Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51 }
52
53 /*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69 }
70
71 /*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81 {
82 int i;
83
84 if (held) {
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 }
91 btrfs_set_path_blocking(p);
92
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
100 }
101 }
102
103 if (held)
104 btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110 if (!p)
111 return;
112 btrfs_release_path(p);
113 kmem_cache_free(btrfs_path_cachep, p);
114 }
115
116 /*
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
119 *
120 * It is safe to call this on paths that no locks or extent buffers held.
121 */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124 int i;
125
126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 p->slots[i] = 0;
128 if (!p->nodes[i])
129 continue;
130 if (p->locks[i]) {
131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 p->locks[i] = 0;
133 }
134 free_extent_buffer(p->nodes[i]);
135 p->nodes[i] = NULL;
136 }
137 }
138
139 /*
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
143 * looping required.
144 *
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
148 */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151 struct extent_buffer *eb;
152
153 while (1) {
154 rcu_read_lock();
155 eb = rcu_dereference(root->node);
156
157 /*
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
162 */
163 if (atomic_inc_not_zero(&eb->refs)) {
164 rcu_read_unlock();
165 break;
166 }
167 rcu_read_unlock();
168 synchronize_rcu();
169 }
170 return eb;
171 }
172
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
176 */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179 struct extent_buffer *eb;
180
181 while (1) {
182 eb = btrfs_root_node(root);
183 btrfs_tree_lock(eb);
184 if (eb == root->node)
185 break;
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
188 }
189 return eb;
190 }
191
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
195 */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198 struct extent_buffer *eb;
199
200 while (1) {
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
204 break;
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
207 }
208 return eb;
209 }
210
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
214 */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 return;
220
221 spin_lock(&root->fs_info->trans_lock);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
227 else
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
230 }
231 spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
238 */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 struct extent_buffer *cow;
245 int ret = 0;
246 int level;
247 struct btrfs_disk_key disk_key;
248
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
262 if (IS_ERR(cow))
263 return PTR_ERR(cow);
264
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
275
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 BTRFS_FSID_SIZE);
278
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1);
282 else
283 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285 if (ret)
286 return ret;
287
288 btrfs_mark_buffer_dirty(cow);
289 *cow_ret = cow;
290 return 0;
291 }
292
293 enum mod_log_op {
294 MOD_LOG_KEY_REPLACE,
295 MOD_LOG_KEY_ADD,
296 MOD_LOG_KEY_REMOVE,
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 MOD_LOG_MOVE_KEYS,
300 MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304 int dst_slot;
305 int nr_items;
306 };
307
308 struct tree_mod_root {
309 u64 logical;
310 u8 level;
311 };
312
313 struct tree_mod_elem {
314 struct rb_node node;
315 u64 logical;
316 u64 seq;
317 enum mod_log_op op;
318
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 int slot;
321
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 u64 generation;
324
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
327 u64 blockptr;
328
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
331
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357 * Pull a new tree mod seq number for our operation.
358 */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363
364 /*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
374 {
375 tree_mod_log_write_lock(fs_info);
376 spin_lock(&fs_info->tree_mod_seq_lock);
377 if (!elem->seq) {
378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 }
381 spin_unlock(&fs_info->tree_mod_seq_lock);
382 tree_mod_log_write_unlock(fs_info);
383
384 return elem->seq;
385 }
386
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
389 {
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
397
398 if (!seq_putting)
399 return;
400
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
403 elem->seq = 0;
404
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 if (cur_elem->seq < min_seq) {
407 if (seq_putting > cur_elem->seq) {
408 /*
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
411 */
412 spin_unlock(&fs_info->tree_mod_seq_lock);
413 return;
414 }
415 min_seq = cur_elem->seq;
416 }
417 }
418 spin_unlock(&fs_info->tree_mod_seq_lock);
419
420 /*
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
423 */
424 tree_mod_log_write_lock(fs_info);
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
429 if (tm->seq > min_seq)
430 continue;
431 rb_erase(node, tm_root);
432 kfree(tm);
433 }
434 tree_mod_log_write_unlock(fs_info);
435 }
436
437 /*
438 * key order of the log:
439 * node/leaf start address -> sequence
440 *
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
444 *
445 * Note: must be called with write lock (tree_mod_log_write_lock).
446 */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm);
456
457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
461 while (*new) {
462 cur = container_of(*new, struct tree_mod_elem, node);
463 parent = *new;
464 if (cur->logical < tm->logical)
465 new = &((*new)->rb_left);
466 else if (cur->logical > tm->logical)
467 new = &((*new)->rb_right);
468 else if (cur->seq < tm->seq)
469 new = &((*new)->rb_left);
470 else if (cur->seq > tm->seq)
471 new = &((*new)->rb_right);
472 else
473 return -EEXIST;
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479 }
480
481 /*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
498 return 1;
499 }
500
501 return 0;
502 }
503
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
507 {
508 smp_mb();
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
510 return 0;
511 if (eb && btrfs_header_level(eb) == 0)
512 return 0;
513
514 return 1;
515 }
516
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
520 {
521 struct tree_mod_elem *tm;
522
523 tm = kzalloc(sizeof(*tm), flags);
524 if (!tm)
525 return NULL;
526
527 tm->logical = eb->start;
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 }
532 tm->op = op;
533 tm->slot = slot;
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
535 RB_CLEAR_NODE(&tm->node);
536
537 return tm;
538 }
539
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
544 {
545 struct tree_mod_elem *tm;
546 int ret;
547
548 if (!tree_mod_need_log(fs_info, eb))
549 return 0;
550
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 if (!tm)
553 return -ENOMEM;
554
555 if (tree_mod_dont_log(fs_info, eb)) {
556 kfree(tm);
557 return 0;
558 }
559
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
562 if (ret)
563 kfree(tm);
564
565 return ret;
566 }
567
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
572 {
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
575 int ret = 0;
576 int i;
577 int locked = 0;
578
579 if (!tree_mod_need_log(fs_info, eb))
580 return 0;
581
582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 if (!tm_list)
584 return -ENOMEM;
585
586 tm = kzalloc(sizeof(*tm), flags);
587 if (!tm) {
588 ret = -ENOMEM;
589 goto free_tms;
590 }
591
592 tm->logical = eb->start;
593 tm->slot = src_slot;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
597
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 if (!tm_list[i]) {
602 ret = -ENOMEM;
603 goto free_tms;
604 }
605 }
606
607 if (tree_mod_dont_log(fs_info, eb))
608 goto free_tms;
609 locked = 1;
610
611 /*
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
615 */
616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 if (ret)
619 goto free_tms;
620 }
621
622 ret = __tree_mod_log_insert(fs_info, tm);
623 if (ret)
624 goto free_tms;
625 tree_mod_log_write_unlock(fs_info);
626 kfree(tm_list);
627
628 return 0;
629 free_tms:
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 kfree(tm_list[i]);
634 }
635 if (locked)
636 tree_mod_log_write_unlock(fs_info);
637 kfree(tm_list);
638 kfree(tm);
639
640 return ret;
641 }
642
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
646 int nritems)
647 {
648 int i, j;
649 int ret;
650
651 for (i = nritems - 1; i >= 0; i--) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 if (ret) {
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
657 return ret;
658 }
659 }
660
661 return 0;
662 }
663
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
667 struct extent_buffer *new_root, gfp_t flags,
668 int log_removal)
669 {
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
672 int nritems = 0;
673 int ret = 0;
674 int i;
675
676 if (!tree_mod_need_log(fs_info, NULL))
677 return 0;
678
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 flags);
683 if (!tm_list) {
684 ret = -ENOMEM;
685 goto free_tms;
686 }
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 if (!tm_list[i]) {
691 ret = -ENOMEM;
692 goto free_tms;
693 }
694 }
695 }
696
697 tm = kzalloc(sizeof(*tm), flags);
698 if (!tm) {
699 ret = -ENOMEM;
700 goto free_tms;
701 }
702
703 tm->logical = new_root->start;
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
708
709 if (tree_mod_dont_log(fs_info, NULL))
710 goto free_tms;
711
712 if (tm_list)
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 if (!ret)
715 ret = __tree_mod_log_insert(fs_info, tm);
716
717 tree_mod_log_write_unlock(fs_info);
718 if (ret)
719 goto free_tms;
720 kfree(tm_list);
721
722 return ret;
723
724 free_tms:
725 if (tm_list) {
726 for (i = 0; i < nritems; i++)
727 kfree(tm_list[i]);
728 kfree(tm_list);
729 }
730 kfree(tm);
731
732 return ret;
733 }
734
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 int smallest)
738 {
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->logical < start) {
750 node = node->rb_left;
751 } else if (cur->logical > start) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775 }
776
777 /*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785 {
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804 {
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874 {
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884 {
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
944 {
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
949 }
950
951 /*
952 * check if the tree block can be shared by multiple trees
953 */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956 {
957 /*
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
982 {
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079 }
1080
1081 /*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099 {
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1106
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
1110 btrfs_assert_tree_locked(buf);
1111
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1116
1117 level = btrfs_header_level(buf);
1118
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1137
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1153
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, ret);
1157 return ret;
1158 }
1159
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, ret);
1164 return ret;
1165 }
1166 }
1167
1168 if (buf == root->node) {
1169 WARN_ON(parent && parent != buf);
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1173 else
1174 parent_start = 0;
1175
1176 extent_buffer_get(cow);
1177 tree_mod_log_set_root_pointer(root, cow, 1);
1178 rcu_assign_pointer(root->node, cow);
1179
1180 btrfs_free_tree_block(trans, root, buf, parent_start,
1181 last_ref);
1182 free_extent_buffer(buf);
1183 add_root_to_dirty_list(root);
1184 } else {
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1187 else
1188 parent_start = 0;
1189
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 btrfs_set_node_blockptr(parent, parent_slot,
1194 cow->start);
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1196 trans->transid);
1197 btrfs_mark_buffer_dirty(parent);
1198 if (last_ref) {
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 if (ret) {
1201 btrfs_abort_transaction(trans, ret);
1202 return ret;
1203 }
1204 }
1205 btrfs_free_tree_block(trans, root, buf, parent_start,
1206 last_ref);
1207 }
1208 if (unlock_orig)
1209 btrfs_tree_unlock(buf);
1210 free_extent_buffer_stale(buf);
1211 btrfs_mark_buffer_dirty(cow);
1212 *cow_ret = cow;
1213 return 0;
1214 }
1215
1216 /*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
1226 u64 root_logical = eb_root->start;
1227 int looped = 0;
1228
1229 if (!time_seq)
1230 return NULL;
1231
1232 /*
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1237 */
1238 while (1) {
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 time_seq);
1241 if (!looped && !tm)
1242 return NULL;
1243 /*
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1246 * level 0.
1247 */
1248 if (!tm)
1249 break;
1250
1251 /*
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 */
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 break;
1258
1259 found = tm;
1260 root_logical = tm->old_root.logical;
1261 looped = 1;
1262 }
1263
1264 /* if there's no old root to return, return what we found instead */
1265 if (!found)
1266 found = tm;
1267
1268 return found;
1269 }
1270
1271 /*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1274 * time_seq).
1275 */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280 u32 n;
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) {
1290 /*
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1294 */
1295 switch (tm->op) {
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1298 /* Fallthrough */
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1304 tm->generation);
1305 n++;
1306 break;
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1312 tm->generation);
1313 break;
1314 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */
1316 n--;
1317 break;
1318 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size);
1323 break;
1324 case MOD_LOG_ROOT_REPLACE:
1325 /*
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1333 */
1334 break;
1335 }
1336 next = rb_next(&tm->node);
1337 if (!next)
1338 break;
1339 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->logical != first_tm->logical)
1341 break;
1342 }
1343 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
1357 {
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1360
1361 if (!time_seq)
1362 return eb;
1363
1364 if (btrfs_header_level(eb) == 0)
1365 return eb;
1366
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 if (!tm)
1369 return eb;
1370
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377 eb->len);
1378 if (!eb_rewin) {
1379 btrfs_tree_read_unlock_blocking(eb);
1380 free_extent_buffer(eb);
1381 return NULL;
1382 }
1383 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388 } else {
1389 eb_rewin = btrfs_clone_extent_buffer(eb);
1390 if (!eb_rewin) {
1391 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb);
1393 return NULL;
1394 }
1395 }
1396
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb);
1399 free_extent_buffer(eb);
1400
1401 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin);
1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407 return eb_rewin;
1408 }
1409
1410 /*
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1416 */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420 struct tree_mod_elem *tm;
1421 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root;
1423 struct extent_buffer *old;
1424 struct tree_mod_root *old_root = NULL;
1425 u64 old_generation = 0;
1426 u64 logical;
1427
1428 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430 if (!tm)
1431 return eb_root;
1432
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root;
1435 old_generation = tm->generation;
1436 logical = old_root->logical;
1437 } else {
1438 logical = eb_root->start;
1439 }
1440
1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root);
1445 old = read_tree_block(root, logical, 0);
1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447 if (!IS_ERR(old))
1448 free_extent_buffer(old);
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
1451 } else {
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
1454 }
1455 } else if (old_root) {
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459 root->nodesize);
1460 } else {
1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 eb = btrfs_clone_extent_buffer(eb_root);
1463 btrfs_tree_read_unlock_blocking(eb_root);
1464 free_extent_buffer(eb_root);
1465 }
1466
1467 if (!eb)
1468 return NULL;
1469 extent_buffer_get(eb);
1470 btrfs_tree_read_lock(eb);
1471 if (old_root) {
1472 btrfs_set_header_bytenr(eb, eb->start);
1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 btrfs_set_header_level(eb, old_root->level);
1476 btrfs_set_header_generation(eb, old_generation);
1477 }
1478 if (tm)
1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 else
1481 WARN_ON(btrfs_header_level(eb) != 0);
1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484 return eb;
1485 }
1486
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489 struct tree_mod_elem *tm;
1490 int level;
1491 struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 level = tm->old_root.level;
1496 } else {
1497 level = btrfs_header_level(eb_root);
1498 }
1499 free_extent_buffer(eb_root);
1500
1501 return level;
1502 }
1503
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *root,
1506 struct extent_buffer *buf)
1507 {
1508 if (btrfs_is_testing(root->fs_info))
1509 return 0;
1510
1511 /* ensure we can see the force_cow */
1512 smp_rmb();
1513
1514 /*
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1519 *
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1524 */
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 return 0;
1531 return 1;
1532 }
1533
1534 /*
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1538 */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
1542 struct extent_buffer **cow_ret)
1543 {
1544 u64 search_start;
1545 int ret;
1546
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 trans->transid,
1550 root->fs_info->running_transaction->transid);
1551
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 trans->transid, root->fs_info->generation);
1555
1556 if (!should_cow_block(trans, root, buf)) {
1557 trans->dirty = true;
1558 *cow_ret = buf;
1559 return 0;
1560 }
1561
1562 search_start = buf->start & ~((u64)SZ_1G - 1);
1563
1564 if (parent)
1565 btrfs_set_lock_blocking(parent);
1566 btrfs_set_lock_blocking(buf);
1567
1568 ret = __btrfs_cow_block(trans, root, buf, parent,
1569 parent_slot, cow_ret, search_start, 0);
1570
1571 trace_btrfs_cow_block(root, buf, *cow_ret);
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1579 */
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581 {
1582 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583 return 1;
1584 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585 return 1;
1586 return 0;
1587 }
1588
1589 /*
1590 * compare two keys in a memcmp fashion
1591 */
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593 {
1594 struct btrfs_key k1;
1595
1596 btrfs_disk_key_to_cpu(&k1, disk);
1597
1598 return btrfs_comp_cpu_keys(&k1, k2);
1599 }
1600
1601 /*
1602 * same as comp_keys only with two btrfs_key's
1603 */
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605 {
1606 if (k1->objectid > k2->objectid)
1607 return 1;
1608 if (k1->objectid < k2->objectid)
1609 return -1;
1610 if (k1->type > k2->type)
1611 return 1;
1612 if (k1->type < k2->type)
1613 return -1;
1614 if (k1->offset > k2->offset)
1615 return 1;
1616 if (k1->offset < k2->offset)
1617 return -1;
1618 return 0;
1619 }
1620
1621 /*
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1625 */
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627 struct btrfs_root *root, struct extent_buffer *parent,
1628 int start_slot, u64 *last_ret,
1629 struct btrfs_key *progress)
1630 {
1631 struct extent_buffer *cur;
1632 u64 blocknr;
1633 u64 gen;
1634 u64 search_start = *last_ret;
1635 u64 last_block = 0;
1636 u64 other;
1637 u32 parent_nritems;
1638 int end_slot;
1639 int i;
1640 int err = 0;
1641 int parent_level;
1642 int uptodate;
1643 u32 blocksize;
1644 int progress_passed = 0;
1645 struct btrfs_disk_key disk_key;
1646
1647 parent_level = btrfs_header_level(parent);
1648
1649 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 WARN_ON(trans->transid != root->fs_info->generation);
1651
1652 parent_nritems = btrfs_header_nritems(parent);
1653 blocksize = root->nodesize;
1654 end_slot = parent_nritems - 1;
1655
1656 if (parent_nritems <= 1)
1657 return 0;
1658
1659 btrfs_set_lock_blocking(parent);
1660
1661 for (i = start_slot; i <= end_slot; i++) {
1662 int close = 1;
1663
1664 btrfs_node_key(parent, &disk_key, i);
1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666 continue;
1667
1668 progress_passed = 1;
1669 blocknr = btrfs_node_blockptr(parent, i);
1670 gen = btrfs_node_ptr_generation(parent, i);
1671 if (last_block == 0)
1672 last_block = blocknr;
1673
1674 if (i > 0) {
1675 other = btrfs_node_blockptr(parent, i - 1);
1676 close = close_blocks(blocknr, other, blocksize);
1677 }
1678 if (!close && i < end_slot) {
1679 other = btrfs_node_blockptr(parent, i + 1);
1680 close = close_blocks(blocknr, other, blocksize);
1681 }
1682 if (close) {
1683 last_block = blocknr;
1684 continue;
1685 }
1686
1687 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688 if (cur)
1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690 else
1691 uptodate = 0;
1692 if (!cur || !uptodate) {
1693 if (!cur) {
1694 cur = read_tree_block(root, blocknr, gen);
1695 if (IS_ERR(cur)) {
1696 return PTR_ERR(cur);
1697 } else if (!extent_buffer_uptodate(cur)) {
1698 free_extent_buffer(cur);
1699 return -EIO;
1700 }
1701 } else if (!uptodate) {
1702 err = btrfs_read_buffer(cur, gen);
1703 if (err) {
1704 free_extent_buffer(cur);
1705 return err;
1706 }
1707 }
1708 }
1709 if (search_start == 0)
1710 search_start = last_block;
1711
1712 btrfs_tree_lock(cur);
1713 btrfs_set_lock_blocking(cur);
1714 err = __btrfs_cow_block(trans, root, cur, parent, i,
1715 &cur, search_start,
1716 min(16 * blocksize,
1717 (end_slot - i) * blocksize));
1718 if (err) {
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
1721 break;
1722 }
1723 search_start = cur->start;
1724 last_block = cur->start;
1725 *last_ret = search_start;
1726 btrfs_tree_unlock(cur);
1727 free_extent_buffer(cur);
1728 }
1729 return err;
1730 }
1731
1732 /*
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1736 */
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738 struct extent_buffer *leaf)
1739 {
1740 u32 nr = btrfs_header_nritems(leaf);
1741 if (nr == 0)
1742 return BTRFS_LEAF_DATA_SIZE(root);
1743 return btrfs_item_offset_nr(leaf, nr - 1);
1744 }
1745
1746
1747 /*
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1750 *
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1753 * the array.
1754 *
1755 * slot may point to max if the key is bigger than all of the keys
1756 */
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1758 unsigned long p,
1759 int item_size, struct btrfs_key *key,
1760 int max, int *slot)
1761 {
1762 int low = 0;
1763 int high = max;
1764 int mid;
1765 int ret;
1766 struct btrfs_disk_key *tmp = NULL;
1767 struct btrfs_disk_key unaligned;
1768 unsigned long offset;
1769 char *kaddr = NULL;
1770 unsigned long map_start = 0;
1771 unsigned long map_len = 0;
1772 int err;
1773
1774 if (low > high) {
1775 btrfs_err(eb->fs_info,
1776 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1777 __func__, low, high, eb->start,
1778 btrfs_header_owner(eb), btrfs_header_level(eb));
1779 return -EINVAL;
1780 }
1781
1782 while (low < high) {
1783 mid = (low + high) / 2;
1784 offset = p + mid * item_size;
1785
1786 if (!kaddr || offset < map_start ||
1787 (offset + sizeof(struct btrfs_disk_key)) >
1788 map_start + map_len) {
1789
1790 err = map_private_extent_buffer(eb, offset,
1791 sizeof(struct btrfs_disk_key),
1792 &kaddr, &map_start, &map_len);
1793
1794 if (!err) {
1795 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796 map_start);
1797 } else if (err == 1) {
1798 read_extent_buffer(eb, &unaligned,
1799 offset, sizeof(unaligned));
1800 tmp = &unaligned;
1801 } else {
1802 return err;
1803 }
1804
1805 } else {
1806 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1807 map_start);
1808 }
1809 ret = comp_keys(tmp, key);
1810
1811 if (ret < 0)
1812 low = mid + 1;
1813 else if (ret > 0)
1814 high = mid;
1815 else {
1816 *slot = mid;
1817 return 0;
1818 }
1819 }
1820 *slot = low;
1821 return 1;
1822 }
1823
1824 /*
1825 * simple bin_search frontend that does the right thing for
1826 * leaves vs nodes
1827 */
1828 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1829 int level, int *slot)
1830 {
1831 if (level == 0)
1832 return generic_bin_search(eb,
1833 offsetof(struct btrfs_leaf, items),
1834 sizeof(struct btrfs_item),
1835 key, btrfs_header_nritems(eb),
1836 slot);
1837 else
1838 return generic_bin_search(eb,
1839 offsetof(struct btrfs_node, ptrs),
1840 sizeof(struct btrfs_key_ptr),
1841 key, btrfs_header_nritems(eb),
1842 slot);
1843 }
1844
1845 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1846 int level, int *slot)
1847 {
1848 return bin_search(eb, key, level, slot);
1849 }
1850
1851 static void root_add_used(struct btrfs_root *root, u32 size)
1852 {
1853 spin_lock(&root->accounting_lock);
1854 btrfs_set_root_used(&root->root_item,
1855 btrfs_root_used(&root->root_item) + size);
1856 spin_unlock(&root->accounting_lock);
1857 }
1858
1859 static void root_sub_used(struct btrfs_root *root, u32 size)
1860 {
1861 spin_lock(&root->accounting_lock);
1862 btrfs_set_root_used(&root->root_item,
1863 btrfs_root_used(&root->root_item) - size);
1864 spin_unlock(&root->accounting_lock);
1865 }
1866
1867 /* given a node and slot number, this reads the blocks it points to. The
1868 * extent buffer is returned with a reference taken (but unlocked).
1869 */
1870 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1871 struct extent_buffer *parent, int slot)
1872 {
1873 int level = btrfs_header_level(parent);
1874 struct extent_buffer *eb;
1875
1876 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1877 return ERR_PTR(-ENOENT);
1878
1879 BUG_ON(level == 0);
1880
1881 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1882 btrfs_node_ptr_generation(parent, slot));
1883 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1884 free_extent_buffer(eb);
1885 eb = ERR_PTR(-EIO);
1886 }
1887
1888 return eb;
1889 }
1890
1891 /*
1892 * node level balancing, used to make sure nodes are in proper order for
1893 * item deletion. We balance from the top down, so we have to make sure
1894 * that a deletion won't leave an node completely empty later on.
1895 */
1896 static noinline int balance_level(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path, int level)
1899 {
1900 struct extent_buffer *right = NULL;
1901 struct extent_buffer *mid;
1902 struct extent_buffer *left = NULL;
1903 struct extent_buffer *parent = NULL;
1904 int ret = 0;
1905 int wret;
1906 int pslot;
1907 int orig_slot = path->slots[level];
1908 u64 orig_ptr;
1909
1910 if (level == 0)
1911 return 0;
1912
1913 mid = path->nodes[level];
1914
1915 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1916 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1917 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1918
1919 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1920
1921 if (level < BTRFS_MAX_LEVEL - 1) {
1922 parent = path->nodes[level + 1];
1923 pslot = path->slots[level + 1];
1924 }
1925
1926 /*
1927 * deal with the case where there is only one pointer in the root
1928 * by promoting the node below to a root
1929 */
1930 if (!parent) {
1931 struct extent_buffer *child;
1932
1933 if (btrfs_header_nritems(mid) != 1)
1934 return 0;
1935
1936 /* promote the child to a root */
1937 child = read_node_slot(root, mid, 0);
1938 if (IS_ERR(child)) {
1939 ret = PTR_ERR(child);
1940 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1941 goto enospc;
1942 }
1943
1944 btrfs_tree_lock(child);
1945 btrfs_set_lock_blocking(child);
1946 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1947 if (ret) {
1948 btrfs_tree_unlock(child);
1949 free_extent_buffer(child);
1950 goto enospc;
1951 }
1952
1953 tree_mod_log_set_root_pointer(root, child, 1);
1954 rcu_assign_pointer(root->node, child);
1955
1956 add_root_to_dirty_list(root);
1957 btrfs_tree_unlock(child);
1958
1959 path->locks[level] = 0;
1960 path->nodes[level] = NULL;
1961 clean_tree_block(trans, root->fs_info, mid);
1962 btrfs_tree_unlock(mid);
1963 /* once for the path */
1964 free_extent_buffer(mid);
1965
1966 root_sub_used(root, mid->len);
1967 btrfs_free_tree_block(trans, root, mid, 0, 1);
1968 /* once for the root ptr */
1969 free_extent_buffer_stale(mid);
1970 return 0;
1971 }
1972 if (btrfs_header_nritems(mid) >
1973 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1974 return 0;
1975
1976 left = read_node_slot(root, parent, pslot - 1);
1977 if (IS_ERR(left))
1978 left = NULL;
1979
1980 if (left) {
1981 btrfs_tree_lock(left);
1982 btrfs_set_lock_blocking(left);
1983 wret = btrfs_cow_block(trans, root, left,
1984 parent, pslot - 1, &left);
1985 if (wret) {
1986 ret = wret;
1987 goto enospc;
1988 }
1989 }
1990
1991 right = read_node_slot(root, parent, pslot + 1);
1992 if (IS_ERR(right))
1993 right = NULL;
1994
1995 if (right) {
1996 btrfs_tree_lock(right);
1997 btrfs_set_lock_blocking(right);
1998 wret = btrfs_cow_block(trans, root, right,
1999 parent, pslot + 1, &right);
2000 if (wret) {
2001 ret = wret;
2002 goto enospc;
2003 }
2004 }
2005
2006 /* first, try to make some room in the middle buffer */
2007 if (left) {
2008 orig_slot += btrfs_header_nritems(left);
2009 wret = push_node_left(trans, root, left, mid, 1);
2010 if (wret < 0)
2011 ret = wret;
2012 }
2013
2014 /*
2015 * then try to empty the right most buffer into the middle
2016 */
2017 if (right) {
2018 wret = push_node_left(trans, root, mid, right, 1);
2019 if (wret < 0 && wret != -ENOSPC)
2020 ret = wret;
2021 if (btrfs_header_nritems(right) == 0) {
2022 clean_tree_block(trans, root->fs_info, right);
2023 btrfs_tree_unlock(right);
2024 del_ptr(root, path, level + 1, pslot + 1);
2025 root_sub_used(root, right->len);
2026 btrfs_free_tree_block(trans, root, right, 0, 1);
2027 free_extent_buffer_stale(right);
2028 right = NULL;
2029 } else {
2030 struct btrfs_disk_key right_key;
2031 btrfs_node_key(right, &right_key, 0);
2032 tree_mod_log_set_node_key(root->fs_info, parent,
2033 pslot + 1, 0);
2034 btrfs_set_node_key(parent, &right_key, pslot + 1);
2035 btrfs_mark_buffer_dirty(parent);
2036 }
2037 }
2038 if (btrfs_header_nritems(mid) == 1) {
2039 /*
2040 * we're not allowed to leave a node with one item in the
2041 * tree during a delete. A deletion from lower in the tree
2042 * could try to delete the only pointer in this node.
2043 * So, pull some keys from the left.
2044 * There has to be a left pointer at this point because
2045 * otherwise we would have pulled some pointers from the
2046 * right
2047 */
2048 if (!left) {
2049 ret = -EROFS;
2050 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2051 goto enospc;
2052 }
2053 wret = balance_node_right(trans, root, mid, left);
2054 if (wret < 0) {
2055 ret = wret;
2056 goto enospc;
2057 }
2058 if (wret == 1) {
2059 wret = push_node_left(trans, root, left, mid, 1);
2060 if (wret < 0)
2061 ret = wret;
2062 }
2063 BUG_ON(wret == 1);
2064 }
2065 if (btrfs_header_nritems(mid) == 0) {
2066 clean_tree_block(trans, root->fs_info, mid);
2067 btrfs_tree_unlock(mid);
2068 del_ptr(root, path, level + 1, pslot);
2069 root_sub_used(root, mid->len);
2070 btrfs_free_tree_block(trans, root, mid, 0, 1);
2071 free_extent_buffer_stale(mid);
2072 mid = NULL;
2073 } else {
2074 /* update the parent key to reflect our changes */
2075 struct btrfs_disk_key mid_key;
2076 btrfs_node_key(mid, &mid_key, 0);
2077 tree_mod_log_set_node_key(root->fs_info, parent,
2078 pslot, 0);
2079 btrfs_set_node_key(parent, &mid_key, pslot);
2080 btrfs_mark_buffer_dirty(parent);
2081 }
2082
2083 /* update the path */
2084 if (left) {
2085 if (btrfs_header_nritems(left) > orig_slot) {
2086 extent_buffer_get(left);
2087 /* left was locked after cow */
2088 path->nodes[level] = left;
2089 path->slots[level + 1] -= 1;
2090 path->slots[level] = orig_slot;
2091 if (mid) {
2092 btrfs_tree_unlock(mid);
2093 free_extent_buffer(mid);
2094 }
2095 } else {
2096 orig_slot -= btrfs_header_nritems(left);
2097 path->slots[level] = orig_slot;
2098 }
2099 }
2100 /* double check we haven't messed things up */
2101 if (orig_ptr !=
2102 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2103 BUG();
2104 enospc:
2105 if (right) {
2106 btrfs_tree_unlock(right);
2107 free_extent_buffer(right);
2108 }
2109 if (left) {
2110 if (path->nodes[level] != left)
2111 btrfs_tree_unlock(left);
2112 free_extent_buffer(left);
2113 }
2114 return ret;
2115 }
2116
2117 /* Node balancing for insertion. Here we only split or push nodes around
2118 * when they are completely full. This is also done top down, so we
2119 * have to be pessimistic.
2120 */
2121 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2122 struct btrfs_root *root,
2123 struct btrfs_path *path, int level)
2124 {
2125 struct extent_buffer *right = NULL;
2126 struct extent_buffer *mid;
2127 struct extent_buffer *left = NULL;
2128 struct extent_buffer *parent = NULL;
2129 int ret = 0;
2130 int wret;
2131 int pslot;
2132 int orig_slot = path->slots[level];
2133
2134 if (level == 0)
2135 return 1;
2136
2137 mid = path->nodes[level];
2138 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2139
2140 if (level < BTRFS_MAX_LEVEL - 1) {
2141 parent = path->nodes[level + 1];
2142 pslot = path->slots[level + 1];
2143 }
2144
2145 if (!parent)
2146 return 1;
2147
2148 left = read_node_slot(root, parent, pslot - 1);
2149 if (IS_ERR(left))
2150 left = NULL;
2151
2152 /* first, try to make some room in the middle buffer */
2153 if (left) {
2154 u32 left_nr;
2155
2156 btrfs_tree_lock(left);
2157 btrfs_set_lock_blocking(left);
2158
2159 left_nr = btrfs_header_nritems(left);
2160 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2161 wret = 1;
2162 } else {
2163 ret = btrfs_cow_block(trans, root, left, parent,
2164 pslot - 1, &left);
2165 if (ret)
2166 wret = 1;
2167 else {
2168 wret = push_node_left(trans, root,
2169 left, mid, 0);
2170 }
2171 }
2172 if (wret < 0)
2173 ret = wret;
2174 if (wret == 0) {
2175 struct btrfs_disk_key disk_key;
2176 orig_slot += left_nr;
2177 btrfs_node_key(mid, &disk_key, 0);
2178 tree_mod_log_set_node_key(root->fs_info, parent,
2179 pslot, 0);
2180 btrfs_set_node_key(parent, &disk_key, pslot);
2181 btrfs_mark_buffer_dirty(parent);
2182 if (btrfs_header_nritems(left) > orig_slot) {
2183 path->nodes[level] = left;
2184 path->slots[level + 1] -= 1;
2185 path->slots[level] = orig_slot;
2186 btrfs_tree_unlock(mid);
2187 free_extent_buffer(mid);
2188 } else {
2189 orig_slot -=
2190 btrfs_header_nritems(left);
2191 path->slots[level] = orig_slot;
2192 btrfs_tree_unlock(left);
2193 free_extent_buffer(left);
2194 }
2195 return 0;
2196 }
2197 btrfs_tree_unlock(left);
2198 free_extent_buffer(left);
2199 }
2200 right = read_node_slot(root, parent, pslot + 1);
2201 if (IS_ERR(right))
2202 right = NULL;
2203
2204 /*
2205 * then try to empty the right most buffer into the middle
2206 */
2207 if (right) {
2208 u32 right_nr;
2209
2210 btrfs_tree_lock(right);
2211 btrfs_set_lock_blocking(right);
2212
2213 right_nr = btrfs_header_nritems(right);
2214 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2215 wret = 1;
2216 } else {
2217 ret = btrfs_cow_block(trans, root, right,
2218 parent, pslot + 1,
2219 &right);
2220 if (ret)
2221 wret = 1;
2222 else {
2223 wret = balance_node_right(trans, root,
2224 right, mid);
2225 }
2226 }
2227 if (wret < 0)
2228 ret = wret;
2229 if (wret == 0) {
2230 struct btrfs_disk_key disk_key;
2231
2232 btrfs_node_key(right, &disk_key, 0);
2233 tree_mod_log_set_node_key(root->fs_info, parent,
2234 pslot + 1, 0);
2235 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2236 btrfs_mark_buffer_dirty(parent);
2237
2238 if (btrfs_header_nritems(mid) <= orig_slot) {
2239 path->nodes[level] = right;
2240 path->slots[level + 1] += 1;
2241 path->slots[level] = orig_slot -
2242 btrfs_header_nritems(mid);
2243 btrfs_tree_unlock(mid);
2244 free_extent_buffer(mid);
2245 } else {
2246 btrfs_tree_unlock(right);
2247 free_extent_buffer(right);
2248 }
2249 return 0;
2250 }
2251 btrfs_tree_unlock(right);
2252 free_extent_buffer(right);
2253 }
2254 return 1;
2255 }
2256
2257 /*
2258 * readahead one full node of leaves, finding things that are close
2259 * to the block in 'slot', and triggering ra on them.
2260 */
2261 static void reada_for_search(struct btrfs_root *root,
2262 struct btrfs_path *path,
2263 int level, int slot, u64 objectid)
2264 {
2265 struct extent_buffer *node;
2266 struct btrfs_disk_key disk_key;
2267 u32 nritems;
2268 u64 search;
2269 u64 target;
2270 u64 nread = 0;
2271 struct extent_buffer *eb;
2272 u32 nr;
2273 u32 blocksize;
2274 u32 nscan = 0;
2275
2276 if (level != 1)
2277 return;
2278
2279 if (!path->nodes[level])
2280 return;
2281
2282 node = path->nodes[level];
2283
2284 search = btrfs_node_blockptr(node, slot);
2285 blocksize = root->nodesize;
2286 eb = btrfs_find_tree_block(root->fs_info, search);
2287 if (eb) {
2288 free_extent_buffer(eb);
2289 return;
2290 }
2291
2292 target = search;
2293
2294 nritems = btrfs_header_nritems(node);
2295 nr = slot;
2296
2297 while (1) {
2298 if (path->reada == READA_BACK) {
2299 if (nr == 0)
2300 break;
2301 nr--;
2302 } else if (path->reada == READA_FORWARD) {
2303 nr++;
2304 if (nr >= nritems)
2305 break;
2306 }
2307 if (path->reada == READA_BACK && objectid) {
2308 btrfs_node_key(node, &disk_key, nr);
2309 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2310 break;
2311 }
2312 search = btrfs_node_blockptr(node, nr);
2313 if ((search <= target && target - search <= 65536) ||
2314 (search > target && search - target <= 65536)) {
2315 readahead_tree_block(root, search);
2316 nread += blocksize;
2317 }
2318 nscan++;
2319 if ((nread > 65536 || nscan > 32))
2320 break;
2321 }
2322 }
2323
2324 static noinline void reada_for_balance(struct btrfs_root *root,
2325 struct btrfs_path *path, int level)
2326 {
2327 int slot;
2328 int nritems;
2329 struct extent_buffer *parent;
2330 struct extent_buffer *eb;
2331 u64 gen;
2332 u64 block1 = 0;
2333 u64 block2 = 0;
2334
2335 parent = path->nodes[level + 1];
2336 if (!parent)
2337 return;
2338
2339 nritems = btrfs_header_nritems(parent);
2340 slot = path->slots[level + 1];
2341
2342 if (slot > 0) {
2343 block1 = btrfs_node_blockptr(parent, slot - 1);
2344 gen = btrfs_node_ptr_generation(parent, slot - 1);
2345 eb = btrfs_find_tree_block(root->fs_info, block1);
2346 /*
2347 * if we get -eagain from btrfs_buffer_uptodate, we
2348 * don't want to return eagain here. That will loop
2349 * forever
2350 */
2351 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2352 block1 = 0;
2353 free_extent_buffer(eb);
2354 }
2355 if (slot + 1 < nritems) {
2356 block2 = btrfs_node_blockptr(parent, slot + 1);
2357 gen = btrfs_node_ptr_generation(parent, slot + 1);
2358 eb = btrfs_find_tree_block(root->fs_info, block2);
2359 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2360 block2 = 0;
2361 free_extent_buffer(eb);
2362 }
2363
2364 if (block1)
2365 readahead_tree_block(root, block1);
2366 if (block2)
2367 readahead_tree_block(root, block2);
2368 }
2369
2370
2371 /*
2372 * when we walk down the tree, it is usually safe to unlock the higher layers
2373 * in the tree. The exceptions are when our path goes through slot 0, because
2374 * operations on the tree might require changing key pointers higher up in the
2375 * tree.
2376 *
2377 * callers might also have set path->keep_locks, which tells this code to keep
2378 * the lock if the path points to the last slot in the block. This is part of
2379 * walking through the tree, and selecting the next slot in the higher block.
2380 *
2381 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2382 * if lowest_unlock is 1, level 0 won't be unlocked
2383 */
2384 static noinline void unlock_up(struct btrfs_path *path, int level,
2385 int lowest_unlock, int min_write_lock_level,
2386 int *write_lock_level)
2387 {
2388 int i;
2389 int skip_level = level;
2390 int no_skips = 0;
2391 struct extent_buffer *t;
2392
2393 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2394 if (!path->nodes[i])
2395 break;
2396 if (!path->locks[i])
2397 break;
2398 if (!no_skips && path->slots[i] == 0) {
2399 skip_level = i + 1;
2400 continue;
2401 }
2402 if (!no_skips && path->keep_locks) {
2403 u32 nritems;
2404 t = path->nodes[i];
2405 nritems = btrfs_header_nritems(t);
2406 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2407 skip_level = i + 1;
2408 continue;
2409 }
2410 }
2411 if (skip_level < i && i >= lowest_unlock)
2412 no_skips = 1;
2413
2414 t = path->nodes[i];
2415 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2416 btrfs_tree_unlock_rw(t, path->locks[i]);
2417 path->locks[i] = 0;
2418 if (write_lock_level &&
2419 i > min_write_lock_level &&
2420 i <= *write_lock_level) {
2421 *write_lock_level = i - 1;
2422 }
2423 }
2424 }
2425 }
2426
2427 /*
2428 * This releases any locks held in the path starting at level and
2429 * going all the way up to the root.
2430 *
2431 * btrfs_search_slot will keep the lock held on higher nodes in a few
2432 * corner cases, such as COW of the block at slot zero in the node. This
2433 * ignores those rules, and it should only be called when there are no
2434 * more updates to be done higher up in the tree.
2435 */
2436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2437 {
2438 int i;
2439
2440 if (path->keep_locks)
2441 return;
2442
2443 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2444 if (!path->nodes[i])
2445 continue;
2446 if (!path->locks[i])
2447 continue;
2448 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2449 path->locks[i] = 0;
2450 }
2451 }
2452
2453 /*
2454 * helper function for btrfs_search_slot. The goal is to find a block
2455 * in cache without setting the path to blocking. If we find the block
2456 * we return zero and the path is unchanged.
2457 *
2458 * If we can't find the block, we set the path blocking and do some
2459 * reada. -EAGAIN is returned and the search must be repeated.
2460 */
2461 static int
2462 read_block_for_search(struct btrfs_trans_handle *trans,
2463 struct btrfs_root *root, struct btrfs_path *p,
2464 struct extent_buffer **eb_ret, int level, int slot,
2465 struct btrfs_key *key, u64 time_seq)
2466 {
2467 u64 blocknr;
2468 u64 gen;
2469 struct extent_buffer *b = *eb_ret;
2470 struct extent_buffer *tmp;
2471 int ret;
2472
2473 blocknr = btrfs_node_blockptr(b, slot);
2474 gen = btrfs_node_ptr_generation(b, slot);
2475
2476 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2477 if (tmp) {
2478 /* first we do an atomic uptodate check */
2479 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2480 *eb_ret = tmp;
2481 return 0;
2482 }
2483
2484 /* the pages were up to date, but we failed
2485 * the generation number check. Do a full
2486 * read for the generation number that is correct.
2487 * We must do this without dropping locks so
2488 * we can trust our generation number
2489 */
2490 btrfs_set_path_blocking(p);
2491
2492 /* now we're allowed to do a blocking uptodate check */
2493 ret = btrfs_read_buffer(tmp, gen);
2494 if (!ret) {
2495 *eb_ret = tmp;
2496 return 0;
2497 }
2498 free_extent_buffer(tmp);
2499 btrfs_release_path(p);
2500 return -EIO;
2501 }
2502
2503 /*
2504 * reduce lock contention at high levels
2505 * of the btree by dropping locks before
2506 * we read. Don't release the lock on the current
2507 * level because we need to walk this node to figure
2508 * out which blocks to read.
2509 */
2510 btrfs_unlock_up_safe(p, level + 1);
2511 btrfs_set_path_blocking(p);
2512
2513 free_extent_buffer(tmp);
2514 if (p->reada != READA_NONE)
2515 reada_for_search(root, p, level, slot, key->objectid);
2516
2517 btrfs_release_path(p);
2518
2519 ret = -EAGAIN;
2520 tmp = read_tree_block(root, blocknr, 0);
2521 if (!IS_ERR(tmp)) {
2522 /*
2523 * If the read above didn't mark this buffer up to date,
2524 * it will never end up being up to date. Set ret to EIO now
2525 * and give up so that our caller doesn't loop forever
2526 * on our EAGAINs.
2527 */
2528 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2529 ret = -EIO;
2530 free_extent_buffer(tmp);
2531 } else {
2532 ret = PTR_ERR(tmp);
2533 }
2534 return ret;
2535 }
2536
2537 /*
2538 * helper function for btrfs_search_slot. This does all of the checks
2539 * for node-level blocks and does any balancing required based on
2540 * the ins_len.
2541 *
2542 * If no extra work was required, zero is returned. If we had to
2543 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2544 * start over
2545 */
2546 static int
2547 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2548 struct btrfs_root *root, struct btrfs_path *p,
2549 struct extent_buffer *b, int level, int ins_len,
2550 int *write_lock_level)
2551 {
2552 int ret;
2553 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2554 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2555 int sret;
2556
2557 if (*write_lock_level < level + 1) {
2558 *write_lock_level = level + 1;
2559 btrfs_release_path(p);
2560 goto again;
2561 }
2562
2563 btrfs_set_path_blocking(p);
2564 reada_for_balance(root, p, level);
2565 sret = split_node(trans, root, p, level);
2566 btrfs_clear_path_blocking(p, NULL, 0);
2567
2568 BUG_ON(sret > 0);
2569 if (sret) {
2570 ret = sret;
2571 goto done;
2572 }
2573 b = p->nodes[level];
2574 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2575 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2576 int sret;
2577
2578 if (*write_lock_level < level + 1) {
2579 *write_lock_level = level + 1;
2580 btrfs_release_path(p);
2581 goto again;
2582 }
2583
2584 btrfs_set_path_blocking(p);
2585 reada_for_balance(root, p, level);
2586 sret = balance_level(trans, root, p, level);
2587 btrfs_clear_path_blocking(p, NULL, 0);
2588
2589 if (sret) {
2590 ret = sret;
2591 goto done;
2592 }
2593 b = p->nodes[level];
2594 if (!b) {
2595 btrfs_release_path(p);
2596 goto again;
2597 }
2598 BUG_ON(btrfs_header_nritems(b) == 1);
2599 }
2600 return 0;
2601
2602 again:
2603 ret = -EAGAIN;
2604 done:
2605 return ret;
2606 }
2607
2608 static void key_search_validate(struct extent_buffer *b,
2609 struct btrfs_key *key,
2610 int level)
2611 {
2612 #ifdef CONFIG_BTRFS_ASSERT
2613 struct btrfs_disk_key disk_key;
2614
2615 btrfs_cpu_key_to_disk(&disk_key, key);
2616
2617 if (level == 0)
2618 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2619 offsetof(struct btrfs_leaf, items[0].key),
2620 sizeof(disk_key)));
2621 else
2622 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2623 offsetof(struct btrfs_node, ptrs[0].key),
2624 sizeof(disk_key)));
2625 #endif
2626 }
2627
2628 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2629 int level, int *prev_cmp, int *slot)
2630 {
2631 if (*prev_cmp != 0) {
2632 *prev_cmp = bin_search(b, key, level, slot);
2633 return *prev_cmp;
2634 }
2635
2636 key_search_validate(b, key, level);
2637 *slot = 0;
2638
2639 return 0;
2640 }
2641
2642 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2643 u64 iobjectid, u64 ioff, u8 key_type,
2644 struct btrfs_key *found_key)
2645 {
2646 int ret;
2647 struct btrfs_key key;
2648 struct extent_buffer *eb;
2649
2650 ASSERT(path);
2651 ASSERT(found_key);
2652
2653 key.type = key_type;
2654 key.objectid = iobjectid;
2655 key.offset = ioff;
2656
2657 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2658 if (ret < 0)
2659 return ret;
2660
2661 eb = path->nodes[0];
2662 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2663 ret = btrfs_next_leaf(fs_root, path);
2664 if (ret)
2665 return ret;
2666 eb = path->nodes[0];
2667 }
2668
2669 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2670 if (found_key->type != key.type ||
2671 found_key->objectid != key.objectid)
2672 return 1;
2673
2674 return 0;
2675 }
2676
2677 /*
2678 * look for key in the tree. path is filled in with nodes along the way
2679 * if key is found, we return zero and you can find the item in the leaf
2680 * level of the path (level 0)
2681 *
2682 * If the key isn't found, the path points to the slot where it should
2683 * be inserted, and 1 is returned. If there are other errors during the
2684 * search a negative error number is returned.
2685 *
2686 * if ins_len > 0, nodes and leaves will be split as we walk down the
2687 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2688 * possible)
2689 */
2690 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2691 *root, struct btrfs_key *key, struct btrfs_path *p, int
2692 ins_len, int cow)
2693 {
2694 struct extent_buffer *b;
2695 int slot;
2696 int ret;
2697 int err;
2698 int level;
2699 int lowest_unlock = 1;
2700 int root_lock;
2701 /* everything at write_lock_level or lower must be write locked */
2702 int write_lock_level = 0;
2703 u8 lowest_level = 0;
2704 int min_write_lock_level;
2705 int prev_cmp;
2706
2707 lowest_level = p->lowest_level;
2708 WARN_ON(lowest_level && ins_len > 0);
2709 WARN_ON(p->nodes[0] != NULL);
2710 BUG_ON(!cow && ins_len);
2711
2712 if (ins_len < 0) {
2713 lowest_unlock = 2;
2714
2715 /* when we are removing items, we might have to go up to level
2716 * two as we update tree pointers Make sure we keep write
2717 * for those levels as well
2718 */
2719 write_lock_level = 2;
2720 } else if (ins_len > 0) {
2721 /*
2722 * for inserting items, make sure we have a write lock on
2723 * level 1 so we can update keys
2724 */
2725 write_lock_level = 1;
2726 }
2727
2728 if (!cow)
2729 write_lock_level = -1;
2730
2731 if (cow && (p->keep_locks || p->lowest_level))
2732 write_lock_level = BTRFS_MAX_LEVEL;
2733
2734 min_write_lock_level = write_lock_level;
2735
2736 again:
2737 prev_cmp = -1;
2738 /*
2739 * we try very hard to do read locks on the root
2740 */
2741 root_lock = BTRFS_READ_LOCK;
2742 level = 0;
2743 if (p->search_commit_root) {
2744 /*
2745 * the commit roots are read only
2746 * so we always do read locks
2747 */
2748 if (p->need_commit_sem)
2749 down_read(&root->fs_info->commit_root_sem);
2750 b = root->commit_root;
2751 extent_buffer_get(b);
2752 level = btrfs_header_level(b);
2753 if (p->need_commit_sem)
2754 up_read(&root->fs_info->commit_root_sem);
2755 if (!p->skip_locking)
2756 btrfs_tree_read_lock(b);
2757 } else {
2758 if (p->skip_locking) {
2759 b = btrfs_root_node(root);
2760 level = btrfs_header_level(b);
2761 } else {
2762 /* we don't know the level of the root node
2763 * until we actually have it read locked
2764 */
2765 b = btrfs_read_lock_root_node(root);
2766 level = btrfs_header_level(b);
2767 if (level <= write_lock_level) {
2768 /* whoops, must trade for write lock */
2769 btrfs_tree_read_unlock(b);
2770 free_extent_buffer(b);
2771 b = btrfs_lock_root_node(root);
2772 root_lock = BTRFS_WRITE_LOCK;
2773
2774 /* the level might have changed, check again */
2775 level = btrfs_header_level(b);
2776 }
2777 }
2778 }
2779 p->nodes[level] = b;
2780 if (!p->skip_locking)
2781 p->locks[level] = root_lock;
2782
2783 while (b) {
2784 level = btrfs_header_level(b);
2785
2786 /*
2787 * setup the path here so we can release it under lock
2788 * contention with the cow code
2789 */
2790 if (cow) {
2791 /*
2792 * if we don't really need to cow this block
2793 * then we don't want to set the path blocking,
2794 * so we test it here
2795 */
2796 if (!should_cow_block(trans, root, b)) {
2797 trans->dirty = true;
2798 goto cow_done;
2799 }
2800
2801 /*
2802 * must have write locks on this node and the
2803 * parent
2804 */
2805 if (level > write_lock_level ||
2806 (level + 1 > write_lock_level &&
2807 level + 1 < BTRFS_MAX_LEVEL &&
2808 p->nodes[level + 1])) {
2809 write_lock_level = level + 1;
2810 btrfs_release_path(p);
2811 goto again;
2812 }
2813
2814 btrfs_set_path_blocking(p);
2815 err = btrfs_cow_block(trans, root, b,
2816 p->nodes[level + 1],
2817 p->slots[level + 1], &b);
2818 if (err) {
2819 ret = err;
2820 goto done;
2821 }
2822 }
2823 cow_done:
2824 p->nodes[level] = b;
2825 btrfs_clear_path_blocking(p, NULL, 0);
2826
2827 /*
2828 * we have a lock on b and as long as we aren't changing
2829 * the tree, there is no way to for the items in b to change.
2830 * It is safe to drop the lock on our parent before we
2831 * go through the expensive btree search on b.
2832 *
2833 * If we're inserting or deleting (ins_len != 0), then we might
2834 * be changing slot zero, which may require changing the parent.
2835 * So, we can't drop the lock until after we know which slot
2836 * we're operating on.
2837 */
2838 if (!ins_len && !p->keep_locks) {
2839 int u = level + 1;
2840
2841 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2842 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2843 p->locks[u] = 0;
2844 }
2845 }
2846
2847 ret = key_search(b, key, level, &prev_cmp, &slot);
2848 if (ret < 0)
2849 goto done;
2850
2851 if (level != 0) {
2852 int dec = 0;
2853 if (ret && slot > 0) {
2854 dec = 1;
2855 slot -= 1;
2856 }
2857 p->slots[level] = slot;
2858 err = setup_nodes_for_search(trans, root, p, b, level,
2859 ins_len, &write_lock_level);
2860 if (err == -EAGAIN)
2861 goto again;
2862 if (err) {
2863 ret = err;
2864 goto done;
2865 }
2866 b = p->nodes[level];
2867 slot = p->slots[level];
2868
2869 /*
2870 * slot 0 is special, if we change the key
2871 * we have to update the parent pointer
2872 * which means we must have a write lock
2873 * on the parent
2874 */
2875 if (slot == 0 && ins_len &&
2876 write_lock_level < level + 1) {
2877 write_lock_level = level + 1;
2878 btrfs_release_path(p);
2879 goto again;
2880 }
2881
2882 unlock_up(p, level, lowest_unlock,
2883 min_write_lock_level, &write_lock_level);
2884
2885 if (level == lowest_level) {
2886 if (dec)
2887 p->slots[level]++;
2888 goto done;
2889 }
2890
2891 err = read_block_for_search(trans, root, p,
2892 &b, level, slot, key, 0);
2893 if (err == -EAGAIN)
2894 goto again;
2895 if (err) {
2896 ret = err;
2897 goto done;
2898 }
2899
2900 if (!p->skip_locking) {
2901 level = btrfs_header_level(b);
2902 if (level <= write_lock_level) {
2903 err = btrfs_try_tree_write_lock(b);
2904 if (!err) {
2905 btrfs_set_path_blocking(p);
2906 btrfs_tree_lock(b);
2907 btrfs_clear_path_blocking(p, b,
2908 BTRFS_WRITE_LOCK);
2909 }
2910 p->locks[level] = BTRFS_WRITE_LOCK;
2911 } else {
2912 err = btrfs_tree_read_lock_atomic(b);
2913 if (!err) {
2914 btrfs_set_path_blocking(p);
2915 btrfs_tree_read_lock(b);
2916 btrfs_clear_path_blocking(p, b,
2917 BTRFS_READ_LOCK);
2918 }
2919 p->locks[level] = BTRFS_READ_LOCK;
2920 }
2921 p->nodes[level] = b;
2922 }
2923 } else {
2924 p->slots[level] = slot;
2925 if (ins_len > 0 &&
2926 btrfs_leaf_free_space(root, b) < ins_len) {
2927 if (write_lock_level < 1) {
2928 write_lock_level = 1;
2929 btrfs_release_path(p);
2930 goto again;
2931 }
2932
2933 btrfs_set_path_blocking(p);
2934 err = split_leaf(trans, root, key,
2935 p, ins_len, ret == 0);
2936 btrfs_clear_path_blocking(p, NULL, 0);
2937
2938 BUG_ON(err > 0);
2939 if (err) {
2940 ret = err;
2941 goto done;
2942 }
2943 }
2944 if (!p->search_for_split)
2945 unlock_up(p, level, lowest_unlock,
2946 min_write_lock_level, &write_lock_level);
2947 goto done;
2948 }
2949 }
2950 ret = 1;
2951 done:
2952 /*
2953 * we don't really know what they plan on doing with the path
2954 * from here on, so for now just mark it as blocking
2955 */
2956 if (!p->leave_spinning)
2957 btrfs_set_path_blocking(p);
2958 if (ret < 0 && !p->skip_release_on_error)
2959 btrfs_release_path(p);
2960 return ret;
2961 }
2962
2963 /*
2964 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2965 * current state of the tree together with the operations recorded in the tree
2966 * modification log to search for the key in a previous version of this tree, as
2967 * denoted by the time_seq parameter.
2968 *
2969 * Naturally, there is no support for insert, delete or cow operations.
2970 *
2971 * The resulting path and return value will be set up as if we called
2972 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2973 */
2974 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2975 struct btrfs_path *p, u64 time_seq)
2976 {
2977 struct extent_buffer *b;
2978 int slot;
2979 int ret;
2980 int err;
2981 int level;
2982 int lowest_unlock = 1;
2983 u8 lowest_level = 0;
2984 int prev_cmp = -1;
2985
2986 lowest_level = p->lowest_level;
2987 WARN_ON(p->nodes[0] != NULL);
2988
2989 if (p->search_commit_root) {
2990 BUG_ON(time_seq);
2991 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2992 }
2993
2994 again:
2995 b = get_old_root(root, time_seq);
2996 level = btrfs_header_level(b);
2997 p->locks[level] = BTRFS_READ_LOCK;
2998
2999 while (b) {
3000 level = btrfs_header_level(b);
3001 p->nodes[level] = b;
3002 btrfs_clear_path_blocking(p, NULL, 0);
3003
3004 /*
3005 * we have a lock on b and as long as we aren't changing
3006 * the tree, there is no way to for the items in b to change.
3007 * It is safe to drop the lock on our parent before we
3008 * go through the expensive btree search on b.
3009 */
3010 btrfs_unlock_up_safe(p, level + 1);
3011
3012 /*
3013 * Since we can unwind ebs we want to do a real search every
3014 * time.
3015 */
3016 prev_cmp = -1;
3017 ret = key_search(b, key, level, &prev_cmp, &slot);
3018
3019 if (level != 0) {
3020 int dec = 0;
3021 if (ret && slot > 0) {
3022 dec = 1;
3023 slot -= 1;
3024 }
3025 p->slots[level] = slot;
3026 unlock_up(p, level, lowest_unlock, 0, NULL);
3027
3028 if (level == lowest_level) {
3029 if (dec)
3030 p->slots[level]++;
3031 goto done;
3032 }
3033
3034 err = read_block_for_search(NULL, root, p, &b, level,
3035 slot, key, time_seq);
3036 if (err == -EAGAIN)
3037 goto again;
3038 if (err) {
3039 ret = err;
3040 goto done;
3041 }
3042
3043 level = btrfs_header_level(b);
3044 err = btrfs_tree_read_lock_atomic(b);
3045 if (!err) {
3046 btrfs_set_path_blocking(p);
3047 btrfs_tree_read_lock(b);
3048 btrfs_clear_path_blocking(p, b,
3049 BTRFS_READ_LOCK);
3050 }
3051 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3052 if (!b) {
3053 ret = -ENOMEM;
3054 goto done;
3055 }
3056 p->locks[level] = BTRFS_READ_LOCK;
3057 p->nodes[level] = b;
3058 } else {
3059 p->slots[level] = slot;
3060 unlock_up(p, level, lowest_unlock, 0, NULL);
3061 goto done;
3062 }
3063 }
3064 ret = 1;
3065 done:
3066 if (!p->leave_spinning)
3067 btrfs_set_path_blocking(p);
3068 if (ret < 0)
3069 btrfs_release_path(p);
3070
3071 return ret;
3072 }
3073
3074 /*
3075 * helper to use instead of search slot if no exact match is needed but
3076 * instead the next or previous item should be returned.
3077 * When find_higher is true, the next higher item is returned, the next lower
3078 * otherwise.
3079 * When return_any and find_higher are both true, and no higher item is found,
3080 * return the next lower instead.
3081 * When return_any is true and find_higher is false, and no lower item is found,
3082 * return the next higher instead.
3083 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3084 * < 0 on error
3085 */
3086 int btrfs_search_slot_for_read(struct btrfs_root *root,
3087 struct btrfs_key *key, struct btrfs_path *p,
3088 int find_higher, int return_any)
3089 {
3090 int ret;
3091 struct extent_buffer *leaf;
3092
3093 again:
3094 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3095 if (ret <= 0)
3096 return ret;
3097 /*
3098 * a return value of 1 means the path is at the position where the
3099 * item should be inserted. Normally this is the next bigger item,
3100 * but in case the previous item is the last in a leaf, path points
3101 * to the first free slot in the previous leaf, i.e. at an invalid
3102 * item.
3103 */
3104 leaf = p->nodes[0];
3105
3106 if (find_higher) {
3107 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3108 ret = btrfs_next_leaf(root, p);
3109 if (ret <= 0)
3110 return ret;
3111 if (!return_any)
3112 return 1;
3113 /*
3114 * no higher item found, return the next
3115 * lower instead
3116 */
3117 return_any = 0;
3118 find_higher = 0;
3119 btrfs_release_path(p);
3120 goto again;
3121 }
3122 } else {
3123 if (p->slots[0] == 0) {
3124 ret = btrfs_prev_leaf(root, p);
3125 if (ret < 0)
3126 return ret;
3127 if (!ret) {
3128 leaf = p->nodes[0];
3129 if (p->slots[0] == btrfs_header_nritems(leaf))
3130 p->slots[0]--;
3131 return 0;
3132 }
3133 if (!return_any)
3134 return 1;
3135 /*
3136 * no lower item found, return the next
3137 * higher instead
3138 */
3139 return_any = 0;
3140 find_higher = 1;
3141 btrfs_release_path(p);
3142 goto again;
3143 } else {
3144 --p->slots[0];
3145 }
3146 }
3147 return 0;
3148 }
3149
3150 /*
3151 * adjust the pointers going up the tree, starting at level
3152 * making sure the right key of each node is points to 'key'.
3153 * This is used after shifting pointers to the left, so it stops
3154 * fixing up pointers when a given leaf/node is not in slot 0 of the
3155 * higher levels
3156 *
3157 */
3158 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3159 struct btrfs_path *path,
3160 struct btrfs_disk_key *key, int level)
3161 {
3162 int i;
3163 struct extent_buffer *t;
3164
3165 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3166 int tslot = path->slots[i];
3167 if (!path->nodes[i])
3168 break;
3169 t = path->nodes[i];
3170 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3171 btrfs_set_node_key(t, key, tslot);
3172 btrfs_mark_buffer_dirty(path->nodes[i]);
3173 if (tslot != 0)
3174 break;
3175 }
3176 }
3177
3178 /*
3179 * update item key.
3180 *
3181 * This function isn't completely safe. It's the caller's responsibility
3182 * that the new key won't break the order
3183 */
3184 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3185 struct btrfs_path *path,
3186 struct btrfs_key *new_key)
3187 {
3188 struct btrfs_disk_key disk_key;
3189 struct extent_buffer *eb;
3190 int slot;
3191
3192 eb = path->nodes[0];
3193 slot = path->slots[0];
3194 if (slot > 0) {
3195 btrfs_item_key(eb, &disk_key, slot - 1);
3196 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3197 }
3198 if (slot < btrfs_header_nritems(eb) - 1) {
3199 btrfs_item_key(eb, &disk_key, slot + 1);
3200 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3201 }
3202
3203 btrfs_cpu_key_to_disk(&disk_key, new_key);
3204 btrfs_set_item_key(eb, &disk_key, slot);
3205 btrfs_mark_buffer_dirty(eb);
3206 if (slot == 0)
3207 fixup_low_keys(fs_info, path, &disk_key, 1);
3208 }
3209
3210 /*
3211 * try to push data from one node into the next node left in the
3212 * tree.
3213 *
3214 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3215 * error, and > 0 if there was no room in the left hand block.
3216 */
3217 static int push_node_left(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root, struct extent_buffer *dst,
3219 struct extent_buffer *src, int empty)
3220 {
3221 int push_items = 0;
3222 int src_nritems;
3223 int dst_nritems;
3224 int ret = 0;
3225
3226 src_nritems = btrfs_header_nritems(src);
3227 dst_nritems = btrfs_header_nritems(dst);
3228 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3229 WARN_ON(btrfs_header_generation(src) != trans->transid);
3230 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3231
3232 if (!empty && src_nritems <= 8)
3233 return 1;
3234
3235 if (push_items <= 0)
3236 return 1;
3237
3238 if (empty) {
3239 push_items = min(src_nritems, push_items);
3240 if (push_items < src_nritems) {
3241 /* leave at least 8 pointers in the node if
3242 * we aren't going to empty it
3243 */
3244 if (src_nritems - push_items < 8) {
3245 if (push_items <= 8)
3246 return 1;
3247 push_items -= 8;
3248 }
3249 }
3250 } else
3251 push_items = min(src_nritems - 8, push_items);
3252
3253 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3254 push_items);
3255 if (ret) {
3256 btrfs_abort_transaction(trans, ret);
3257 return ret;
3258 }
3259 copy_extent_buffer(dst, src,
3260 btrfs_node_key_ptr_offset(dst_nritems),
3261 btrfs_node_key_ptr_offset(0),
3262 push_items * sizeof(struct btrfs_key_ptr));
3263
3264 if (push_items < src_nritems) {
3265 /*
3266 * don't call tree_mod_log_eb_move here, key removal was already
3267 * fully logged by tree_mod_log_eb_copy above.
3268 */
3269 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3270 btrfs_node_key_ptr_offset(push_items),
3271 (src_nritems - push_items) *
3272 sizeof(struct btrfs_key_ptr));
3273 }
3274 btrfs_set_header_nritems(src, src_nritems - push_items);
3275 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3276 btrfs_mark_buffer_dirty(src);
3277 btrfs_mark_buffer_dirty(dst);
3278
3279 return ret;
3280 }
3281
3282 /*
3283 * try to push data from one node into the next node right in the
3284 * tree.
3285 *
3286 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3287 * error, and > 0 if there was no room in the right hand block.
3288 *
3289 * this will only push up to 1/2 the contents of the left node over
3290 */
3291 static int balance_node_right(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *root,
3293 struct extent_buffer *dst,
3294 struct extent_buffer *src)
3295 {
3296 int push_items = 0;
3297 int max_push;
3298 int src_nritems;
3299 int dst_nritems;
3300 int ret = 0;
3301
3302 WARN_ON(btrfs_header_generation(src) != trans->transid);
3303 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3304
3305 src_nritems = btrfs_header_nritems(src);
3306 dst_nritems = btrfs_header_nritems(dst);
3307 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3308 if (push_items <= 0)
3309 return 1;
3310
3311 if (src_nritems < 4)
3312 return 1;
3313
3314 max_push = src_nritems / 2 + 1;
3315 /* don't try to empty the node */
3316 if (max_push >= src_nritems)
3317 return 1;
3318
3319 if (max_push < push_items)
3320 push_items = max_push;
3321
3322 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3323 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3324 btrfs_node_key_ptr_offset(0),
3325 (dst_nritems) *
3326 sizeof(struct btrfs_key_ptr));
3327
3328 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3329 src_nritems - push_items, push_items);
3330 if (ret) {
3331 btrfs_abort_transaction(trans, ret);
3332 return ret;
3333 }
3334 copy_extent_buffer(dst, src,
3335 btrfs_node_key_ptr_offset(0),
3336 btrfs_node_key_ptr_offset(src_nritems - push_items),
3337 push_items * sizeof(struct btrfs_key_ptr));
3338
3339 btrfs_set_header_nritems(src, src_nritems - push_items);
3340 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3341
3342 btrfs_mark_buffer_dirty(src);
3343 btrfs_mark_buffer_dirty(dst);
3344
3345 return ret;
3346 }
3347
3348 /*
3349 * helper function to insert a new root level in the tree.
3350 * A new node is allocated, and a single item is inserted to
3351 * point to the existing root
3352 *
3353 * returns zero on success or < 0 on failure.
3354 */
3355 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3356 struct btrfs_root *root,
3357 struct btrfs_path *path, int level)
3358 {
3359 u64 lower_gen;
3360 struct extent_buffer *lower;
3361 struct extent_buffer *c;
3362 struct extent_buffer *old;
3363 struct btrfs_disk_key lower_key;
3364
3365 BUG_ON(path->nodes[level]);
3366 BUG_ON(path->nodes[level-1] != root->node);
3367
3368 lower = path->nodes[level-1];
3369 if (level == 1)
3370 btrfs_item_key(lower, &lower_key, 0);
3371 else
3372 btrfs_node_key(lower, &lower_key, 0);
3373
3374 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3375 &lower_key, level, root->node->start, 0);
3376 if (IS_ERR(c))
3377 return PTR_ERR(c);
3378
3379 root_add_used(root, root->nodesize);
3380
3381 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3382 btrfs_set_header_nritems(c, 1);
3383 btrfs_set_header_level(c, level);
3384 btrfs_set_header_bytenr(c, c->start);
3385 btrfs_set_header_generation(c, trans->transid);
3386 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3387 btrfs_set_header_owner(c, root->root_key.objectid);
3388
3389 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3390 BTRFS_FSID_SIZE);
3391
3392 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3393 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3394
3395 btrfs_set_node_key(c, &lower_key, 0);
3396 btrfs_set_node_blockptr(c, 0, lower->start);
3397 lower_gen = btrfs_header_generation(lower);
3398 WARN_ON(lower_gen != trans->transid);
3399
3400 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3401
3402 btrfs_mark_buffer_dirty(c);
3403
3404 old = root->node;
3405 tree_mod_log_set_root_pointer(root, c, 0);
3406 rcu_assign_pointer(root->node, c);
3407
3408 /* the super has an extra ref to root->node */
3409 free_extent_buffer(old);
3410
3411 add_root_to_dirty_list(root);
3412 extent_buffer_get(c);
3413 path->nodes[level] = c;
3414 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3415 path->slots[level] = 0;
3416 return 0;
3417 }
3418
3419 /*
3420 * worker function to insert a single pointer in a node.
3421 * the node should have enough room for the pointer already
3422 *
3423 * slot and level indicate where you want the key to go, and
3424 * blocknr is the block the key points to.
3425 */
3426 static void insert_ptr(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root, struct btrfs_path *path,
3428 struct btrfs_disk_key *key, u64 bytenr,
3429 int slot, int level)
3430 {
3431 struct extent_buffer *lower;
3432 int nritems;
3433 int ret;
3434
3435 BUG_ON(!path->nodes[level]);
3436 btrfs_assert_tree_locked(path->nodes[level]);
3437 lower = path->nodes[level];
3438 nritems = btrfs_header_nritems(lower);
3439 BUG_ON(slot > nritems);
3440 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3441 if (slot != nritems) {
3442 if (level)
3443 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3444 slot, nritems - slot);
3445 memmove_extent_buffer(lower,
3446 btrfs_node_key_ptr_offset(slot + 1),
3447 btrfs_node_key_ptr_offset(slot),
3448 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3449 }
3450 if (level) {
3451 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3452 MOD_LOG_KEY_ADD, GFP_NOFS);
3453 BUG_ON(ret < 0);
3454 }
3455 btrfs_set_node_key(lower, key, slot);
3456 btrfs_set_node_blockptr(lower, slot, bytenr);
3457 WARN_ON(trans->transid == 0);
3458 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3459 btrfs_set_header_nritems(lower, nritems + 1);
3460 btrfs_mark_buffer_dirty(lower);
3461 }
3462
3463 /*
3464 * split the node at the specified level in path in two.
3465 * The path is corrected to point to the appropriate node after the split
3466 *
3467 * Before splitting this tries to make some room in the node by pushing
3468 * left and right, if either one works, it returns right away.
3469 *
3470 * returns 0 on success and < 0 on failure
3471 */
3472 static noinline int split_node(struct btrfs_trans_handle *trans,
3473 struct btrfs_root *root,
3474 struct btrfs_path *path, int level)
3475 {
3476 struct extent_buffer *c;
3477 struct extent_buffer *split;
3478 struct btrfs_disk_key disk_key;
3479 int mid;
3480 int ret;
3481 u32 c_nritems;
3482
3483 c = path->nodes[level];
3484 WARN_ON(btrfs_header_generation(c) != trans->transid);
3485 if (c == root->node) {
3486 /*
3487 * trying to split the root, lets make a new one
3488 *
3489 * tree mod log: We don't log_removal old root in
3490 * insert_new_root, because that root buffer will be kept as a
3491 * normal node. We are going to log removal of half of the
3492 * elements below with tree_mod_log_eb_copy. We're holding a
3493 * tree lock on the buffer, which is why we cannot race with
3494 * other tree_mod_log users.
3495 */
3496 ret = insert_new_root(trans, root, path, level + 1);
3497 if (ret)
3498 return ret;
3499 } else {
3500 ret = push_nodes_for_insert(trans, root, path, level);
3501 c = path->nodes[level];
3502 if (!ret && btrfs_header_nritems(c) <
3503 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3504 return 0;
3505 if (ret < 0)
3506 return ret;
3507 }
3508
3509 c_nritems = btrfs_header_nritems(c);
3510 mid = (c_nritems + 1) / 2;
3511 btrfs_node_key(c, &disk_key, mid);
3512
3513 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3514 &disk_key, level, c->start, 0);
3515 if (IS_ERR(split))
3516 return PTR_ERR(split);
3517
3518 root_add_used(root, root->nodesize);
3519
3520 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3521 btrfs_set_header_level(split, btrfs_header_level(c));
3522 btrfs_set_header_bytenr(split, split->start);
3523 btrfs_set_header_generation(split, trans->transid);
3524 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3525 btrfs_set_header_owner(split, root->root_key.objectid);
3526 write_extent_buffer(split, root->fs_info->fsid,
3527 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3528 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3529 btrfs_header_chunk_tree_uuid(split),
3530 BTRFS_UUID_SIZE);
3531
3532 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3533 mid, c_nritems - mid);
3534 if (ret) {
3535 btrfs_abort_transaction(trans, ret);
3536 return ret;
3537 }
3538 copy_extent_buffer(split, c,
3539 btrfs_node_key_ptr_offset(0),
3540 btrfs_node_key_ptr_offset(mid),
3541 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3542 btrfs_set_header_nritems(split, c_nritems - mid);
3543 btrfs_set_header_nritems(c, mid);
3544 ret = 0;
3545
3546 btrfs_mark_buffer_dirty(c);
3547 btrfs_mark_buffer_dirty(split);
3548
3549 insert_ptr(trans, root, path, &disk_key, split->start,
3550 path->slots[level + 1] + 1, level + 1);
3551
3552 if (path->slots[level] >= mid) {
3553 path->slots[level] -= mid;
3554 btrfs_tree_unlock(c);
3555 free_extent_buffer(c);
3556 path->nodes[level] = split;
3557 path->slots[level + 1] += 1;
3558 } else {
3559 btrfs_tree_unlock(split);
3560 free_extent_buffer(split);
3561 }
3562 return ret;
3563 }
3564
3565 /*
3566 * how many bytes are required to store the items in a leaf. start
3567 * and nr indicate which items in the leaf to check. This totals up the
3568 * space used both by the item structs and the item data
3569 */
3570 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3571 {
3572 struct btrfs_item *start_item;
3573 struct btrfs_item *end_item;
3574 struct btrfs_map_token token;
3575 int data_len;
3576 int nritems = btrfs_header_nritems(l);
3577 int end = min(nritems, start + nr) - 1;
3578
3579 if (!nr)
3580 return 0;
3581 btrfs_init_map_token(&token);
3582 start_item = btrfs_item_nr(start);
3583 end_item = btrfs_item_nr(end);
3584 data_len = btrfs_token_item_offset(l, start_item, &token) +
3585 btrfs_token_item_size(l, start_item, &token);
3586 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3587 data_len += sizeof(struct btrfs_item) * nr;
3588 WARN_ON(data_len < 0);
3589 return data_len;
3590 }
3591
3592 /*
3593 * The space between the end of the leaf items and
3594 * the start of the leaf data. IOW, how much room
3595 * the leaf has left for both items and data
3596 */
3597 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3598 struct extent_buffer *leaf)
3599 {
3600 int nritems = btrfs_header_nritems(leaf);
3601 int ret;
3602 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3603 if (ret < 0) {
3604 btrfs_crit(root->fs_info,
3605 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3606 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3607 leaf_space_used(leaf, 0, nritems), nritems);
3608 }
3609 return ret;
3610 }
3611
3612 /*
3613 * min slot controls the lowest index we're willing to push to the
3614 * right. We'll push up to and including min_slot, but no lower
3615 */
3616 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *root,
3618 struct btrfs_path *path,
3619 int data_size, int empty,
3620 struct extent_buffer *right,
3621 int free_space, u32 left_nritems,
3622 u32 min_slot)
3623 {
3624 struct extent_buffer *left = path->nodes[0];
3625 struct extent_buffer *upper = path->nodes[1];
3626 struct btrfs_map_token token;
3627 struct btrfs_disk_key disk_key;
3628 int slot;
3629 u32 i;
3630 int push_space = 0;
3631 int push_items = 0;
3632 struct btrfs_item *item;
3633 u32 nr;
3634 u32 right_nritems;
3635 u32 data_end;
3636 u32 this_item_size;
3637
3638 btrfs_init_map_token(&token);
3639
3640 if (empty)
3641 nr = 0;
3642 else
3643 nr = max_t(u32, 1, min_slot);
3644
3645 if (path->slots[0] >= left_nritems)
3646 push_space += data_size;
3647
3648 slot = path->slots[1];
3649 i = left_nritems - 1;
3650 while (i >= nr) {
3651 item = btrfs_item_nr(i);
3652
3653 if (!empty && push_items > 0) {
3654 if (path->slots[0] > i)
3655 break;
3656 if (path->slots[0] == i) {
3657 int space = btrfs_leaf_free_space(root, left);
3658 if (space + push_space * 2 > free_space)
3659 break;
3660 }
3661 }
3662
3663 if (path->slots[0] == i)
3664 push_space += data_size;
3665
3666 this_item_size = btrfs_item_size(left, item);
3667 if (this_item_size + sizeof(*item) + push_space > free_space)
3668 break;
3669
3670 push_items++;
3671 push_space += this_item_size + sizeof(*item);
3672 if (i == 0)
3673 break;
3674 i--;
3675 }
3676
3677 if (push_items == 0)
3678 goto out_unlock;
3679
3680 WARN_ON(!empty && push_items == left_nritems);
3681
3682 /* push left to right */
3683 right_nritems = btrfs_header_nritems(right);
3684
3685 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3686 push_space -= leaf_data_end(root, left);
3687
3688 /* make room in the right data area */
3689 data_end = leaf_data_end(root, right);
3690 memmove_extent_buffer(right,
3691 btrfs_leaf_data(right) + data_end - push_space,
3692 btrfs_leaf_data(right) + data_end,
3693 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3694
3695 /* copy from the left data area */
3696 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3697 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3698 btrfs_leaf_data(left) + leaf_data_end(root, left),
3699 push_space);
3700
3701 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3702 btrfs_item_nr_offset(0),
3703 right_nritems * sizeof(struct btrfs_item));
3704
3705 /* copy the items from left to right */
3706 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3707 btrfs_item_nr_offset(left_nritems - push_items),
3708 push_items * sizeof(struct btrfs_item));
3709
3710 /* update the item pointers */
3711 right_nritems += push_items;
3712 btrfs_set_header_nritems(right, right_nritems);
3713 push_space = BTRFS_LEAF_DATA_SIZE(root);
3714 for (i = 0; i < right_nritems; i++) {
3715 item = btrfs_item_nr(i);
3716 push_space -= btrfs_token_item_size(right, item, &token);
3717 btrfs_set_token_item_offset(right, item, push_space, &token);
3718 }
3719
3720 left_nritems -= push_items;
3721 btrfs_set_header_nritems(left, left_nritems);
3722
3723 if (left_nritems)
3724 btrfs_mark_buffer_dirty(left);
3725 else
3726 clean_tree_block(trans, root->fs_info, left);
3727
3728 btrfs_mark_buffer_dirty(right);
3729
3730 btrfs_item_key(right, &disk_key, 0);
3731 btrfs_set_node_key(upper, &disk_key, slot + 1);
3732 btrfs_mark_buffer_dirty(upper);
3733
3734 /* then fixup the leaf pointer in the path */
3735 if (path->slots[0] >= left_nritems) {
3736 path->slots[0] -= left_nritems;
3737 if (btrfs_header_nritems(path->nodes[0]) == 0)
3738 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3739 btrfs_tree_unlock(path->nodes[0]);
3740 free_extent_buffer(path->nodes[0]);
3741 path->nodes[0] = right;
3742 path->slots[1] += 1;
3743 } else {
3744 btrfs_tree_unlock(right);
3745 free_extent_buffer(right);
3746 }
3747 return 0;
3748
3749 out_unlock:
3750 btrfs_tree_unlock(right);
3751 free_extent_buffer(right);
3752 return 1;
3753 }
3754
3755 /*
3756 * push some data in the path leaf to the right, trying to free up at
3757 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3758 *
3759 * returns 1 if the push failed because the other node didn't have enough
3760 * room, 0 if everything worked out and < 0 if there were major errors.
3761 *
3762 * this will push starting from min_slot to the end of the leaf. It won't
3763 * push any slot lower than min_slot
3764 */
3765 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3766 *root, struct btrfs_path *path,
3767 int min_data_size, int data_size,
3768 int empty, u32 min_slot)
3769 {
3770 struct extent_buffer *left = path->nodes[0];
3771 struct extent_buffer *right;
3772 struct extent_buffer *upper;
3773 int slot;
3774 int free_space;
3775 u32 left_nritems;
3776 int ret;
3777
3778 if (!path->nodes[1])
3779 return 1;
3780
3781 slot = path->slots[1];
3782 upper = path->nodes[1];
3783 if (slot >= btrfs_header_nritems(upper) - 1)
3784 return 1;
3785
3786 btrfs_assert_tree_locked(path->nodes[1]);
3787
3788 right = read_node_slot(root, upper, slot + 1);
3789 /*
3790 * slot + 1 is not valid or we fail to read the right node,
3791 * no big deal, just return.
3792 */
3793 if (IS_ERR(right))
3794 return 1;
3795
3796 btrfs_tree_lock(right);
3797 btrfs_set_lock_blocking(right);
3798
3799 free_space = btrfs_leaf_free_space(root, right);
3800 if (free_space < data_size)
3801 goto out_unlock;
3802
3803 /* cow and double check */
3804 ret = btrfs_cow_block(trans, root, right, upper,
3805 slot + 1, &right);
3806 if (ret)
3807 goto out_unlock;
3808
3809 free_space = btrfs_leaf_free_space(root, right);
3810 if (free_space < data_size)
3811 goto out_unlock;
3812
3813 left_nritems = btrfs_header_nritems(left);
3814 if (left_nritems == 0)
3815 goto out_unlock;
3816
3817 if (path->slots[0] == left_nritems && !empty) {
3818 /* Key greater than all keys in the leaf, right neighbor has
3819 * enough room for it and we're not emptying our leaf to delete
3820 * it, therefore use right neighbor to insert the new item and
3821 * no need to touch/dirty our left leaft. */
3822 btrfs_tree_unlock(left);
3823 free_extent_buffer(left);
3824 path->nodes[0] = right;
3825 path->slots[0] = 0;
3826 path->slots[1]++;
3827 return 0;
3828 }
3829
3830 return __push_leaf_right(trans, root, path, min_data_size, empty,
3831 right, free_space, left_nritems, min_slot);
3832 out_unlock:
3833 btrfs_tree_unlock(right);
3834 free_extent_buffer(right);
3835 return 1;
3836 }
3837
3838 /*
3839 * push some data in the path leaf to the left, trying to free up at
3840 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3841 *
3842 * max_slot can put a limit on how far into the leaf we'll push items. The
3843 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3844 * items
3845 */
3846 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3847 struct btrfs_root *root,
3848 struct btrfs_path *path, int data_size,
3849 int empty, struct extent_buffer *left,
3850 int free_space, u32 right_nritems,
3851 u32 max_slot)
3852 {
3853 struct btrfs_disk_key disk_key;
3854 struct extent_buffer *right = path->nodes[0];
3855 int i;
3856 int push_space = 0;
3857 int push_items = 0;
3858 struct btrfs_item *item;
3859 u32 old_left_nritems;
3860 u32 nr;
3861 int ret = 0;
3862 u32 this_item_size;
3863 u32 old_left_item_size;
3864 struct btrfs_map_token token;
3865
3866 btrfs_init_map_token(&token);
3867
3868 if (empty)
3869 nr = min(right_nritems, max_slot);
3870 else
3871 nr = min(right_nritems - 1, max_slot);
3872
3873 for (i = 0; i < nr; i++) {
3874 item = btrfs_item_nr(i);
3875
3876 if (!empty && push_items > 0) {
3877 if (path->slots[0] < i)
3878 break;
3879 if (path->slots[0] == i) {
3880 int space = btrfs_leaf_free_space(root, right);
3881 if (space + push_space * 2 > free_space)
3882 break;
3883 }
3884 }
3885
3886 if (path->slots[0] == i)
3887 push_space += data_size;
3888
3889 this_item_size = btrfs_item_size(right, item);
3890 if (this_item_size + sizeof(*item) + push_space > free_space)
3891 break;
3892
3893 push_items++;
3894 push_space += this_item_size + sizeof(*item);
3895 }
3896
3897 if (push_items == 0) {
3898 ret = 1;
3899 goto out;
3900 }
3901 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3902
3903 /* push data from right to left */
3904 copy_extent_buffer(left, right,
3905 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3906 btrfs_item_nr_offset(0),
3907 push_items * sizeof(struct btrfs_item));
3908
3909 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3910 btrfs_item_offset_nr(right, push_items - 1);
3911
3912 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3913 leaf_data_end(root, left) - push_space,
3914 btrfs_leaf_data(right) +
3915 btrfs_item_offset_nr(right, push_items - 1),
3916 push_space);
3917 old_left_nritems = btrfs_header_nritems(left);
3918 BUG_ON(old_left_nritems <= 0);
3919
3920 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3921 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3922 u32 ioff;
3923
3924 item = btrfs_item_nr(i);
3925
3926 ioff = btrfs_token_item_offset(left, item, &token);
3927 btrfs_set_token_item_offset(left, item,
3928 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3929 &token);
3930 }
3931 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3932
3933 /* fixup right node */
3934 if (push_items > right_nritems)
3935 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3936 right_nritems);
3937
3938 if (push_items < right_nritems) {
3939 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3940 leaf_data_end(root, right);
3941 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3942 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3943 btrfs_leaf_data(right) +
3944 leaf_data_end(root, right), push_space);
3945
3946 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3947 btrfs_item_nr_offset(push_items),
3948 (btrfs_header_nritems(right) - push_items) *
3949 sizeof(struct btrfs_item));
3950 }
3951 right_nritems -= push_items;
3952 btrfs_set_header_nritems(right, right_nritems);
3953 push_space = BTRFS_LEAF_DATA_SIZE(root);
3954 for (i = 0; i < right_nritems; i++) {
3955 item = btrfs_item_nr(i);
3956
3957 push_space = push_space - btrfs_token_item_size(right,
3958 item, &token);
3959 btrfs_set_token_item_offset(right, item, push_space, &token);
3960 }
3961
3962 btrfs_mark_buffer_dirty(left);
3963 if (right_nritems)
3964 btrfs_mark_buffer_dirty(right);
3965 else
3966 clean_tree_block(trans, root->fs_info, right);
3967
3968 btrfs_item_key(right, &disk_key, 0);
3969 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3970
3971 /* then fixup the leaf pointer in the path */
3972 if (path->slots[0] < push_items) {
3973 path->slots[0] += old_left_nritems;
3974 btrfs_tree_unlock(path->nodes[0]);
3975 free_extent_buffer(path->nodes[0]);
3976 path->nodes[0] = left;
3977 path->slots[1] -= 1;
3978 } else {
3979 btrfs_tree_unlock(left);
3980 free_extent_buffer(left);
3981 path->slots[0] -= push_items;
3982 }
3983 BUG_ON(path->slots[0] < 0);
3984 return ret;
3985 out:
3986 btrfs_tree_unlock(left);
3987 free_extent_buffer(left);
3988 return ret;
3989 }
3990
3991 /*
3992 * push some data in the path leaf to the left, trying to free up at
3993 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3994 *
3995 * max_slot can put a limit on how far into the leaf we'll push items. The
3996 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3997 * items
3998 */
3999 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4000 *root, struct btrfs_path *path, int min_data_size,
4001 int data_size, int empty, u32 max_slot)
4002 {
4003 struct extent_buffer *right = path->nodes[0];
4004 struct extent_buffer *left;
4005 int slot;
4006 int free_space;
4007 u32 right_nritems;
4008 int ret = 0;
4009
4010 slot = path->slots[1];
4011 if (slot == 0)
4012 return 1;
4013 if (!path->nodes[1])
4014 return 1;
4015
4016 right_nritems = btrfs_header_nritems(right);
4017 if (right_nritems == 0)
4018 return 1;
4019
4020 btrfs_assert_tree_locked(path->nodes[1]);
4021
4022 left = read_node_slot(root, path->nodes[1], slot - 1);
4023 /*
4024 * slot - 1 is not valid or we fail to read the left node,
4025 * no big deal, just return.
4026 */
4027 if (IS_ERR(left))
4028 return 1;
4029
4030 btrfs_tree_lock(left);
4031 btrfs_set_lock_blocking(left);
4032
4033 free_space = btrfs_leaf_free_space(root, left);
4034 if (free_space < data_size) {
4035 ret = 1;
4036 goto out;
4037 }
4038
4039 /* cow and double check */
4040 ret = btrfs_cow_block(trans, root, left,
4041 path->nodes[1], slot - 1, &left);
4042 if (ret) {
4043 /* we hit -ENOSPC, but it isn't fatal here */
4044 if (ret == -ENOSPC)
4045 ret = 1;
4046 goto out;
4047 }
4048
4049 free_space = btrfs_leaf_free_space(root, left);
4050 if (free_space < data_size) {
4051 ret = 1;
4052 goto out;
4053 }
4054
4055 return __push_leaf_left(trans, root, path, min_data_size,
4056 empty, left, free_space, right_nritems,
4057 max_slot);
4058 out:
4059 btrfs_tree_unlock(left);
4060 free_extent_buffer(left);
4061 return ret;
4062 }
4063
4064 /*
4065 * split the path's leaf in two, making sure there is at least data_size
4066 * available for the resulting leaf level of the path.
4067 */
4068 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4069 struct btrfs_root *root,
4070 struct btrfs_path *path,
4071 struct extent_buffer *l,
4072 struct extent_buffer *right,
4073 int slot, int mid, int nritems)
4074 {
4075 int data_copy_size;
4076 int rt_data_off;
4077 int i;
4078 struct btrfs_disk_key disk_key;
4079 struct btrfs_map_token token;
4080
4081 btrfs_init_map_token(&token);
4082
4083 nritems = nritems - mid;
4084 btrfs_set_header_nritems(right, nritems);
4085 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4086
4087 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4088 btrfs_item_nr_offset(mid),
4089 nritems * sizeof(struct btrfs_item));
4090
4091 copy_extent_buffer(right, l,
4092 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4093 data_copy_size, btrfs_leaf_data(l) +
4094 leaf_data_end(root, l), data_copy_size);
4095
4096 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4097 btrfs_item_end_nr(l, mid);
4098
4099 for (i = 0; i < nritems; i++) {
4100 struct btrfs_item *item = btrfs_item_nr(i);
4101 u32 ioff;
4102
4103 ioff = btrfs_token_item_offset(right, item, &token);
4104 btrfs_set_token_item_offset(right, item,
4105 ioff + rt_data_off, &token);
4106 }
4107
4108 btrfs_set_header_nritems(l, mid);
4109 btrfs_item_key(right, &disk_key, 0);
4110 insert_ptr(trans, root, path, &disk_key, right->start,
4111 path->slots[1] + 1, 1);
4112
4113 btrfs_mark_buffer_dirty(right);
4114 btrfs_mark_buffer_dirty(l);
4115 BUG_ON(path->slots[0] != slot);
4116
4117 if (mid <= slot) {
4118 btrfs_tree_unlock(path->nodes[0]);
4119 free_extent_buffer(path->nodes[0]);
4120 path->nodes[0] = right;
4121 path->slots[0] -= mid;
4122 path->slots[1] += 1;
4123 } else {
4124 btrfs_tree_unlock(right);
4125 free_extent_buffer(right);
4126 }
4127
4128 BUG_ON(path->slots[0] < 0);
4129 }
4130
4131 /*
4132 * double splits happen when we need to insert a big item in the middle
4133 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4134 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4135 * A B C
4136 *
4137 * We avoid this by trying to push the items on either side of our target
4138 * into the adjacent leaves. If all goes well we can avoid the double split
4139 * completely.
4140 */
4141 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4143 struct btrfs_path *path,
4144 int data_size)
4145 {
4146 int ret;
4147 int progress = 0;
4148 int slot;
4149 u32 nritems;
4150 int space_needed = data_size;
4151
4152 slot = path->slots[0];
4153 if (slot < btrfs_header_nritems(path->nodes[0]))
4154 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4155
4156 /*
4157 * try to push all the items after our slot into the
4158 * right leaf
4159 */
4160 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4161 if (ret < 0)
4162 return ret;
4163
4164 if (ret == 0)
4165 progress++;
4166
4167 nritems = btrfs_header_nritems(path->nodes[0]);
4168 /*
4169 * our goal is to get our slot at the start or end of a leaf. If
4170 * we've done so we're done
4171 */
4172 if (path->slots[0] == 0 || path->slots[0] == nritems)
4173 return 0;
4174
4175 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4176 return 0;
4177
4178 /* try to push all the items before our slot into the next leaf */
4179 slot = path->slots[0];
4180 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4181 if (ret < 0)
4182 return ret;
4183
4184 if (ret == 0)
4185 progress++;
4186
4187 if (progress)
4188 return 0;
4189 return 1;
4190 }
4191
4192 /*
4193 * split the path's leaf in two, making sure there is at least data_size
4194 * available for the resulting leaf level of the path.
4195 *
4196 * returns 0 if all went well and < 0 on failure.
4197 */
4198 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4199 struct btrfs_root *root,
4200 struct btrfs_key *ins_key,
4201 struct btrfs_path *path, int data_size,
4202 int extend)
4203 {
4204 struct btrfs_disk_key disk_key;
4205 struct extent_buffer *l;
4206 u32 nritems;
4207 int mid;
4208 int slot;
4209 struct extent_buffer *right;
4210 struct btrfs_fs_info *fs_info = root->fs_info;
4211 int ret = 0;
4212 int wret;
4213 int split;
4214 int num_doubles = 0;
4215 int tried_avoid_double = 0;
4216
4217 l = path->nodes[0];
4218 slot = path->slots[0];
4219 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4220 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4221 return -EOVERFLOW;
4222
4223 /* first try to make some room by pushing left and right */
4224 if (data_size && path->nodes[1]) {
4225 int space_needed = data_size;
4226
4227 if (slot < btrfs_header_nritems(l))
4228 space_needed -= btrfs_leaf_free_space(root, l);
4229
4230 wret = push_leaf_right(trans, root, path, space_needed,
4231 space_needed, 0, 0);
4232 if (wret < 0)
4233 return wret;
4234 if (wret) {
4235 wret = push_leaf_left(trans, root, path, space_needed,
4236 space_needed, 0, (u32)-1);
4237 if (wret < 0)
4238 return wret;
4239 }
4240 l = path->nodes[0];
4241
4242 /* did the pushes work? */
4243 if (btrfs_leaf_free_space(root, l) >= data_size)
4244 return 0;
4245 }
4246
4247 if (!path->nodes[1]) {
4248 ret = insert_new_root(trans, root, path, 1);
4249 if (ret)
4250 return ret;
4251 }
4252 again:
4253 split = 1;
4254 l = path->nodes[0];
4255 slot = path->slots[0];
4256 nritems = btrfs_header_nritems(l);
4257 mid = (nritems + 1) / 2;
4258
4259 if (mid <= slot) {
4260 if (nritems == 1 ||
4261 leaf_space_used(l, mid, nritems - mid) + data_size >
4262 BTRFS_LEAF_DATA_SIZE(root)) {
4263 if (slot >= nritems) {
4264 split = 0;
4265 } else {
4266 mid = slot;
4267 if (mid != nritems &&
4268 leaf_space_used(l, mid, nritems - mid) +
4269 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4270 if (data_size && !tried_avoid_double)
4271 goto push_for_double;
4272 split = 2;
4273 }
4274 }
4275 }
4276 } else {
4277 if (leaf_space_used(l, 0, mid) + data_size >
4278 BTRFS_LEAF_DATA_SIZE(root)) {
4279 if (!extend && data_size && slot == 0) {
4280 split = 0;
4281 } else if ((extend || !data_size) && slot == 0) {
4282 mid = 1;
4283 } else {
4284 mid = slot;
4285 if (mid != nritems &&
4286 leaf_space_used(l, mid, nritems - mid) +
4287 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4288 if (data_size && !tried_avoid_double)
4289 goto push_for_double;
4290 split = 2;
4291 }
4292 }
4293 }
4294 }
4295
4296 if (split == 0)
4297 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4298 else
4299 btrfs_item_key(l, &disk_key, mid);
4300
4301 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4302 &disk_key, 0, l->start, 0);
4303 if (IS_ERR(right))
4304 return PTR_ERR(right);
4305
4306 root_add_used(root, root->nodesize);
4307
4308 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4309 btrfs_set_header_bytenr(right, right->start);
4310 btrfs_set_header_generation(right, trans->transid);
4311 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4312 btrfs_set_header_owner(right, root->root_key.objectid);
4313 btrfs_set_header_level(right, 0);
4314 write_extent_buffer(right, fs_info->fsid,
4315 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4316
4317 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4318 btrfs_header_chunk_tree_uuid(right),
4319 BTRFS_UUID_SIZE);
4320
4321 if (split == 0) {
4322 if (mid <= slot) {
4323 btrfs_set_header_nritems(right, 0);
4324 insert_ptr(trans, root, path, &disk_key, right->start,
4325 path->slots[1] + 1, 1);
4326 btrfs_tree_unlock(path->nodes[0]);
4327 free_extent_buffer(path->nodes[0]);
4328 path->nodes[0] = right;
4329 path->slots[0] = 0;
4330 path->slots[1] += 1;
4331 } else {
4332 btrfs_set_header_nritems(right, 0);
4333 insert_ptr(trans, root, path, &disk_key, right->start,
4334 path->slots[1], 1);
4335 btrfs_tree_unlock(path->nodes[0]);
4336 free_extent_buffer(path->nodes[0]);
4337 path->nodes[0] = right;
4338 path->slots[0] = 0;
4339 if (path->slots[1] == 0)
4340 fixup_low_keys(fs_info, path, &disk_key, 1);
4341 }
4342 btrfs_mark_buffer_dirty(right);
4343 return ret;
4344 }
4345
4346 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4347
4348 if (split == 2) {
4349 BUG_ON(num_doubles != 0);
4350 num_doubles++;
4351 goto again;
4352 }
4353
4354 return 0;
4355
4356 push_for_double:
4357 push_for_double_split(trans, root, path, data_size);
4358 tried_avoid_double = 1;
4359 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4360 return 0;
4361 goto again;
4362 }
4363
4364 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4365 struct btrfs_root *root,
4366 struct btrfs_path *path, int ins_len)
4367 {
4368 struct btrfs_key key;
4369 struct extent_buffer *leaf;
4370 struct btrfs_file_extent_item *fi;
4371 u64 extent_len = 0;
4372 u32 item_size;
4373 int ret;
4374
4375 leaf = path->nodes[0];
4376 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4377
4378 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4379 key.type != BTRFS_EXTENT_CSUM_KEY);
4380
4381 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4382 return 0;
4383
4384 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4385 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4386 fi = btrfs_item_ptr(leaf, path->slots[0],
4387 struct btrfs_file_extent_item);
4388 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4389 }
4390 btrfs_release_path(path);
4391
4392 path->keep_locks = 1;
4393 path->search_for_split = 1;
4394 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4395 path->search_for_split = 0;
4396 if (ret > 0)
4397 ret = -EAGAIN;
4398 if (ret < 0)
4399 goto err;
4400
4401 ret = -EAGAIN;
4402 leaf = path->nodes[0];
4403 /* if our item isn't there, return now */
4404 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4405 goto err;
4406
4407 /* the leaf has changed, it now has room. return now */
4408 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4409 goto err;
4410
4411 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4412 fi = btrfs_item_ptr(leaf, path->slots[0],
4413 struct btrfs_file_extent_item);
4414 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4415 goto err;
4416 }
4417
4418 btrfs_set_path_blocking(path);
4419 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4420 if (ret)
4421 goto err;
4422
4423 path->keep_locks = 0;
4424 btrfs_unlock_up_safe(path, 1);
4425 return 0;
4426 err:
4427 path->keep_locks = 0;
4428 return ret;
4429 }
4430
4431 static noinline int split_item(struct btrfs_trans_handle *trans,
4432 struct btrfs_root *root,
4433 struct btrfs_path *path,
4434 struct btrfs_key *new_key,
4435 unsigned long split_offset)
4436 {
4437 struct extent_buffer *leaf;
4438 struct btrfs_item *item;
4439 struct btrfs_item *new_item;
4440 int slot;
4441 char *buf;
4442 u32 nritems;
4443 u32 item_size;
4444 u32 orig_offset;
4445 struct btrfs_disk_key disk_key;
4446
4447 leaf = path->nodes[0];
4448 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4449
4450 btrfs_set_path_blocking(path);
4451
4452 item = btrfs_item_nr(path->slots[0]);
4453 orig_offset = btrfs_item_offset(leaf, item);
4454 item_size = btrfs_item_size(leaf, item);
4455
4456 buf = kmalloc(item_size, GFP_NOFS);
4457 if (!buf)
4458 return -ENOMEM;
4459
4460 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4461 path->slots[0]), item_size);
4462
4463 slot = path->slots[0] + 1;
4464 nritems = btrfs_header_nritems(leaf);
4465 if (slot != nritems) {
4466 /* shift the items */
4467 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4468 btrfs_item_nr_offset(slot),
4469 (nritems - slot) * sizeof(struct btrfs_item));
4470 }
4471
4472 btrfs_cpu_key_to_disk(&disk_key, new_key);
4473 btrfs_set_item_key(leaf, &disk_key, slot);
4474
4475 new_item = btrfs_item_nr(slot);
4476
4477 btrfs_set_item_offset(leaf, new_item, orig_offset);
4478 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4479
4480 btrfs_set_item_offset(leaf, item,
4481 orig_offset + item_size - split_offset);
4482 btrfs_set_item_size(leaf, item, split_offset);
4483
4484 btrfs_set_header_nritems(leaf, nritems + 1);
4485
4486 /* write the data for the start of the original item */
4487 write_extent_buffer(leaf, buf,
4488 btrfs_item_ptr_offset(leaf, path->slots[0]),
4489 split_offset);
4490
4491 /* write the data for the new item */
4492 write_extent_buffer(leaf, buf + split_offset,
4493 btrfs_item_ptr_offset(leaf, slot),
4494 item_size - split_offset);
4495 btrfs_mark_buffer_dirty(leaf);
4496
4497 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4498 kfree(buf);
4499 return 0;
4500 }
4501
4502 /*
4503 * This function splits a single item into two items,
4504 * giving 'new_key' to the new item and splitting the
4505 * old one at split_offset (from the start of the item).
4506 *
4507 * The path may be released by this operation. After
4508 * the split, the path is pointing to the old item. The
4509 * new item is going to be in the same node as the old one.
4510 *
4511 * Note, the item being split must be smaller enough to live alone on
4512 * a tree block with room for one extra struct btrfs_item
4513 *
4514 * This allows us to split the item in place, keeping a lock on the
4515 * leaf the entire time.
4516 */
4517 int btrfs_split_item(struct btrfs_trans_handle *trans,
4518 struct btrfs_root *root,
4519 struct btrfs_path *path,
4520 struct btrfs_key *new_key,
4521 unsigned long split_offset)
4522 {
4523 int ret;
4524 ret = setup_leaf_for_split(trans, root, path,
4525 sizeof(struct btrfs_item));
4526 if (ret)
4527 return ret;
4528
4529 ret = split_item(trans, root, path, new_key, split_offset);
4530 return ret;
4531 }
4532
4533 /*
4534 * This function duplicate a item, giving 'new_key' to the new item.
4535 * It guarantees both items live in the same tree leaf and the new item
4536 * is contiguous with the original item.
4537 *
4538 * This allows us to split file extent in place, keeping a lock on the
4539 * leaf the entire time.
4540 */
4541 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4542 struct btrfs_root *root,
4543 struct btrfs_path *path,
4544 struct btrfs_key *new_key)
4545 {
4546 struct extent_buffer *leaf;
4547 int ret;
4548 u32 item_size;
4549
4550 leaf = path->nodes[0];
4551 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4552 ret = setup_leaf_for_split(trans, root, path,
4553 item_size + sizeof(struct btrfs_item));
4554 if (ret)
4555 return ret;
4556
4557 path->slots[0]++;
4558 setup_items_for_insert(root, path, new_key, &item_size,
4559 item_size, item_size +
4560 sizeof(struct btrfs_item), 1);
4561 leaf = path->nodes[0];
4562 memcpy_extent_buffer(leaf,
4563 btrfs_item_ptr_offset(leaf, path->slots[0]),
4564 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4565 item_size);
4566 return 0;
4567 }
4568
4569 /*
4570 * make the item pointed to by the path smaller. new_size indicates
4571 * how small to make it, and from_end tells us if we just chop bytes
4572 * off the end of the item or if we shift the item to chop bytes off
4573 * the front.
4574 */
4575 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4576 u32 new_size, int from_end)
4577 {
4578 int slot;
4579 struct extent_buffer *leaf;
4580 struct btrfs_item *item;
4581 u32 nritems;
4582 unsigned int data_end;
4583 unsigned int old_data_start;
4584 unsigned int old_size;
4585 unsigned int size_diff;
4586 int i;
4587 struct btrfs_map_token token;
4588
4589 btrfs_init_map_token(&token);
4590
4591 leaf = path->nodes[0];
4592 slot = path->slots[0];
4593
4594 old_size = btrfs_item_size_nr(leaf, slot);
4595 if (old_size == new_size)
4596 return;
4597
4598 nritems = btrfs_header_nritems(leaf);
4599 data_end = leaf_data_end(root, leaf);
4600
4601 old_data_start = btrfs_item_offset_nr(leaf, slot);
4602
4603 size_diff = old_size - new_size;
4604
4605 BUG_ON(slot < 0);
4606 BUG_ON(slot >= nritems);
4607
4608 /*
4609 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4610 */
4611 /* first correct the data pointers */
4612 for (i = slot; i < nritems; i++) {
4613 u32 ioff;
4614 item = btrfs_item_nr(i);
4615
4616 ioff = btrfs_token_item_offset(leaf, item, &token);
4617 btrfs_set_token_item_offset(leaf, item,
4618 ioff + size_diff, &token);
4619 }
4620
4621 /* shift the data */
4622 if (from_end) {
4623 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4624 data_end + size_diff, btrfs_leaf_data(leaf) +
4625 data_end, old_data_start + new_size - data_end);
4626 } else {
4627 struct btrfs_disk_key disk_key;
4628 u64 offset;
4629
4630 btrfs_item_key(leaf, &disk_key, slot);
4631
4632 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4633 unsigned long ptr;
4634 struct btrfs_file_extent_item *fi;
4635
4636 fi = btrfs_item_ptr(leaf, slot,
4637 struct btrfs_file_extent_item);
4638 fi = (struct btrfs_file_extent_item *)(
4639 (unsigned long)fi - size_diff);
4640
4641 if (btrfs_file_extent_type(leaf, fi) ==
4642 BTRFS_FILE_EXTENT_INLINE) {
4643 ptr = btrfs_item_ptr_offset(leaf, slot);
4644 memmove_extent_buffer(leaf, ptr,
4645 (unsigned long)fi,
4646 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4647 }
4648 }
4649
4650 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4651 data_end + size_diff, btrfs_leaf_data(leaf) +
4652 data_end, old_data_start - data_end);
4653
4654 offset = btrfs_disk_key_offset(&disk_key);
4655 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4656 btrfs_set_item_key(leaf, &disk_key, slot);
4657 if (slot == 0)
4658 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4659 }
4660
4661 item = btrfs_item_nr(slot);
4662 btrfs_set_item_size(leaf, item, new_size);
4663 btrfs_mark_buffer_dirty(leaf);
4664
4665 if (btrfs_leaf_free_space(root, leaf) < 0) {
4666 btrfs_print_leaf(root, leaf);
4667 BUG();
4668 }
4669 }
4670
4671 /*
4672 * make the item pointed to by the path bigger, data_size is the added size.
4673 */
4674 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4675 u32 data_size)
4676 {
4677 int slot;
4678 struct extent_buffer *leaf;
4679 struct btrfs_item *item;
4680 u32 nritems;
4681 unsigned int data_end;
4682 unsigned int old_data;
4683 unsigned int old_size;
4684 int i;
4685 struct btrfs_map_token token;
4686
4687 btrfs_init_map_token(&token);
4688
4689 leaf = path->nodes[0];
4690
4691 nritems = btrfs_header_nritems(leaf);
4692 data_end = leaf_data_end(root, leaf);
4693
4694 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4695 btrfs_print_leaf(root, leaf);
4696 BUG();
4697 }
4698 slot = path->slots[0];
4699 old_data = btrfs_item_end_nr(leaf, slot);
4700
4701 BUG_ON(slot < 0);
4702 if (slot >= nritems) {
4703 btrfs_print_leaf(root, leaf);
4704 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4705 slot, nritems);
4706 BUG_ON(1);
4707 }
4708
4709 /*
4710 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4711 */
4712 /* first correct the data pointers */
4713 for (i = slot; i < nritems; i++) {
4714 u32 ioff;
4715 item = btrfs_item_nr(i);
4716
4717 ioff = btrfs_token_item_offset(leaf, item, &token);
4718 btrfs_set_token_item_offset(leaf, item,
4719 ioff - data_size, &token);
4720 }
4721
4722 /* shift the data */
4723 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4724 data_end - data_size, btrfs_leaf_data(leaf) +
4725 data_end, old_data - data_end);
4726
4727 data_end = old_data;
4728 old_size = btrfs_item_size_nr(leaf, slot);
4729 item = btrfs_item_nr(slot);
4730 btrfs_set_item_size(leaf, item, old_size + data_size);
4731 btrfs_mark_buffer_dirty(leaf);
4732
4733 if (btrfs_leaf_free_space(root, leaf) < 0) {
4734 btrfs_print_leaf(root, leaf);
4735 BUG();
4736 }
4737 }
4738
4739 /*
4740 * this is a helper for btrfs_insert_empty_items, the main goal here is
4741 * to save stack depth by doing the bulk of the work in a function
4742 * that doesn't call btrfs_search_slot
4743 */
4744 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4745 struct btrfs_key *cpu_key, u32 *data_size,
4746 u32 total_data, u32 total_size, int nr)
4747 {
4748 struct btrfs_item *item;
4749 int i;
4750 u32 nritems;
4751 unsigned int data_end;
4752 struct btrfs_disk_key disk_key;
4753 struct extent_buffer *leaf;
4754 int slot;
4755 struct btrfs_map_token token;
4756
4757 if (path->slots[0] == 0) {
4758 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4759 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4760 }
4761 btrfs_unlock_up_safe(path, 1);
4762
4763 btrfs_init_map_token(&token);
4764
4765 leaf = path->nodes[0];
4766 slot = path->slots[0];
4767
4768 nritems = btrfs_header_nritems(leaf);
4769 data_end = leaf_data_end(root, leaf);
4770
4771 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4772 btrfs_print_leaf(root, leaf);
4773 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4774 total_size, btrfs_leaf_free_space(root, leaf));
4775 BUG();
4776 }
4777
4778 if (slot != nritems) {
4779 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4780
4781 if (old_data < data_end) {
4782 btrfs_print_leaf(root, leaf);
4783 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4784 slot, old_data, data_end);
4785 BUG_ON(1);
4786 }
4787 /*
4788 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4789 */
4790 /* first correct the data pointers */
4791 for (i = slot; i < nritems; i++) {
4792 u32 ioff;
4793
4794 item = btrfs_item_nr( i);
4795 ioff = btrfs_token_item_offset(leaf, item, &token);
4796 btrfs_set_token_item_offset(leaf, item,
4797 ioff - total_data, &token);
4798 }
4799 /* shift the items */
4800 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4801 btrfs_item_nr_offset(slot),
4802 (nritems - slot) * sizeof(struct btrfs_item));
4803
4804 /* shift the data */
4805 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4806 data_end - total_data, btrfs_leaf_data(leaf) +
4807 data_end, old_data - data_end);
4808 data_end = old_data;
4809 }
4810
4811 /* setup the item for the new data */
4812 for (i = 0; i < nr; i++) {
4813 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4814 btrfs_set_item_key(leaf, &disk_key, slot + i);
4815 item = btrfs_item_nr(slot + i);
4816 btrfs_set_token_item_offset(leaf, item,
4817 data_end - data_size[i], &token);
4818 data_end -= data_size[i];
4819 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4820 }
4821
4822 btrfs_set_header_nritems(leaf, nritems + nr);
4823 btrfs_mark_buffer_dirty(leaf);
4824
4825 if (btrfs_leaf_free_space(root, leaf) < 0) {
4826 btrfs_print_leaf(root, leaf);
4827 BUG();
4828 }
4829 }
4830
4831 /*
4832 * Given a key and some data, insert items into the tree.
4833 * This does all the path init required, making room in the tree if needed.
4834 */
4835 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4836 struct btrfs_root *root,
4837 struct btrfs_path *path,
4838 struct btrfs_key *cpu_key, u32 *data_size,
4839 int nr)
4840 {
4841 int ret = 0;
4842 int slot;
4843 int i;
4844 u32 total_size = 0;
4845 u32 total_data = 0;
4846
4847 for (i = 0; i < nr; i++)
4848 total_data += data_size[i];
4849
4850 total_size = total_data + (nr * sizeof(struct btrfs_item));
4851 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4852 if (ret == 0)
4853 return -EEXIST;
4854 if (ret < 0)
4855 return ret;
4856
4857 slot = path->slots[0];
4858 BUG_ON(slot < 0);
4859
4860 setup_items_for_insert(root, path, cpu_key, data_size,
4861 total_data, total_size, nr);
4862 return 0;
4863 }
4864
4865 /*
4866 * Given a key and some data, insert an item into the tree.
4867 * This does all the path init required, making room in the tree if needed.
4868 */
4869 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4870 *root, struct btrfs_key *cpu_key, void *data, u32
4871 data_size)
4872 {
4873 int ret = 0;
4874 struct btrfs_path *path;
4875 struct extent_buffer *leaf;
4876 unsigned long ptr;
4877
4878 path = btrfs_alloc_path();
4879 if (!path)
4880 return -ENOMEM;
4881 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4882 if (!ret) {
4883 leaf = path->nodes[0];
4884 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4885 write_extent_buffer(leaf, data, ptr, data_size);
4886 btrfs_mark_buffer_dirty(leaf);
4887 }
4888 btrfs_free_path(path);
4889 return ret;
4890 }
4891
4892 /*
4893 * delete the pointer from a given node.
4894 *
4895 * the tree should have been previously balanced so the deletion does not
4896 * empty a node.
4897 */
4898 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4899 int level, int slot)
4900 {
4901 struct extent_buffer *parent = path->nodes[level];
4902 u32 nritems;
4903 int ret;
4904
4905 nritems = btrfs_header_nritems(parent);
4906 if (slot != nritems - 1) {
4907 if (level)
4908 tree_mod_log_eb_move(root->fs_info, parent, slot,
4909 slot + 1, nritems - slot - 1);
4910 memmove_extent_buffer(parent,
4911 btrfs_node_key_ptr_offset(slot),
4912 btrfs_node_key_ptr_offset(slot + 1),
4913 sizeof(struct btrfs_key_ptr) *
4914 (nritems - slot - 1));
4915 } else if (level) {
4916 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4917 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4918 BUG_ON(ret < 0);
4919 }
4920
4921 nritems--;
4922 btrfs_set_header_nritems(parent, nritems);
4923 if (nritems == 0 && parent == root->node) {
4924 BUG_ON(btrfs_header_level(root->node) != 1);
4925 /* just turn the root into a leaf and break */
4926 btrfs_set_header_level(root->node, 0);
4927 } else if (slot == 0) {
4928 struct btrfs_disk_key disk_key;
4929
4930 btrfs_node_key(parent, &disk_key, 0);
4931 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4932 }
4933 btrfs_mark_buffer_dirty(parent);
4934 }
4935
4936 /*
4937 * a helper function to delete the leaf pointed to by path->slots[1] and
4938 * path->nodes[1].
4939 *
4940 * This deletes the pointer in path->nodes[1] and frees the leaf
4941 * block extent. zero is returned if it all worked out, < 0 otherwise.
4942 *
4943 * The path must have already been setup for deleting the leaf, including
4944 * all the proper balancing. path->nodes[1] must be locked.
4945 */
4946 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4947 struct btrfs_root *root,
4948 struct btrfs_path *path,
4949 struct extent_buffer *leaf)
4950 {
4951 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4952 del_ptr(root, path, 1, path->slots[1]);
4953
4954 /*
4955 * btrfs_free_extent is expensive, we want to make sure we
4956 * aren't holding any locks when we call it
4957 */
4958 btrfs_unlock_up_safe(path, 0);
4959
4960 root_sub_used(root, leaf->len);
4961
4962 extent_buffer_get(leaf);
4963 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4964 free_extent_buffer_stale(leaf);
4965 }
4966 /*
4967 * delete the item at the leaf level in path. If that empties
4968 * the leaf, remove it from the tree
4969 */
4970 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4971 struct btrfs_path *path, int slot, int nr)
4972 {
4973 struct extent_buffer *leaf;
4974 struct btrfs_item *item;
4975 u32 last_off;
4976 u32 dsize = 0;
4977 int ret = 0;
4978 int wret;
4979 int i;
4980 u32 nritems;
4981 struct btrfs_map_token token;
4982
4983 btrfs_init_map_token(&token);
4984
4985 leaf = path->nodes[0];
4986 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4987
4988 for (i = 0; i < nr; i++)
4989 dsize += btrfs_item_size_nr(leaf, slot + i);
4990
4991 nritems = btrfs_header_nritems(leaf);
4992
4993 if (slot + nr != nritems) {
4994 int data_end = leaf_data_end(root, leaf);
4995
4996 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4997 data_end + dsize,
4998 btrfs_leaf_data(leaf) + data_end,
4999 last_off - data_end);
5000
5001 for (i = slot + nr; i < nritems; i++) {
5002 u32 ioff;
5003
5004 item = btrfs_item_nr(i);
5005 ioff = btrfs_token_item_offset(leaf, item, &token);
5006 btrfs_set_token_item_offset(leaf, item,
5007 ioff + dsize, &token);
5008 }
5009
5010 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5011 btrfs_item_nr_offset(slot + nr),
5012 sizeof(struct btrfs_item) *
5013 (nritems - slot - nr));
5014 }
5015 btrfs_set_header_nritems(leaf, nritems - nr);
5016 nritems -= nr;
5017
5018 /* delete the leaf if we've emptied it */
5019 if (nritems == 0) {
5020 if (leaf == root->node) {
5021 btrfs_set_header_level(leaf, 0);
5022 } else {
5023 btrfs_set_path_blocking(path);
5024 clean_tree_block(trans, root->fs_info, leaf);
5025 btrfs_del_leaf(trans, root, path, leaf);
5026 }
5027 } else {
5028 int used = leaf_space_used(leaf, 0, nritems);
5029 if (slot == 0) {
5030 struct btrfs_disk_key disk_key;
5031
5032 btrfs_item_key(leaf, &disk_key, 0);
5033 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5034 }
5035
5036 /* delete the leaf if it is mostly empty */
5037 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5038 /* push_leaf_left fixes the path.
5039 * make sure the path still points to our leaf
5040 * for possible call to del_ptr below
5041 */
5042 slot = path->slots[1];
5043 extent_buffer_get(leaf);
5044
5045 btrfs_set_path_blocking(path);
5046 wret = push_leaf_left(trans, root, path, 1, 1,
5047 1, (u32)-1);
5048 if (wret < 0 && wret != -ENOSPC)
5049 ret = wret;
5050
5051 if (path->nodes[0] == leaf &&
5052 btrfs_header_nritems(leaf)) {
5053 wret = push_leaf_right(trans, root, path, 1,
5054 1, 1, 0);
5055 if (wret < 0 && wret != -ENOSPC)
5056 ret = wret;
5057 }
5058
5059 if (btrfs_header_nritems(leaf) == 0) {
5060 path->slots[1] = slot;
5061 btrfs_del_leaf(trans, root, path, leaf);
5062 free_extent_buffer(leaf);
5063 ret = 0;
5064 } else {
5065 /* if we're still in the path, make sure
5066 * we're dirty. Otherwise, one of the
5067 * push_leaf functions must have already
5068 * dirtied this buffer
5069 */
5070 if (path->nodes[0] == leaf)
5071 btrfs_mark_buffer_dirty(leaf);
5072 free_extent_buffer(leaf);
5073 }
5074 } else {
5075 btrfs_mark_buffer_dirty(leaf);
5076 }
5077 }
5078 return ret;
5079 }
5080
5081 /*
5082 * search the tree again to find a leaf with lesser keys
5083 * returns 0 if it found something or 1 if there are no lesser leaves.
5084 * returns < 0 on io errors.
5085 *
5086 * This may release the path, and so you may lose any locks held at the
5087 * time you call it.
5088 */
5089 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5090 {
5091 struct btrfs_key key;
5092 struct btrfs_disk_key found_key;
5093 int ret;
5094
5095 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5096
5097 if (key.offset > 0) {
5098 key.offset--;
5099 } else if (key.type > 0) {
5100 key.type--;
5101 key.offset = (u64)-1;
5102 } else if (key.objectid > 0) {
5103 key.objectid--;
5104 key.type = (u8)-1;
5105 key.offset = (u64)-1;
5106 } else {
5107 return 1;
5108 }
5109
5110 btrfs_release_path(path);
5111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5112 if (ret < 0)
5113 return ret;
5114 btrfs_item_key(path->nodes[0], &found_key, 0);
5115 ret = comp_keys(&found_key, &key);
5116 /*
5117 * We might have had an item with the previous key in the tree right
5118 * before we released our path. And after we released our path, that
5119 * item might have been pushed to the first slot (0) of the leaf we
5120 * were holding due to a tree balance. Alternatively, an item with the
5121 * previous key can exist as the only element of a leaf (big fat item).
5122 * Therefore account for these 2 cases, so that our callers (like
5123 * btrfs_previous_item) don't miss an existing item with a key matching
5124 * the previous key we computed above.
5125 */
5126 if (ret <= 0)
5127 return 0;
5128 return 1;
5129 }
5130
5131 /*
5132 * A helper function to walk down the tree starting at min_key, and looking
5133 * for nodes or leaves that are have a minimum transaction id.
5134 * This is used by the btree defrag code, and tree logging
5135 *
5136 * This does not cow, but it does stuff the starting key it finds back
5137 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5138 * key and get a writable path.
5139 *
5140 * This does lock as it descends, and path->keep_locks should be set
5141 * to 1 by the caller.
5142 *
5143 * This honors path->lowest_level to prevent descent past a given level
5144 * of the tree.
5145 *
5146 * min_trans indicates the oldest transaction that you are interested
5147 * in walking through. Any nodes or leaves older than min_trans are
5148 * skipped over (without reading them).
5149 *
5150 * returns zero if something useful was found, < 0 on error and 1 if there
5151 * was nothing in the tree that matched the search criteria.
5152 */
5153 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5154 struct btrfs_path *path,
5155 u64 min_trans)
5156 {
5157 struct extent_buffer *cur;
5158 struct btrfs_key found_key;
5159 int slot;
5160 int sret;
5161 u32 nritems;
5162 int level;
5163 int ret = 1;
5164 int keep_locks = path->keep_locks;
5165
5166 path->keep_locks = 1;
5167 again:
5168 cur = btrfs_read_lock_root_node(root);
5169 level = btrfs_header_level(cur);
5170 WARN_ON(path->nodes[level]);
5171 path->nodes[level] = cur;
5172 path->locks[level] = BTRFS_READ_LOCK;
5173
5174 if (btrfs_header_generation(cur) < min_trans) {
5175 ret = 1;
5176 goto out;
5177 }
5178 while (1) {
5179 nritems = btrfs_header_nritems(cur);
5180 level = btrfs_header_level(cur);
5181 sret = bin_search(cur, min_key, level, &slot);
5182
5183 /* at the lowest level, we're done, setup the path and exit */
5184 if (level == path->lowest_level) {
5185 if (slot >= nritems)
5186 goto find_next_key;
5187 ret = 0;
5188 path->slots[level] = slot;
5189 btrfs_item_key_to_cpu(cur, &found_key, slot);
5190 goto out;
5191 }
5192 if (sret && slot > 0)
5193 slot--;
5194 /*
5195 * check this node pointer against the min_trans parameters.
5196 * If it is too old, old, skip to the next one.
5197 */
5198 while (slot < nritems) {
5199 u64 gen;
5200
5201 gen = btrfs_node_ptr_generation(cur, slot);
5202 if (gen < min_trans) {
5203 slot++;
5204 continue;
5205 }
5206 break;
5207 }
5208 find_next_key:
5209 /*
5210 * we didn't find a candidate key in this node, walk forward
5211 * and find another one
5212 */
5213 if (slot >= nritems) {
5214 path->slots[level] = slot;
5215 btrfs_set_path_blocking(path);
5216 sret = btrfs_find_next_key(root, path, min_key, level,
5217 min_trans);
5218 if (sret == 0) {
5219 btrfs_release_path(path);
5220 goto again;
5221 } else {
5222 goto out;
5223 }
5224 }
5225 /* save our key for returning back */
5226 btrfs_node_key_to_cpu(cur, &found_key, slot);
5227 path->slots[level] = slot;
5228 if (level == path->lowest_level) {
5229 ret = 0;
5230 goto out;
5231 }
5232 btrfs_set_path_blocking(path);
5233 cur = read_node_slot(root, cur, slot);
5234 if (IS_ERR(cur)) {
5235 ret = PTR_ERR(cur);
5236 goto out;
5237 }
5238
5239 btrfs_tree_read_lock(cur);
5240
5241 path->locks[level - 1] = BTRFS_READ_LOCK;
5242 path->nodes[level - 1] = cur;
5243 unlock_up(path, level, 1, 0, NULL);
5244 btrfs_clear_path_blocking(path, NULL, 0);
5245 }
5246 out:
5247 path->keep_locks = keep_locks;
5248 if (ret == 0) {
5249 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5250 btrfs_set_path_blocking(path);
5251 memcpy(min_key, &found_key, sizeof(found_key));
5252 }
5253 return ret;
5254 }
5255
5256 static int tree_move_down(struct btrfs_root *root,
5257 struct btrfs_path *path,
5258 int *level, int root_level)
5259 {
5260 struct extent_buffer *eb;
5261
5262 BUG_ON(*level == 0);
5263 eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5264 if (IS_ERR(eb))
5265 return PTR_ERR(eb);
5266
5267 path->nodes[*level - 1] = eb;
5268 path->slots[*level - 1] = 0;
5269 (*level)--;
5270 return 0;
5271 }
5272
5273 static int tree_move_next_or_upnext(struct btrfs_root *root,
5274 struct btrfs_path *path,
5275 int *level, int root_level)
5276 {
5277 int ret = 0;
5278 int nritems;
5279 nritems = btrfs_header_nritems(path->nodes[*level]);
5280
5281 path->slots[*level]++;
5282
5283 while (path->slots[*level] >= nritems) {
5284 if (*level == root_level)
5285 return -1;
5286
5287 /* move upnext */
5288 path->slots[*level] = 0;
5289 free_extent_buffer(path->nodes[*level]);
5290 path->nodes[*level] = NULL;
5291 (*level)++;
5292 path->slots[*level]++;
5293
5294 nritems = btrfs_header_nritems(path->nodes[*level]);
5295 ret = 1;
5296 }
5297 return ret;
5298 }
5299
5300 /*
5301 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5302 * or down.
5303 */
5304 static int tree_advance(struct btrfs_root *root,
5305 struct btrfs_path *path,
5306 int *level, int root_level,
5307 int allow_down,
5308 struct btrfs_key *key)
5309 {
5310 int ret;
5311
5312 if (*level == 0 || !allow_down) {
5313 ret = tree_move_next_or_upnext(root, path, level, root_level);
5314 } else {
5315 ret = tree_move_down(root, path, level, root_level);
5316 }
5317 if (ret >= 0) {
5318 if (*level == 0)
5319 btrfs_item_key_to_cpu(path->nodes[*level], key,
5320 path->slots[*level]);
5321 else
5322 btrfs_node_key_to_cpu(path->nodes[*level], key,
5323 path->slots[*level]);
5324 }
5325 return ret;
5326 }
5327
5328 static int tree_compare_item(struct btrfs_root *left_root,
5329 struct btrfs_path *left_path,
5330 struct btrfs_path *right_path,
5331 char *tmp_buf)
5332 {
5333 int cmp;
5334 int len1, len2;
5335 unsigned long off1, off2;
5336
5337 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5338 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5339 if (len1 != len2)
5340 return 1;
5341
5342 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5343 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5344 right_path->slots[0]);
5345
5346 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5347
5348 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5349 if (cmp)
5350 return 1;
5351 return 0;
5352 }
5353
5354 #define ADVANCE 1
5355 #define ADVANCE_ONLY_NEXT -1
5356
5357 /*
5358 * This function compares two trees and calls the provided callback for
5359 * every changed/new/deleted item it finds.
5360 * If shared tree blocks are encountered, whole subtrees are skipped, making
5361 * the compare pretty fast on snapshotted subvolumes.
5362 *
5363 * This currently works on commit roots only. As commit roots are read only,
5364 * we don't do any locking. The commit roots are protected with transactions.
5365 * Transactions are ended and rejoined when a commit is tried in between.
5366 *
5367 * This function checks for modifications done to the trees while comparing.
5368 * If it detects a change, it aborts immediately.
5369 */
5370 int btrfs_compare_trees(struct btrfs_root *left_root,
5371 struct btrfs_root *right_root,
5372 btrfs_changed_cb_t changed_cb, void *ctx)
5373 {
5374 int ret;
5375 int cmp;
5376 struct btrfs_path *left_path = NULL;
5377 struct btrfs_path *right_path = NULL;
5378 struct btrfs_key left_key;
5379 struct btrfs_key right_key;
5380 char *tmp_buf = NULL;
5381 int left_root_level;
5382 int right_root_level;
5383 int left_level;
5384 int right_level;
5385 int left_end_reached;
5386 int right_end_reached;
5387 int advance_left;
5388 int advance_right;
5389 u64 left_blockptr;
5390 u64 right_blockptr;
5391 u64 left_gen;
5392 u64 right_gen;
5393
5394 left_path = btrfs_alloc_path();
5395 if (!left_path) {
5396 ret = -ENOMEM;
5397 goto out;
5398 }
5399 right_path = btrfs_alloc_path();
5400 if (!right_path) {
5401 ret = -ENOMEM;
5402 goto out;
5403 }
5404
5405 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5406 if (!tmp_buf) {
5407 tmp_buf = vmalloc(left_root->nodesize);
5408 if (!tmp_buf) {
5409 ret = -ENOMEM;
5410 goto out;
5411 }
5412 }
5413
5414 left_path->search_commit_root = 1;
5415 left_path->skip_locking = 1;
5416 right_path->search_commit_root = 1;
5417 right_path->skip_locking = 1;
5418
5419 /*
5420 * Strategy: Go to the first items of both trees. Then do
5421 *
5422 * If both trees are at level 0
5423 * Compare keys of current items
5424 * If left < right treat left item as new, advance left tree
5425 * and repeat
5426 * If left > right treat right item as deleted, advance right tree
5427 * and repeat
5428 * If left == right do deep compare of items, treat as changed if
5429 * needed, advance both trees and repeat
5430 * If both trees are at the same level but not at level 0
5431 * Compare keys of current nodes/leafs
5432 * If left < right advance left tree and repeat
5433 * If left > right advance right tree and repeat
5434 * If left == right compare blockptrs of the next nodes/leafs
5435 * If they match advance both trees but stay at the same level
5436 * and repeat
5437 * If they don't match advance both trees while allowing to go
5438 * deeper and repeat
5439 * If tree levels are different
5440 * Advance the tree that needs it and repeat
5441 *
5442 * Advancing a tree means:
5443 * If we are at level 0, try to go to the next slot. If that's not
5444 * possible, go one level up and repeat. Stop when we found a level
5445 * where we could go to the next slot. We may at this point be on a
5446 * node or a leaf.
5447 *
5448 * If we are not at level 0 and not on shared tree blocks, go one
5449 * level deeper.
5450 *
5451 * If we are not at level 0 and on shared tree blocks, go one slot to
5452 * the right if possible or go up and right.
5453 */
5454
5455 down_read(&left_root->fs_info->commit_root_sem);
5456 left_level = btrfs_header_level(left_root->commit_root);
5457 left_root_level = left_level;
5458 left_path->nodes[left_level] = left_root->commit_root;
5459 extent_buffer_get(left_path->nodes[left_level]);
5460
5461 right_level = btrfs_header_level(right_root->commit_root);
5462 right_root_level = right_level;
5463 right_path->nodes[right_level] = right_root->commit_root;
5464 extent_buffer_get(right_path->nodes[right_level]);
5465 up_read(&left_root->fs_info->commit_root_sem);
5466
5467 if (left_level == 0)
5468 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5469 &left_key, left_path->slots[left_level]);
5470 else
5471 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5472 &left_key, left_path->slots[left_level]);
5473 if (right_level == 0)
5474 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5475 &right_key, right_path->slots[right_level]);
5476 else
5477 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5478 &right_key, right_path->slots[right_level]);
5479
5480 left_end_reached = right_end_reached = 0;
5481 advance_left = advance_right = 0;
5482
5483 while (1) {
5484 if (advance_left && !left_end_reached) {
5485 ret = tree_advance(left_root, left_path, &left_level,
5486 left_root_level,
5487 advance_left != ADVANCE_ONLY_NEXT,
5488 &left_key);
5489 if (ret == -1)
5490 left_end_reached = ADVANCE;
5491 else if (ret < 0)
5492 goto out;
5493 advance_left = 0;
5494 }
5495 if (advance_right && !right_end_reached) {
5496 ret = tree_advance(right_root, right_path, &right_level,
5497 right_root_level,
5498 advance_right != ADVANCE_ONLY_NEXT,
5499 &right_key);
5500 if (ret == -1)
5501 right_end_reached = ADVANCE;
5502 else if (ret < 0)
5503 goto out;
5504 advance_right = 0;
5505 }
5506
5507 if (left_end_reached && right_end_reached) {
5508 ret = 0;
5509 goto out;
5510 } else if (left_end_reached) {
5511 if (right_level == 0) {
5512 ret = changed_cb(left_root, right_root,
5513 left_path, right_path,
5514 &right_key,
5515 BTRFS_COMPARE_TREE_DELETED,
5516 ctx);
5517 if (ret < 0)
5518 goto out;
5519 }
5520 advance_right = ADVANCE;
5521 continue;
5522 } else if (right_end_reached) {
5523 if (left_level == 0) {
5524 ret = changed_cb(left_root, right_root,
5525 left_path, right_path,
5526 &left_key,
5527 BTRFS_COMPARE_TREE_NEW,
5528 ctx);
5529 if (ret < 0)
5530 goto out;
5531 }
5532 advance_left = ADVANCE;
5533 continue;
5534 }
5535
5536 if (left_level == 0 && right_level == 0) {
5537 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5538 if (cmp < 0) {
5539 ret = changed_cb(left_root, right_root,
5540 left_path, right_path,
5541 &left_key,
5542 BTRFS_COMPARE_TREE_NEW,
5543 ctx);
5544 if (ret < 0)
5545 goto out;
5546 advance_left = ADVANCE;
5547 } else if (cmp > 0) {
5548 ret = changed_cb(left_root, right_root,
5549 left_path, right_path,
5550 &right_key,
5551 BTRFS_COMPARE_TREE_DELETED,
5552 ctx);
5553 if (ret < 0)
5554 goto out;
5555 advance_right = ADVANCE;
5556 } else {
5557 enum btrfs_compare_tree_result result;
5558
5559 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5560 ret = tree_compare_item(left_root, left_path,
5561 right_path, tmp_buf);
5562 if (ret)
5563 result = BTRFS_COMPARE_TREE_CHANGED;
5564 else
5565 result = BTRFS_COMPARE_TREE_SAME;
5566 ret = changed_cb(left_root, right_root,
5567 left_path, right_path,
5568 &left_key, result, ctx);
5569 if (ret < 0)
5570 goto out;
5571 advance_left = ADVANCE;
5572 advance_right = ADVANCE;
5573 }
5574 } else if (left_level == right_level) {
5575 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5576 if (cmp < 0) {
5577 advance_left = ADVANCE;
5578 } else if (cmp > 0) {
5579 advance_right = ADVANCE;
5580 } else {
5581 left_blockptr = btrfs_node_blockptr(
5582 left_path->nodes[left_level],
5583 left_path->slots[left_level]);
5584 right_blockptr = btrfs_node_blockptr(
5585 right_path->nodes[right_level],
5586 right_path->slots[right_level]);
5587 left_gen = btrfs_node_ptr_generation(
5588 left_path->nodes[left_level],
5589 left_path->slots[left_level]);
5590 right_gen = btrfs_node_ptr_generation(
5591 right_path->nodes[right_level],
5592 right_path->slots[right_level]);
5593 if (left_blockptr == right_blockptr &&
5594 left_gen == right_gen) {
5595 /*
5596 * As we're on a shared block, don't
5597 * allow to go deeper.
5598 */
5599 advance_left = ADVANCE_ONLY_NEXT;
5600 advance_right = ADVANCE_ONLY_NEXT;
5601 } else {
5602 advance_left = ADVANCE;
5603 advance_right = ADVANCE;
5604 }
5605 }
5606 } else if (left_level < right_level) {
5607 advance_right = ADVANCE;
5608 } else {
5609 advance_left = ADVANCE;
5610 }
5611 }
5612
5613 out:
5614 btrfs_free_path(left_path);
5615 btrfs_free_path(right_path);
5616 kvfree(tmp_buf);
5617 return ret;
5618 }
5619
5620 /*
5621 * this is similar to btrfs_next_leaf, but does not try to preserve
5622 * and fixup the path. It looks for and returns the next key in the
5623 * tree based on the current path and the min_trans parameters.
5624 *
5625 * 0 is returned if another key is found, < 0 if there are any errors
5626 * and 1 is returned if there are no higher keys in the tree
5627 *
5628 * path->keep_locks should be set to 1 on the search made before
5629 * calling this function.
5630 */
5631 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5632 struct btrfs_key *key, int level, u64 min_trans)
5633 {
5634 int slot;
5635 struct extent_buffer *c;
5636
5637 WARN_ON(!path->keep_locks);
5638 while (level < BTRFS_MAX_LEVEL) {
5639 if (!path->nodes[level])
5640 return 1;
5641
5642 slot = path->slots[level] + 1;
5643 c = path->nodes[level];
5644 next:
5645 if (slot >= btrfs_header_nritems(c)) {
5646 int ret;
5647 int orig_lowest;
5648 struct btrfs_key cur_key;
5649 if (level + 1 >= BTRFS_MAX_LEVEL ||
5650 !path->nodes[level + 1])
5651 return 1;
5652
5653 if (path->locks[level + 1]) {
5654 level++;
5655 continue;
5656 }
5657
5658 slot = btrfs_header_nritems(c) - 1;
5659 if (level == 0)
5660 btrfs_item_key_to_cpu(c, &cur_key, slot);
5661 else
5662 btrfs_node_key_to_cpu(c, &cur_key, slot);
5663
5664 orig_lowest = path->lowest_level;
5665 btrfs_release_path(path);
5666 path->lowest_level = level;
5667 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5668 0, 0);
5669 path->lowest_level = orig_lowest;
5670 if (ret < 0)
5671 return ret;
5672
5673 c = path->nodes[level];
5674 slot = path->slots[level];
5675 if (ret == 0)
5676 slot++;
5677 goto next;
5678 }
5679
5680 if (level == 0)
5681 btrfs_item_key_to_cpu(c, key, slot);
5682 else {
5683 u64 gen = btrfs_node_ptr_generation(c, slot);
5684
5685 if (gen < min_trans) {
5686 slot++;
5687 goto next;
5688 }
5689 btrfs_node_key_to_cpu(c, key, slot);
5690 }
5691 return 0;
5692 }
5693 return 1;
5694 }
5695
5696 /*
5697 * search the tree again to find a leaf with greater keys
5698 * returns 0 if it found something or 1 if there are no greater leaves.
5699 * returns < 0 on io errors.
5700 */
5701 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5702 {
5703 return btrfs_next_old_leaf(root, path, 0);
5704 }
5705
5706 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5707 u64 time_seq)
5708 {
5709 int slot;
5710 int level;
5711 struct extent_buffer *c;
5712 struct extent_buffer *next;
5713 struct btrfs_key key;
5714 u32 nritems;
5715 int ret;
5716 int old_spinning = path->leave_spinning;
5717 int next_rw_lock = 0;
5718
5719 nritems = btrfs_header_nritems(path->nodes[0]);
5720 if (nritems == 0)
5721 return 1;
5722
5723 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5724 again:
5725 level = 1;
5726 next = NULL;
5727 next_rw_lock = 0;
5728 btrfs_release_path(path);
5729
5730 path->keep_locks = 1;
5731 path->leave_spinning = 1;
5732
5733 if (time_seq)
5734 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5735 else
5736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 path->keep_locks = 0;
5738
5739 if (ret < 0)
5740 return ret;
5741
5742 nritems = btrfs_header_nritems(path->nodes[0]);
5743 /*
5744 * by releasing the path above we dropped all our locks. A balance
5745 * could have added more items next to the key that used to be
5746 * at the very end of the block. So, check again here and
5747 * advance the path if there are now more items available.
5748 */
5749 if (nritems > 0 && path->slots[0] < nritems - 1) {
5750 if (ret == 0)
5751 path->slots[0]++;
5752 ret = 0;
5753 goto done;
5754 }
5755 /*
5756 * So the above check misses one case:
5757 * - after releasing the path above, someone has removed the item that
5758 * used to be at the very end of the block, and balance between leafs
5759 * gets another one with bigger key.offset to replace it.
5760 *
5761 * This one should be returned as well, or we can get leaf corruption
5762 * later(esp. in __btrfs_drop_extents()).
5763 *
5764 * And a bit more explanation about this check,
5765 * with ret > 0, the key isn't found, the path points to the slot
5766 * where it should be inserted, so the path->slots[0] item must be the
5767 * bigger one.
5768 */
5769 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5770 ret = 0;
5771 goto done;
5772 }
5773
5774 while (level < BTRFS_MAX_LEVEL) {
5775 if (!path->nodes[level]) {
5776 ret = 1;
5777 goto done;
5778 }
5779
5780 slot = path->slots[level] + 1;
5781 c = path->nodes[level];
5782 if (slot >= btrfs_header_nritems(c)) {
5783 level++;
5784 if (level == BTRFS_MAX_LEVEL) {
5785 ret = 1;
5786 goto done;
5787 }
5788 continue;
5789 }
5790
5791 if (next) {
5792 btrfs_tree_unlock_rw(next, next_rw_lock);
5793 free_extent_buffer(next);
5794 }
5795
5796 next = c;
5797 next_rw_lock = path->locks[level];
5798 ret = read_block_for_search(NULL, root, path, &next, level,
5799 slot, &key, 0);
5800 if (ret == -EAGAIN)
5801 goto again;
5802
5803 if (ret < 0) {
5804 btrfs_release_path(path);
5805 goto done;
5806 }
5807
5808 if (!path->skip_locking) {
5809 ret = btrfs_try_tree_read_lock(next);
5810 if (!ret && time_seq) {
5811 /*
5812 * If we don't get the lock, we may be racing
5813 * with push_leaf_left, holding that lock while
5814 * itself waiting for the leaf we've currently
5815 * locked. To solve this situation, we give up
5816 * on our lock and cycle.
5817 */
5818 free_extent_buffer(next);
5819 btrfs_release_path(path);
5820 cond_resched();
5821 goto again;
5822 }
5823 if (!ret) {
5824 btrfs_set_path_blocking(path);
5825 btrfs_tree_read_lock(next);
5826 btrfs_clear_path_blocking(path, next,
5827 BTRFS_READ_LOCK);
5828 }
5829 next_rw_lock = BTRFS_READ_LOCK;
5830 }
5831 break;
5832 }
5833 path->slots[level] = slot;
5834 while (1) {
5835 level--;
5836 c = path->nodes[level];
5837 if (path->locks[level])
5838 btrfs_tree_unlock_rw(c, path->locks[level]);
5839
5840 free_extent_buffer(c);
5841 path->nodes[level] = next;
5842 path->slots[level] = 0;
5843 if (!path->skip_locking)
5844 path->locks[level] = next_rw_lock;
5845 if (!level)
5846 break;
5847
5848 ret = read_block_for_search(NULL, root, path, &next, level,
5849 0, &key, 0);
5850 if (ret == -EAGAIN)
5851 goto again;
5852
5853 if (ret < 0) {
5854 btrfs_release_path(path);
5855 goto done;
5856 }
5857
5858 if (!path->skip_locking) {
5859 ret = btrfs_try_tree_read_lock(next);
5860 if (!ret) {
5861 btrfs_set_path_blocking(path);
5862 btrfs_tree_read_lock(next);
5863 btrfs_clear_path_blocking(path, next,
5864 BTRFS_READ_LOCK);
5865 }
5866 next_rw_lock = BTRFS_READ_LOCK;
5867 }
5868 }
5869 ret = 0;
5870 done:
5871 unlock_up(path, 0, 1, 0, NULL);
5872 path->leave_spinning = old_spinning;
5873 if (!old_spinning)
5874 btrfs_set_path_blocking(path);
5875
5876 return ret;
5877 }
5878
5879 /*
5880 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5881 * searching until it gets past min_objectid or finds an item of 'type'
5882 *
5883 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5884 */
5885 int btrfs_previous_item(struct btrfs_root *root,
5886 struct btrfs_path *path, u64 min_objectid,
5887 int type)
5888 {
5889 struct btrfs_key found_key;
5890 struct extent_buffer *leaf;
5891 u32 nritems;
5892 int ret;
5893
5894 while (1) {
5895 if (path->slots[0] == 0) {
5896 btrfs_set_path_blocking(path);
5897 ret = btrfs_prev_leaf(root, path);
5898 if (ret != 0)
5899 return ret;
5900 } else {
5901 path->slots[0]--;
5902 }
5903 leaf = path->nodes[0];
5904 nritems = btrfs_header_nritems(leaf);
5905 if (nritems == 0)
5906 return 1;
5907 if (path->slots[0] == nritems)
5908 path->slots[0]--;
5909
5910 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911 if (found_key.objectid < min_objectid)
5912 break;
5913 if (found_key.type == type)
5914 return 0;
5915 if (found_key.objectid == min_objectid &&
5916 found_key.type < type)
5917 break;
5918 }
5919 return 1;
5920 }
5921
5922 /*
5923 * search in extent tree to find a previous Metadata/Data extent item with
5924 * min objecitd.
5925 *
5926 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5927 */
5928 int btrfs_previous_extent_item(struct btrfs_root *root,
5929 struct btrfs_path *path, u64 min_objectid)
5930 {
5931 struct btrfs_key found_key;
5932 struct extent_buffer *leaf;
5933 u32 nritems;
5934 int ret;
5935
5936 while (1) {
5937 if (path->slots[0] == 0) {
5938 btrfs_set_path_blocking(path);
5939 ret = btrfs_prev_leaf(root, path);
5940 if (ret != 0)
5941 return ret;
5942 } else {
5943 path->slots[0]--;
5944 }
5945 leaf = path->nodes[0];
5946 nritems = btrfs_header_nritems(leaf);
5947 if (nritems == 0)
5948 return 1;
5949 if (path->slots[0] == nritems)
5950 path->slots[0]--;
5951
5952 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5953 if (found_key.objectid < min_objectid)
5954 break;
5955 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5956 found_key.type == BTRFS_METADATA_ITEM_KEY)
5957 return 0;
5958 if (found_key.objectid == min_objectid &&
5959 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5960 break;
5961 }
5962 return 1;
5963 }
This page took 0.155473 seconds and 5 git commands to generate.