Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 if (btrfs_end_io_wq_cache)
114 kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116
117 /*
118 * async submit bios are used to offload expensive checksumming
119 * onto the worker threads. They checksum file and metadata bios
120 * just before they are sent down the IO stack.
121 */
122 struct async_submit_bio {
123 struct inode *inode;
124 struct bio *bio;
125 struct list_head list;
126 extent_submit_bio_hook_t *submit_bio_start;
127 extent_submit_bio_hook_t *submit_bio_done;
128 int rw;
129 int mirror_num;
130 unsigned long bio_flags;
131 /*
132 * bio_offset is optional, can be used if the pages in the bio
133 * can't tell us where in the file the bio should go
134 */
135 u64 bio_offset;
136 struct btrfs_work work;
137 int error;
138 };
139
140 /*
141 * Lockdep class keys for extent_buffer->lock's in this root. For a given
142 * eb, the lockdep key is determined by the btrfs_root it belongs to and
143 * the level the eb occupies in the tree.
144 *
145 * Different roots are used for different purposes and may nest inside each
146 * other and they require separate keysets. As lockdep keys should be
147 * static, assign keysets according to the purpose of the root as indicated
148 * by btrfs_root->objectid. This ensures that all special purpose roots
149 * have separate keysets.
150 *
151 * Lock-nesting across peer nodes is always done with the immediate parent
152 * node locked thus preventing deadlock. As lockdep doesn't know this, use
153 * subclass to avoid triggering lockdep warning in such cases.
154 *
155 * The key is set by the readpage_end_io_hook after the buffer has passed
156 * csum validation but before the pages are unlocked. It is also set by
157 * btrfs_init_new_buffer on freshly allocated blocks.
158 *
159 * We also add a check to make sure the highest level of the tree is the
160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
161 * needs update as well.
162 */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 # error
166 # endif
167
168 static struct btrfs_lockdep_keyset {
169 u64 id; /* root objectid */
170 const char *name_stem; /* lock name stem */
171 char names[BTRFS_MAX_LEVEL + 1][20];
172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
185 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186 { .id = 0, .name_stem = "tree" },
187 };
188
189 void __init btrfs_init_lockdep(void)
190 {
191 int i, j;
192
193 /* initialize lockdep class names */
194 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196
197 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198 snprintf(ks->names[j], sizeof(ks->names[j]),
199 "btrfs-%s-%02d", ks->name_stem, j);
200 }
201 }
202
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204 int level)
205 {
206 struct btrfs_lockdep_keyset *ks;
207
208 BUG_ON(level >= ARRAY_SIZE(ks->keys));
209
210 /* find the matching keyset, id 0 is the default entry */
211 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212 if (ks->id == objectid)
213 break;
214
215 lockdep_set_class_and_name(&eb->lock,
216 &ks->keys[level], ks->names[level]);
217 }
218
219 #endif
220
221 /*
222 * extents on the btree inode are pretty simple, there's one extent
223 * that covers the entire device
224 */
225 static struct extent_map *btree_get_extent(struct inode *inode,
226 struct page *page, size_t pg_offset, u64 start, u64 len,
227 int create)
228 {
229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230 struct extent_map *em;
231 int ret;
232
233 read_lock(&em_tree->lock);
234 em = lookup_extent_mapping(em_tree, start, len);
235 if (em) {
236 em->bdev =
237 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238 read_unlock(&em_tree->lock);
239 goto out;
240 }
241 read_unlock(&em_tree->lock);
242
243 em = alloc_extent_map();
244 if (!em) {
245 em = ERR_PTR(-ENOMEM);
246 goto out;
247 }
248 em->start = 0;
249 em->len = (u64)-1;
250 em->block_len = (u64)-1;
251 em->block_start = 0;
252 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
253
254 write_lock(&em_tree->lock);
255 ret = add_extent_mapping(em_tree, em, 0);
256 if (ret == -EEXIST) {
257 free_extent_map(em);
258 em = lookup_extent_mapping(em_tree, start, len);
259 if (!em)
260 em = ERR_PTR(-EIO);
261 } else if (ret) {
262 free_extent_map(em);
263 em = ERR_PTR(ret);
264 }
265 write_unlock(&em_tree->lock);
266
267 out:
268 return em;
269 }
270
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
272 {
273 return btrfs_crc32c(seed, data, len);
274 }
275
276 void btrfs_csum_final(u32 crc, char *result)
277 {
278 put_unaligned_le32(~crc, result);
279 }
280
281 /*
282 * compute the csum for a btree block, and either verify it or write it
283 * into the csum field of the block.
284 */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286 struct extent_buffer *buf,
287 int verify)
288 {
289 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290 char *result = NULL;
291 unsigned long len;
292 unsigned long cur_len;
293 unsigned long offset = BTRFS_CSUM_SIZE;
294 char *kaddr;
295 unsigned long map_start;
296 unsigned long map_len;
297 int err;
298 u32 crc = ~(u32)0;
299 unsigned long inline_result;
300
301 len = buf->len - offset;
302 while (len > 0) {
303 err = map_private_extent_buffer(buf, offset, 32,
304 &kaddr, &map_start, &map_len);
305 if (err)
306 return 1;
307 cur_len = min(len, map_len - (offset - map_start));
308 crc = btrfs_csum_data(kaddr + offset - map_start,
309 crc, cur_len);
310 len -= cur_len;
311 offset += cur_len;
312 }
313 if (csum_size > sizeof(inline_result)) {
314 result = kzalloc(csum_size, GFP_NOFS);
315 if (!result)
316 return 1;
317 } else {
318 result = (char *)&inline_result;
319 }
320
321 btrfs_csum_final(crc, result);
322
323 if (verify) {
324 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325 u32 val;
326 u32 found = 0;
327 memcpy(&found, result, csum_size);
328
329 read_extent_buffer(buf, &val, 0, csum_size);
330 btrfs_warn_rl(fs_info,
331 "%s checksum verify failed on %llu wanted %X found %X "
332 "level %d",
333 fs_info->sb->s_id, buf->start,
334 val, found, btrfs_header_level(buf));
335 if (result != (char *)&inline_result)
336 kfree(result);
337 return 1;
338 }
339 } else {
340 write_extent_buffer(buf, result, 0, csum_size);
341 }
342 if (result != (char *)&inline_result)
343 kfree(result);
344 return 0;
345 }
346
347 /*
348 * we can't consider a given block up to date unless the transid of the
349 * block matches the transid in the parent node's pointer. This is how we
350 * detect blocks that either didn't get written at all or got written
351 * in the wrong place.
352 */
353 static int verify_parent_transid(struct extent_io_tree *io_tree,
354 struct extent_buffer *eb, u64 parent_transid,
355 int atomic)
356 {
357 struct extent_state *cached_state = NULL;
358 int ret;
359 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360
361 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
362 return 0;
363
364 if (atomic)
365 return -EAGAIN;
366
367 if (need_lock) {
368 btrfs_tree_read_lock(eb);
369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
370 }
371
372 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
373 &cached_state);
374 if (extent_buffer_uptodate(eb) &&
375 btrfs_header_generation(eb) == parent_transid) {
376 ret = 0;
377 goto out;
378 }
379 btrfs_err_rl(eb->fs_info,
380 "parent transid verify failed on %llu wanted %llu found %llu",
381 eb->start,
382 parent_transid, btrfs_header_generation(eb));
383 ret = 1;
384
385 /*
386 * Things reading via commit roots that don't have normal protection,
387 * like send, can have a really old block in cache that may point at a
388 * block that has been free'd and re-allocated. So don't clear uptodate
389 * if we find an eb that is under IO (dirty/writeback) because we could
390 * end up reading in the stale data and then writing it back out and
391 * making everybody very sad.
392 */
393 if (!extent_buffer_under_io(eb))
394 clear_extent_buffer_uptodate(eb);
395 out:
396 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
397 &cached_state, GFP_NOFS);
398 if (need_lock)
399 btrfs_tree_read_unlock_blocking(eb);
400 return ret;
401 }
402
403 /*
404 * Return 0 if the superblock checksum type matches the checksum value of that
405 * algorithm. Pass the raw disk superblock data.
406 */
407 static int btrfs_check_super_csum(char *raw_disk_sb)
408 {
409 struct btrfs_super_block *disk_sb =
410 (struct btrfs_super_block *)raw_disk_sb;
411 u16 csum_type = btrfs_super_csum_type(disk_sb);
412 int ret = 0;
413
414 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
415 u32 crc = ~(u32)0;
416 const int csum_size = sizeof(crc);
417 char result[csum_size];
418
419 /*
420 * The super_block structure does not span the whole
421 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422 * is filled with zeros and is included in the checkum.
423 */
424 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426 btrfs_csum_final(crc, result);
427
428 if (memcmp(raw_disk_sb, result, csum_size))
429 ret = 1;
430 }
431
432 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
434 csum_type);
435 ret = 1;
436 }
437
438 return ret;
439 }
440
441 /*
442 * helper to read a given tree block, doing retries as required when
443 * the checksums don't match and we have alternate mirrors to try.
444 */
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446 struct extent_buffer *eb,
447 u64 start, u64 parent_transid)
448 {
449 struct extent_io_tree *io_tree;
450 int failed = 0;
451 int ret;
452 int num_copies = 0;
453 int mirror_num = 0;
454 int failed_mirror = 0;
455
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
458 while (1) {
459 ret = read_extent_buffer_pages(io_tree, eb, start,
460 WAIT_COMPLETE,
461 btree_get_extent, mirror_num);
462 if (!ret) {
463 if (!verify_parent_transid(io_tree, eb,
464 parent_transid, 0))
465 break;
466 else
467 ret = -EIO;
468 }
469
470 /*
471 * This buffer's crc is fine, but its contents are corrupted, so
472 * there is no reason to read the other copies, they won't be
473 * any less wrong.
474 */
475 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
476 break;
477
478 num_copies = btrfs_num_copies(root->fs_info,
479 eb->start, eb->len);
480 if (num_copies == 1)
481 break;
482
483 if (!failed_mirror) {
484 failed = 1;
485 failed_mirror = eb->read_mirror;
486 }
487
488 mirror_num++;
489 if (mirror_num == failed_mirror)
490 mirror_num++;
491
492 if (mirror_num > num_copies)
493 break;
494 }
495
496 if (failed && !ret && failed_mirror)
497 repair_eb_io_failure(root, eb, failed_mirror);
498
499 return ret;
500 }
501
502 /*
503 * checksum a dirty tree block before IO. This has extra checks to make sure
504 * we only fill in the checksum field in the first page of a multi-page block
505 */
506
507 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
508 {
509 u64 start = page_offset(page);
510 u64 found_start;
511 struct extent_buffer *eb;
512
513 eb = (struct extent_buffer *)page->private;
514 if (page != eb->pages[0])
515 return 0;
516 found_start = btrfs_header_bytenr(eb);
517 if (WARN_ON(found_start != start || !PageUptodate(page)))
518 return 0;
519 csum_tree_block(fs_info, eb, 0);
520 return 0;
521 }
522
523 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
524 struct extent_buffer *eb)
525 {
526 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
527 u8 fsid[BTRFS_UUID_SIZE];
528 int ret = 1;
529
530 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
531 while (fs_devices) {
532 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
533 ret = 0;
534 break;
535 }
536 fs_devices = fs_devices->seed;
537 }
538 return ret;
539 }
540
541 #define CORRUPT(reason, eb, root, slot) \
542 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
543 "root=%llu, slot=%d", reason, \
544 btrfs_header_bytenr(eb), root->objectid, slot)
545
546 static noinline int check_leaf(struct btrfs_root *root,
547 struct extent_buffer *leaf)
548 {
549 struct btrfs_key key;
550 struct btrfs_key leaf_key;
551 u32 nritems = btrfs_header_nritems(leaf);
552 int slot;
553
554 if (nritems == 0)
555 return 0;
556
557 /* Check the 0 item */
558 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
559 BTRFS_LEAF_DATA_SIZE(root)) {
560 CORRUPT("invalid item offset size pair", leaf, root, 0);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure each items keys are in the correct order and their
566 * offsets make sense. We only have to loop through nritems-1 because
567 * we check the current slot against the next slot, which verifies the
568 * next slot's offset+size makes sense and that the current's slot
569 * offset is correct.
570 */
571 for (slot = 0; slot < nritems - 1; slot++) {
572 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
573 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
574
575 /* Make sure the keys are in the right order */
576 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
577 CORRUPT("bad key order", leaf, root, slot);
578 return -EIO;
579 }
580
581 /*
582 * Make sure the offset and ends are right, remember that the
583 * item data starts at the end of the leaf and grows towards the
584 * front.
585 */
586 if (btrfs_item_offset_nr(leaf, slot) !=
587 btrfs_item_end_nr(leaf, slot + 1)) {
588 CORRUPT("slot offset bad", leaf, root, slot);
589 return -EIO;
590 }
591
592 /*
593 * Check to make sure that we don't point outside of the leaf,
594 * just incase all the items are consistent to eachother, but
595 * all point outside of the leaf.
596 */
597 if (btrfs_item_end_nr(leaf, slot) >
598 BTRFS_LEAF_DATA_SIZE(root)) {
599 CORRUPT("slot end outside of leaf", leaf, root, slot);
600 return -EIO;
601 }
602 }
603
604 return 0;
605 }
606
607 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
608 u64 phy_offset, struct page *page,
609 u64 start, u64 end, int mirror)
610 {
611 u64 found_start;
612 int found_level;
613 struct extent_buffer *eb;
614 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
615 int ret = 0;
616 int reads_done;
617
618 if (!page->private)
619 goto out;
620
621 eb = (struct extent_buffer *)page->private;
622
623 /* the pending IO might have been the only thing that kept this buffer
624 * in memory. Make sure we have a ref for all this other checks
625 */
626 extent_buffer_get(eb);
627
628 reads_done = atomic_dec_and_test(&eb->io_pages);
629 if (!reads_done)
630 goto err;
631
632 eb->read_mirror = mirror;
633 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
634 ret = -EIO;
635 goto err;
636 }
637
638 found_start = btrfs_header_bytenr(eb);
639 if (found_start != eb->start) {
640 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
641 found_start, eb->start);
642 ret = -EIO;
643 goto err;
644 }
645 if (check_tree_block_fsid(root->fs_info, eb)) {
646 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
647 eb->start);
648 ret = -EIO;
649 goto err;
650 }
651 found_level = btrfs_header_level(eb);
652 if (found_level >= BTRFS_MAX_LEVEL) {
653 btrfs_err(root->fs_info, "bad tree block level %d",
654 (int)btrfs_header_level(eb));
655 ret = -EIO;
656 goto err;
657 }
658
659 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
660 eb, found_level);
661
662 ret = csum_tree_block(root->fs_info, eb, 1);
663 if (ret) {
664 ret = -EIO;
665 goto err;
666 }
667
668 /*
669 * If this is a leaf block and it is corrupt, set the corrupt bit so
670 * that we don't try and read the other copies of this block, just
671 * return -EIO.
672 */
673 if (found_level == 0 && check_leaf(root, eb)) {
674 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675 ret = -EIO;
676 }
677
678 if (!ret)
679 set_extent_buffer_uptodate(eb);
680 err:
681 if (reads_done &&
682 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 btree_readahead_hook(root, eb, eb->start, ret);
684
685 if (ret) {
686 /*
687 * our io error hook is going to dec the io pages
688 * again, we have to make sure it has something
689 * to decrement
690 */
691 atomic_inc(&eb->io_pages);
692 clear_extent_buffer_uptodate(eb);
693 }
694 free_extent_buffer(eb);
695 out:
696 return ret;
697 }
698
699 static int btree_io_failed_hook(struct page *page, int failed_mirror)
700 {
701 struct extent_buffer *eb;
702 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
703
704 eb = (struct extent_buffer *)page->private;
705 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
706 eb->read_mirror = failed_mirror;
707 atomic_dec(&eb->io_pages);
708 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
709 btree_readahead_hook(root, eb, eb->start, -EIO);
710 return -EIO; /* we fixed nothing */
711 }
712
713 static void end_workqueue_bio(struct bio *bio)
714 {
715 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
716 struct btrfs_fs_info *fs_info;
717 struct btrfs_workqueue *wq;
718 btrfs_work_func_t func;
719
720 fs_info = end_io_wq->info;
721 end_io_wq->error = bio->bi_error;
722
723 if (bio->bi_rw & REQ_WRITE) {
724 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
725 wq = fs_info->endio_meta_write_workers;
726 func = btrfs_endio_meta_write_helper;
727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
728 wq = fs_info->endio_freespace_worker;
729 func = btrfs_freespace_write_helper;
730 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
731 wq = fs_info->endio_raid56_workers;
732 func = btrfs_endio_raid56_helper;
733 } else {
734 wq = fs_info->endio_write_workers;
735 func = btrfs_endio_write_helper;
736 }
737 } else {
738 if (unlikely(end_io_wq->metadata ==
739 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
740 wq = fs_info->endio_repair_workers;
741 func = btrfs_endio_repair_helper;
742 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
743 wq = fs_info->endio_raid56_workers;
744 func = btrfs_endio_raid56_helper;
745 } else if (end_io_wq->metadata) {
746 wq = fs_info->endio_meta_workers;
747 func = btrfs_endio_meta_helper;
748 } else {
749 wq = fs_info->endio_workers;
750 func = btrfs_endio_helper;
751 }
752 }
753
754 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
755 btrfs_queue_work(wq, &end_io_wq->work);
756 }
757
758 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
759 enum btrfs_wq_endio_type metadata)
760 {
761 struct btrfs_end_io_wq *end_io_wq;
762
763 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
764 if (!end_io_wq)
765 return -ENOMEM;
766
767 end_io_wq->private = bio->bi_private;
768 end_io_wq->end_io = bio->bi_end_io;
769 end_io_wq->info = info;
770 end_io_wq->error = 0;
771 end_io_wq->bio = bio;
772 end_io_wq->metadata = metadata;
773
774 bio->bi_private = end_io_wq;
775 bio->bi_end_io = end_workqueue_bio;
776 return 0;
777 }
778
779 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
780 {
781 unsigned long limit = min_t(unsigned long,
782 info->thread_pool_size,
783 info->fs_devices->open_devices);
784 return 256 * limit;
785 }
786
787 static void run_one_async_start(struct btrfs_work *work)
788 {
789 struct async_submit_bio *async;
790 int ret;
791
792 async = container_of(work, struct async_submit_bio, work);
793 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
794 async->mirror_num, async->bio_flags,
795 async->bio_offset);
796 if (ret)
797 async->error = ret;
798 }
799
800 static void run_one_async_done(struct btrfs_work *work)
801 {
802 struct btrfs_fs_info *fs_info;
803 struct async_submit_bio *async;
804 int limit;
805
806 async = container_of(work, struct async_submit_bio, work);
807 fs_info = BTRFS_I(async->inode)->root->fs_info;
808
809 limit = btrfs_async_submit_limit(fs_info);
810 limit = limit * 2 / 3;
811
812 /*
813 * atomic_dec_return implies a barrier for waitqueue_active
814 */
815 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
816 waitqueue_active(&fs_info->async_submit_wait))
817 wake_up(&fs_info->async_submit_wait);
818
819 /* If an error occured we just want to clean up the bio and move on */
820 if (async->error) {
821 async->bio->bi_error = async->error;
822 bio_endio(async->bio);
823 return;
824 }
825
826 async->submit_bio_done(async->inode, async->rw, async->bio,
827 async->mirror_num, async->bio_flags,
828 async->bio_offset);
829 }
830
831 static void run_one_async_free(struct btrfs_work *work)
832 {
833 struct async_submit_bio *async;
834
835 async = container_of(work, struct async_submit_bio, work);
836 kfree(async);
837 }
838
839 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
840 int rw, struct bio *bio, int mirror_num,
841 unsigned long bio_flags,
842 u64 bio_offset,
843 extent_submit_bio_hook_t *submit_bio_start,
844 extent_submit_bio_hook_t *submit_bio_done)
845 {
846 struct async_submit_bio *async;
847
848 async = kmalloc(sizeof(*async), GFP_NOFS);
849 if (!async)
850 return -ENOMEM;
851
852 async->inode = inode;
853 async->rw = rw;
854 async->bio = bio;
855 async->mirror_num = mirror_num;
856 async->submit_bio_start = submit_bio_start;
857 async->submit_bio_done = submit_bio_done;
858
859 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
860 run_one_async_done, run_one_async_free);
861
862 async->bio_flags = bio_flags;
863 async->bio_offset = bio_offset;
864
865 async->error = 0;
866
867 atomic_inc(&fs_info->nr_async_submits);
868
869 if (rw & REQ_SYNC)
870 btrfs_set_work_high_priority(&async->work);
871
872 btrfs_queue_work(fs_info->workers, &async->work);
873
874 while (atomic_read(&fs_info->async_submit_draining) &&
875 atomic_read(&fs_info->nr_async_submits)) {
876 wait_event(fs_info->async_submit_wait,
877 (atomic_read(&fs_info->nr_async_submits) == 0));
878 }
879
880 return 0;
881 }
882
883 static int btree_csum_one_bio(struct bio *bio)
884 {
885 struct bio_vec *bvec;
886 struct btrfs_root *root;
887 int i, ret = 0;
888
889 bio_for_each_segment_all(bvec, bio, i) {
890 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
891 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
892 if (ret)
893 break;
894 }
895
896 return ret;
897 }
898
899 static int __btree_submit_bio_start(struct inode *inode, int rw,
900 struct bio *bio, int mirror_num,
901 unsigned long bio_flags,
902 u64 bio_offset)
903 {
904 /*
905 * when we're called for a write, we're already in the async
906 * submission context. Just jump into btrfs_map_bio
907 */
908 return btree_csum_one_bio(bio);
909 }
910
911 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
912 int mirror_num, unsigned long bio_flags,
913 u64 bio_offset)
914 {
915 int ret;
916
917 /*
918 * when we're called for a write, we're already in the async
919 * submission context. Just jump into btrfs_map_bio
920 */
921 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
922 if (ret) {
923 bio->bi_error = ret;
924 bio_endio(bio);
925 }
926 return ret;
927 }
928
929 static int check_async_write(struct inode *inode, unsigned long bio_flags)
930 {
931 if (bio_flags & EXTENT_BIO_TREE_LOG)
932 return 0;
933 #ifdef CONFIG_X86
934 if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
935 return 0;
936 #endif
937 return 1;
938 }
939
940 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
941 int mirror_num, unsigned long bio_flags,
942 u64 bio_offset)
943 {
944 int async = check_async_write(inode, bio_flags);
945 int ret;
946
947 if (!(rw & REQ_WRITE)) {
948 /*
949 * called for a read, do the setup so that checksum validation
950 * can happen in the async kernel threads
951 */
952 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
953 bio, BTRFS_WQ_ENDIO_METADATA);
954 if (ret)
955 goto out_w_error;
956 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
957 mirror_num, 0);
958 } else if (!async) {
959 ret = btree_csum_one_bio(bio);
960 if (ret)
961 goto out_w_error;
962 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
963 mirror_num, 0);
964 } else {
965 /*
966 * kthread helpers are used to submit writes so that
967 * checksumming can happen in parallel across all CPUs
968 */
969 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
970 inode, rw, bio, mirror_num, 0,
971 bio_offset,
972 __btree_submit_bio_start,
973 __btree_submit_bio_done);
974 }
975
976 if (ret)
977 goto out_w_error;
978 return 0;
979
980 out_w_error:
981 bio->bi_error = ret;
982 bio_endio(bio);
983 return ret;
984 }
985
986 #ifdef CONFIG_MIGRATION
987 static int btree_migratepage(struct address_space *mapping,
988 struct page *newpage, struct page *page,
989 enum migrate_mode mode)
990 {
991 /*
992 * we can't safely write a btree page from here,
993 * we haven't done the locking hook
994 */
995 if (PageDirty(page))
996 return -EAGAIN;
997 /*
998 * Buffers may be managed in a filesystem specific way.
999 * We must have no buffers or drop them.
1000 */
1001 if (page_has_private(page) &&
1002 !try_to_release_page(page, GFP_KERNEL))
1003 return -EAGAIN;
1004 return migrate_page(mapping, newpage, page, mode);
1005 }
1006 #endif
1007
1008
1009 static int btree_writepages(struct address_space *mapping,
1010 struct writeback_control *wbc)
1011 {
1012 struct btrfs_fs_info *fs_info;
1013 int ret;
1014
1015 if (wbc->sync_mode == WB_SYNC_NONE) {
1016
1017 if (wbc->for_kupdate)
1018 return 0;
1019
1020 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1021 /* this is a bit racy, but that's ok */
1022 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1023 BTRFS_DIRTY_METADATA_THRESH);
1024 if (ret < 0)
1025 return 0;
1026 }
1027 return btree_write_cache_pages(mapping, wbc);
1028 }
1029
1030 static int btree_readpage(struct file *file, struct page *page)
1031 {
1032 struct extent_io_tree *tree;
1033 tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 return extent_read_full_page(tree, page, btree_get_extent, 0);
1035 }
1036
1037 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1038 {
1039 if (PageWriteback(page) || PageDirty(page))
1040 return 0;
1041
1042 return try_release_extent_buffer(page);
1043 }
1044
1045 static void btree_invalidatepage(struct page *page, unsigned int offset,
1046 unsigned int length)
1047 {
1048 struct extent_io_tree *tree;
1049 tree = &BTRFS_I(page->mapping->host)->io_tree;
1050 extent_invalidatepage(tree, page, offset);
1051 btree_releasepage(page, GFP_NOFS);
1052 if (PagePrivate(page)) {
1053 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1054 "page private not zero on page %llu",
1055 (unsigned long long)page_offset(page));
1056 ClearPagePrivate(page);
1057 set_page_private(page, 0);
1058 page_cache_release(page);
1059 }
1060 }
1061
1062 static int btree_set_page_dirty(struct page *page)
1063 {
1064 #ifdef DEBUG
1065 struct extent_buffer *eb;
1066
1067 BUG_ON(!PagePrivate(page));
1068 eb = (struct extent_buffer *)page->private;
1069 BUG_ON(!eb);
1070 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1071 BUG_ON(!atomic_read(&eb->refs));
1072 btrfs_assert_tree_locked(eb);
1073 #endif
1074 return __set_page_dirty_nobuffers(page);
1075 }
1076
1077 static const struct address_space_operations btree_aops = {
1078 .readpage = btree_readpage,
1079 .writepages = btree_writepages,
1080 .releasepage = btree_releasepage,
1081 .invalidatepage = btree_invalidatepage,
1082 #ifdef CONFIG_MIGRATION
1083 .migratepage = btree_migratepage,
1084 #endif
1085 .set_page_dirty = btree_set_page_dirty,
1086 };
1087
1088 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1089 {
1090 struct extent_buffer *buf = NULL;
1091 struct inode *btree_inode = root->fs_info->btree_inode;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr);
1094 if (!buf)
1095 return;
1096 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1097 buf, 0, WAIT_NONE, btree_get_extent, 0);
1098 free_extent_buffer(buf);
1099 }
1100
1101 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1102 int mirror_num, struct extent_buffer **eb)
1103 {
1104 struct extent_buffer *buf = NULL;
1105 struct inode *btree_inode = root->fs_info->btree_inode;
1106 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1107 int ret;
1108
1109 buf = btrfs_find_create_tree_block(root, bytenr);
1110 if (!buf)
1111 return 0;
1112
1113 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1114
1115 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1116 btree_get_extent, mirror_num);
1117 if (ret) {
1118 free_extent_buffer(buf);
1119 return ret;
1120 }
1121
1122 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1123 free_extent_buffer(buf);
1124 return -EIO;
1125 } else if (extent_buffer_uptodate(buf)) {
1126 *eb = buf;
1127 } else {
1128 free_extent_buffer(buf);
1129 }
1130 return 0;
1131 }
1132
1133 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1134 u64 bytenr)
1135 {
1136 return find_extent_buffer(fs_info, bytenr);
1137 }
1138
1139 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1140 u64 bytenr)
1141 {
1142 if (btrfs_test_is_dummy_root(root))
1143 return alloc_test_extent_buffer(root->fs_info, bytenr);
1144 return alloc_extent_buffer(root->fs_info, bytenr);
1145 }
1146
1147
1148 int btrfs_write_tree_block(struct extent_buffer *buf)
1149 {
1150 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1151 buf->start + buf->len - 1);
1152 }
1153
1154 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1155 {
1156 return filemap_fdatawait_range(buf->pages[0]->mapping,
1157 buf->start, buf->start + buf->len - 1);
1158 }
1159
1160 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1161 u64 parent_transid)
1162 {
1163 struct extent_buffer *buf = NULL;
1164 int ret;
1165
1166 buf = btrfs_find_create_tree_block(root, bytenr);
1167 if (!buf)
1168 return ERR_PTR(-ENOMEM);
1169
1170 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1171 if (ret) {
1172 free_extent_buffer(buf);
1173 return ERR_PTR(ret);
1174 }
1175 return buf;
1176
1177 }
1178
1179 void clean_tree_block(struct btrfs_trans_handle *trans,
1180 struct btrfs_fs_info *fs_info,
1181 struct extent_buffer *buf)
1182 {
1183 if (btrfs_header_generation(buf) ==
1184 fs_info->running_transaction->transid) {
1185 btrfs_assert_tree_locked(buf);
1186
1187 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1188 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1189 -buf->len,
1190 fs_info->dirty_metadata_batch);
1191 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1192 btrfs_set_lock_blocking(buf);
1193 clear_extent_buffer_dirty(buf);
1194 }
1195 }
1196 }
1197
1198 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1199 {
1200 struct btrfs_subvolume_writers *writers;
1201 int ret;
1202
1203 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1204 if (!writers)
1205 return ERR_PTR(-ENOMEM);
1206
1207 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1208 if (ret < 0) {
1209 kfree(writers);
1210 return ERR_PTR(ret);
1211 }
1212
1213 init_waitqueue_head(&writers->wait);
1214 return writers;
1215 }
1216
1217 static void
1218 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1219 {
1220 percpu_counter_destroy(&writers->counter);
1221 kfree(writers);
1222 }
1223
1224 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1225 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1226 u64 objectid)
1227 {
1228 root->node = NULL;
1229 root->commit_root = NULL;
1230 root->sectorsize = sectorsize;
1231 root->nodesize = nodesize;
1232 root->stripesize = stripesize;
1233 root->state = 0;
1234 root->orphan_cleanup_state = 0;
1235
1236 root->objectid = objectid;
1237 root->last_trans = 0;
1238 root->highest_objectid = 0;
1239 root->nr_delalloc_inodes = 0;
1240 root->nr_ordered_extents = 0;
1241 root->name = NULL;
1242 root->inode_tree = RB_ROOT;
1243 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1244 root->block_rsv = NULL;
1245 root->orphan_block_rsv = NULL;
1246
1247 INIT_LIST_HEAD(&root->dirty_list);
1248 INIT_LIST_HEAD(&root->root_list);
1249 INIT_LIST_HEAD(&root->delalloc_inodes);
1250 INIT_LIST_HEAD(&root->delalloc_root);
1251 INIT_LIST_HEAD(&root->ordered_extents);
1252 INIT_LIST_HEAD(&root->ordered_root);
1253 INIT_LIST_HEAD(&root->logged_list[0]);
1254 INIT_LIST_HEAD(&root->logged_list[1]);
1255 spin_lock_init(&root->orphan_lock);
1256 spin_lock_init(&root->inode_lock);
1257 spin_lock_init(&root->delalloc_lock);
1258 spin_lock_init(&root->ordered_extent_lock);
1259 spin_lock_init(&root->accounting_lock);
1260 spin_lock_init(&root->log_extents_lock[0]);
1261 spin_lock_init(&root->log_extents_lock[1]);
1262 mutex_init(&root->objectid_mutex);
1263 mutex_init(&root->log_mutex);
1264 mutex_init(&root->ordered_extent_mutex);
1265 mutex_init(&root->delalloc_mutex);
1266 init_waitqueue_head(&root->log_writer_wait);
1267 init_waitqueue_head(&root->log_commit_wait[0]);
1268 init_waitqueue_head(&root->log_commit_wait[1]);
1269 INIT_LIST_HEAD(&root->log_ctxs[0]);
1270 INIT_LIST_HEAD(&root->log_ctxs[1]);
1271 atomic_set(&root->log_commit[0], 0);
1272 atomic_set(&root->log_commit[1], 0);
1273 atomic_set(&root->log_writers, 0);
1274 atomic_set(&root->log_batch, 0);
1275 atomic_set(&root->orphan_inodes, 0);
1276 atomic_set(&root->refs, 1);
1277 atomic_set(&root->will_be_snapshoted, 0);
1278 atomic_set(&root->qgroup_meta_rsv, 0);
1279 root->log_transid = 0;
1280 root->log_transid_committed = -1;
1281 root->last_log_commit = 0;
1282 if (fs_info)
1283 extent_io_tree_init(&root->dirty_log_pages,
1284 fs_info->btree_inode->i_mapping);
1285
1286 memset(&root->root_key, 0, sizeof(root->root_key));
1287 memset(&root->root_item, 0, sizeof(root->root_item));
1288 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1289 if (fs_info)
1290 root->defrag_trans_start = fs_info->generation;
1291 else
1292 root->defrag_trans_start = 0;
1293 root->root_key.objectid = objectid;
1294 root->anon_dev = 0;
1295
1296 spin_lock_init(&root->root_item_lock);
1297 }
1298
1299 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1300 {
1301 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1302 if (root)
1303 root->fs_info = fs_info;
1304 return root;
1305 }
1306
1307 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1308 /* Should only be used by the testing infrastructure */
1309 struct btrfs_root *btrfs_alloc_dummy_root(void)
1310 {
1311 struct btrfs_root *root;
1312
1313 root = btrfs_alloc_root(NULL);
1314 if (!root)
1315 return ERR_PTR(-ENOMEM);
1316 __setup_root(4096, 4096, 4096, root, NULL, 1);
1317 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1318 root->alloc_bytenr = 0;
1319
1320 return root;
1321 }
1322 #endif
1323
1324 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1325 struct btrfs_fs_info *fs_info,
1326 u64 objectid)
1327 {
1328 struct extent_buffer *leaf;
1329 struct btrfs_root *tree_root = fs_info->tree_root;
1330 struct btrfs_root *root;
1331 struct btrfs_key key;
1332 int ret = 0;
1333 uuid_le uuid;
1334
1335 root = btrfs_alloc_root(fs_info);
1336 if (!root)
1337 return ERR_PTR(-ENOMEM);
1338
1339 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1340 tree_root->stripesize, root, fs_info, objectid);
1341 root->root_key.objectid = objectid;
1342 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1343 root->root_key.offset = 0;
1344
1345 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1346 if (IS_ERR(leaf)) {
1347 ret = PTR_ERR(leaf);
1348 leaf = NULL;
1349 goto fail;
1350 }
1351
1352 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1353 btrfs_set_header_bytenr(leaf, leaf->start);
1354 btrfs_set_header_generation(leaf, trans->transid);
1355 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1356 btrfs_set_header_owner(leaf, objectid);
1357 root->node = leaf;
1358
1359 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1360 BTRFS_FSID_SIZE);
1361 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1362 btrfs_header_chunk_tree_uuid(leaf),
1363 BTRFS_UUID_SIZE);
1364 btrfs_mark_buffer_dirty(leaf);
1365
1366 root->commit_root = btrfs_root_node(root);
1367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1368
1369 root->root_item.flags = 0;
1370 root->root_item.byte_limit = 0;
1371 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1372 btrfs_set_root_generation(&root->root_item, trans->transid);
1373 btrfs_set_root_level(&root->root_item, 0);
1374 btrfs_set_root_refs(&root->root_item, 1);
1375 btrfs_set_root_used(&root->root_item, leaf->len);
1376 btrfs_set_root_last_snapshot(&root->root_item, 0);
1377 btrfs_set_root_dirid(&root->root_item, 0);
1378 uuid_le_gen(&uuid);
1379 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1380 root->root_item.drop_level = 0;
1381
1382 key.objectid = objectid;
1383 key.type = BTRFS_ROOT_ITEM_KEY;
1384 key.offset = 0;
1385 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1386 if (ret)
1387 goto fail;
1388
1389 btrfs_tree_unlock(leaf);
1390
1391 return root;
1392
1393 fail:
1394 if (leaf) {
1395 btrfs_tree_unlock(leaf);
1396 free_extent_buffer(root->commit_root);
1397 free_extent_buffer(leaf);
1398 }
1399 kfree(root);
1400
1401 return ERR_PTR(ret);
1402 }
1403
1404 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1405 struct btrfs_fs_info *fs_info)
1406 {
1407 struct btrfs_root *root;
1408 struct btrfs_root *tree_root = fs_info->tree_root;
1409 struct extent_buffer *leaf;
1410
1411 root = btrfs_alloc_root(fs_info);
1412 if (!root)
1413 return ERR_PTR(-ENOMEM);
1414
1415 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1416 tree_root->stripesize, root, fs_info,
1417 BTRFS_TREE_LOG_OBJECTID);
1418
1419 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1420 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1421 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1422
1423 /*
1424 * DON'T set REF_COWS for log trees
1425 *
1426 * log trees do not get reference counted because they go away
1427 * before a real commit is actually done. They do store pointers
1428 * to file data extents, and those reference counts still get
1429 * updated (along with back refs to the log tree).
1430 */
1431
1432 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1433 NULL, 0, 0, 0);
1434 if (IS_ERR(leaf)) {
1435 kfree(root);
1436 return ERR_CAST(leaf);
1437 }
1438
1439 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1440 btrfs_set_header_bytenr(leaf, leaf->start);
1441 btrfs_set_header_generation(leaf, trans->transid);
1442 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1443 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1444 root->node = leaf;
1445
1446 write_extent_buffer(root->node, root->fs_info->fsid,
1447 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1448 btrfs_mark_buffer_dirty(root->node);
1449 btrfs_tree_unlock(root->node);
1450 return root;
1451 }
1452
1453 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info)
1455 {
1456 struct btrfs_root *log_root;
1457
1458 log_root = alloc_log_tree(trans, fs_info);
1459 if (IS_ERR(log_root))
1460 return PTR_ERR(log_root);
1461 WARN_ON(fs_info->log_root_tree);
1462 fs_info->log_root_tree = log_root;
1463 return 0;
1464 }
1465
1466 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1467 struct btrfs_root *root)
1468 {
1469 struct btrfs_root *log_root;
1470 struct btrfs_inode_item *inode_item;
1471
1472 log_root = alloc_log_tree(trans, root->fs_info);
1473 if (IS_ERR(log_root))
1474 return PTR_ERR(log_root);
1475
1476 log_root->last_trans = trans->transid;
1477 log_root->root_key.offset = root->root_key.objectid;
1478
1479 inode_item = &log_root->root_item.inode;
1480 btrfs_set_stack_inode_generation(inode_item, 1);
1481 btrfs_set_stack_inode_size(inode_item, 3);
1482 btrfs_set_stack_inode_nlink(inode_item, 1);
1483 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1484 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1485
1486 btrfs_set_root_node(&log_root->root_item, log_root->node);
1487
1488 WARN_ON(root->log_root);
1489 root->log_root = log_root;
1490 root->log_transid = 0;
1491 root->log_transid_committed = -1;
1492 root->last_log_commit = 0;
1493 return 0;
1494 }
1495
1496 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1497 struct btrfs_key *key)
1498 {
1499 struct btrfs_root *root;
1500 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1501 struct btrfs_path *path;
1502 u64 generation;
1503 int ret;
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return ERR_PTR(-ENOMEM);
1508
1509 root = btrfs_alloc_root(fs_info);
1510 if (!root) {
1511 ret = -ENOMEM;
1512 goto alloc_fail;
1513 }
1514
1515 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1516 tree_root->stripesize, root, fs_info, key->objectid);
1517
1518 ret = btrfs_find_root(tree_root, key, path,
1519 &root->root_item, &root->root_key);
1520 if (ret) {
1521 if (ret > 0)
1522 ret = -ENOENT;
1523 goto find_fail;
1524 }
1525
1526 generation = btrfs_root_generation(&root->root_item);
1527 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1528 generation);
1529 if (IS_ERR(root->node)) {
1530 ret = PTR_ERR(root->node);
1531 goto find_fail;
1532 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1533 ret = -EIO;
1534 free_extent_buffer(root->node);
1535 goto find_fail;
1536 }
1537 root->commit_root = btrfs_root_node(root);
1538 out:
1539 btrfs_free_path(path);
1540 return root;
1541
1542 find_fail:
1543 kfree(root);
1544 alloc_fail:
1545 root = ERR_PTR(ret);
1546 goto out;
1547 }
1548
1549 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1550 struct btrfs_key *location)
1551 {
1552 struct btrfs_root *root;
1553
1554 root = btrfs_read_tree_root(tree_root, location);
1555 if (IS_ERR(root))
1556 return root;
1557
1558 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1559 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1560 btrfs_check_and_init_root_item(&root->root_item);
1561 }
1562
1563 return root;
1564 }
1565
1566 int btrfs_init_fs_root(struct btrfs_root *root)
1567 {
1568 int ret;
1569 struct btrfs_subvolume_writers *writers;
1570
1571 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1572 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1573 GFP_NOFS);
1574 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1575 ret = -ENOMEM;
1576 goto fail;
1577 }
1578
1579 writers = btrfs_alloc_subvolume_writers();
1580 if (IS_ERR(writers)) {
1581 ret = PTR_ERR(writers);
1582 goto fail;
1583 }
1584 root->subv_writers = writers;
1585
1586 btrfs_init_free_ino_ctl(root);
1587 spin_lock_init(&root->ino_cache_lock);
1588 init_waitqueue_head(&root->ino_cache_wait);
1589
1590 ret = get_anon_bdev(&root->anon_dev);
1591 if (ret)
1592 goto free_writers;
1593
1594 mutex_lock(&root->objectid_mutex);
1595 ret = btrfs_find_highest_objectid(root,
1596 &root->highest_objectid);
1597 if (ret) {
1598 mutex_unlock(&root->objectid_mutex);
1599 goto free_root_dev;
1600 }
1601
1602 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1603
1604 mutex_unlock(&root->objectid_mutex);
1605
1606 return 0;
1607
1608 free_root_dev:
1609 free_anon_bdev(root->anon_dev);
1610 free_writers:
1611 btrfs_free_subvolume_writers(root->subv_writers);
1612 fail:
1613 kfree(root->free_ino_ctl);
1614 kfree(root->free_ino_pinned);
1615 return ret;
1616 }
1617
1618 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1619 u64 root_id)
1620 {
1621 struct btrfs_root *root;
1622
1623 spin_lock(&fs_info->fs_roots_radix_lock);
1624 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1625 (unsigned long)root_id);
1626 spin_unlock(&fs_info->fs_roots_radix_lock);
1627 return root;
1628 }
1629
1630 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1631 struct btrfs_root *root)
1632 {
1633 int ret;
1634
1635 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1636 if (ret)
1637 return ret;
1638
1639 spin_lock(&fs_info->fs_roots_radix_lock);
1640 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1641 (unsigned long)root->root_key.objectid,
1642 root);
1643 if (ret == 0)
1644 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1645 spin_unlock(&fs_info->fs_roots_radix_lock);
1646 radix_tree_preload_end();
1647
1648 return ret;
1649 }
1650
1651 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1652 struct btrfs_key *location,
1653 bool check_ref)
1654 {
1655 struct btrfs_root *root;
1656 struct btrfs_path *path;
1657 struct btrfs_key key;
1658 int ret;
1659
1660 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1661 return fs_info->tree_root;
1662 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1663 return fs_info->extent_root;
1664 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1665 return fs_info->chunk_root;
1666 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1667 return fs_info->dev_root;
1668 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1669 return fs_info->csum_root;
1670 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1671 return fs_info->quota_root ? fs_info->quota_root :
1672 ERR_PTR(-ENOENT);
1673 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1674 return fs_info->uuid_root ? fs_info->uuid_root :
1675 ERR_PTR(-ENOENT);
1676 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1677 return fs_info->free_space_root ? fs_info->free_space_root :
1678 ERR_PTR(-ENOENT);
1679 again:
1680 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1681 if (root) {
1682 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1683 return ERR_PTR(-ENOENT);
1684 return root;
1685 }
1686
1687 root = btrfs_read_fs_root(fs_info->tree_root, location);
1688 if (IS_ERR(root))
1689 return root;
1690
1691 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1692 ret = -ENOENT;
1693 goto fail;
1694 }
1695
1696 ret = btrfs_init_fs_root(root);
1697 if (ret)
1698 goto fail;
1699
1700 path = btrfs_alloc_path();
1701 if (!path) {
1702 ret = -ENOMEM;
1703 goto fail;
1704 }
1705 key.objectid = BTRFS_ORPHAN_OBJECTID;
1706 key.type = BTRFS_ORPHAN_ITEM_KEY;
1707 key.offset = location->objectid;
1708
1709 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1710 btrfs_free_path(path);
1711 if (ret < 0)
1712 goto fail;
1713 if (ret == 0)
1714 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1715
1716 ret = btrfs_insert_fs_root(fs_info, root);
1717 if (ret) {
1718 if (ret == -EEXIST) {
1719 free_fs_root(root);
1720 goto again;
1721 }
1722 goto fail;
1723 }
1724 return root;
1725 fail:
1726 free_fs_root(root);
1727 return ERR_PTR(ret);
1728 }
1729
1730 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1731 {
1732 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1733 int ret = 0;
1734 struct btrfs_device *device;
1735 struct backing_dev_info *bdi;
1736
1737 rcu_read_lock();
1738 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1739 if (!device->bdev)
1740 continue;
1741 bdi = blk_get_backing_dev_info(device->bdev);
1742 if (bdi_congested(bdi, bdi_bits)) {
1743 ret = 1;
1744 break;
1745 }
1746 }
1747 rcu_read_unlock();
1748 return ret;
1749 }
1750
1751 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1752 {
1753 int err;
1754
1755 err = bdi_setup_and_register(bdi, "btrfs");
1756 if (err)
1757 return err;
1758
1759 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1760 bdi->congested_fn = btrfs_congested_fn;
1761 bdi->congested_data = info;
1762 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1763 return 0;
1764 }
1765
1766 /*
1767 * called by the kthread helper functions to finally call the bio end_io
1768 * functions. This is where read checksum verification actually happens
1769 */
1770 static void end_workqueue_fn(struct btrfs_work *work)
1771 {
1772 struct bio *bio;
1773 struct btrfs_end_io_wq *end_io_wq;
1774
1775 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1776 bio = end_io_wq->bio;
1777
1778 bio->bi_error = end_io_wq->error;
1779 bio->bi_private = end_io_wq->private;
1780 bio->bi_end_io = end_io_wq->end_io;
1781 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1782 bio_endio(bio);
1783 }
1784
1785 static int cleaner_kthread(void *arg)
1786 {
1787 struct btrfs_root *root = arg;
1788 int again;
1789 struct btrfs_trans_handle *trans;
1790
1791 do {
1792 again = 0;
1793
1794 /* Make the cleaner go to sleep early. */
1795 if (btrfs_need_cleaner_sleep(root))
1796 goto sleep;
1797
1798 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1799 goto sleep;
1800
1801 /*
1802 * Avoid the problem that we change the status of the fs
1803 * during the above check and trylock.
1804 */
1805 if (btrfs_need_cleaner_sleep(root)) {
1806 mutex_unlock(&root->fs_info->cleaner_mutex);
1807 goto sleep;
1808 }
1809
1810 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1811 btrfs_run_delayed_iputs(root);
1812 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1813
1814 again = btrfs_clean_one_deleted_snapshot(root);
1815 mutex_unlock(&root->fs_info->cleaner_mutex);
1816
1817 /*
1818 * The defragger has dealt with the R/O remount and umount,
1819 * needn't do anything special here.
1820 */
1821 btrfs_run_defrag_inodes(root->fs_info);
1822
1823 /*
1824 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1825 * with relocation (btrfs_relocate_chunk) and relocation
1826 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1827 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1828 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1829 * unused block groups.
1830 */
1831 btrfs_delete_unused_bgs(root->fs_info);
1832 sleep:
1833 if (!try_to_freeze() && !again) {
1834 set_current_state(TASK_INTERRUPTIBLE);
1835 if (!kthread_should_stop())
1836 schedule();
1837 __set_current_state(TASK_RUNNING);
1838 }
1839 } while (!kthread_should_stop());
1840
1841 /*
1842 * Transaction kthread is stopped before us and wakes us up.
1843 * However we might have started a new transaction and COWed some
1844 * tree blocks when deleting unused block groups for example. So
1845 * make sure we commit the transaction we started to have a clean
1846 * shutdown when evicting the btree inode - if it has dirty pages
1847 * when we do the final iput() on it, eviction will trigger a
1848 * writeback for it which will fail with null pointer dereferences
1849 * since work queues and other resources were already released and
1850 * destroyed by the time the iput/eviction/writeback is made.
1851 */
1852 trans = btrfs_attach_transaction(root);
1853 if (IS_ERR(trans)) {
1854 if (PTR_ERR(trans) != -ENOENT)
1855 btrfs_err(root->fs_info,
1856 "cleaner transaction attach returned %ld",
1857 PTR_ERR(trans));
1858 } else {
1859 int ret;
1860
1861 ret = btrfs_commit_transaction(trans, root);
1862 if (ret)
1863 btrfs_err(root->fs_info,
1864 "cleaner open transaction commit returned %d",
1865 ret);
1866 }
1867
1868 return 0;
1869 }
1870
1871 static int transaction_kthread(void *arg)
1872 {
1873 struct btrfs_root *root = arg;
1874 struct btrfs_trans_handle *trans;
1875 struct btrfs_transaction *cur;
1876 u64 transid;
1877 unsigned long now;
1878 unsigned long delay;
1879 bool cannot_commit;
1880
1881 do {
1882 cannot_commit = false;
1883 delay = HZ * root->fs_info->commit_interval;
1884 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1885
1886 spin_lock(&root->fs_info->trans_lock);
1887 cur = root->fs_info->running_transaction;
1888 if (!cur) {
1889 spin_unlock(&root->fs_info->trans_lock);
1890 goto sleep;
1891 }
1892
1893 now = get_seconds();
1894 if (cur->state < TRANS_STATE_BLOCKED &&
1895 (now < cur->start_time ||
1896 now - cur->start_time < root->fs_info->commit_interval)) {
1897 spin_unlock(&root->fs_info->trans_lock);
1898 delay = HZ * 5;
1899 goto sleep;
1900 }
1901 transid = cur->transid;
1902 spin_unlock(&root->fs_info->trans_lock);
1903
1904 /* If the file system is aborted, this will always fail. */
1905 trans = btrfs_attach_transaction(root);
1906 if (IS_ERR(trans)) {
1907 if (PTR_ERR(trans) != -ENOENT)
1908 cannot_commit = true;
1909 goto sleep;
1910 }
1911 if (transid == trans->transid) {
1912 btrfs_commit_transaction(trans, root);
1913 } else {
1914 btrfs_end_transaction(trans, root);
1915 }
1916 sleep:
1917 wake_up_process(root->fs_info->cleaner_kthread);
1918 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1919
1920 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1921 &root->fs_info->fs_state)))
1922 btrfs_cleanup_transaction(root);
1923 if (!try_to_freeze()) {
1924 set_current_state(TASK_INTERRUPTIBLE);
1925 if (!kthread_should_stop() &&
1926 (!btrfs_transaction_blocked(root->fs_info) ||
1927 cannot_commit))
1928 schedule_timeout(delay);
1929 __set_current_state(TASK_RUNNING);
1930 }
1931 } while (!kthread_should_stop());
1932 return 0;
1933 }
1934
1935 /*
1936 * this will find the highest generation in the array of
1937 * root backups. The index of the highest array is returned,
1938 * or -1 if we can't find anything.
1939 *
1940 * We check to make sure the array is valid by comparing the
1941 * generation of the latest root in the array with the generation
1942 * in the super block. If they don't match we pitch it.
1943 */
1944 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1945 {
1946 u64 cur;
1947 int newest_index = -1;
1948 struct btrfs_root_backup *root_backup;
1949 int i;
1950
1951 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1952 root_backup = info->super_copy->super_roots + i;
1953 cur = btrfs_backup_tree_root_gen(root_backup);
1954 if (cur == newest_gen)
1955 newest_index = i;
1956 }
1957
1958 /* check to see if we actually wrapped around */
1959 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1960 root_backup = info->super_copy->super_roots;
1961 cur = btrfs_backup_tree_root_gen(root_backup);
1962 if (cur == newest_gen)
1963 newest_index = 0;
1964 }
1965 return newest_index;
1966 }
1967
1968
1969 /*
1970 * find the oldest backup so we know where to store new entries
1971 * in the backup array. This will set the backup_root_index
1972 * field in the fs_info struct
1973 */
1974 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1975 u64 newest_gen)
1976 {
1977 int newest_index = -1;
1978
1979 newest_index = find_newest_super_backup(info, newest_gen);
1980 /* if there was garbage in there, just move along */
1981 if (newest_index == -1) {
1982 info->backup_root_index = 0;
1983 } else {
1984 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1985 }
1986 }
1987
1988 /*
1989 * copy all the root pointers into the super backup array.
1990 * this will bump the backup pointer by one when it is
1991 * done
1992 */
1993 static void backup_super_roots(struct btrfs_fs_info *info)
1994 {
1995 int next_backup;
1996 struct btrfs_root_backup *root_backup;
1997 int last_backup;
1998
1999 next_backup = info->backup_root_index;
2000 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001 BTRFS_NUM_BACKUP_ROOTS;
2002
2003 /*
2004 * just overwrite the last backup if we're at the same generation
2005 * this happens only at umount
2006 */
2007 root_backup = info->super_for_commit->super_roots + last_backup;
2008 if (btrfs_backup_tree_root_gen(root_backup) ==
2009 btrfs_header_generation(info->tree_root->node))
2010 next_backup = last_backup;
2011
2012 root_backup = info->super_for_commit->super_roots + next_backup;
2013
2014 /*
2015 * make sure all of our padding and empty slots get zero filled
2016 * regardless of which ones we use today
2017 */
2018 memset(root_backup, 0, sizeof(*root_backup));
2019
2020 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2021
2022 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2023 btrfs_set_backup_tree_root_gen(root_backup,
2024 btrfs_header_generation(info->tree_root->node));
2025
2026 btrfs_set_backup_tree_root_level(root_backup,
2027 btrfs_header_level(info->tree_root->node));
2028
2029 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2030 btrfs_set_backup_chunk_root_gen(root_backup,
2031 btrfs_header_generation(info->chunk_root->node));
2032 btrfs_set_backup_chunk_root_level(root_backup,
2033 btrfs_header_level(info->chunk_root->node));
2034
2035 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2036 btrfs_set_backup_extent_root_gen(root_backup,
2037 btrfs_header_generation(info->extent_root->node));
2038 btrfs_set_backup_extent_root_level(root_backup,
2039 btrfs_header_level(info->extent_root->node));
2040
2041 /*
2042 * we might commit during log recovery, which happens before we set
2043 * the fs_root. Make sure it is valid before we fill it in.
2044 */
2045 if (info->fs_root && info->fs_root->node) {
2046 btrfs_set_backup_fs_root(root_backup,
2047 info->fs_root->node->start);
2048 btrfs_set_backup_fs_root_gen(root_backup,
2049 btrfs_header_generation(info->fs_root->node));
2050 btrfs_set_backup_fs_root_level(root_backup,
2051 btrfs_header_level(info->fs_root->node));
2052 }
2053
2054 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2055 btrfs_set_backup_dev_root_gen(root_backup,
2056 btrfs_header_generation(info->dev_root->node));
2057 btrfs_set_backup_dev_root_level(root_backup,
2058 btrfs_header_level(info->dev_root->node));
2059
2060 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2061 btrfs_set_backup_csum_root_gen(root_backup,
2062 btrfs_header_generation(info->csum_root->node));
2063 btrfs_set_backup_csum_root_level(root_backup,
2064 btrfs_header_level(info->csum_root->node));
2065
2066 btrfs_set_backup_total_bytes(root_backup,
2067 btrfs_super_total_bytes(info->super_copy));
2068 btrfs_set_backup_bytes_used(root_backup,
2069 btrfs_super_bytes_used(info->super_copy));
2070 btrfs_set_backup_num_devices(root_backup,
2071 btrfs_super_num_devices(info->super_copy));
2072
2073 /*
2074 * if we don't copy this out to the super_copy, it won't get remembered
2075 * for the next commit
2076 */
2077 memcpy(&info->super_copy->super_roots,
2078 &info->super_for_commit->super_roots,
2079 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2080 }
2081
2082 /*
2083 * this copies info out of the root backup array and back into
2084 * the in-memory super block. It is meant to help iterate through
2085 * the array, so you send it the number of backups you've already
2086 * tried and the last backup index you used.
2087 *
2088 * this returns -1 when it has tried all the backups
2089 */
2090 static noinline int next_root_backup(struct btrfs_fs_info *info,
2091 struct btrfs_super_block *super,
2092 int *num_backups_tried, int *backup_index)
2093 {
2094 struct btrfs_root_backup *root_backup;
2095 int newest = *backup_index;
2096
2097 if (*num_backups_tried == 0) {
2098 u64 gen = btrfs_super_generation(super);
2099
2100 newest = find_newest_super_backup(info, gen);
2101 if (newest == -1)
2102 return -1;
2103
2104 *backup_index = newest;
2105 *num_backups_tried = 1;
2106 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2107 /* we've tried all the backups, all done */
2108 return -1;
2109 } else {
2110 /* jump to the next oldest backup */
2111 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2112 BTRFS_NUM_BACKUP_ROOTS;
2113 *backup_index = newest;
2114 *num_backups_tried += 1;
2115 }
2116 root_backup = super->super_roots + newest;
2117
2118 btrfs_set_super_generation(super,
2119 btrfs_backup_tree_root_gen(root_backup));
2120 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2121 btrfs_set_super_root_level(super,
2122 btrfs_backup_tree_root_level(root_backup));
2123 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2124
2125 /*
2126 * fixme: the total bytes and num_devices need to match or we should
2127 * need a fsck
2128 */
2129 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2130 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2131 return 0;
2132 }
2133
2134 /* helper to cleanup workers */
2135 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2136 {
2137 btrfs_destroy_workqueue(fs_info->fixup_workers);
2138 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2139 btrfs_destroy_workqueue(fs_info->workers);
2140 btrfs_destroy_workqueue(fs_info->endio_workers);
2141 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2142 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2143 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2144 btrfs_destroy_workqueue(fs_info->rmw_workers);
2145 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2146 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2147 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2148 btrfs_destroy_workqueue(fs_info->submit_workers);
2149 btrfs_destroy_workqueue(fs_info->delayed_workers);
2150 btrfs_destroy_workqueue(fs_info->caching_workers);
2151 btrfs_destroy_workqueue(fs_info->readahead_workers);
2152 btrfs_destroy_workqueue(fs_info->flush_workers);
2153 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2154 btrfs_destroy_workqueue(fs_info->extent_workers);
2155 }
2156
2157 static void free_root_extent_buffers(struct btrfs_root *root)
2158 {
2159 if (root) {
2160 free_extent_buffer(root->node);
2161 free_extent_buffer(root->commit_root);
2162 root->node = NULL;
2163 root->commit_root = NULL;
2164 }
2165 }
2166
2167 /* helper to cleanup tree roots */
2168 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2169 {
2170 free_root_extent_buffers(info->tree_root);
2171
2172 free_root_extent_buffers(info->dev_root);
2173 free_root_extent_buffers(info->extent_root);
2174 free_root_extent_buffers(info->csum_root);
2175 free_root_extent_buffers(info->quota_root);
2176 free_root_extent_buffers(info->uuid_root);
2177 if (chunk_root)
2178 free_root_extent_buffers(info->chunk_root);
2179 free_root_extent_buffers(info->free_space_root);
2180 }
2181
2182 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2183 {
2184 int ret;
2185 struct btrfs_root *gang[8];
2186 int i;
2187
2188 while (!list_empty(&fs_info->dead_roots)) {
2189 gang[0] = list_entry(fs_info->dead_roots.next,
2190 struct btrfs_root, root_list);
2191 list_del(&gang[0]->root_list);
2192
2193 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2194 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2195 } else {
2196 free_extent_buffer(gang[0]->node);
2197 free_extent_buffer(gang[0]->commit_root);
2198 btrfs_put_fs_root(gang[0]);
2199 }
2200 }
2201
2202 while (1) {
2203 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2204 (void **)gang, 0,
2205 ARRAY_SIZE(gang));
2206 if (!ret)
2207 break;
2208 for (i = 0; i < ret; i++)
2209 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2210 }
2211
2212 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2213 btrfs_free_log_root_tree(NULL, fs_info);
2214 btrfs_destroy_pinned_extent(fs_info->tree_root,
2215 fs_info->pinned_extents);
2216 }
2217 }
2218
2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220 {
2221 mutex_init(&fs_info->scrub_lock);
2222 atomic_set(&fs_info->scrubs_running, 0);
2223 atomic_set(&fs_info->scrub_pause_req, 0);
2224 atomic_set(&fs_info->scrubs_paused, 0);
2225 atomic_set(&fs_info->scrub_cancel_req, 0);
2226 init_waitqueue_head(&fs_info->scrub_pause_wait);
2227 fs_info->scrub_workers_refcnt = 0;
2228 }
2229
2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231 {
2232 spin_lock_init(&fs_info->balance_lock);
2233 mutex_init(&fs_info->balance_mutex);
2234 atomic_set(&fs_info->balance_running, 0);
2235 atomic_set(&fs_info->balance_pause_req, 0);
2236 atomic_set(&fs_info->balance_cancel_req, 0);
2237 fs_info->balance_ctl = NULL;
2238 init_waitqueue_head(&fs_info->balance_wait_q);
2239 }
2240
2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2242 struct btrfs_root *tree_root)
2243 {
2244 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2245 set_nlink(fs_info->btree_inode, 1);
2246 /*
2247 * we set the i_size on the btree inode to the max possible int.
2248 * the real end of the address space is determined by all of
2249 * the devices in the system
2250 */
2251 fs_info->btree_inode->i_size = OFFSET_MAX;
2252 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2253
2254 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2255 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2256 fs_info->btree_inode->i_mapping);
2257 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2258 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2259
2260 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2261
2262 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2263 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2264 sizeof(struct btrfs_key));
2265 set_bit(BTRFS_INODE_DUMMY,
2266 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2267 btrfs_insert_inode_hash(fs_info->btree_inode);
2268 }
2269
2270 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2271 {
2272 fs_info->dev_replace.lock_owner = 0;
2273 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2274 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2275 mutex_init(&fs_info->dev_replace.lock_management_lock);
2276 mutex_init(&fs_info->dev_replace.lock);
2277 init_waitqueue_head(&fs_info->replace_wait);
2278 }
2279
2280 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2281 {
2282 spin_lock_init(&fs_info->qgroup_lock);
2283 mutex_init(&fs_info->qgroup_ioctl_lock);
2284 fs_info->qgroup_tree = RB_ROOT;
2285 fs_info->qgroup_op_tree = RB_ROOT;
2286 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2287 fs_info->qgroup_seq = 1;
2288 fs_info->quota_enabled = 0;
2289 fs_info->pending_quota_state = 0;
2290 fs_info->qgroup_ulist = NULL;
2291 mutex_init(&fs_info->qgroup_rescan_lock);
2292 }
2293
2294 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2295 struct btrfs_fs_devices *fs_devices)
2296 {
2297 int max_active = fs_info->thread_pool_size;
2298 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2299
2300 fs_info->workers =
2301 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2302 max_active, 16);
2303
2304 fs_info->delalloc_workers =
2305 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2306
2307 fs_info->flush_workers =
2308 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2309
2310 fs_info->caching_workers =
2311 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2312
2313 /*
2314 * a higher idle thresh on the submit workers makes it much more
2315 * likely that bios will be send down in a sane order to the
2316 * devices
2317 */
2318 fs_info->submit_workers =
2319 btrfs_alloc_workqueue("submit", flags,
2320 min_t(u64, fs_devices->num_devices,
2321 max_active), 64);
2322
2323 fs_info->fixup_workers =
2324 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2325
2326 /*
2327 * endios are largely parallel and should have a very
2328 * low idle thresh
2329 */
2330 fs_info->endio_workers =
2331 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2332 fs_info->endio_meta_workers =
2333 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2334 fs_info->endio_meta_write_workers =
2335 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2336 fs_info->endio_raid56_workers =
2337 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2338 fs_info->endio_repair_workers =
2339 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2340 fs_info->rmw_workers =
2341 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2342 fs_info->endio_write_workers =
2343 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2344 fs_info->endio_freespace_worker =
2345 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2346 fs_info->delayed_workers =
2347 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2348 fs_info->readahead_workers =
2349 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2350 fs_info->qgroup_rescan_workers =
2351 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2352 fs_info->extent_workers =
2353 btrfs_alloc_workqueue("extent-refs", flags,
2354 min_t(u64, fs_devices->num_devices,
2355 max_active), 8);
2356
2357 if (!(fs_info->workers && fs_info->delalloc_workers &&
2358 fs_info->submit_workers && fs_info->flush_workers &&
2359 fs_info->endio_workers && fs_info->endio_meta_workers &&
2360 fs_info->endio_meta_write_workers &&
2361 fs_info->endio_repair_workers &&
2362 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2363 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2364 fs_info->caching_workers && fs_info->readahead_workers &&
2365 fs_info->fixup_workers && fs_info->delayed_workers &&
2366 fs_info->extent_workers &&
2367 fs_info->qgroup_rescan_workers)) {
2368 return -ENOMEM;
2369 }
2370
2371 return 0;
2372 }
2373
2374 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2375 struct btrfs_fs_devices *fs_devices)
2376 {
2377 int ret;
2378 struct btrfs_root *tree_root = fs_info->tree_root;
2379 struct btrfs_root *log_tree_root;
2380 struct btrfs_super_block *disk_super = fs_info->super_copy;
2381 u64 bytenr = btrfs_super_log_root(disk_super);
2382
2383 if (fs_devices->rw_devices == 0) {
2384 btrfs_warn(fs_info, "log replay required on RO media");
2385 return -EIO;
2386 }
2387
2388 log_tree_root = btrfs_alloc_root(fs_info);
2389 if (!log_tree_root)
2390 return -ENOMEM;
2391
2392 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2393 tree_root->stripesize, log_tree_root, fs_info,
2394 BTRFS_TREE_LOG_OBJECTID);
2395
2396 log_tree_root->node = read_tree_block(tree_root, bytenr,
2397 fs_info->generation + 1);
2398 if (IS_ERR(log_tree_root->node)) {
2399 btrfs_warn(fs_info, "failed to read log tree");
2400 ret = PTR_ERR(log_tree_root->node);
2401 kfree(log_tree_root);
2402 return ret;
2403 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2404 btrfs_err(fs_info, "failed to read log tree");
2405 free_extent_buffer(log_tree_root->node);
2406 kfree(log_tree_root);
2407 return -EIO;
2408 }
2409 /* returns with log_tree_root freed on success */
2410 ret = btrfs_recover_log_trees(log_tree_root);
2411 if (ret) {
2412 btrfs_std_error(tree_root->fs_info, ret,
2413 "Failed to recover log tree");
2414 free_extent_buffer(log_tree_root->node);
2415 kfree(log_tree_root);
2416 return ret;
2417 }
2418
2419 if (fs_info->sb->s_flags & MS_RDONLY) {
2420 ret = btrfs_commit_super(tree_root);
2421 if (ret)
2422 return ret;
2423 }
2424
2425 return 0;
2426 }
2427
2428 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2429 struct btrfs_root *tree_root)
2430 {
2431 struct btrfs_root *root;
2432 struct btrfs_key location;
2433 int ret;
2434
2435 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2436 location.type = BTRFS_ROOT_ITEM_KEY;
2437 location.offset = 0;
2438
2439 root = btrfs_read_tree_root(tree_root, &location);
2440 if (IS_ERR(root))
2441 return PTR_ERR(root);
2442 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2443 fs_info->extent_root = root;
2444
2445 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2446 root = btrfs_read_tree_root(tree_root, &location);
2447 if (IS_ERR(root))
2448 return PTR_ERR(root);
2449 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2450 fs_info->dev_root = root;
2451 btrfs_init_devices_late(fs_info);
2452
2453 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2454 root = btrfs_read_tree_root(tree_root, &location);
2455 if (IS_ERR(root))
2456 return PTR_ERR(root);
2457 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458 fs_info->csum_root = root;
2459
2460 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2461 root = btrfs_read_tree_root(tree_root, &location);
2462 if (!IS_ERR(root)) {
2463 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2464 fs_info->quota_enabled = 1;
2465 fs_info->pending_quota_state = 1;
2466 fs_info->quota_root = root;
2467 }
2468
2469 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2470 root = btrfs_read_tree_root(tree_root, &location);
2471 if (IS_ERR(root)) {
2472 ret = PTR_ERR(root);
2473 if (ret != -ENOENT)
2474 return ret;
2475 } else {
2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 fs_info->uuid_root = root;
2478 }
2479
2480 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2481 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2482 root = btrfs_read_tree_root(tree_root, &location);
2483 if (IS_ERR(root))
2484 return PTR_ERR(root);
2485 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2486 fs_info->free_space_root = root;
2487 }
2488
2489 return 0;
2490 }
2491
2492 int open_ctree(struct super_block *sb,
2493 struct btrfs_fs_devices *fs_devices,
2494 char *options)
2495 {
2496 u32 sectorsize;
2497 u32 nodesize;
2498 u32 stripesize;
2499 u64 generation;
2500 u64 features;
2501 struct btrfs_key location;
2502 struct buffer_head *bh;
2503 struct btrfs_super_block *disk_super;
2504 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2505 struct btrfs_root *tree_root;
2506 struct btrfs_root *chunk_root;
2507 int ret;
2508 int err = -EINVAL;
2509 int num_backups_tried = 0;
2510 int backup_index = 0;
2511 int max_active;
2512
2513 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2514 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2515 if (!tree_root || !chunk_root) {
2516 err = -ENOMEM;
2517 goto fail;
2518 }
2519
2520 ret = init_srcu_struct(&fs_info->subvol_srcu);
2521 if (ret) {
2522 err = ret;
2523 goto fail;
2524 }
2525
2526 ret = setup_bdi(fs_info, &fs_info->bdi);
2527 if (ret) {
2528 err = ret;
2529 goto fail_srcu;
2530 }
2531
2532 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2533 if (ret) {
2534 err = ret;
2535 goto fail_bdi;
2536 }
2537 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2538 (1 + ilog2(nr_cpu_ids));
2539
2540 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2541 if (ret) {
2542 err = ret;
2543 goto fail_dirty_metadata_bytes;
2544 }
2545
2546 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2547 if (ret) {
2548 err = ret;
2549 goto fail_delalloc_bytes;
2550 }
2551
2552 fs_info->btree_inode = new_inode(sb);
2553 if (!fs_info->btree_inode) {
2554 err = -ENOMEM;
2555 goto fail_bio_counter;
2556 }
2557
2558 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2559
2560 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2561 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2562 INIT_LIST_HEAD(&fs_info->trans_list);
2563 INIT_LIST_HEAD(&fs_info->dead_roots);
2564 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2565 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2566 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2567 spin_lock_init(&fs_info->delalloc_root_lock);
2568 spin_lock_init(&fs_info->trans_lock);
2569 spin_lock_init(&fs_info->fs_roots_radix_lock);
2570 spin_lock_init(&fs_info->delayed_iput_lock);
2571 spin_lock_init(&fs_info->defrag_inodes_lock);
2572 spin_lock_init(&fs_info->free_chunk_lock);
2573 spin_lock_init(&fs_info->tree_mod_seq_lock);
2574 spin_lock_init(&fs_info->super_lock);
2575 spin_lock_init(&fs_info->qgroup_op_lock);
2576 spin_lock_init(&fs_info->buffer_lock);
2577 spin_lock_init(&fs_info->unused_bgs_lock);
2578 rwlock_init(&fs_info->tree_mod_log_lock);
2579 mutex_init(&fs_info->unused_bg_unpin_mutex);
2580 mutex_init(&fs_info->delete_unused_bgs_mutex);
2581 mutex_init(&fs_info->reloc_mutex);
2582 mutex_init(&fs_info->delalloc_root_mutex);
2583 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2584 seqlock_init(&fs_info->profiles_lock);
2585
2586 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2587 INIT_LIST_HEAD(&fs_info->space_info);
2588 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2589 INIT_LIST_HEAD(&fs_info->unused_bgs);
2590 btrfs_mapping_init(&fs_info->mapping_tree);
2591 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2592 BTRFS_BLOCK_RSV_GLOBAL);
2593 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2594 BTRFS_BLOCK_RSV_DELALLOC);
2595 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2596 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2597 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2598 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2599 BTRFS_BLOCK_RSV_DELOPS);
2600 atomic_set(&fs_info->nr_async_submits, 0);
2601 atomic_set(&fs_info->async_delalloc_pages, 0);
2602 atomic_set(&fs_info->async_submit_draining, 0);
2603 atomic_set(&fs_info->nr_async_bios, 0);
2604 atomic_set(&fs_info->defrag_running, 0);
2605 atomic_set(&fs_info->qgroup_op_seq, 0);
2606 atomic64_set(&fs_info->tree_mod_seq, 0);
2607 fs_info->sb = sb;
2608 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2609 fs_info->metadata_ratio = 0;
2610 fs_info->defrag_inodes = RB_ROOT;
2611 fs_info->free_chunk_space = 0;
2612 fs_info->tree_mod_log = RB_ROOT;
2613 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2614 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2615 /* readahead state */
2616 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2617 spin_lock_init(&fs_info->reada_lock);
2618
2619 fs_info->thread_pool_size = min_t(unsigned long,
2620 num_online_cpus() + 2, 8);
2621
2622 INIT_LIST_HEAD(&fs_info->ordered_roots);
2623 spin_lock_init(&fs_info->ordered_root_lock);
2624 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2625 GFP_NOFS);
2626 if (!fs_info->delayed_root) {
2627 err = -ENOMEM;
2628 goto fail_iput;
2629 }
2630 btrfs_init_delayed_root(fs_info->delayed_root);
2631
2632 btrfs_init_scrub(fs_info);
2633 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2634 fs_info->check_integrity_print_mask = 0;
2635 #endif
2636 btrfs_init_balance(fs_info);
2637 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2638
2639 sb->s_blocksize = 4096;
2640 sb->s_blocksize_bits = blksize_bits(4096);
2641 sb->s_bdi = &fs_info->bdi;
2642
2643 btrfs_init_btree_inode(fs_info, tree_root);
2644
2645 spin_lock_init(&fs_info->block_group_cache_lock);
2646 fs_info->block_group_cache_tree = RB_ROOT;
2647 fs_info->first_logical_byte = (u64)-1;
2648
2649 extent_io_tree_init(&fs_info->freed_extents[0],
2650 fs_info->btree_inode->i_mapping);
2651 extent_io_tree_init(&fs_info->freed_extents[1],
2652 fs_info->btree_inode->i_mapping);
2653 fs_info->pinned_extents = &fs_info->freed_extents[0];
2654 fs_info->do_barriers = 1;
2655
2656
2657 mutex_init(&fs_info->ordered_operations_mutex);
2658 mutex_init(&fs_info->tree_log_mutex);
2659 mutex_init(&fs_info->chunk_mutex);
2660 mutex_init(&fs_info->transaction_kthread_mutex);
2661 mutex_init(&fs_info->cleaner_mutex);
2662 mutex_init(&fs_info->volume_mutex);
2663 mutex_init(&fs_info->ro_block_group_mutex);
2664 init_rwsem(&fs_info->commit_root_sem);
2665 init_rwsem(&fs_info->cleanup_work_sem);
2666 init_rwsem(&fs_info->subvol_sem);
2667 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2668
2669 btrfs_init_dev_replace_locks(fs_info);
2670 btrfs_init_qgroup(fs_info);
2671
2672 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2673 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2674
2675 init_waitqueue_head(&fs_info->transaction_throttle);
2676 init_waitqueue_head(&fs_info->transaction_wait);
2677 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2678 init_waitqueue_head(&fs_info->async_submit_wait);
2679
2680 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2681
2682 ret = btrfs_alloc_stripe_hash_table(fs_info);
2683 if (ret) {
2684 err = ret;
2685 goto fail_alloc;
2686 }
2687
2688 __setup_root(4096, 4096, 4096, tree_root,
2689 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2690
2691 invalidate_bdev(fs_devices->latest_bdev);
2692
2693 /*
2694 * Read super block and check the signature bytes only
2695 */
2696 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2697 if (IS_ERR(bh)) {
2698 err = PTR_ERR(bh);
2699 goto fail_alloc;
2700 }
2701
2702 /*
2703 * We want to check superblock checksum, the type is stored inside.
2704 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2705 */
2706 if (btrfs_check_super_csum(bh->b_data)) {
2707 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2708 err = -EINVAL;
2709 brelse(bh);
2710 goto fail_alloc;
2711 }
2712
2713 /*
2714 * super_copy is zeroed at allocation time and we never touch the
2715 * following bytes up to INFO_SIZE, the checksum is calculated from
2716 * the whole block of INFO_SIZE
2717 */
2718 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2719 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2720 sizeof(*fs_info->super_for_commit));
2721 brelse(bh);
2722
2723 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2724
2725 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2726 if (ret) {
2727 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2728 err = -EINVAL;
2729 goto fail_alloc;
2730 }
2731
2732 disk_super = fs_info->super_copy;
2733 if (!btrfs_super_root(disk_super))
2734 goto fail_alloc;
2735
2736 /* check FS state, whether FS is broken. */
2737 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2738 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2739
2740 /*
2741 * run through our array of backup supers and setup
2742 * our ring pointer to the oldest one
2743 */
2744 generation = btrfs_super_generation(disk_super);
2745 find_oldest_super_backup(fs_info, generation);
2746
2747 /*
2748 * In the long term, we'll store the compression type in the super
2749 * block, and it'll be used for per file compression control.
2750 */
2751 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2752
2753 ret = btrfs_parse_options(tree_root, options);
2754 if (ret) {
2755 err = ret;
2756 goto fail_alloc;
2757 }
2758
2759 features = btrfs_super_incompat_flags(disk_super) &
2760 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2761 if (features) {
2762 printk(KERN_ERR "BTRFS: couldn't mount because of "
2763 "unsupported optional features (%Lx).\n",
2764 features);
2765 err = -EINVAL;
2766 goto fail_alloc;
2767 }
2768
2769 features = btrfs_super_incompat_flags(disk_super);
2770 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2771 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2772 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2773
2774 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2775 printk(KERN_INFO "BTRFS: has skinny extents\n");
2776
2777 /*
2778 * flag our filesystem as having big metadata blocks if
2779 * they are bigger than the page size
2780 */
2781 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2782 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2783 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2784 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2785 }
2786
2787 nodesize = btrfs_super_nodesize(disk_super);
2788 sectorsize = btrfs_super_sectorsize(disk_super);
2789 stripesize = btrfs_super_stripesize(disk_super);
2790 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2791 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2792
2793 /*
2794 * mixed block groups end up with duplicate but slightly offset
2795 * extent buffers for the same range. It leads to corruptions
2796 */
2797 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2798 (sectorsize != nodesize)) {
2799 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2800 "are not allowed for mixed block groups on %s\n",
2801 sb->s_id);
2802 goto fail_alloc;
2803 }
2804
2805 /*
2806 * Needn't use the lock because there is no other task which will
2807 * update the flag.
2808 */
2809 btrfs_set_super_incompat_flags(disk_super, features);
2810
2811 features = btrfs_super_compat_ro_flags(disk_super) &
2812 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2813 if (!(sb->s_flags & MS_RDONLY) && features) {
2814 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2815 "unsupported option features (%Lx).\n",
2816 features);
2817 err = -EINVAL;
2818 goto fail_alloc;
2819 }
2820
2821 max_active = fs_info->thread_pool_size;
2822
2823 ret = btrfs_init_workqueues(fs_info, fs_devices);
2824 if (ret) {
2825 err = ret;
2826 goto fail_sb_buffer;
2827 }
2828
2829 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2830 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2831 SZ_4M / PAGE_CACHE_SIZE);
2832
2833 tree_root->nodesize = nodesize;
2834 tree_root->sectorsize = sectorsize;
2835 tree_root->stripesize = stripesize;
2836
2837 sb->s_blocksize = sectorsize;
2838 sb->s_blocksize_bits = blksize_bits(sectorsize);
2839
2840 mutex_lock(&fs_info->chunk_mutex);
2841 ret = btrfs_read_sys_array(tree_root);
2842 mutex_unlock(&fs_info->chunk_mutex);
2843 if (ret) {
2844 printk(KERN_ERR "BTRFS: failed to read the system "
2845 "array on %s\n", sb->s_id);
2846 goto fail_sb_buffer;
2847 }
2848
2849 generation = btrfs_super_chunk_root_generation(disk_super);
2850
2851 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2852 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2853
2854 chunk_root->node = read_tree_block(chunk_root,
2855 btrfs_super_chunk_root(disk_super),
2856 generation);
2857 if (IS_ERR(chunk_root->node) ||
2858 !extent_buffer_uptodate(chunk_root->node)) {
2859 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2860 sb->s_id);
2861 if (!IS_ERR(chunk_root->node))
2862 free_extent_buffer(chunk_root->node);
2863 chunk_root->node = NULL;
2864 goto fail_tree_roots;
2865 }
2866 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2867 chunk_root->commit_root = btrfs_root_node(chunk_root);
2868
2869 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2870 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2871
2872 ret = btrfs_read_chunk_tree(chunk_root);
2873 if (ret) {
2874 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2875 sb->s_id);
2876 goto fail_tree_roots;
2877 }
2878
2879 /*
2880 * keep the device that is marked to be the target device for the
2881 * dev_replace procedure
2882 */
2883 btrfs_close_extra_devices(fs_devices, 0);
2884
2885 if (!fs_devices->latest_bdev) {
2886 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2887 sb->s_id);
2888 goto fail_tree_roots;
2889 }
2890
2891 retry_root_backup:
2892 generation = btrfs_super_generation(disk_super);
2893
2894 tree_root->node = read_tree_block(tree_root,
2895 btrfs_super_root(disk_super),
2896 generation);
2897 if (IS_ERR(tree_root->node) ||
2898 !extent_buffer_uptodate(tree_root->node)) {
2899 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2900 sb->s_id);
2901 if (!IS_ERR(tree_root->node))
2902 free_extent_buffer(tree_root->node);
2903 tree_root->node = NULL;
2904 goto recovery_tree_root;
2905 }
2906
2907 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2908 tree_root->commit_root = btrfs_root_node(tree_root);
2909 btrfs_set_root_refs(&tree_root->root_item, 1);
2910
2911 mutex_lock(&tree_root->objectid_mutex);
2912 ret = btrfs_find_highest_objectid(tree_root,
2913 &tree_root->highest_objectid);
2914 if (ret) {
2915 mutex_unlock(&tree_root->objectid_mutex);
2916 goto recovery_tree_root;
2917 }
2918
2919 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2920
2921 mutex_unlock(&tree_root->objectid_mutex);
2922
2923 ret = btrfs_read_roots(fs_info, tree_root);
2924 if (ret)
2925 goto recovery_tree_root;
2926
2927 fs_info->generation = generation;
2928 fs_info->last_trans_committed = generation;
2929
2930 ret = btrfs_recover_balance(fs_info);
2931 if (ret) {
2932 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2933 goto fail_block_groups;
2934 }
2935
2936 ret = btrfs_init_dev_stats(fs_info);
2937 if (ret) {
2938 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2939 ret);
2940 goto fail_block_groups;
2941 }
2942
2943 ret = btrfs_init_dev_replace(fs_info);
2944 if (ret) {
2945 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2946 goto fail_block_groups;
2947 }
2948
2949 btrfs_close_extra_devices(fs_devices, 1);
2950
2951 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2952 if (ret) {
2953 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2954 goto fail_block_groups;
2955 }
2956
2957 ret = btrfs_sysfs_add_device(fs_devices);
2958 if (ret) {
2959 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2960 goto fail_fsdev_sysfs;
2961 }
2962
2963 ret = btrfs_sysfs_add_mounted(fs_info);
2964 if (ret) {
2965 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2966 goto fail_fsdev_sysfs;
2967 }
2968
2969 ret = btrfs_init_space_info(fs_info);
2970 if (ret) {
2971 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2972 goto fail_sysfs;
2973 }
2974
2975 ret = btrfs_read_block_groups(fs_info->extent_root);
2976 if (ret) {
2977 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2978 goto fail_sysfs;
2979 }
2980 fs_info->num_tolerated_disk_barrier_failures =
2981 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2982 if (fs_info->fs_devices->missing_devices >
2983 fs_info->num_tolerated_disk_barrier_failures &&
2984 !(sb->s_flags & MS_RDONLY)) {
2985 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2986 fs_info->fs_devices->missing_devices,
2987 fs_info->num_tolerated_disk_barrier_failures);
2988 goto fail_sysfs;
2989 }
2990
2991 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2992 "btrfs-cleaner");
2993 if (IS_ERR(fs_info->cleaner_kthread))
2994 goto fail_sysfs;
2995
2996 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2997 tree_root,
2998 "btrfs-transaction");
2999 if (IS_ERR(fs_info->transaction_kthread))
3000 goto fail_cleaner;
3001
3002 if (!btrfs_test_opt(tree_root, SSD) &&
3003 !btrfs_test_opt(tree_root, NOSSD) &&
3004 !fs_info->fs_devices->rotating) {
3005 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3006 "mode\n");
3007 btrfs_set_opt(fs_info->mount_opt, SSD);
3008 }
3009
3010 /*
3011 * Mount does not set all options immediatelly, we can do it now and do
3012 * not have to wait for transaction commit
3013 */
3014 btrfs_apply_pending_changes(fs_info);
3015
3016 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3017 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3018 ret = btrfsic_mount(tree_root, fs_devices,
3019 btrfs_test_opt(tree_root,
3020 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3021 1 : 0,
3022 fs_info->check_integrity_print_mask);
3023 if (ret)
3024 printk(KERN_WARNING "BTRFS: failed to initialize"
3025 " integrity check module %s\n", sb->s_id);
3026 }
3027 #endif
3028 ret = btrfs_read_qgroup_config(fs_info);
3029 if (ret)
3030 goto fail_trans_kthread;
3031
3032 /* do not make disk changes in broken FS */
3033 if (btrfs_super_log_root(disk_super) != 0) {
3034 ret = btrfs_replay_log(fs_info, fs_devices);
3035 if (ret) {
3036 err = ret;
3037 goto fail_qgroup;
3038 }
3039 }
3040
3041 ret = btrfs_find_orphan_roots(tree_root);
3042 if (ret)
3043 goto fail_qgroup;
3044
3045 if (!(sb->s_flags & MS_RDONLY)) {
3046 ret = btrfs_cleanup_fs_roots(fs_info);
3047 if (ret)
3048 goto fail_qgroup;
3049
3050 mutex_lock(&fs_info->cleaner_mutex);
3051 ret = btrfs_recover_relocation(tree_root);
3052 mutex_unlock(&fs_info->cleaner_mutex);
3053 if (ret < 0) {
3054 printk(KERN_WARNING
3055 "BTRFS: failed to recover relocation\n");
3056 err = -EINVAL;
3057 goto fail_qgroup;
3058 }
3059 }
3060
3061 location.objectid = BTRFS_FS_TREE_OBJECTID;
3062 location.type = BTRFS_ROOT_ITEM_KEY;
3063 location.offset = 0;
3064
3065 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3066 if (IS_ERR(fs_info->fs_root)) {
3067 err = PTR_ERR(fs_info->fs_root);
3068 goto fail_qgroup;
3069 }
3070
3071 if (sb->s_flags & MS_RDONLY)
3072 return 0;
3073
3074 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3075 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3076 pr_info("BTRFS: creating free space tree\n");
3077 ret = btrfs_create_free_space_tree(fs_info);
3078 if (ret) {
3079 pr_warn("BTRFS: failed to create free space tree %d\n",
3080 ret);
3081 close_ctree(tree_root);
3082 return ret;
3083 }
3084 }
3085
3086 down_read(&fs_info->cleanup_work_sem);
3087 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3088 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3089 up_read(&fs_info->cleanup_work_sem);
3090 close_ctree(tree_root);
3091 return ret;
3092 }
3093 up_read(&fs_info->cleanup_work_sem);
3094
3095 ret = btrfs_resume_balance_async(fs_info);
3096 if (ret) {
3097 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3098 close_ctree(tree_root);
3099 return ret;
3100 }
3101
3102 ret = btrfs_resume_dev_replace_async(fs_info);
3103 if (ret) {
3104 pr_warn("BTRFS: failed to resume dev_replace\n");
3105 close_ctree(tree_root);
3106 return ret;
3107 }
3108
3109 btrfs_qgroup_rescan_resume(fs_info);
3110
3111 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3112 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3113 pr_info("BTRFS: clearing free space tree\n");
3114 ret = btrfs_clear_free_space_tree(fs_info);
3115 if (ret) {
3116 pr_warn("BTRFS: failed to clear free space tree %d\n",
3117 ret);
3118 close_ctree(tree_root);
3119 return ret;
3120 }
3121 }
3122
3123 if (!fs_info->uuid_root) {
3124 pr_info("BTRFS: creating UUID tree\n");
3125 ret = btrfs_create_uuid_tree(fs_info);
3126 if (ret) {
3127 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3128 ret);
3129 close_ctree(tree_root);
3130 return ret;
3131 }
3132 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3133 fs_info->generation !=
3134 btrfs_super_uuid_tree_generation(disk_super)) {
3135 pr_info("BTRFS: checking UUID tree\n");
3136 ret = btrfs_check_uuid_tree(fs_info);
3137 if (ret) {
3138 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3139 ret);
3140 close_ctree(tree_root);
3141 return ret;
3142 }
3143 } else {
3144 fs_info->update_uuid_tree_gen = 1;
3145 }
3146
3147 fs_info->open = 1;
3148
3149 return 0;
3150
3151 fail_qgroup:
3152 btrfs_free_qgroup_config(fs_info);
3153 fail_trans_kthread:
3154 kthread_stop(fs_info->transaction_kthread);
3155 btrfs_cleanup_transaction(fs_info->tree_root);
3156 btrfs_free_fs_roots(fs_info);
3157 fail_cleaner:
3158 kthread_stop(fs_info->cleaner_kthread);
3159
3160 /*
3161 * make sure we're done with the btree inode before we stop our
3162 * kthreads
3163 */
3164 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3165
3166 fail_sysfs:
3167 btrfs_sysfs_remove_mounted(fs_info);
3168
3169 fail_fsdev_sysfs:
3170 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3171
3172 fail_block_groups:
3173 btrfs_put_block_group_cache(fs_info);
3174 btrfs_free_block_groups(fs_info);
3175
3176 fail_tree_roots:
3177 free_root_pointers(fs_info, 1);
3178 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3179
3180 fail_sb_buffer:
3181 btrfs_stop_all_workers(fs_info);
3182 fail_alloc:
3183 fail_iput:
3184 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3185
3186 iput(fs_info->btree_inode);
3187 fail_bio_counter:
3188 percpu_counter_destroy(&fs_info->bio_counter);
3189 fail_delalloc_bytes:
3190 percpu_counter_destroy(&fs_info->delalloc_bytes);
3191 fail_dirty_metadata_bytes:
3192 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3193 fail_bdi:
3194 bdi_destroy(&fs_info->bdi);
3195 fail_srcu:
3196 cleanup_srcu_struct(&fs_info->subvol_srcu);
3197 fail:
3198 btrfs_free_stripe_hash_table(fs_info);
3199 btrfs_close_devices(fs_info->fs_devices);
3200 return err;
3201
3202 recovery_tree_root:
3203 if (!btrfs_test_opt(tree_root, RECOVERY))
3204 goto fail_tree_roots;
3205
3206 free_root_pointers(fs_info, 0);
3207
3208 /* don't use the log in recovery mode, it won't be valid */
3209 btrfs_set_super_log_root(disk_super, 0);
3210
3211 /* we can't trust the free space cache either */
3212 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3213
3214 ret = next_root_backup(fs_info, fs_info->super_copy,
3215 &num_backups_tried, &backup_index);
3216 if (ret == -1)
3217 goto fail_block_groups;
3218 goto retry_root_backup;
3219 }
3220
3221 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3222 {
3223 if (uptodate) {
3224 set_buffer_uptodate(bh);
3225 } else {
3226 struct btrfs_device *device = (struct btrfs_device *)
3227 bh->b_private;
3228
3229 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3230 "lost page write due to IO error on %s",
3231 rcu_str_deref(device->name));
3232 /* note, we dont' set_buffer_write_io_error because we have
3233 * our own ways of dealing with the IO errors
3234 */
3235 clear_buffer_uptodate(bh);
3236 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3237 }
3238 unlock_buffer(bh);
3239 put_bh(bh);
3240 }
3241
3242 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3243 struct buffer_head **bh_ret)
3244 {
3245 struct buffer_head *bh;
3246 struct btrfs_super_block *super;
3247 u64 bytenr;
3248
3249 bytenr = btrfs_sb_offset(copy_num);
3250 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3251 return -EINVAL;
3252
3253 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3254 /*
3255 * If we fail to read from the underlying devices, as of now
3256 * the best option we have is to mark it EIO.
3257 */
3258 if (!bh)
3259 return -EIO;
3260
3261 super = (struct btrfs_super_block *)bh->b_data;
3262 if (btrfs_super_bytenr(super) != bytenr ||
3263 btrfs_super_magic(super) != BTRFS_MAGIC) {
3264 brelse(bh);
3265 return -EINVAL;
3266 }
3267
3268 *bh_ret = bh;
3269 return 0;
3270 }
3271
3272
3273 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3274 {
3275 struct buffer_head *bh;
3276 struct buffer_head *latest = NULL;
3277 struct btrfs_super_block *super;
3278 int i;
3279 u64 transid = 0;
3280 int ret = -EINVAL;
3281
3282 /* we would like to check all the supers, but that would make
3283 * a btrfs mount succeed after a mkfs from a different FS.
3284 * So, we need to add a special mount option to scan for
3285 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3286 */
3287 for (i = 0; i < 1; i++) {
3288 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3289 if (ret)
3290 continue;
3291
3292 super = (struct btrfs_super_block *)bh->b_data;
3293
3294 if (!latest || btrfs_super_generation(super) > transid) {
3295 brelse(latest);
3296 latest = bh;
3297 transid = btrfs_super_generation(super);
3298 } else {
3299 brelse(bh);
3300 }
3301 }
3302
3303 if (!latest)
3304 return ERR_PTR(ret);
3305
3306 return latest;
3307 }
3308
3309 /*
3310 * this should be called twice, once with wait == 0 and
3311 * once with wait == 1. When wait == 0 is done, all the buffer heads
3312 * we write are pinned.
3313 *
3314 * They are released when wait == 1 is done.
3315 * max_mirrors must be the same for both runs, and it indicates how
3316 * many supers on this one device should be written.
3317 *
3318 * max_mirrors == 0 means to write them all.
3319 */
3320 static int write_dev_supers(struct btrfs_device *device,
3321 struct btrfs_super_block *sb,
3322 int do_barriers, int wait, int max_mirrors)
3323 {
3324 struct buffer_head *bh;
3325 int i;
3326 int ret;
3327 int errors = 0;
3328 u32 crc;
3329 u64 bytenr;
3330
3331 if (max_mirrors == 0)
3332 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3333
3334 for (i = 0; i < max_mirrors; i++) {
3335 bytenr = btrfs_sb_offset(i);
3336 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3337 device->commit_total_bytes)
3338 break;
3339
3340 if (wait) {
3341 bh = __find_get_block(device->bdev, bytenr / 4096,
3342 BTRFS_SUPER_INFO_SIZE);
3343 if (!bh) {
3344 errors++;
3345 continue;
3346 }
3347 wait_on_buffer(bh);
3348 if (!buffer_uptodate(bh))
3349 errors++;
3350
3351 /* drop our reference */
3352 brelse(bh);
3353
3354 /* drop the reference from the wait == 0 run */
3355 brelse(bh);
3356 continue;
3357 } else {
3358 btrfs_set_super_bytenr(sb, bytenr);
3359
3360 crc = ~(u32)0;
3361 crc = btrfs_csum_data((char *)sb +
3362 BTRFS_CSUM_SIZE, crc,
3363 BTRFS_SUPER_INFO_SIZE -
3364 BTRFS_CSUM_SIZE);
3365 btrfs_csum_final(crc, sb->csum);
3366
3367 /*
3368 * one reference for us, and we leave it for the
3369 * caller
3370 */
3371 bh = __getblk(device->bdev, bytenr / 4096,
3372 BTRFS_SUPER_INFO_SIZE);
3373 if (!bh) {
3374 btrfs_err(device->dev_root->fs_info,
3375 "couldn't get super buffer head for bytenr %llu",
3376 bytenr);
3377 errors++;
3378 continue;
3379 }
3380
3381 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3382
3383 /* one reference for submit_bh */
3384 get_bh(bh);
3385
3386 set_buffer_uptodate(bh);
3387 lock_buffer(bh);
3388 bh->b_end_io = btrfs_end_buffer_write_sync;
3389 bh->b_private = device;
3390 }
3391
3392 /*
3393 * we fua the first super. The others we allow
3394 * to go down lazy.
3395 */
3396 if (i == 0)
3397 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3398 else
3399 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3400 if (ret)
3401 errors++;
3402 }
3403 return errors < i ? 0 : -1;
3404 }
3405
3406 /*
3407 * endio for the write_dev_flush, this will wake anyone waiting
3408 * for the barrier when it is done
3409 */
3410 static void btrfs_end_empty_barrier(struct bio *bio)
3411 {
3412 if (bio->bi_private)
3413 complete(bio->bi_private);
3414 bio_put(bio);
3415 }
3416
3417 /*
3418 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3419 * sent down. With wait == 1, it waits for the previous flush.
3420 *
3421 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3422 * capable
3423 */
3424 static int write_dev_flush(struct btrfs_device *device, int wait)
3425 {
3426 struct bio *bio;
3427 int ret = 0;
3428
3429 if (device->nobarriers)
3430 return 0;
3431
3432 if (wait) {
3433 bio = device->flush_bio;
3434 if (!bio)
3435 return 0;
3436
3437 wait_for_completion(&device->flush_wait);
3438
3439 if (bio->bi_error) {
3440 ret = bio->bi_error;
3441 btrfs_dev_stat_inc_and_print(device,
3442 BTRFS_DEV_STAT_FLUSH_ERRS);
3443 }
3444
3445 /* drop the reference from the wait == 0 run */
3446 bio_put(bio);
3447 device->flush_bio = NULL;
3448
3449 return ret;
3450 }
3451
3452 /*
3453 * one reference for us, and we leave it for the
3454 * caller
3455 */
3456 device->flush_bio = NULL;
3457 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3458 if (!bio)
3459 return -ENOMEM;
3460
3461 bio->bi_end_io = btrfs_end_empty_barrier;
3462 bio->bi_bdev = device->bdev;
3463 init_completion(&device->flush_wait);
3464 bio->bi_private = &device->flush_wait;
3465 device->flush_bio = bio;
3466
3467 bio_get(bio);
3468 btrfsic_submit_bio(WRITE_FLUSH, bio);
3469
3470 return 0;
3471 }
3472
3473 /*
3474 * send an empty flush down to each device in parallel,
3475 * then wait for them
3476 */
3477 static int barrier_all_devices(struct btrfs_fs_info *info)
3478 {
3479 struct list_head *head;
3480 struct btrfs_device *dev;
3481 int errors_send = 0;
3482 int errors_wait = 0;
3483 int ret;
3484
3485 /* send down all the barriers */
3486 head = &info->fs_devices->devices;
3487 list_for_each_entry_rcu(dev, head, dev_list) {
3488 if (dev->missing)
3489 continue;
3490 if (!dev->bdev) {
3491 errors_send++;
3492 continue;
3493 }
3494 if (!dev->in_fs_metadata || !dev->writeable)
3495 continue;
3496
3497 ret = write_dev_flush(dev, 0);
3498 if (ret)
3499 errors_send++;
3500 }
3501
3502 /* wait for all the barriers */
3503 list_for_each_entry_rcu(dev, head, dev_list) {
3504 if (dev->missing)
3505 continue;
3506 if (!dev->bdev) {
3507 errors_wait++;
3508 continue;
3509 }
3510 if (!dev->in_fs_metadata || !dev->writeable)
3511 continue;
3512
3513 ret = write_dev_flush(dev, 1);
3514 if (ret)
3515 errors_wait++;
3516 }
3517 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3518 errors_wait > info->num_tolerated_disk_barrier_failures)
3519 return -EIO;
3520 return 0;
3521 }
3522
3523 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3524 {
3525 int raid_type;
3526 int min_tolerated = INT_MAX;
3527
3528 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3529 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3530 min_tolerated = min(min_tolerated,
3531 btrfs_raid_array[BTRFS_RAID_SINGLE].
3532 tolerated_failures);
3533
3534 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3535 if (raid_type == BTRFS_RAID_SINGLE)
3536 continue;
3537 if (!(flags & btrfs_raid_group[raid_type]))
3538 continue;
3539 min_tolerated = min(min_tolerated,
3540 btrfs_raid_array[raid_type].
3541 tolerated_failures);
3542 }
3543
3544 if (min_tolerated == INT_MAX) {
3545 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3546 min_tolerated = 0;
3547 }
3548
3549 return min_tolerated;
3550 }
3551
3552 int btrfs_calc_num_tolerated_disk_barrier_failures(
3553 struct btrfs_fs_info *fs_info)
3554 {
3555 struct btrfs_ioctl_space_info space;
3556 struct btrfs_space_info *sinfo;
3557 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3558 BTRFS_BLOCK_GROUP_SYSTEM,
3559 BTRFS_BLOCK_GROUP_METADATA,
3560 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3561 int i;
3562 int c;
3563 int num_tolerated_disk_barrier_failures =
3564 (int)fs_info->fs_devices->num_devices;
3565
3566 for (i = 0; i < ARRAY_SIZE(types); i++) {
3567 struct btrfs_space_info *tmp;
3568
3569 sinfo = NULL;
3570 rcu_read_lock();
3571 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3572 if (tmp->flags == types[i]) {
3573 sinfo = tmp;
3574 break;
3575 }
3576 }
3577 rcu_read_unlock();
3578
3579 if (!sinfo)
3580 continue;
3581
3582 down_read(&sinfo->groups_sem);
3583 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3584 u64 flags;
3585
3586 if (list_empty(&sinfo->block_groups[c]))
3587 continue;
3588
3589 btrfs_get_block_group_info(&sinfo->block_groups[c],
3590 &space);
3591 if (space.total_bytes == 0 || space.used_bytes == 0)
3592 continue;
3593 flags = space.flags;
3594
3595 num_tolerated_disk_barrier_failures = min(
3596 num_tolerated_disk_barrier_failures,
3597 btrfs_get_num_tolerated_disk_barrier_failures(
3598 flags));
3599 }
3600 up_read(&sinfo->groups_sem);
3601 }
3602
3603 return num_tolerated_disk_barrier_failures;
3604 }
3605
3606 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3607 {
3608 struct list_head *head;
3609 struct btrfs_device *dev;
3610 struct btrfs_super_block *sb;
3611 struct btrfs_dev_item *dev_item;
3612 int ret;
3613 int do_barriers;
3614 int max_errors;
3615 int total_errors = 0;
3616 u64 flags;
3617
3618 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3619 backup_super_roots(root->fs_info);
3620
3621 sb = root->fs_info->super_for_commit;
3622 dev_item = &sb->dev_item;
3623
3624 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3625 head = &root->fs_info->fs_devices->devices;
3626 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3627
3628 if (do_barriers) {
3629 ret = barrier_all_devices(root->fs_info);
3630 if (ret) {
3631 mutex_unlock(
3632 &root->fs_info->fs_devices->device_list_mutex);
3633 btrfs_std_error(root->fs_info, ret,
3634 "errors while submitting device barriers.");
3635 return ret;
3636 }
3637 }
3638
3639 list_for_each_entry_rcu(dev, head, dev_list) {
3640 if (!dev->bdev) {
3641 total_errors++;
3642 continue;
3643 }
3644 if (!dev->in_fs_metadata || !dev->writeable)
3645 continue;
3646
3647 btrfs_set_stack_device_generation(dev_item, 0);
3648 btrfs_set_stack_device_type(dev_item, dev->type);
3649 btrfs_set_stack_device_id(dev_item, dev->devid);
3650 btrfs_set_stack_device_total_bytes(dev_item,
3651 dev->commit_total_bytes);
3652 btrfs_set_stack_device_bytes_used(dev_item,
3653 dev->commit_bytes_used);
3654 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3655 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3656 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3657 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3658 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3659
3660 flags = btrfs_super_flags(sb);
3661 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3662
3663 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3664 if (ret)
3665 total_errors++;
3666 }
3667 if (total_errors > max_errors) {
3668 btrfs_err(root->fs_info, "%d errors while writing supers",
3669 total_errors);
3670 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3671
3672 /* FUA is masked off if unsupported and can't be the reason */
3673 btrfs_std_error(root->fs_info, -EIO,
3674 "%d errors while writing supers", total_errors);
3675 return -EIO;
3676 }
3677
3678 total_errors = 0;
3679 list_for_each_entry_rcu(dev, head, dev_list) {
3680 if (!dev->bdev)
3681 continue;
3682 if (!dev->in_fs_metadata || !dev->writeable)
3683 continue;
3684
3685 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3686 if (ret)
3687 total_errors++;
3688 }
3689 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3690 if (total_errors > max_errors) {
3691 btrfs_std_error(root->fs_info, -EIO,
3692 "%d errors while writing supers", total_errors);
3693 return -EIO;
3694 }
3695 return 0;
3696 }
3697
3698 int write_ctree_super(struct btrfs_trans_handle *trans,
3699 struct btrfs_root *root, int max_mirrors)
3700 {
3701 return write_all_supers(root, max_mirrors);
3702 }
3703
3704 /* Drop a fs root from the radix tree and free it. */
3705 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3706 struct btrfs_root *root)
3707 {
3708 spin_lock(&fs_info->fs_roots_radix_lock);
3709 radix_tree_delete(&fs_info->fs_roots_radix,
3710 (unsigned long)root->root_key.objectid);
3711 spin_unlock(&fs_info->fs_roots_radix_lock);
3712
3713 if (btrfs_root_refs(&root->root_item) == 0)
3714 synchronize_srcu(&fs_info->subvol_srcu);
3715
3716 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3717 btrfs_free_log(NULL, root);
3718
3719 if (root->free_ino_pinned)
3720 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3721 if (root->free_ino_ctl)
3722 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3723 free_fs_root(root);
3724 }
3725
3726 static void free_fs_root(struct btrfs_root *root)
3727 {
3728 iput(root->ino_cache_inode);
3729 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3730 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3731 root->orphan_block_rsv = NULL;
3732 if (root->anon_dev)
3733 free_anon_bdev(root->anon_dev);
3734 if (root->subv_writers)
3735 btrfs_free_subvolume_writers(root->subv_writers);
3736 free_extent_buffer(root->node);
3737 free_extent_buffer(root->commit_root);
3738 kfree(root->free_ino_ctl);
3739 kfree(root->free_ino_pinned);
3740 kfree(root->name);
3741 btrfs_put_fs_root(root);
3742 }
3743
3744 void btrfs_free_fs_root(struct btrfs_root *root)
3745 {
3746 free_fs_root(root);
3747 }
3748
3749 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3750 {
3751 u64 root_objectid = 0;
3752 struct btrfs_root *gang[8];
3753 int i = 0;
3754 int err = 0;
3755 unsigned int ret = 0;
3756 int index;
3757
3758 while (1) {
3759 index = srcu_read_lock(&fs_info->subvol_srcu);
3760 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3761 (void **)gang, root_objectid,
3762 ARRAY_SIZE(gang));
3763 if (!ret) {
3764 srcu_read_unlock(&fs_info->subvol_srcu, index);
3765 break;
3766 }
3767 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3768
3769 for (i = 0; i < ret; i++) {
3770 /* Avoid to grab roots in dead_roots */
3771 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3772 gang[i] = NULL;
3773 continue;
3774 }
3775 /* grab all the search result for later use */
3776 gang[i] = btrfs_grab_fs_root(gang[i]);
3777 }
3778 srcu_read_unlock(&fs_info->subvol_srcu, index);
3779
3780 for (i = 0; i < ret; i++) {
3781 if (!gang[i])
3782 continue;
3783 root_objectid = gang[i]->root_key.objectid;
3784 err = btrfs_orphan_cleanup(gang[i]);
3785 if (err)
3786 break;
3787 btrfs_put_fs_root(gang[i]);
3788 }
3789 root_objectid++;
3790 }
3791
3792 /* release the uncleaned roots due to error */
3793 for (; i < ret; i++) {
3794 if (gang[i])
3795 btrfs_put_fs_root(gang[i]);
3796 }
3797 return err;
3798 }
3799
3800 int btrfs_commit_super(struct btrfs_root *root)
3801 {
3802 struct btrfs_trans_handle *trans;
3803
3804 mutex_lock(&root->fs_info->cleaner_mutex);
3805 btrfs_run_delayed_iputs(root);
3806 mutex_unlock(&root->fs_info->cleaner_mutex);
3807 wake_up_process(root->fs_info->cleaner_kthread);
3808
3809 /* wait until ongoing cleanup work done */
3810 down_write(&root->fs_info->cleanup_work_sem);
3811 up_write(&root->fs_info->cleanup_work_sem);
3812
3813 trans = btrfs_join_transaction(root);
3814 if (IS_ERR(trans))
3815 return PTR_ERR(trans);
3816 return btrfs_commit_transaction(trans, root);
3817 }
3818
3819 void close_ctree(struct btrfs_root *root)
3820 {
3821 struct btrfs_fs_info *fs_info = root->fs_info;
3822 int ret;
3823
3824 fs_info->closing = 1;
3825 smp_mb();
3826
3827 /* wait for the qgroup rescan worker to stop */
3828 btrfs_qgroup_wait_for_completion(fs_info);
3829
3830 /* wait for the uuid_scan task to finish */
3831 down(&fs_info->uuid_tree_rescan_sem);
3832 /* avoid complains from lockdep et al., set sem back to initial state */
3833 up(&fs_info->uuid_tree_rescan_sem);
3834
3835 /* pause restriper - we want to resume on mount */
3836 btrfs_pause_balance(fs_info);
3837
3838 btrfs_dev_replace_suspend_for_unmount(fs_info);
3839
3840 btrfs_scrub_cancel(fs_info);
3841
3842 /* wait for any defraggers to finish */
3843 wait_event(fs_info->transaction_wait,
3844 (atomic_read(&fs_info->defrag_running) == 0));
3845
3846 /* clear out the rbtree of defraggable inodes */
3847 btrfs_cleanup_defrag_inodes(fs_info);
3848
3849 cancel_work_sync(&fs_info->async_reclaim_work);
3850
3851 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3852 /*
3853 * If the cleaner thread is stopped and there are
3854 * block groups queued for removal, the deletion will be
3855 * skipped when we quit the cleaner thread.
3856 */
3857 btrfs_delete_unused_bgs(root->fs_info);
3858
3859 ret = btrfs_commit_super(root);
3860 if (ret)
3861 btrfs_err(fs_info, "commit super ret %d", ret);
3862 }
3863
3864 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3865 btrfs_error_commit_super(root);
3866
3867 kthread_stop(fs_info->transaction_kthread);
3868 kthread_stop(fs_info->cleaner_kthread);
3869
3870 fs_info->closing = 2;
3871 smp_mb();
3872
3873 btrfs_free_qgroup_config(fs_info);
3874
3875 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3876 btrfs_info(fs_info, "at unmount delalloc count %lld",
3877 percpu_counter_sum(&fs_info->delalloc_bytes));
3878 }
3879
3880 btrfs_sysfs_remove_mounted(fs_info);
3881 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3882
3883 btrfs_free_fs_roots(fs_info);
3884
3885 btrfs_put_block_group_cache(fs_info);
3886
3887 btrfs_free_block_groups(fs_info);
3888
3889 /*
3890 * we must make sure there is not any read request to
3891 * submit after we stopping all workers.
3892 */
3893 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3894 btrfs_stop_all_workers(fs_info);
3895
3896 fs_info->open = 0;
3897 free_root_pointers(fs_info, 1);
3898
3899 iput(fs_info->btree_inode);
3900
3901 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3902 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3903 btrfsic_unmount(root, fs_info->fs_devices);
3904 #endif
3905
3906 btrfs_close_devices(fs_info->fs_devices);
3907 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3908
3909 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3910 percpu_counter_destroy(&fs_info->delalloc_bytes);
3911 percpu_counter_destroy(&fs_info->bio_counter);
3912 bdi_destroy(&fs_info->bdi);
3913 cleanup_srcu_struct(&fs_info->subvol_srcu);
3914
3915 btrfs_free_stripe_hash_table(fs_info);
3916
3917 __btrfs_free_block_rsv(root->orphan_block_rsv);
3918 root->orphan_block_rsv = NULL;
3919
3920 lock_chunks(root);
3921 while (!list_empty(&fs_info->pinned_chunks)) {
3922 struct extent_map *em;
3923
3924 em = list_first_entry(&fs_info->pinned_chunks,
3925 struct extent_map, list);
3926 list_del_init(&em->list);
3927 free_extent_map(em);
3928 }
3929 unlock_chunks(root);
3930 }
3931
3932 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3933 int atomic)
3934 {
3935 int ret;
3936 struct inode *btree_inode = buf->pages[0]->mapping->host;
3937
3938 ret = extent_buffer_uptodate(buf);
3939 if (!ret)
3940 return ret;
3941
3942 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3943 parent_transid, atomic);
3944 if (ret == -EAGAIN)
3945 return ret;
3946 return !ret;
3947 }
3948
3949 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3950 {
3951 struct btrfs_root *root;
3952 u64 transid = btrfs_header_generation(buf);
3953 int was_dirty;
3954
3955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3956 /*
3957 * This is a fast path so only do this check if we have sanity tests
3958 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3959 * outside of the sanity tests.
3960 */
3961 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3962 return;
3963 #endif
3964 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3965 btrfs_assert_tree_locked(buf);
3966 if (transid != root->fs_info->generation)
3967 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3968 "found %llu running %llu\n",
3969 buf->start, transid, root->fs_info->generation);
3970 was_dirty = set_extent_buffer_dirty(buf);
3971 if (!was_dirty)
3972 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3973 buf->len,
3974 root->fs_info->dirty_metadata_batch);
3975 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3976 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3977 btrfs_print_leaf(root, buf);
3978 ASSERT(0);
3979 }
3980 #endif
3981 }
3982
3983 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3984 int flush_delayed)
3985 {
3986 /*
3987 * looks as though older kernels can get into trouble with
3988 * this code, they end up stuck in balance_dirty_pages forever
3989 */
3990 int ret;
3991
3992 if (current->flags & PF_MEMALLOC)
3993 return;
3994
3995 if (flush_delayed)
3996 btrfs_balance_delayed_items(root);
3997
3998 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3999 BTRFS_DIRTY_METADATA_THRESH);
4000 if (ret > 0) {
4001 balance_dirty_pages_ratelimited(
4002 root->fs_info->btree_inode->i_mapping);
4003 }
4004 }
4005
4006 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4007 {
4008 __btrfs_btree_balance_dirty(root, 1);
4009 }
4010
4011 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4012 {
4013 __btrfs_btree_balance_dirty(root, 0);
4014 }
4015
4016 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4017 {
4018 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4019 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4020 }
4021
4022 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4023 int read_only)
4024 {
4025 struct btrfs_super_block *sb = fs_info->super_copy;
4026 u64 nodesize = btrfs_super_nodesize(sb);
4027 u64 sectorsize = btrfs_super_sectorsize(sb);
4028 int ret = 0;
4029
4030 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4031 printk(KERN_ERR "BTRFS: no valid FS found\n");
4032 ret = -EINVAL;
4033 }
4034 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4035 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4036 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4037 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4038 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4039 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4040 ret = -EINVAL;
4041 }
4042 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4043 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4044 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4045 ret = -EINVAL;
4046 }
4047 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4048 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4049 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4050 ret = -EINVAL;
4051 }
4052
4053 /*
4054 * Check sectorsize and nodesize first, other check will need it.
4055 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4056 */
4057 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4058 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4059 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4060 ret = -EINVAL;
4061 }
4062 /* Only PAGE SIZE is supported yet */
4063 if (sectorsize != PAGE_CACHE_SIZE) {
4064 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4065 sectorsize, PAGE_CACHE_SIZE);
4066 ret = -EINVAL;
4067 }
4068 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4069 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4070 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4071 ret = -EINVAL;
4072 }
4073 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4074 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4075 le32_to_cpu(sb->__unused_leafsize),
4076 nodesize);
4077 ret = -EINVAL;
4078 }
4079
4080 /* Root alignment check */
4081 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4082 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4083 btrfs_super_root(sb));
4084 ret = -EINVAL;
4085 }
4086 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4087 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4088 btrfs_super_chunk_root(sb));
4089 ret = -EINVAL;
4090 }
4091 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4092 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4093 btrfs_super_log_root(sb));
4094 ret = -EINVAL;
4095 }
4096
4097 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4098 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4099 fs_info->fsid, sb->dev_item.fsid);
4100 ret = -EINVAL;
4101 }
4102
4103 /*
4104 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4105 * done later
4106 */
4107 if (btrfs_super_num_devices(sb) > (1UL << 31))
4108 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4109 btrfs_super_num_devices(sb));
4110 if (btrfs_super_num_devices(sb) == 0) {
4111 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4112 ret = -EINVAL;
4113 }
4114
4115 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4116 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4117 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4118 ret = -EINVAL;
4119 }
4120
4121 /*
4122 * Obvious sys_chunk_array corruptions, it must hold at least one key
4123 * and one chunk
4124 */
4125 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4126 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4127 btrfs_super_sys_array_size(sb),
4128 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4129 ret = -EINVAL;
4130 }
4131 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4132 + sizeof(struct btrfs_chunk)) {
4133 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4134 btrfs_super_sys_array_size(sb),
4135 sizeof(struct btrfs_disk_key)
4136 + sizeof(struct btrfs_chunk));
4137 ret = -EINVAL;
4138 }
4139
4140 /*
4141 * The generation is a global counter, we'll trust it more than the others
4142 * but it's still possible that it's the one that's wrong.
4143 */
4144 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4145 printk(KERN_WARNING
4146 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4147 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4148 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4149 && btrfs_super_cache_generation(sb) != (u64)-1)
4150 printk(KERN_WARNING
4151 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4152 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4153
4154 return ret;
4155 }
4156
4157 static void btrfs_error_commit_super(struct btrfs_root *root)
4158 {
4159 mutex_lock(&root->fs_info->cleaner_mutex);
4160 btrfs_run_delayed_iputs(root);
4161 mutex_unlock(&root->fs_info->cleaner_mutex);
4162
4163 down_write(&root->fs_info->cleanup_work_sem);
4164 up_write(&root->fs_info->cleanup_work_sem);
4165
4166 /* cleanup FS via transaction */
4167 btrfs_cleanup_transaction(root);
4168 }
4169
4170 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4171 {
4172 struct btrfs_ordered_extent *ordered;
4173
4174 spin_lock(&root->ordered_extent_lock);
4175 /*
4176 * This will just short circuit the ordered completion stuff which will
4177 * make sure the ordered extent gets properly cleaned up.
4178 */
4179 list_for_each_entry(ordered, &root->ordered_extents,
4180 root_extent_list)
4181 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4182 spin_unlock(&root->ordered_extent_lock);
4183 }
4184
4185 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4186 {
4187 struct btrfs_root *root;
4188 struct list_head splice;
4189
4190 INIT_LIST_HEAD(&splice);
4191
4192 spin_lock(&fs_info->ordered_root_lock);
4193 list_splice_init(&fs_info->ordered_roots, &splice);
4194 while (!list_empty(&splice)) {
4195 root = list_first_entry(&splice, struct btrfs_root,
4196 ordered_root);
4197 list_move_tail(&root->ordered_root,
4198 &fs_info->ordered_roots);
4199
4200 spin_unlock(&fs_info->ordered_root_lock);
4201 btrfs_destroy_ordered_extents(root);
4202
4203 cond_resched();
4204 spin_lock(&fs_info->ordered_root_lock);
4205 }
4206 spin_unlock(&fs_info->ordered_root_lock);
4207 }
4208
4209 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4210 struct btrfs_root *root)
4211 {
4212 struct rb_node *node;
4213 struct btrfs_delayed_ref_root *delayed_refs;
4214 struct btrfs_delayed_ref_node *ref;
4215 int ret = 0;
4216
4217 delayed_refs = &trans->delayed_refs;
4218
4219 spin_lock(&delayed_refs->lock);
4220 if (atomic_read(&delayed_refs->num_entries) == 0) {
4221 spin_unlock(&delayed_refs->lock);
4222 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4223 return ret;
4224 }
4225
4226 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4227 struct btrfs_delayed_ref_head *head;
4228 struct btrfs_delayed_ref_node *tmp;
4229 bool pin_bytes = false;
4230
4231 head = rb_entry(node, struct btrfs_delayed_ref_head,
4232 href_node);
4233 if (!mutex_trylock(&head->mutex)) {
4234 atomic_inc(&head->node.refs);
4235 spin_unlock(&delayed_refs->lock);
4236
4237 mutex_lock(&head->mutex);
4238 mutex_unlock(&head->mutex);
4239 btrfs_put_delayed_ref(&head->node);
4240 spin_lock(&delayed_refs->lock);
4241 continue;
4242 }
4243 spin_lock(&head->lock);
4244 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4245 list) {
4246 ref->in_tree = 0;
4247 list_del(&ref->list);
4248 atomic_dec(&delayed_refs->num_entries);
4249 btrfs_put_delayed_ref(ref);
4250 }
4251 if (head->must_insert_reserved)
4252 pin_bytes = true;
4253 btrfs_free_delayed_extent_op(head->extent_op);
4254 delayed_refs->num_heads--;
4255 if (head->processing == 0)
4256 delayed_refs->num_heads_ready--;
4257 atomic_dec(&delayed_refs->num_entries);
4258 head->node.in_tree = 0;
4259 rb_erase(&head->href_node, &delayed_refs->href_root);
4260 spin_unlock(&head->lock);
4261 spin_unlock(&delayed_refs->lock);
4262 mutex_unlock(&head->mutex);
4263
4264 if (pin_bytes)
4265 btrfs_pin_extent(root, head->node.bytenr,
4266 head->node.num_bytes, 1);
4267 btrfs_put_delayed_ref(&head->node);
4268 cond_resched();
4269 spin_lock(&delayed_refs->lock);
4270 }
4271
4272 spin_unlock(&delayed_refs->lock);
4273
4274 return ret;
4275 }
4276
4277 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4278 {
4279 struct btrfs_inode *btrfs_inode;
4280 struct list_head splice;
4281
4282 INIT_LIST_HEAD(&splice);
4283
4284 spin_lock(&root->delalloc_lock);
4285 list_splice_init(&root->delalloc_inodes, &splice);
4286
4287 while (!list_empty(&splice)) {
4288 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4289 delalloc_inodes);
4290
4291 list_del_init(&btrfs_inode->delalloc_inodes);
4292 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4293 &btrfs_inode->runtime_flags);
4294 spin_unlock(&root->delalloc_lock);
4295
4296 btrfs_invalidate_inodes(btrfs_inode->root);
4297
4298 spin_lock(&root->delalloc_lock);
4299 }
4300
4301 spin_unlock(&root->delalloc_lock);
4302 }
4303
4304 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4305 {
4306 struct btrfs_root *root;
4307 struct list_head splice;
4308
4309 INIT_LIST_HEAD(&splice);
4310
4311 spin_lock(&fs_info->delalloc_root_lock);
4312 list_splice_init(&fs_info->delalloc_roots, &splice);
4313 while (!list_empty(&splice)) {
4314 root = list_first_entry(&splice, struct btrfs_root,
4315 delalloc_root);
4316 list_del_init(&root->delalloc_root);
4317 root = btrfs_grab_fs_root(root);
4318 BUG_ON(!root);
4319 spin_unlock(&fs_info->delalloc_root_lock);
4320
4321 btrfs_destroy_delalloc_inodes(root);
4322 btrfs_put_fs_root(root);
4323
4324 spin_lock(&fs_info->delalloc_root_lock);
4325 }
4326 spin_unlock(&fs_info->delalloc_root_lock);
4327 }
4328
4329 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4330 struct extent_io_tree *dirty_pages,
4331 int mark)
4332 {
4333 int ret;
4334 struct extent_buffer *eb;
4335 u64 start = 0;
4336 u64 end;
4337
4338 while (1) {
4339 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4340 mark, NULL);
4341 if (ret)
4342 break;
4343
4344 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4345 while (start <= end) {
4346 eb = btrfs_find_tree_block(root->fs_info, start);
4347 start += root->nodesize;
4348 if (!eb)
4349 continue;
4350 wait_on_extent_buffer_writeback(eb);
4351
4352 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4353 &eb->bflags))
4354 clear_extent_buffer_dirty(eb);
4355 free_extent_buffer_stale(eb);
4356 }
4357 }
4358
4359 return ret;
4360 }
4361
4362 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4363 struct extent_io_tree *pinned_extents)
4364 {
4365 struct extent_io_tree *unpin;
4366 u64 start;
4367 u64 end;
4368 int ret;
4369 bool loop = true;
4370
4371 unpin = pinned_extents;
4372 again:
4373 while (1) {
4374 ret = find_first_extent_bit(unpin, 0, &start, &end,
4375 EXTENT_DIRTY, NULL);
4376 if (ret)
4377 break;
4378
4379 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4380 btrfs_error_unpin_extent_range(root, start, end);
4381 cond_resched();
4382 }
4383
4384 if (loop) {
4385 if (unpin == &root->fs_info->freed_extents[0])
4386 unpin = &root->fs_info->freed_extents[1];
4387 else
4388 unpin = &root->fs_info->freed_extents[0];
4389 loop = false;
4390 goto again;
4391 }
4392
4393 return 0;
4394 }
4395
4396 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4397 struct btrfs_root *root)
4398 {
4399 btrfs_destroy_delayed_refs(cur_trans, root);
4400
4401 cur_trans->state = TRANS_STATE_COMMIT_START;
4402 wake_up(&root->fs_info->transaction_blocked_wait);
4403
4404 cur_trans->state = TRANS_STATE_UNBLOCKED;
4405 wake_up(&root->fs_info->transaction_wait);
4406
4407 btrfs_destroy_delayed_inodes(root);
4408 btrfs_assert_delayed_root_empty(root);
4409
4410 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4411 EXTENT_DIRTY);
4412 btrfs_destroy_pinned_extent(root,
4413 root->fs_info->pinned_extents);
4414
4415 cur_trans->state =TRANS_STATE_COMPLETED;
4416 wake_up(&cur_trans->commit_wait);
4417
4418 /*
4419 memset(cur_trans, 0, sizeof(*cur_trans));
4420 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4421 */
4422 }
4423
4424 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4425 {
4426 struct btrfs_transaction *t;
4427
4428 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4429
4430 spin_lock(&root->fs_info->trans_lock);
4431 while (!list_empty(&root->fs_info->trans_list)) {
4432 t = list_first_entry(&root->fs_info->trans_list,
4433 struct btrfs_transaction, list);
4434 if (t->state >= TRANS_STATE_COMMIT_START) {
4435 atomic_inc(&t->use_count);
4436 spin_unlock(&root->fs_info->trans_lock);
4437 btrfs_wait_for_commit(root, t->transid);
4438 btrfs_put_transaction(t);
4439 spin_lock(&root->fs_info->trans_lock);
4440 continue;
4441 }
4442 if (t == root->fs_info->running_transaction) {
4443 t->state = TRANS_STATE_COMMIT_DOING;
4444 spin_unlock(&root->fs_info->trans_lock);
4445 /*
4446 * We wait for 0 num_writers since we don't hold a trans
4447 * handle open currently for this transaction.
4448 */
4449 wait_event(t->writer_wait,
4450 atomic_read(&t->num_writers) == 0);
4451 } else {
4452 spin_unlock(&root->fs_info->trans_lock);
4453 }
4454 btrfs_cleanup_one_transaction(t, root);
4455
4456 spin_lock(&root->fs_info->trans_lock);
4457 if (t == root->fs_info->running_transaction)
4458 root->fs_info->running_transaction = NULL;
4459 list_del_init(&t->list);
4460 spin_unlock(&root->fs_info->trans_lock);
4461
4462 btrfs_put_transaction(t);
4463 trace_btrfs_transaction_commit(root);
4464 spin_lock(&root->fs_info->trans_lock);
4465 }
4466 spin_unlock(&root->fs_info->trans_lock);
4467 btrfs_destroy_all_ordered_extents(root->fs_info);
4468 btrfs_destroy_delayed_inodes(root);
4469 btrfs_assert_delayed_root_empty(root);
4470 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4471 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4472 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4473
4474 return 0;
4475 }
4476
4477 static const struct extent_io_ops btree_extent_io_ops = {
4478 .readpage_end_io_hook = btree_readpage_end_io_hook,
4479 .readpage_io_failed_hook = btree_io_failed_hook,
4480 .submit_bio_hook = btree_submit_bio_hook,
4481 /* note we're sharing with inode.c for the merge bio hook */
4482 .merge_bio_hook = btrfs_merge_bio_hook,
4483 };
This page took 0.125777 seconds and 5 git commands to generate.