946 leaf_data_end(root, right), push_space);
3947
3948 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3949 btrfs_item_nr_offset(push_items),
3950 (btrfs_header_nritems(right) - push_items) *
3951 sizeof(struct btrfs_item));
3952 }
3953 right_nritems -= push_items;
3954 btrfs_set_header_nritems(right, right_nritems);
3955 push_space = BTRFS_LEAF_DATA_SIZE(root);
3956 for (i = 0; i < right_nritems; i++) {
3957 item = btrfs_item_nr(i);
3958
3959 push_space = push_space - btrfs_token_item_size(right,
3960 item, &token);
3961 btrfs_set_token_item_offset(right, item, push_space, &token);
3962 }
3963
3964 btrfs_mark_buffer_dirty(left);
3965 if (right_nritems)
3966 btrfs_mark_buffer_dirty(right);
3967 else
3968 clean_tree_block(trans, root->fs_info, right);
3969
3970 btrfs_item_key(right, &disk_key, 0);
3971 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3972
3973 /* then fixup the leaf pointer in the path */
3974 if (path->slots[0] < push_items) {
3975 path->slots[0] += old_left_nritems;
3976 btrfs_tree_unlock(path->nodes[0]);
3977 free_extent_buffer(path->nodes[0]);
3978 path->nodes[0] = left;
3979 path->slots[1] -= 1;
3980 } else {
3981 btrfs_tree_unlock(left);
3982 free_extent_buffer(left);
3983 path->slots[0] -= push_items;
3984 }
3985 BUG_ON(path->slots[0] < 0);
3986 return ret;
3987 out:
3988 btrfs_tree_unlock(left);
3989 free_extent_buffer(left);
3990 return ret;
3991 }
3992
3993 /*
3994 * push some data in the path leaf to the left, trying to free up at
3995 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3996 *
3997 * max_slot can put a limit on how far into the leaf we'll push items. The
3998 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3999 * items
4000 */
4001 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4002 *root, struct btrfs_path *path, int min_data_size,
4003 int data_size, int empty, u32 max_slot)
4004 {
4005 struct extent_buffer *right = path->nodes[0];
4006 struct extent_buffer *left;
4007 int slot;
4008 int free_space;
4009 u32 right_nritems;
4010 int ret = 0;
4011
4012 slot = path->slots[1];
4013 if (slot == 0)
4014 return 1;
4015 if (!path->nodes[1])
4016 return 1;
4017
4018 right_nritems = btrfs_header_nritems(right);
4019 if (right_nritems == 0)
4020 return 1;
4021
4022 btrfs_assert_tree_locked(path->nodes[1]);
4023
4024 left = read_node_slot(root, path->nodes[1], slot - 1);
4025 /*
4026 * slot - 1 is not valid or we fail to read the left node,
4027 * no big deal, just return.
4028 */
4029 if (IS_ERR(left))
4030 return 1;
4031
4032 btrfs_tree_lock(left);
4033 btrfs_set_lock_blocking(left);
4034
4035 free_space = btrfs_leaf_free_space(root, left);
4036 if (free_space < data_size) {
4037 ret = 1;
4038 goto out;
4039 }
4040
4041 /* cow and double check */
4042 ret = btrfs_cow_block(trans, root, left,
4043 path->nodes[1], slot - 1, &left);
4044 if (ret) {
4045 /* we hit -ENOSPC, but it isn't fatal here */
4046 if (ret == -ENOSPC)
4047 ret = 1;
4048 goto out;
4049 }
4050
4051 free_space = btrfs_leaf_free_space(root, left);
4052 if (free_space < data_size) {
4053 ret = 1;
4054 goto out;
4055 }
4056
4057 return __push_leaf_left(trans, root, path, min_data_size,
4058 empty, left, free_space, right_nritems,
4059 max_slot);
4060 out:
4061 btrfs_tree_unlock(left);
4062 free_extent_buffer(left);
4063 return ret;
4064 }
4065
4066 /*
4067 * split the path's leaf in two, making sure there is at least data_size
4068 * available for the resulting leaf level of the path.
4069 */
4070 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4071 struct btrfs_root *root,
4072 struct btrfs_path *path,
4073 struct extent_buffer *l,
4074 struct extent_buffer *right,
4075 int slot, int mid, int nritems)
4076 {
4077 int data_copy_size;
4078 int rt_data_off;
4079 int i;
4080 struct btrfs_disk_key disk_key;
4081 struct btrfs_map_token token;
4082
4083 btrfs_init_map_token(&token);
4084
4085 nritems = nritems - mid;
4086 btrfs_set_header_nritems(right, nritems);
4087 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4088
4089 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4090 btrfs_item_nr_offset(mid),
4091 nritems * sizeof(struct btrfs_item));
4092
4093 copy_extent_buffer(right, l,
4094 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4095 data_copy_size, btrfs_leaf_data(l) +
4096 leaf_data_end(root, l), data_copy_size);
4097
4098 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4099 btrfs_item_end_nr(l, mid);
4100
4101 for (i = 0; i < nritems; i++) {
4102 struct btrfs_item *item = btrfs_item_nr(i);
4103 u32 ioff;
4104
4105 ioff = btrfs_token_item_offset(right, item, &token);
4106 btrfs_set_token_item_offset(right, item,
4107 ioff + rt_data_off, &token);
4108 }
4109
4110 btrfs_set_header_nritems(l, mid);
4111 btrfs_item_key(right, &disk_key, 0);
4112 insert_ptr(trans, root, path, &disk_key, right->start,
4113 path->slots[1] + 1, 1);
4114
4115 btrfs_mark_buffer_dirty(right);
4116 btrfs_mark_buffer_dirty(l);
4117 BUG_ON(path->slots[0] != slot);
4118
4119 if (mid <= slot) {
4120 btrfs_tree_unlock(path->nodes[0]);
4121 free_extent_buffer(path->nodes[0]);
4122 path->nodes[0] = right;
4123 path->slots[0] -= mid;
4124 path->slots[1] += 1;
4125 } else {
4126 btrfs_tree_unlock(right);
4127 free_extent_buffer(right);
4128 }
4129
4130 BUG_ON(path->slots[0] < 0);
4131 }
4132
4133 /*
4134 * double splits happen when we need to insert a big item in the middle
4135 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4136 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4137 * A B C
4138 *
4139 * We avoid this by trying to push the items on either side of our target
4140 * into the adjacent leaves. If all goes well we can avoid the double split
4141 * completely.
4142 */
4143 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *root,
4145 struct btrfs_path *path,
4146 int data_size)
4147 {
4148 int ret;
4149 int progress = 0;
4150 int slot;
4151 u32 nritems;
4152 int space_needed = data_size;
4153
4154 slot = path->slots[0];
4155 if (slot < btrfs_header_nritems(path->nodes[0]))
4156 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4157
4158 /*
4159 * try to push all the items after our slot into the
4160 * right leaf
4161 */
4162 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4163 if (ret < 0)
4164 return ret;
4165
4166 if (ret == 0)
4167 progress++;
4168
4169 nritems = btrfs_header_nritems(path->nodes[0]);
4170 /*
4171 * our goal is to get our slot at the start or end of a leaf. If
4172 * we've done so we're done
4173 */
4174 if (path->slots[0] == 0 || path->slots[0] == nritems)
4175 return 0;
4176
4177 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4178 return 0;
4179
4180 /* try to push all the items before our slot into the next leaf */
4181 slot = path->slots[0];
4182 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4183 if (ret < 0)
4184 return ret;
4185
4186 if (ret == 0)
4187 progress++;
4188
4189 if (progress)
4190 return 0;
4191 return 1;
4192 }
4193
4194 /*
4195 * split the path's leaf in two, making sure there is at least data_size
4196 * available for the resulting leaf level of the path.
4197 *
4198 * returns 0 if all went well and < 0 on failure.
4199 */
4200 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4201 struct btrfs_root *root,
4202 struct btrfs_key *ins_key,
4203 struct btrfs_path *path, int data_size,
4204 int extend)
4205 {
4206 struct btrfs_disk_key disk_key;
4207 struct extent_buffer *l;
4208 u32 nritems;
4209 int mid;
4210 int slot;
4211 struct extent_buffer *right;
4212 struct btrfs_fs_info *fs_info = root->fs_info;
4213 int ret = 0;
4214 int wret;
4215 int split;
4216 int num_doubles = 0;
4217 int tried_avoid_double = 0;
4218
4219 l = path->nodes[0];
4220 slot = path->slots[0];
4221 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4222 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4223 return -EOVERFLOW;
4224
4225 /* first try to make some room by pushing left and right */
4226 if (data_size && path->nodes[1]) {
4227 int space_needed = data_size;
4228
4229 if (slot < btrfs_header_nritems(l))
4230 space_needed -= btrfs_leaf_free_space(root, l);
4231
4232 wret = push_leaf_right(trans, root, path, space_needed,
4233 space_needed, 0, 0);
4234 if (wret < 0)
4235 return wret;
4236 if (wret) {
4237 wret = push_leaf_left(trans, root, path, space_needed,
4238 space_needed, 0, (u32)-1);
4239 if (wret < 0)
4240 return wret;
4241 }
4242 l = path->nodes[0];
4243
4244 /* did the pushes work? */
4245 if (btrfs_leaf_free_space(root, l) >= data_size)
4246 return 0;
4247 }
4248
4249 if (!path->nodes[1]) {
4250 ret = insert_new_root(trans, root, path, 1);
4251 if (ret)
4252 return ret;
4253 }
4254 again:
4255 split = 1;
4256 l = path->nodes[0];
4257 slot = path->slots[0];
4258 nritems = btrfs_header_nritems(l);
4259 mid = (nritems + 1) / 2;
4260
4261 if (mid <= slot) {
4262 if (nritems == 1 ||
4263 leaf_space_used(l, mid, nritems - mid) + data_size >
4264 BTRFS_LEAF_DATA_SIZE(root)) {
4265 if (slot >= nritems) {
4266 split = 0;
4267 } else {
4268 mid = slot;
4269 if (mid != nritems &&
4270 leaf_space_used(l, mid, nritems - mid) +
4271 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4272 if (data_size && !tried_avoid_double)
4273 goto push_for_double;
4274 split = 2;
4275 }
4276 }
4277 }
4278 } else {
4279 if (leaf_space_used(l, 0, mid) + data_size >
4280 BTRFS_LEAF_DATA_SIZE(root)) {
4281 if (!extend && data_size && slot == 0) {
4282 split = 0;
4283 } else if ((extend || !data_size) && slot == 0) {
4284 mid = 1;
4285 } else {
4286 mid = slot;
4287 if (mid != nritems &&
4288 leaf_space_used(l, mid, nritems - mid) +
4289 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4290 if (data_size && !tried_avoid_double)
4291 goto push_for_double;
4292 split = 2;
4293 }
4294 }
4295 }
4296 }
4297
4298 if (split == 0)
4299 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4300 else
4301 btrfs_item_key(l, &disk_key, mid);
4302
4303 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4304 &disk_key, 0, l->start, 0);
4305 if (IS_ERR(right))
4306 return PTR_ERR(right);
4307
4308 root_add_used(root, root->nodesize);
4309
4310 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4311 btrfs_set_header_bytenr(right, right->start);
4312 btrfs_set_header_generation(right, trans->transid);
4313 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4314 btrfs_set_header_owner(right, root->root_key.objectid);
4315 btrfs_set_header_level(right, 0);
4316 write_extent_buffer(right, fs_info->fsid,
4317 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4318
4319 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4320 btrfs_header_chunk_tree_uuid(right),
4321 BTRFS_UUID_SIZE);
4322
4323 if (split == 0) {
4324 if (mid <= slot) {
4325 btrfs_set_header_nritems(right, 0);
4326 insert_ptr(trans, root, path, &disk_key, right->start,
4327 path->slots[1] + 1, 1);
4328 btrfs_tree_unlock(path->nodes[0]);
4329 free_extent_buffer(path->nodes[0]);
4330 path->nodes[0] = right;
4331 path->slots[0] = 0;
4332 path->slots[1] += 1;
4333 } else {
4334 btrfs_set_header_nritems(right, 0);
4335 insert_ptr(trans, root, path, &disk_key, right->start,
4336 path->slots[1], 1);
4337 btrfs_tree_unlock(path->nodes[0]);
4338 free_extent_buffer(path->nodes[0]);
4339 path->nodes[0] = right;
4340 path->slots[0] = 0;
4341 if (path->slots[1] == 0)
4342 fixup_low_keys(fs_info, path, &disk_key, 1);
4343 }
4344 btrfs_mark_buffer_dirty(right);
4345 return ret;
4346 }
4347
4348 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4349
4350 if (split == 2) {
4351 BUG_ON(num_doubles != 0);
4352 num_doubles++;
4353 goto again;
4354 }
4355
4356 return 0;
4357
4358 push_for_double:
4359 push_for_double_split(trans, root, path, data_size);
4360 tried_avoid_double = 1;
4361 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4362 return 0;
4363 goto again;
4364 }
4365
4366 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4367 struct btrfs_root *root,
4368 struct btrfs_path *path, int ins_len)
4369 {
4370 struct btrfs_key key;
4371 struct extent_buffer *leaf;
4372 struct btrfs_file_extent_item *fi;
4373 u64 extent_len = 0;
4374 u32 item_size;
4375 int ret;
4376
4377 leaf = path->nodes[0];
4378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4379
4380 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4381 key.type != BTRFS_EXTENT_CSUM_KEY);
4382
4383 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4384 return 0;
4385
4386 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4387 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4388 fi = btrfs_item_ptr(leaf, path->slots[0],
4389 struct btrfs_file_extent_item);
4390 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4391 }
4392 btrfs_release_path(path);
4393
4394 path->keep_locks = 1;
4395 path->search_for_split = 1;
4396 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4397 path->search_for_split = 0;
4398 if (ret > 0)
4399 ret = -EAGAIN;
4400 if (ret < 0)
4401 goto err;
4402
4403 ret = -EAGAIN;
4404 leaf = path->nodes[0];
4405 /* if our item isn't there, return now */
4406 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4407 goto err;
4408
4409 /* the leaf has changed, it now has room. return now */
4410 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4411 goto err;
4412
4413 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4414 fi = btrfs_item_ptr(leaf, path->slots[0],
4415 struct btrfs_file_extent_item);
4416 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4417 goto err;
4418 }
4419
4420 btrfs_set_path_blocking(path);
4421 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4422 if (ret)
4423 goto err;
4424
4425 path->keep_locks = 0;
4426 btrfs_unlock_up_safe(path, 1);
4427 return 0;
4428 err:
4429 path->keep_locks = 0;
4430 return ret;
4431 }
4432
4433 static noinline int split_item(struct btrfs_trans_handle *trans,
4434 struct btrfs_root *root,
4435 struct btrfs_path *path,
4436 struct btrfs_key *new_key,
4437 unsigned long split_offset)
4438 {
4439 struct extent_buffer *leaf;
4440 struct btrfs_item *item;
4441 struct btrfs_item *new_item;
4442 int slot;
4443 char *buf;
4444 u32 nritems;
4445 u32 item_size;
4446 u32 orig_offset;
4447 struct btrfs_disk_key disk_key;
4448
4449 leaf = path->nodes[0];
4450 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4451
4452 btrfs_set_path_blocking(path);
4453
4454 item = btrfs_item_nr(path->slots[0]);
4455 orig_offset = btrfs_item_offset(leaf, item);
4456 item_size = btrfs_item_size(leaf, item);
4457
4458 buf = kmalloc(item_size, GFP_NOFS);
4459 if (!buf)
4460 return -ENOMEM;
4461
4462 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4463 path->slots[0]), item_size);
4464
4465 slot = path->slots[0] + 1;
4466 nritems = btrfs_header_nritems(leaf);
4467 if (slot != nritems) {
4468 /* shift the items */
4469 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4470 btrfs_item_nr_offset(slot),
4471 (nritems - slot) * sizeof(struct btrfs_item));
4472 }
4473
4474 btrfs_cpu_key_to_disk(&disk_key, new_key);
4475 btrfs_set_item_key(leaf, &disk_key, slot);
4476
4477 new_item = btrfs_item_nr(slot);
4478
4479 btrfs_set_item_offset(leaf, new_item, orig_offset);
4480 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4481
4482 btrfs_set_item_offset(leaf, item,
4483 orig_offset + item_size - split_offset);
4484 btrfs_set_item_size(leaf, item, split_offset);
4485
4486 btrfs_set_header_nritems(leaf, nritems + 1);
4487
4488 /* write the data for the start of the original item */
4489 write_extent_buffer(leaf, buf,
4490 btrfs_item_ptr_offset(leaf, path->slots[0]),
4491 split_offset);
4492
4493 /* write the data for the new item */
4494 write_extent_buffer(leaf, buf + split_offset,
4495 btrfs_item_ptr_offset(leaf, slot),
4496 item_size - split_offset);
4497 btrfs_mark_buffer_dirty(leaf);
4498
4499 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4500 kfree(buf);
4501 return 0;
4502 }
4503
4504 /*
4505 * This function splits a single item into two items,
4506 * giving 'new_key' to the new item and splitting the
4507 * old one at split_offset (from the start of the item).
4508 *
4509 * The path may be released by this operation. After
4510 * the split, the path is pointing to the old item. The
4511 * new item is going to be in the same node as the old one.
4512 *
4513 * Note, the item being split must be smaller enough to live alone on
4514 * a tree block with room for one extra struct btrfs_item
4515 *
4516 * This allows us to split the item in place, keeping a lock on the
4517 * leaf the entire time.
4518 */
4519 int btrfs_split_item(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root,
4521 struct btrfs_path *path,
4522 struct btrfs_key *new_key,
4523 unsigned long split_offset)
4524 {
4525 int ret;
4526 ret = setup_leaf_for_split(trans, root, path,
4527 sizeof(struct btrfs_item));
4528 if (ret)
4529 return ret;
4530
4531 ret = split_item(trans, root, path, new_key, split_offset);
4532 return ret;
4533 }
4534
4535 /*
4536 * This function duplicate a item, giving 'new_key' to the new item.
4537 * It guarantees both items live in the same tree leaf and the new item
4538 * is contiguous with the original item.
4539 *
4540 * This allows us to split file extent in place, keeping a lock on the
4541 * leaf the entire time.
4542 */
4543 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4544 struct btrfs_root *root,
4545 struct btrfs_path *path,
4546 struct btrfs_key *new_key)
4547 {
4548 struct extent_buffer *leaf;
4549 int ret;
4550 u32 item_size;
4551
4552 leaf = path->nodes[0];
4553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4554 ret = setup_leaf_for_split(trans, root, path,
4555 item_size + sizeof(struct btrfs_item));
4556 if (ret)
4557 return ret;
4558
4559 path->slots[0]++;
4560 setup_items_for_insert(root, path, new_key, &item_size,
4561 item_size, item_size +
4562 sizeof(struct btrfs_item), 1);
4563 leaf = path->nodes[0];
4564 memcpy_extent_buffer(leaf,
4565 btrfs_item_ptr_offset(leaf, path->slots[0]),
4566 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4567 item_size);
4568 return 0;
4569 }
4570
4571 /*
4572 * make the item pointed to by the path smaller. new_size indicates
4573 * how small to make it, and from_end tells us if we just chop bytes
4574 * off the end of the item or if we shift the item to chop bytes off
4575 * the front.
4576 */
4577 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4578 u32 new_size, int from_end)
4579 {
4580 int slot;
4581 struct extent_buffer *leaf;
4582 struct btrfs_item *item;
4583 u32 nritems;
4584 unsigned int data_end;
4585 unsigned int old_data_start;
4586 unsigned int old_size;
4587 unsigned int size_diff;
4588 int i;
4589 struct btrfs_map_token token;
4590
4591 btrfs_init_map_token(&token);
4592
4593 leaf = path->nodes[0];
4594 slot = path->slots[0];
4595
4596 old_size = btrfs_item_size_nr(leaf, slot);
4597 if (old_size == new_size)
4598 return;
4599
4600 nritems = btrfs_header_nritems(leaf);
4601 data_end = leaf_data_end(root, leaf);
4602
4603 old_data_start = btrfs_item_offset_nr(leaf, slot);
4604
4605 size_diff = old_size - new_size;
4606
4607 BUG_ON(slot < 0);
4608 BUG_ON(slot >= nritems);
4609
4610 /*
4611 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4612 */
4613 /* first correct the data pointers */
4614 for (i = slot; i < nritems; i++) {
4615 u32 ioff;
4616 item = btrfs_item_nr(i);
4617
4618 ioff = btrfs_token_item_offset(leaf, item, &token);
4619 btrfs_set_token_item_offset(leaf, item,
4620 ioff + size_diff, &token);
4621 }
4622
4623 /* shift the data */
4624 if (from_end) {
4625 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4626 data_end + size_diff, btrfs_leaf_data(leaf) +
4627 data_end, old_data_start + new_size - data_end);
4628 } else {
4629 struct btrfs_disk_key disk_key;
4630 u64 offset;
4631
4632 btrfs_item_key(leaf, &disk_key, slot);
4633
4634 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4635 unsigned long ptr;
4636 struct btrfs_file_extent_item *fi;
4637
4638 fi = btrfs_item_ptr(leaf, slot,
4639 struct btrfs_file_extent_item);
4640 fi = (struct btrfs_file_extent_item *)(
4641 (unsigned long)fi - size_diff);
4642
4643 if (btrfs_file_extent_type(leaf, fi) ==
4644 BTRFS_FILE_EXTENT_INLINE) {
4645 ptr = btrfs_item_ptr_offset(leaf, slot);
4646 memmove_extent_buffer(leaf, ptr,
4647 (unsigned long)fi,
4648 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4649 }
4650 }
4651
4652 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4653 data_end + size_diff, btrfs_leaf_data(leaf) +
4654 data_end, old_data_start - data_end);
4655
4656 offset = btrfs_disk_key_offset(&disk_key);
4657 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4658 btrfs_set_item_key(leaf, &disk_key, slot);
4659 if (slot == 0)
4660 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4661 }
4662
4663 item = btrfs_item_nr(slot);
4664 btrfs_set_item_size(leaf, item, new_size);
4665 btrfs_mark_buffer_dirty(leaf);
4666
4667 if (btrfs_leaf_free_space(root, leaf) < 0) {
4668 btrfs_print_leaf(root, leaf);
4669 BUG();
4670 }
4671 }
4672
4673 /*
4674 * make the item pointed to by the path bigger, data_size is the added size.
4675 */
4676 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4677 u32 data_size)
4678 {
4679 int slot;
4680 struct extent_buffer *leaf;
4681 struct btrfs_item *item;
4682 u32 nritems;
4683 unsigned int data_end;
4684 unsigned int old_data;
4685 unsigned int old_size;
4686 int i;
4687 struct btrfs_map_token token;
4688
4689 btrfs_init_map_token(&token);
4690
4691 leaf = path->nodes[0];
4692
4693 nritems = btrfs_header_nritems(leaf);
4694 data_end = leaf_data_end(root, leaf);
4695
4696 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4697 btrfs_print_leaf(root, leaf);
4698 BUG();
4699 }
4700 slot = path->slots[0];
4701 old_data = btrfs_item_end_nr(leaf, slot);
4702
4703 BUG_ON(slot < 0);
4704 if (slot >= nritems) {
4705 btrfs_print_leaf(root, leaf);
4706 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4707 slot, nritems);
4708 BUG_ON(1);
4709 }
4710
4711 /*
4712 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4713 */
4714 /* first correct the data pointers */
4715 for (i = slot; i < nritems; i++) {
4716 u32 ioff;
4717 item = btrfs_item_nr(i);
4718
4719 ioff = btrfs_token_item_offset(leaf, item, &token);
4720 btrfs_set_token_item_offset(leaf, item,
4721 ioff - data_size, &token);
4722 }
4723
4724 /* shift the data */
4725 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4726 data_end - data_size, btrfs_leaf_data(leaf) +
4727 data_end, old_data - data_end);
4728
4729 data_end = old_data;
4730 old_size = btrfs_item_size_nr(leaf, slot);
4731 item = btrfs_item_nr(slot);
4732 btrfs_set_item_size(leaf, item, old_size + data_size);
4733 btrfs_mark_buffer_dirty(leaf);
4734
4735 if (btrfs_leaf_free_space(root, leaf) < 0) {
4736 btrfs_print_leaf(root, leaf);
4737 BUG();
4738 }
4739 }
4740
4741 /*
4742 * this is a helper for btrfs_insert_empty_items, the main goal here is
4743 * to save stack depth by doing the bulk of the work in a function
4744 * that doesn't call btrfs_search_slot
4745 */
4746 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4747 struct btrfs_key *cpu_key, u32 *data_size,
4748 u32 total_data, u32 total_size, int nr)
4749 {
4750 struct btrfs_item *item;
4751 int i;
4752 u32 nritems;
4753 unsigned int data_end;
4754 struct btrfs_disk_key disk_key;
4755 struct extent_buffer *leaf;
4756 int slot;
4757 struct btrfs_map_token token;
4758
4759 if (path->slots[0] == 0) {
4760 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4761 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4762 }
4763 btrfs_unlock_up_safe(path, 1);
4764
4765 btrfs_init_map_token(&token);
4766
4767 leaf = path->nodes[0];
4768 slot = path->slots[0];
4769
4770 nritems = btrfs_header_nritems(leaf);
4771 data_end = leaf_data_end(root, leaf);
4772
4773 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4774 btrfs_print_leaf(root, leaf);
4775 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4776 total_size, btrfs_leaf_free_space(root, leaf));
4777 BUG();
4778 }
4779
4780 if (slot != nritems) {
4781 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4782
4783 if (old_data < data_end) {
4784 btrfs_print_leaf(root, leaf);
4785 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4786 slot, old_data, data_end);
4787 BUG_ON(1);
4788 }
4789 /*
4790 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4791 */
4792 /* first correct the data pointers */
4793 for (i = slot; i < nritems; i++) {
4794 u32 ioff;
4795
4796 item = btrfs_item_nr( i);
4797 ioff = btrfs_token_item_offset(leaf, item, &token);
4798 btrfs_set_token_item_offset(leaf, item,
4799 ioff - total_data, &token);
4800 }
4801 /* shift the items */
4802 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4803 btrfs_item_nr_offset(slot),
4804 (nritems - slot) * sizeof(struct btrfs_item));
4805
4806 /* shift the data */
4807 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4808 data_end - total_data, btrfs_leaf_data(leaf) +
4809 data_end, old_data - data_end);
4810 data_end = old_data;
4811 }
4812
4813 /* setup the item for the new data */
4814 for (i = 0; i < nr; i++) {
4815 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4816 btrfs_set_item_key(leaf, &disk_key, slot + i);
4817 item = btrfs_item_nr(slot + i);
4818 btrfs_set_token_item_offset(leaf, item,
4819 data_end - data_size[i], &token);
4820 data_end -= data_size[i];
4821 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4822 }
4823
4824 btrfs_set_header_nritems(leaf, nritems + nr);
4825 btrfs_mark_buffer_dirty(leaf);
4826
4827 if (btrfs_leaf_free_space(root, leaf) < 0) {
4828 btrfs_print_leaf(root, leaf);
4829 BUG();
4830 }
4831 }
4832
4833 /*
4834 * Given a key and some data, insert items into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4838 struct btrfs_root *root,
4839 struct btrfs_path *path,
4840 struct btrfs_key *cpu_key, u32 *data_size,
4841 int nr)
4842 {
4843 int ret = 0;
4844 int slot;
4845 int i;
4846 u32 total_size = 0;
4847 u32 total_data = 0;
4848
4849 for (i = 0; i < nr; i++)
4850 total_data += data_size[i];
4851
4852 total_size = total_data + (nr * sizeof(struct btrfs_item));
4853 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4854 if (ret == 0)
4855 return -EEXIST;
4856 if (ret < 0)
4857 return ret;
4858
4859 slot = path->slots[0];
4860 BUG_ON(slot < 0);
4861
4862 setup_items_for_insert(root, path, cpu_key, data_size,
4863 total_data, total_size, nr);
4864 return 0;
4865 }
4866
4867 /*
4868 * Given a key and some data, insert an item into the tree.
4869 * This does all the path init required, making room in the tree if needed.
4870 */
4871 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4872 *root, struct btrfs_key *cpu_key, void *data, u32
4873 data_size)
4874 {
4875 int ret = 0;
4876 struct btrfs_path *path;
4877 struct extent_buffer *leaf;
4878 unsigned long ptr;
4879
4880 path = btrfs_alloc_path();
4881 if (!path)
4882 return -ENOMEM;
4883 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4884 if (!ret) {
4885 leaf = path->nodes[0];
4886 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4887 write_extent_buffer(leaf, data, ptr, data_size);
4888 btrfs_mark_buffer_dirty(leaf);
4889 }
4890 btrfs_free_path(path);
4891 return ret;
4892 }
4893
4894 /*
4895 * delete the pointer from a given node.
4896 *
4897 * the tree should have been previously balanced so the deletion does not
4898 * empty a node.
4899 */
4900 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4901 int level, int slot)
4902 {
4903 struct extent_buffer *parent = path->nodes[level];
4904 u32 nritems;
4905 int ret;
4906
4907 nritems = btrfs_header_nritems(parent);
4908 if (slot != nritems - 1) {
4909 if (level)
4910 tree_mod_log_eb_move(root->fs_info, parent, slot,
4911 slot + 1, nritems - slot - 1);
4912 memmove_extent_buffer(parent,
4913 btrfs_node_key_ptr_offset(slot),
4914 btrfs_node_key_ptr_offset(slot + 1),
4915 sizeof(struct btrfs_key_ptr) *
4916 (nritems - slot - 1));
4917 } else if (level) {
4918 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4919 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4920 BUG_ON(ret < 0);
4921 }
4922
4923 nritems--;
4924 btrfs_set_header_nritems(parent, nritems);
4925 if (nritems == 0 && parent == root->node) {
4926 BUG_ON(btrfs_header_level(root->node) != 1);
4927 /* just turn the root into a leaf and break */
4928 btrfs_set_header_level(root->node, 0);
4929 } else if (slot == 0) {
4930 struct btrfs_disk_key disk_key;
4931
4932 btrfs_node_key(parent, &disk_key, 0);
4933 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4934 }
4935 btrfs_mark_buffer_dirty(parent);
4936 }
4937
4938 /*
4939 * a helper function to delete the leaf pointed to by path->slots[1] and
4940 * path->nodes[1].
4941 *
4942 * This deletes the pointer in path->nodes[1] and frees the leaf
4943 * block extent. zero is returned if it all worked out, < 0 otherwise.
4944 *
4945 * The path must have already been setup for deleting the leaf, including
4946 * all the proper balancing. path->nodes[1] must be locked.
4947 */
4948 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4949 struct btrfs_root *root,
4950 struct btrfs_path *path,
4951 struct extent_buffer *leaf)
4952 {
4953 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4954 del_ptr(root, path, 1, path->slots[1]);
4955
4956 /*
4957 * btrfs_free_extent is expensive, we want to make sure we
4958 * aren't holding any locks when we call it
4959 */
4960 btrfs_unlock_up_safe(path, 0);
4961
4962 root_sub_used(root, leaf->len);
4963
4964 extent_buffer_get(leaf);
4965 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4966 free_extent_buffer_stale(leaf);
4967 }
4968 /*
4969 * delete the item at the leaf level in path. If that empties
4970 * the leaf, remove it from the tree
4971 */
4972 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4973 struct btrfs_path *path, int slot, int nr)
4974 {
4975 struct extent_buffer *leaf;
4976 struct btrfs_item *item;
4977 u32 last_off;
4978 u32 dsize = 0;
4979 int ret = 0;
4980 int wret;
4981 int i;
4982 u32 nritems;
4983 struct btrfs_map_token token;
4984
4985 btrfs_init_map_token(&token);
4986
4987 leaf = path->nodes[0];
4988 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4989
4990 for (i = 0; i < nr; i++)
4991 dsize += btrfs_item_size_nr(leaf, slot + i);
4992
4993 nritems = btrfs_header_nritems(leaf);
4994
4995 if (slot + nr != nritems) {
4996 int data_end = leaf_data_end(root, leaf);
4997
4998 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4999 data_end + dsize,
5000 btrfs_leaf_data(leaf) + data_end,
5001 last_off - data_end);
5002
5003 for (i = slot + nr; i < nritems; i++) {
5004 u32 ioff;
5005
5006 item = btrfs_item_nr(i);
5007 ioff = btrfs_token_item_offset(leaf, item, &token);
5008 btrfs_set_token_item_offset(leaf, item,
5009 ioff + dsize, &token);
5010 }
5011
5012 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5013 btrfs_item_nr_offset(slot + nr),
5014 sizeof(struct btrfs_item) *
5015 (nritems - slot - nr));
5016 }
5017 btrfs_set_header_nritems(leaf, nritems - nr);
5018 nritems -= nr;
5019
5020 /* delete the leaf if we've emptied it */
5021 if (nritems == 0) {
5022 if (leaf == root->node) {
5023 btrfs_set_header_level(leaf, 0);
5024 } else {
5025 btrfs_set_path_blocking(path);
5026 clean_tree_block(trans, root->fs_info, leaf);
5027 btrfs_del_leaf(trans, root, path, leaf);
5028 }
5029 } else {
5030 int used = leaf_space_used(leaf, 0, nritems);
5031 if (slot == 0) {
5032 struct btrfs_disk_key disk_key;
5033
5034 btrfs_item_key(leaf, &disk_key, 0);
5035 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5036 }
5037
5038 /* delete the leaf if it is mostly empty */
5039 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5040 /* push_leaf_left fixes the path.
5041 * make sure the path still points to our leaf
5042 * for possible call to del_ptr below
5043 */
5044 slot = path->slots[1];
5045 extent_buffer_get(leaf);
5046
5047 btrfs_set_path_blocking(path);
5048 wret = push_leaf_left(trans, root, path, 1, 1,
5049 1, (u32)-1);
5050 if (wret < 0 && wret != -ENOSPC)
5051 ret = wret;
5052
5053 if (path->nodes[0] == leaf &&
5054 btrfs_header_nritems(leaf)) {
5055 wret = push_leaf_right(trans, root, path, 1,
5056 1, 1, 0);
5057 if (wret < 0 && wret != -ENOSPC)
5058 ret = wret;
5059 }
5060
5061 if (btrfs_header_nritems(leaf) == 0) {
5062 path->slots[1] = slot;
5063 btrfs_del_leaf(trans, root, path, leaf);
5064 free_extent_buffer(leaf);
5065 ret = 0;
5066 } else {
5067 /* if we're still in the path, make sure
5068 * we're dirty. Otherwise, one of the
5069 * push_leaf functions must have already
5070 * dirtied this buffer
5071 */
5072 if (path->nodes[0] == leaf)
5073 btrfs_mark_buffer_dirty(leaf);
5074 free_extent_buffer(leaf);
5075 }
5076 } else {
5077 btrfs_mark_buffer_dirty(leaf);
5078 }
5079 }
5080 return ret;
5081 }
5082
5083 /*
5084 * search the tree again to find a leaf with lesser keys
5085 * returns 0 if it found something or 1 if there are no lesser leaves.
5086 * returns < 0 on io errors.
5087 *
5088 * This may release the path, and so you may lose any locks held at the
5089 * time you call it.
5090 */
5091 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5092 {
5093 struct btrfs_key key;
5094 struct btrfs_disk_key found_key;
5095 int ret;
5096
5097 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5098
5099 if (key.offset > 0) {
5100 key.offset--;
5101 } else if (key.type > 0) {
5102 key.type--;
5103 key.offset = (u64)-1;
5104 } else if (key.objectid > 0) {
5105 key.objectid--;
5106 key.type = (u8)-1;
5107 key.offset = (u64)-1;
5108 } else {
5109 return 1;
5110 }
5111
5112 btrfs_release_path(path);
5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114 if (ret < 0)
5115 return ret;
5116 btrfs_item_key(path->nodes[0], &found_key, 0);
5117 ret = comp_keys(&found_key, &key);
5118 /*
5119 * We might have had an item with the previous key in the tree right
5120 * before we released our path. And after we released our path, that
5121 * item might have been pushed to the first slot (0) of the leaf we
5122 * were holding due to a tree balance. Alternatively, an item with the
5123 * previous key can exist as the only element of a leaf (big fat item).
5124 * Therefore account for these 2 cases, so that our callers (like
5125 * btrfs_previous_item) don't miss an existing item with a key matching
5126 * the previous key we computed above.
5127 */
5128 if (ret <= 0)
5129 return 0;
5130 return 1;
5131 }
5132
5133 /*
5134 * A helper function to walk down the tree starting at min_key, and looking
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5144 *
5145 * This honors path->lowest_level to prevent descent past a given level
5146 * of the tree.
5147 *
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through. Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5151 *
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5154 */
5155 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5156 struct btrfs_path *path,
5157 u64 min_trans)
5158 {
5159 struct extent_buffer *cur;
5160 struct btrfs_key found_key;
5161 int slot;
5162 int sret;
5163 u32 nritems;
5164 int level;
5165 int ret = 1;
5166 int keep_locks = path->keep_locks;
5167
5168 path->keep_locks = 1;
5169 again:
5170 cur = btrfs_read_lock_root_node(root);
5171 level = btrfs_header_level(cur);
5172 WARN_ON(path->nodes[level]);
5173 path->nodes[level] = cur;
5174 path->locks[level] = BTRFS_READ_LOCK;
5175
5176 if (btrfs_header_generation(cur) < min_trans) {
5177 ret = 1;
5178 goto out;
5179 }
5180 while (1) {
5181 nritems = btrfs_header_nritems(cur);
5182 level = btrfs_header_level(cur);
5183 sret = bin_search(cur, min_key, level, &slot);
5184
5185 /* at the lowest level, we're done, setup the path and exit */
5186 if (level == path->lowest_level) {
5187 if (slot >= nritems)
5188 goto find_next_key;
5189 ret = 0;
5190 path->slots[level] = slot;
5191 btrfs_item_key_to_cpu(cur, &found_key, slot);
5192 goto out;
5193 }
5194 if (sret && slot > 0)
5195 slot--;
5196 /*
5197 * check this node pointer against the min_trans parameters.
5198 * If it is too old, old, skip to the next one.
5199 */
5200 while (slot < nritems) {
5201 u64 gen;
5202
5203 gen = btrfs_node_ptr_generation(cur, slot);
5204 if (gen < min_trans) {
5205 slot++;
5206 continue;
5207 }
5208 break;
5209 }
5210 find_next_key:
5211 /*
5212 * we didn't find a candidate key in this node, walk forward
5213 * and find another one
5214 */
5215 if (slot >= nritems) {
5216 path->slots[level] = slot;
5217 btrfs_set_path_blocking(path);
5218 sret = btrfs_find_next_key(root, path, min_key, level,
5219 min_trans);
5220 if (sret == 0) {
5221 btrfs_release_path(path);
5222 goto again;
5223 } else {
5224 goto out;
5225 }
5226 }
5227 /* save our key for returning back */
5228 btrfs_node_key_to_cpu(cur, &found_key, slot);
5229 path->slots[level] = slot;
5230 if (level == path->lowest_level) {
5231 ret = 0;
5232 goto out;
5233 }
5234 btrfs_set_path_blocking(path);
5235 cur = read_node_slot(root, cur, slot);
5236 if (IS_ERR(cur)) {
5237 ret = PTR_ERR(cur);
5238 goto out;
5239 }
5240
5241 btrfs_tree_read_lock(cur);
5242
5243 path->locks[level - 1] = BTRFS_READ_LOCK;
5244 path->nodes[level - 1] = cur;
5245 unlock_up(path, level, 1, 0, NULL);
5246 btrfs_clear_path_blocking(path, NULL, 0);
5247 }
5248 out:
5249 path->keep_locks = keep_locks;
5250 if (ret == 0) {
5251 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5252 btrfs_set_path_blocking(path);
5253 memcpy(min_key, &found_key, sizeof(found_key));
5254 }
5255 return ret;
5256 }
5257
5258 static int tree_move_down(struct btrfs_root *root,
5259 struct btrfs_path *path,
5260 int *level, int root_level)
5261 {
5262 struct extent_buffer *eb;
5263
5264 BUG_ON(*level == 0);
5265 eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5266 if (IS_ERR(eb))
5267 return PTR_ERR(eb);
5268
5269 path->nodes[*level - 1] = eb;
5270 path->slots[*level - 1] = 0;
5271 (*level)--;
5272 return 0;
5273 }
5274
5275 static int tree_move_next_or_upnext(struct btrfs_root *root,
5276 struct btrfs_path *path,
5277 int *level, int root_level)
5278 {
5279 int ret = 0;
5280 int nritems;
5281 nritems = btrfs_header_nritems(path->nodes[*level]);
5282
5283 path->slots[*level]++;
5284
5285 while (path->slots[*level] >= nritems) {
5286 if (*level == root_level)
5287 return -1;
5288
5289 /* move upnext */
5290 path->slots[*level] = 0;
5291 free_extent_buffer(path->nodes[*level]);
5292 path->nodes[*level] = NULL;
5293 (*level)++;
5294 path->slots[*level]++;
5295
5296 nritems = btrfs_header_nritems(path->nodes[*level]);
5297 ret = 1;
5298 }
5299 return ret;
5300 }
5301
5302 /*
5303 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5304 * or down.
5305 */
5306 static int tree_advance(struct btrfs_root *root,
5307 struct btrfs_path *path,
5308 int *level, int root_level,
5309 int allow_down,
5310 struct btrfs_key *key)
5311 {
5312 int ret;
5313
5314 if (*level == 0 || !allow_down) {
5315 ret = tree_move_next_or_upnext(root, path, level, root_level);
5316 } else {
5317 ret = tree_move_down(root, path, level, root_level);
5318 }
5319 if (ret >= 0) {
5320 if (*level == 0)
5321 btrfs_item_key_to_cpu(path->nodes[*level], key,
5322 path->slots[*level]);
5323 else
5324 btrfs_node_key_to_cpu(path->nodes[*level], key,
5325 path->slots[*level]);
5326 }
5327 return ret;
5328 }
5329
5330 static int tree_compare_item(struct btrfs_root *left_root,
5331 struct btrfs_path *left_path,
5332 struct btrfs_path *right_path,
5333 char *tmp_buf)
5334 {
5335 int cmp;
5336 int len1, len2;
5337 unsigned long off1, off2;
5338
5339 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5340 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5341 if (len1 != len2)
5342 return 1;
5343
5344 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5345 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5346 right_path->slots[0]);
5347
5348 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5349
5350 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5351 if (cmp)
5352 return 1;
5353 return 0;
5354 }
5355
5356 #define ADVANCE 1
5357 #define ADVANCE_ONLY_NEXT -1
5358
5359 /*
5360 * This function compares two trees and calls the provided callback for
5361 * every changed/new/deleted item it finds.
5362 * If shared tree blocks are encountered, whole subtrees are skipped, making
5363 * the compare pretty fast on snapshotted subvolumes.
5364 *
5365 * This currently works on commit roots only. As commit roots are read only,
5366 * we don't do any locking. The commit roots are protected with transactions.
5367 * Transactions are ended and rejoined when a commit is tried in between.
5368 *
5369 * This function checks for modifications done to the trees while comparing.
5370 * If it detects a change, it aborts immediately.
5371 */
5372 int btrfs_compare_trees(struct btrfs_root *left_root,
5373 struct btrfs_root *right_root,
5374 btrfs_changed_cb_t changed_cb, void *ctx)
5375 {
5376 int ret;
5377 int cmp;
5378 struct btrfs_path *left_path = NULL;
5379 struct btrfs_path *right_path = NULL;
5380 struct btrfs_key left_key;
5381 struct btrfs_key right_key;
5382 char *tmp_buf = NULL;
5383 int left_root_level;
5384 int right_root_level;
5385 int left_level;
5386 int right_level;
5387 int left_end_reached;
5388 int right_end_reached;
5389 int advance_left;
5390 int advance_right;
5391 u64 left_blockptr;
5392 u64 right_blockptr;
5393 u64 left_gen;
5394 u64 right_gen;
5395
5396 left_path = btrfs_alloc_path();
5397 if (!left_path) {
5398 ret = -ENOMEM;
5399 goto out;
5400 }
5401 right_path = btrfs_alloc_path();
5402 if (!right_path) {
5403 ret = -ENOMEM;
5404 goto out;
5405 }
5406
5407 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5408 if (!tmp_buf) {
5409 tmp_buf = vmalloc(left_root->nodesize);
5410 if (!tmp_buf) {
5411 ret = -ENOMEM;
5412 goto out;
5413 }
5414 }
5415
5416 left_path->search_commit_root = 1;
5417 left_path->skip_locking = 1;
5418 right_path->search_commit_root = 1;
5419 right_path->skip_locking = 1;
5420
5421 /*
5422 * Strategy: Go to the first items of both trees. Then do
5423 *
5424 * If both trees are at level 0
5425 * Compare keys of current items
5426 * If left < right treat left item as new, advance left tree
5427 * and repeat
5428 * If left > right treat right item as deleted, advance right tree
5429 * and repeat
5430 * If left == right do deep compare of items, treat as changed if
5431 * needed, advance both trees and repeat
5432 * If both trees are at the same level but not at level 0
5433 * Compare keys of current nodes/leafs
5434 * If left < right advance left tree and repeat
5435 * If left > right advance right tree and repeat
5436 * If left == right compare blockptrs of the next nodes/leafs
5437 * If they match advance both trees but stay at the same level
5438 * and repeat
5439 * If they don't match advance both trees while allowing to go
5440 * deeper and repeat
5441 * If tree levels are different
5442 * Advance the tree that needs it and repeat
5443 *
5444 * Advancing a tree means:
5445 * If we are at level 0, try to go to the next slot. If that's not
5446 * possible, go one level up and repeat. Stop when we found a level
5447 * where we could go to the next slot. We may at this point be on a
5448 * node or a leaf.
5449 *
5450 * If we are not at level 0 and not on shared tree blocks, go one
5451 * level deeper.
5452 *
5453 * If we are not at level 0 and on shared tree blocks, go one slot to
5454 * the right if possible or go up and right.
5455 */
5456
5457 down_read(&left_root->fs_info->commit_root_sem);
5458 left_level = btrfs_header_level(left_root->commit_root);
5459 left_root_level = left_level;
5460 left_path->nodes[left_level] = left_root->commit_root;
5461 extent_buffer_get(left_path->nodes[left_level]);
5462
5463 right_level = btrfs_header_level(right_root->commit_root);
5464 right_root_level = right_level;
5465 right_path->nodes[right_level] = right_root->commit_root;
5466 extent_buffer_get(right_path->nodes[right_level]);
5467 up_read(&left_root->fs_info->commit_root_sem);
5468
5469 if (left_level == 0)
5470 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5471 &left_key, left_path->slots[left_level]);
5472 else
5473 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5474 &left_key, left_path->slots[left_level]);
5475 if (right_level == 0)
5476 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5477 &right_key, right_path->slots[right_level]);
5478 else
5479 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5480 &right_key, right_path->slots[right_level]);
5481
5482 left_end_reached = right_end_reached = 0;
5483 advance_left = advance_right = 0;
5484
5485 while (1) {
5486 if (advance_left && !left_end_reached) {
5487 ret = tree_advance(left_root, left_path, &left_level,
5488 left_root_level,
5489 advance_left != ADVANCE_ONLY_NEXT,
5490 &left_key);
5491 if (ret == -1)
5492 left_end_reached = ADVANCE;
5493 else if (ret < 0)
5494 goto out;
5495 advance_left = 0;
5496 }
5497 if (advance_right && !right_end_reached) {
5498 ret = tree_advance(right_root, right_path, &right_level,
5499 right_root_level,
5500 advance_right != ADVANCE_ONLY_NEXT,
5501 &right_key);
5502 if (ret == -1)
5503 right_end_reached = ADVANCE;
5504 else if (ret < 0)
5505 goto out;
5506 advance_right = 0;
5507 }
5508
5509 if (left_end_reached && right_end_reached) {
5510 ret = 0;
5511 goto out;
5512 } else if (left_end_reached) {
5513 if (right_level == 0) {
5514 ret = changed_cb(left_root, right_root,
5515 left_path, right_path,
5516 &right_key,
5517 BTRFS_COMPARE_TREE_DELETED,
5518 ctx);
5519 if (ret < 0)
5520 goto out;
5521 }
5522 advance_right = ADVANCE;
5523 continue;
5524 } else if (right_end_reached) {
5525 if (left_level == 0) {
5526 ret = changed_cb(left_root, right_root,
5527 left_path, right_path,
5528 &left_key,
5529 BTRFS_COMPARE_TREE_NEW,
5530 ctx);
5531 if (ret < 0)
5532 goto out;
5533 }
5534 advance_left = ADVANCE;
5535 continue;
5536 }
5537
5538 if (left_level == 0 && right_level == 0) {
5539 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5540 if (cmp < 0) {
5541 ret = changed_cb(left_root, right_root,
5542 left_path, right_path,
5543 &left_key,
5544 BTRFS_COMPARE_TREE_NEW,
5545 ctx);
5546 if (ret < 0)
5547 goto out;
5548 advance_left = ADVANCE;
5549 } else if (cmp > 0) {
5550 ret = changed_cb(left_root, right_root,
5551 left_path, right_path,
5552 &right_key,
5553 BTRFS_COMPARE_TREE_DELETED,
5554 ctx);
5555 if (ret < 0)
5556 goto out;
5557 advance_right = ADVANCE;
5558 } else {
5559 enum btrfs_compare_tree_result result;
5560
5561 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5562 ret = tree_compare_item(left_root, left_path,
5563 right_path, tmp_buf);
5564 if (ret)
5565 result = BTRFS_COMPARE_TREE_CHANGED;
5566 else
5567 result = BTRFS_COMPARE_TREE_SAME;
5568 ret = changed_cb(left_root, right_root,
5569 left_path, right_path,
5570 &left_key, result, ctx);
5571 if (ret < 0)
5572 goto out;
5573 advance_left = ADVANCE;
5574 advance_right = ADVANCE;
5575 }
5576 } else if (left_level == right_level) {
5577 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5578 if (cmp < 0) {
5579 advance_left = ADVANCE;
5580 } else if (cmp > 0) {
5581 advance_right = ADVANCE;
5582 } else {
5583 left_blockptr = btrfs_node_blockptr(
5584 left_path->nodes[left_level],
5585 left_path->slots[left_level]);
5586 right_blockptr = btrfs_node_blockptr(
5587 right_path->nodes[right_level],
5588 right_path->slots[right_level]);
5589 left_gen = btrfs_node_ptr_generation(
5590 left_path->nodes[left_level],
5591 left_path->slots[left_level]);
5592 right_gen = btrfs_node_ptr_generation(
5593 right_path->nodes[right_level],
5594 right_path->slots[right_level]);
5595 if (left_blockptr == right_blockptr &&
5596 left_gen == right_gen) {
5597 /*
5598 * As we're on a shared block, don't
5599 * allow to go deeper.
5600 */
5601 advance_left = ADVANCE_ONLY_NEXT;
5602 advance_right = ADVANCE_ONLY_NEXT;
5603 } else {
5604 advance_left = ADVANCE;
5605 advance_right = ADVANCE;
5606 }
5607 }
5608 } else if (left_level < right_level) {
5609 advance_right = ADVANCE;
5610 } else {
5611 advance_left = ADVANCE;
5612 }
5613 }
5614
5615 out:
5616 btrfs_free_path(left_path);
5617 btrfs_free_path(right_path);
5618 kvfree(tmp_buf);
5619 return ret;
5620 }
5621
5622 /*
5623 * this is similar to btrfs_next_leaf, but does not try to preserve
5624 * and fixup the path. It looks for and returns the next key in the
5625 * tree based on the current path and the min_trans parameters.
5626 *
5627 * 0 is returned if another key is found, < 0 if there are any errors
5628 * and 1 is returned if there are no higher keys in the tree
5629 *
5630 * path->keep_locks should be set to 1 on the search made before
5631 * calling this function.
5632 */
5633 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5634 struct btrfs_key *key, int level, u64 min_trans)
5635 {
5636 int slot;
5637 struct extent_buffer *c;
5638
5639 WARN_ON(!path->keep_locks);
5640 while (level < BTRFS_MAX_LEVEL) {
5641 if (!path->nodes[level])
5642 return 1;
5643
5644 slot = path->slots[level] + 1;
5645 c = path->nodes[level];
5646 next:
5647 if (slot >= btrfs_header_nritems(c)) {
5648 int ret;
5649 int orig_lowest;
5650 struct btrfs_key cur_key;
5651 if (level + 1 >= BTRFS_MAX_LEVEL ||
5652 !path->nodes[level + 1])
5653 return 1;
5654
5655 if (path->locks[level + 1]) {
5656 level++;
5657 continue;
5658 }
5659
5660 slot = btrfs_header_nritems(c) - 1;
5661 if (level == 0)
5662 btrfs_item_key_to_cpu(c, &cur_key, slot);
5663 else
5664 btrfs_node_key_to_cpu(c, &cur_key, slot);
5665
5666 orig_lowest = path->lowest_level;
5667 btrfs_release_path(path);
5668 path->lowest_level = level;
5669 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5670 0, 0);
5671 path->lowest_level = orig_lowest;
5672 if (ret < 0)
5673 return ret;
5674
5675 c = path->nodes[level];
5676 slot = path->slots[level];
5677 if (ret == 0)
5678 slot++;
5679 goto next;
5680 }
5681
5682 if (level == 0)
5683 btrfs_item_key_to_cpu(c, key, slot);
5684 else {
5685 u64 gen = btrfs_node_ptr_generation(c, slot);
5686
5687 if (gen < min_trans) {
5688 slot++;
5689 goto next;
5690 }
5691 btrfs_node_key_to_cpu(c, key, slot);
5692 }
5693 return 0;
5694 }
5695 return 1;
5696 }
5697
5698 /*
5699 * search the tree again to find a leaf with greater keys
5700 * returns 0 if it found something or 1 if there are no greater leaves.
5701 * returns < 0 on io errors.
5702 */
5703 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5704 {
5705 return btrfs_next_old_leaf(root, path, 0);
5706 }
5707
5708 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5709 u64 time_seq)
5710 {
5711 int slot;
5712 int level;
5713 struct extent_buffer *c;
5714 struct extent_buffer *next;
5715 struct btrfs_key key;
5716 u32 nritems;
5717 int ret;
5718 int old_spinning = path->leave_spinning;
5719 int next_rw_lock = 0;
5720
5721 nritems = btrfs_header_nritems(path->nodes[0]);
5722 if (nritems == 0)
5723 return 1;
5724
5725 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5726 again:
5727 level = 1;
5728 next = NULL;
5729 next_rw_lock = 0;
5730 btrfs_release_path(path);
5731
5732 path->keep_locks = 1;
5733 path->leave_spinning = 1;
5734
5735 if (time_seq)
5736 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5737 else
5738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5739 path->keep_locks = 0;
5740
5741 if (ret < 0)
5742 return ret;
5743
5744 nritems = btrfs_header_nritems(path->nodes[0]);
5745 /*
5746 * by releasing the path above we dropped all our locks. A balance
5747 * could have added more items next to the key that used to be
5748 * at the very end of the block. So, check again here and
5749 * advance the path if there are now more items available.
5750 */
5751 if (nritems > 0 && path->slots[0] < nritems - 1) {
5752 if (ret == 0)
5753 path->slots[0]++;
5754 ret = 0;
5755 goto done;
5756 }
5757 /*
5758 * So the above check misses one case:
5759 * - after releasing the path above, someone has removed the item that
5760 * used to be at the very end of the block, and balance between leafs
5761 * gets another one with bigger key.offset to replace it.
5762 *
5763 * This one should be returned as well, or we can get leaf corruption
5764 * later(esp. in __btrfs_drop_extents()).
5765 *
5766 * And a bit more explanation about this check,
5767 * with ret > 0, the key isn't found, the path points to the slot
5768 * where it should be inserted, so the path->slots[0] item must be the
5769 * bigger one.
5770 */
5771 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5772 ret = 0;
5773 goto done;
5774 }
5775
5776 while (level < BTRFS_MAX_LEVEL) {
5777 if (!path->nodes[level]) {
5778 ret = 1;
5779 goto done;
5780 }
5781
5782 slot = path->slots[level] + 1;
5783 c = path->nodes[level];
5784 if (slot >= btrfs_header_nritems(c)) {
5785 level++;
5786 if (level == BTRFS_MAX_LEVEL) {
5787 ret = 1;
5788 goto done;
5789 }
5790 continue;
5791 }
5792
5793 if (next) {
5794 btrfs_tree_unlock_rw(next, next_rw_lock);
5795 free_extent_buffer(next);
5796 }
5797
5798 next = c;
5799 next_rw_lock = path->locks[level];
5800 ret = read_block_for_search(NULL, root, path, &next, level,
5801 slot, &key, 0);
5802 if (ret == -EAGAIN)
5803 goto again;
5804
5805 if (ret < 0) {
5806 btrfs_release_path(path);
5807 goto done;
5808 }
5809
5810 if (!path->skip_locking) {
5811 ret = btrfs_try_tree_read_lock(next);
5812 if (!ret && time_seq) {
5813 /*
5814 * If we don't get the lock, we may be racing
5815 * with push_leaf_left, holding that lock while
5816 * itself waiting for the leaf we've currently
5817 * locked. To solve this situation, we give up
5818 * on our lock and cycle.
5819 */
5820 free_extent_buffer(next);
5821 btrfs_release_path(path);
5822 cond_resched();
5823 goto again;
5824 }
5825 if (!ret) {
5826 btrfs_set_path_blocking(path);
5827 btrfs_tree_read_lock(next);
5828 btrfs_clear_path_blocking(path, next,
5829 BTRFS_READ_LOCK);
5830 }
5831 next_rw_lock = BTRFS_READ_LOCK;
5832 }
5833 break;
5834 }
5835 path->slots[level] = slot;
5836 while (1) {
5837 level--;
5838 c = path->nodes[level];
5839 if (path->locks[level])
5840 btrfs_tree_unlock_rw(c, path->locks[level]);
5841
5842 free_extent_buffer(c);
5843 path->nodes[level] = next;
5844 path->slots[level] = 0;
5845 if (!path->skip_locking)
5846 path->locks[level] = next_rw_lock;
5847 if (!level)
5848 break;
5849
5850 ret = read_block_for_search(NULL, root, path, &next, level,
5851 0, &key, 0);
5852 if (ret == -EAGAIN)
5853 goto again;
5854
5855 if (ret < 0) {
5856 btrfs_release_path(path);
5857 goto done;
5858 }
5859
5860 if (!path->skip_locking) {
5861 ret = btrfs_try_tree_read_lock(next);
5862 if (!ret) {
5863 btrfs_set_path_blocking(path);
5864 btrfs_tree_read_lock(next);
5865 btrfs_clear_path_blocking(path, next,
5866 BTRFS_READ_LOCK);
5867 }
5868 next_rw_lock = BTRFS_READ_LOCK;
5869 }
5870 }
5871 ret = 0;
5872 done:
5873 unlock_up(path, 0, 1, 0, NULL);
5874 path->leave_spinning = old_spinning;
5875 if (!old_spinning)
5876 btrfs_set_path_blocking(path);
5877
5878 return ret;
5879 }
5880
5881 /*
5882 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5883 * searching until it gets past min_objectid or finds an item of 'type'
5884 *
5885 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5886 */
5887 int btrfs_previous_item(struct btrfs_root *root,
5888 struct btrfs_path *path, u64 min_objectid,
5889 int type)
5890 {
5891 struct btrfs_key found_key;
5892 struct extent_buffer *leaf;
5893 u32 nritems;
5894 int ret;
5895
5896 while (1) {
5897 if (path->slots[0] == 0) {
5898 btrfs_set_path_blocking(path);
5899 ret = btrfs_prev_leaf(root, path);
5900 if (ret != 0)
5901 return ret;
5902 } else {
5903 path->slots[0]--;
5904 }
5905 leaf = path->nodes[0];
5906 nritems = btrfs_header_nritems(leaf);
5907 if (nritems == 0)
5908 return 1;
5909 if (path->slots[0] == nritems)
5910 path->slots[0]--;
5911
5912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5913 if (found_key.objectid < min_objectid)
5914 break;
5915 if (found_key.type == type)
5916 return 0;
5917 if (found_key.objectid == min_objectid &&
5918 found_key.type < type)
5919 break;
5920 }
5921 return 1;
5922 }
5923
5924 /*
5925 * search in extent tree to find a previous Metadata/Data extent item with
5926 * min objecitd.
5927 *
5928 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5929 */
5930 int btrfs_previous_extent_item(struct btrfs_root *root,
5931 struct btrfs_path *path, u64 min_objectid)
5932 {
5933 struct btrfs_key found_key;
5934 struct extent_buffer *leaf;
5935 u32 nritems;
5936 int ret;
5937
5938 while (1) {
5939 if (path->slots[0] == 0) {
5940 btrfs_set_path_blocking(path);
5941 ret = btrfs_prev_leaf(root, path);
5942 if (ret != 0)
5943 return ret;
5944 } else {
5945 path->slots[0]--;
5946 }
5947 leaf = path->nodes[0];
5948 nritems = btrfs_header_nritems(leaf);
5949 if (nritems == 0)
5950 return 1;
5951 if (path->slots[0] == nritems)
5952 path->slots[0]--;
5953
5954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5955 if (found_key.objectid < min_objectid)
5956 break;
5957 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5958 found_key.type == BTRFS_METADATA_ITEM_KEY)
5959 return 0;
5960 if (found_key.objectid == min_objectid &&
5961 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5962 break;
5963 }
5964 return 1;
5965 }
This page took 0.160339 seconds and 5 git commands to generate.