Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X "
330 "level %d",
331 fs_info->sb->s_id, buf->start,
332 val, found, btrfs_header_level(buf));
333 if (result != (char *)&inline_result)
334 kfree(result);
335 return -EUCLEAN;
336 }
337 } else {
338 write_extent_buffer(buf, result, 0, csum_size);
339 }
340 if (result != (char *)&inline_result)
341 kfree(result);
342 return 0;
343 }
344
345 /*
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
350 */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 struct extent_buffer *eb, u64 parent_transid,
353 int atomic)
354 {
355 struct extent_state *cached_state = NULL;
356 int ret;
357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358
359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 return 0;
361
362 if (atomic)
363 return -EAGAIN;
364
365 if (need_lock) {
366 btrfs_tree_read_lock(eb);
367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 }
369
370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 &cached_state);
372 if (extent_buffer_uptodate(eb) &&
373 btrfs_header_generation(eb) == parent_transid) {
374 ret = 0;
375 goto out;
376 }
377 btrfs_err_rl(eb->fs_info,
378 "parent transid verify failed on %llu wanted %llu found %llu",
379 eb->start,
380 parent_transid, btrfs_header_generation(eb));
381 ret = 1;
382
383 /*
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
386 * block that has been freed and re-allocated. So don't clear uptodate
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
390 */
391 if (!extent_buffer_under_io(eb))
392 clear_extent_buffer_uptodate(eb);
393 out:
394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 &cached_state, GFP_NOFS);
396 if (need_lock)
397 btrfs_tree_read_unlock_blocking(eb);
398 return ret;
399 }
400
401 /*
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
404 */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 start, u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, start,
458 WAIT_COMPLETE,
459 btree_get_extent, mirror_num);
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
462 parent_transid, 0))
463 break;
464 else
465 ret = -EIO;
466 }
467
468 /*
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
471 * any less wrong.
472 */
473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 break;
475
476 num_copies = btrfs_num_copies(root->fs_info,
477 eb->start, eb->len);
478 if (num_copies == 1)
479 break;
480
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
486 mirror_num++;
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
490 if (mirror_num > num_copies)
491 break;
492 }
493
494 if (failed && !ret && failed_mirror)
495 repair_eb_io_failure(root, eb, failed_mirror);
496
497 return ret;
498 }
499
500 /*
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
503 */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 u64 start = page_offset(page);
508 u64 found_start;
509 struct extent_buffer *eb;
510
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
514
515 found_start = btrfs_header_bytenr(eb);
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
528 return csum_tree_block(fs_info, eb, 0);
529 }
530
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 struct extent_buffer *eb)
533 {
534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 u8 fsid[BTRFS_UUID_SIZE];
536 int ret = 1;
537
538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 while (fs_devices) {
540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 ret = 0;
542 break;
543 }
544 fs_devices = fs_devices->seed;
545 }
546 return ret;
547 }
548
549 #define CORRUPT(reason, eb, root, slot) \
550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
551 "root=%llu, slot=%d", reason, \
552 btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556 {
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 if (nritems == 0) {
563 struct btrfs_root *check_root;
564
565 key.objectid = btrfs_header_owner(leaf);
566 key.type = BTRFS_ROOT_ITEM_KEY;
567 key.offset = (u64)-1;
568
569 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570 /*
571 * The only reason we also check NULL here is that during
572 * open_ctree() some roots has not yet been set up.
573 */
574 if (!IS_ERR_OR_NULL(check_root)) {
575 /* if leaf is the root, then it's fine */
576 if (leaf->start !=
577 btrfs_root_bytenr(&check_root->root_item)) {
578 CORRUPT("non-root leaf's nritems is 0",
579 leaf, root, 0);
580 return -EIO;
581 }
582 }
583 return 0;
584 }
585
586 /* Check the 0 item */
587 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588 BTRFS_LEAF_DATA_SIZE(root)) {
589 CORRUPT("invalid item offset size pair", leaf, root, 0);
590 return -EIO;
591 }
592
593 /*
594 * Check to make sure each items keys are in the correct order and their
595 * offsets make sense. We only have to loop through nritems-1 because
596 * we check the current slot against the next slot, which verifies the
597 * next slot's offset+size makes sense and that the current's slot
598 * offset is correct.
599 */
600 for (slot = 0; slot < nritems - 1; slot++) {
601 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603
604 /* Make sure the keys are in the right order */
605 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606 CORRUPT("bad key order", leaf, root, slot);
607 return -EIO;
608 }
609
610 /*
611 * Make sure the offset and ends are right, remember that the
612 * item data starts at the end of the leaf and grows towards the
613 * front.
614 */
615 if (btrfs_item_offset_nr(leaf, slot) !=
616 btrfs_item_end_nr(leaf, slot + 1)) {
617 CORRUPT("slot offset bad", leaf, root, slot);
618 return -EIO;
619 }
620
621 /*
622 * Check to make sure that we don't point outside of the leaf,
623 * just in case all the items are consistent to each other, but
624 * all point outside of the leaf.
625 */
626 if (btrfs_item_end_nr(leaf, slot) >
627 BTRFS_LEAF_DATA_SIZE(root)) {
628 CORRUPT("slot end outside of leaf", leaf, root, slot);
629 return -EIO;
630 }
631 }
632
633 return 0;
634 }
635
636 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637 {
638 unsigned long nr = btrfs_header_nritems(node);
639
640 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
641 btrfs_crit(root->fs_info,
642 "corrupt node: block %llu root %llu nritems %lu",
643 node->start, root->objectid, nr);
644 return -EIO;
645 }
646 return 0;
647 }
648
649 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
650 u64 phy_offset, struct page *page,
651 u64 start, u64 end, int mirror)
652 {
653 u64 found_start;
654 int found_level;
655 struct extent_buffer *eb;
656 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
657 struct btrfs_fs_info *fs_info = root->fs_info;
658 int ret = 0;
659 int reads_done;
660
661 if (!page->private)
662 goto out;
663
664 eb = (struct extent_buffer *)page->private;
665
666 /* the pending IO might have been the only thing that kept this buffer
667 * in memory. Make sure we have a ref for all this other checks
668 */
669 extent_buffer_get(eb);
670
671 reads_done = atomic_dec_and_test(&eb->io_pages);
672 if (!reads_done)
673 goto err;
674
675 eb->read_mirror = mirror;
676 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
677 ret = -EIO;
678 goto err;
679 }
680
681 found_start = btrfs_header_bytenr(eb);
682 if (found_start != eb->start) {
683 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
684 found_start, eb->start);
685 ret = -EIO;
686 goto err;
687 }
688 if (check_tree_block_fsid(fs_info, eb)) {
689 btrfs_err_rl(fs_info, "bad fsid on block %llu",
690 eb->start);
691 ret = -EIO;
692 goto err;
693 }
694 found_level = btrfs_header_level(eb);
695 if (found_level >= BTRFS_MAX_LEVEL) {
696 btrfs_err(fs_info, "bad tree block level %d",
697 (int)btrfs_header_level(eb));
698 ret = -EIO;
699 goto err;
700 }
701
702 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
703 eb, found_level);
704
705 ret = csum_tree_block(fs_info, eb, 1);
706 if (ret)
707 goto err;
708
709 /*
710 * If this is a leaf block and it is corrupt, set the corrupt bit so
711 * that we don't try and read the other copies of this block, just
712 * return -EIO.
713 */
714 if (found_level == 0 && check_leaf(root, eb)) {
715 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
716 ret = -EIO;
717 }
718
719 if (found_level > 0 && check_node(root, eb))
720 ret = -EIO;
721
722 if (!ret)
723 set_extent_buffer_uptodate(eb);
724 err:
725 if (reads_done &&
726 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
727 btree_readahead_hook(fs_info, eb, eb->start, ret);
728
729 if (ret) {
730 /*
731 * our io error hook is going to dec the io pages
732 * again, we have to make sure it has something
733 * to decrement
734 */
735 atomic_inc(&eb->io_pages);
736 clear_extent_buffer_uptodate(eb);
737 }
738 free_extent_buffer(eb);
739 out:
740 return ret;
741 }
742
743 static int btree_io_failed_hook(struct page *page, int failed_mirror)
744 {
745 struct extent_buffer *eb;
746
747 eb = (struct extent_buffer *)page->private;
748 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
749 eb->read_mirror = failed_mirror;
750 atomic_dec(&eb->io_pages);
751 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
752 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
753 return -EIO; /* we fixed nothing */
754 }
755
756 static void end_workqueue_bio(struct bio *bio)
757 {
758 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
759 struct btrfs_fs_info *fs_info;
760 struct btrfs_workqueue *wq;
761 btrfs_work_func_t func;
762
763 fs_info = end_io_wq->info;
764 end_io_wq->error = bio->bi_error;
765
766 if (bio_op(bio) == REQ_OP_WRITE) {
767 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
768 wq = fs_info->endio_meta_write_workers;
769 func = btrfs_endio_meta_write_helper;
770 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
771 wq = fs_info->endio_freespace_worker;
772 func = btrfs_freespace_write_helper;
773 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
774 wq = fs_info->endio_raid56_workers;
775 func = btrfs_endio_raid56_helper;
776 } else {
777 wq = fs_info->endio_write_workers;
778 func = btrfs_endio_write_helper;
779 }
780 } else {
781 if (unlikely(end_io_wq->metadata ==
782 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
783 wq = fs_info->endio_repair_workers;
784 func = btrfs_endio_repair_helper;
785 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
786 wq = fs_info->endio_raid56_workers;
787 func = btrfs_endio_raid56_helper;
788 } else if (end_io_wq->metadata) {
789 wq = fs_info->endio_meta_workers;
790 func = btrfs_endio_meta_helper;
791 } else {
792 wq = fs_info->endio_workers;
793 func = btrfs_endio_helper;
794 }
795 }
796
797 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
798 btrfs_queue_work(wq, &end_io_wq->work);
799 }
800
801 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
802 enum btrfs_wq_endio_type metadata)
803 {
804 struct btrfs_end_io_wq *end_io_wq;
805
806 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
807 if (!end_io_wq)
808 return -ENOMEM;
809
810 end_io_wq->private = bio->bi_private;
811 end_io_wq->end_io = bio->bi_end_io;
812 end_io_wq->info = info;
813 end_io_wq->error = 0;
814 end_io_wq->bio = bio;
815 end_io_wq->metadata = metadata;
816
817 bio->bi_private = end_io_wq;
818 bio->bi_end_io = end_workqueue_bio;
819 return 0;
820 }
821
822 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
823 {
824 unsigned long limit = min_t(unsigned long,
825 info->thread_pool_size,
826 info->fs_devices->open_devices);
827 return 256 * limit;
828 }
829
830 static void run_one_async_start(struct btrfs_work *work)
831 {
832 struct async_submit_bio *async;
833 int ret;
834
835 async = container_of(work, struct async_submit_bio, work);
836 ret = async->submit_bio_start(async->inode, async->bio,
837 async->mirror_num, async->bio_flags,
838 async->bio_offset);
839 if (ret)
840 async->error = ret;
841 }
842
843 static void run_one_async_done(struct btrfs_work *work)
844 {
845 struct btrfs_fs_info *fs_info;
846 struct async_submit_bio *async;
847 int limit;
848
849 async = container_of(work, struct async_submit_bio, work);
850 fs_info = BTRFS_I(async->inode)->root->fs_info;
851
852 limit = btrfs_async_submit_limit(fs_info);
853 limit = limit * 2 / 3;
854
855 /*
856 * atomic_dec_return implies a barrier for waitqueue_active
857 */
858 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
859 waitqueue_active(&fs_info->async_submit_wait))
860 wake_up(&fs_info->async_submit_wait);
861
862 /* If an error occurred we just want to clean up the bio and move on */
863 if (async->error) {
864 async->bio->bi_error = async->error;
865 bio_endio(async->bio);
866 return;
867 }
868
869 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
870 async->bio_flags, async->bio_offset);
871 }
872
873 static void run_one_async_free(struct btrfs_work *work)
874 {
875 struct async_submit_bio *async;
876
877 async = container_of(work, struct async_submit_bio, work);
878 kfree(async);
879 }
880
881 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
882 struct bio *bio, int mirror_num,
883 unsigned long bio_flags,
884 u64 bio_offset,
885 extent_submit_bio_hook_t *submit_bio_start,
886 extent_submit_bio_hook_t *submit_bio_done)
887 {
888 struct async_submit_bio *async;
889
890 async = kmalloc(sizeof(*async), GFP_NOFS);
891 if (!async)
892 return -ENOMEM;
893
894 async->inode = inode;
895 async->bio = bio;
896 async->mirror_num = mirror_num;
897 async->submit_bio_start = submit_bio_start;
898 async->submit_bio_done = submit_bio_done;
899
900 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
901 run_one_async_done, run_one_async_free);
902
903 async->bio_flags = bio_flags;
904 async->bio_offset = bio_offset;
905
906 async->error = 0;
907
908 atomic_inc(&fs_info->nr_async_submits);
909
910 if (bio->bi_opf & REQ_SYNC)
911 btrfs_set_work_high_priority(&async->work);
912
913 btrfs_queue_work(fs_info->workers, &async->work);
914
915 while (atomic_read(&fs_info->async_submit_draining) &&
916 atomic_read(&fs_info->nr_async_submits)) {
917 wait_event(fs_info->async_submit_wait,
918 (atomic_read(&fs_info->nr_async_submits) == 0));
919 }
920
921 return 0;
922 }
923
924 static int btree_csum_one_bio(struct bio *bio)
925 {
926 struct bio_vec *bvec;
927 struct btrfs_root *root;
928 int i, ret = 0;
929
930 bio_for_each_segment_all(bvec, bio, i) {
931 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
932 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
933 if (ret)
934 break;
935 }
936
937 return ret;
938 }
939
940 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
941 int mirror_num, unsigned long bio_flags,
942 u64 bio_offset)
943 {
944 /*
945 * when we're called for a write, we're already in the async
946 * submission context. Just jump into btrfs_map_bio
947 */
948 return btree_csum_one_bio(bio);
949 }
950
951 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
952 int mirror_num, unsigned long bio_flags,
953 u64 bio_offset)
954 {
955 int ret;
956
957 /*
958 * when we're called for a write, we're already in the async
959 * submission context. Just jump into btrfs_map_bio
960 */
961 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
962 if (ret) {
963 bio->bi_error = ret;
964 bio_endio(bio);
965 }
966 return ret;
967 }
968
969 static int check_async_write(struct inode *inode, unsigned long bio_flags)
970 {
971 if (bio_flags & EXTENT_BIO_TREE_LOG)
972 return 0;
973 #ifdef CONFIG_X86
974 if (static_cpu_has(X86_FEATURE_XMM4_2))
975 return 0;
976 #endif
977 return 1;
978 }
979
980 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
981 int mirror_num, unsigned long bio_flags,
982 u64 bio_offset)
983 {
984 int async = check_async_write(inode, bio_flags);
985 int ret;
986
987 if (bio_op(bio) != REQ_OP_WRITE) {
988 /*
989 * called for a read, do the setup so that checksum validation
990 * can happen in the async kernel threads
991 */
992 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
993 bio, BTRFS_WQ_ENDIO_METADATA);
994 if (ret)
995 goto out_w_error;
996 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
997 } else if (!async) {
998 ret = btree_csum_one_bio(bio);
999 if (ret)
1000 goto out_w_error;
1001 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1002 } else {
1003 /*
1004 * kthread helpers are used to submit writes so that
1005 * checksumming can happen in parallel across all CPUs
1006 */
1007 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1008 inode, bio, mirror_num, 0,
1009 bio_offset,
1010 __btree_submit_bio_start,
1011 __btree_submit_bio_done);
1012 }
1013
1014 if (ret)
1015 goto out_w_error;
1016 return 0;
1017
1018 out_w_error:
1019 bio->bi_error = ret;
1020 bio_endio(bio);
1021 return ret;
1022 }
1023
1024 #ifdef CONFIG_MIGRATION
1025 static int btree_migratepage(struct address_space *mapping,
1026 struct page *newpage, struct page *page,
1027 enum migrate_mode mode)
1028 {
1029 /*
1030 * we can't safely write a btree page from here,
1031 * we haven't done the locking hook
1032 */
1033 if (PageDirty(page))
1034 return -EAGAIN;
1035 /*
1036 * Buffers may be managed in a filesystem specific way.
1037 * We must have no buffers or drop them.
1038 */
1039 if (page_has_private(page) &&
1040 !try_to_release_page(page, GFP_KERNEL))
1041 return -EAGAIN;
1042 return migrate_page(mapping, newpage, page, mode);
1043 }
1044 #endif
1045
1046
1047 static int btree_writepages(struct address_space *mapping,
1048 struct writeback_control *wbc)
1049 {
1050 struct btrfs_fs_info *fs_info;
1051 int ret;
1052
1053 if (wbc->sync_mode == WB_SYNC_NONE) {
1054
1055 if (wbc->for_kupdate)
1056 return 0;
1057
1058 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1059 /* this is a bit racy, but that's ok */
1060 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1061 BTRFS_DIRTY_METADATA_THRESH);
1062 if (ret < 0)
1063 return 0;
1064 }
1065 return btree_write_cache_pages(mapping, wbc);
1066 }
1067
1068 static int btree_readpage(struct file *file, struct page *page)
1069 {
1070 struct extent_io_tree *tree;
1071 tree = &BTRFS_I(page->mapping->host)->io_tree;
1072 return extent_read_full_page(tree, page, btree_get_extent, 0);
1073 }
1074
1075 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1076 {
1077 if (PageWriteback(page) || PageDirty(page))
1078 return 0;
1079
1080 return try_release_extent_buffer(page);
1081 }
1082
1083 static void btree_invalidatepage(struct page *page, unsigned int offset,
1084 unsigned int length)
1085 {
1086 struct extent_io_tree *tree;
1087 tree = &BTRFS_I(page->mapping->host)->io_tree;
1088 extent_invalidatepage(tree, page, offset);
1089 btree_releasepage(page, GFP_NOFS);
1090 if (PagePrivate(page)) {
1091 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1092 "page private not zero on page %llu",
1093 (unsigned long long)page_offset(page));
1094 ClearPagePrivate(page);
1095 set_page_private(page, 0);
1096 put_page(page);
1097 }
1098 }
1099
1100 static int btree_set_page_dirty(struct page *page)
1101 {
1102 #ifdef DEBUG
1103 struct extent_buffer *eb;
1104
1105 BUG_ON(!PagePrivate(page));
1106 eb = (struct extent_buffer *)page->private;
1107 BUG_ON(!eb);
1108 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1109 BUG_ON(!atomic_read(&eb->refs));
1110 btrfs_assert_tree_locked(eb);
1111 #endif
1112 return __set_page_dirty_nobuffers(page);
1113 }
1114
1115 static const struct address_space_operations btree_aops = {
1116 .readpage = btree_readpage,
1117 .writepages = btree_writepages,
1118 .releasepage = btree_releasepage,
1119 .invalidatepage = btree_invalidatepage,
1120 #ifdef CONFIG_MIGRATION
1121 .migratepage = btree_migratepage,
1122 #endif
1123 .set_page_dirty = btree_set_page_dirty,
1124 };
1125
1126 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1127 {
1128 struct extent_buffer *buf = NULL;
1129 struct inode *btree_inode = root->fs_info->btree_inode;
1130
1131 buf = btrfs_find_create_tree_block(root, bytenr);
1132 if (IS_ERR(buf))
1133 return;
1134 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1135 buf, 0, WAIT_NONE, btree_get_extent, 0);
1136 free_extent_buffer(buf);
1137 }
1138
1139 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1140 int mirror_num, struct extent_buffer **eb)
1141 {
1142 struct extent_buffer *buf = NULL;
1143 struct inode *btree_inode = root->fs_info->btree_inode;
1144 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1145 int ret;
1146
1147 buf = btrfs_find_create_tree_block(root, bytenr);
1148 if (IS_ERR(buf))
1149 return 0;
1150
1151 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1152
1153 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1154 btree_get_extent, mirror_num);
1155 if (ret) {
1156 free_extent_buffer(buf);
1157 return ret;
1158 }
1159
1160 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1161 free_extent_buffer(buf);
1162 return -EIO;
1163 } else if (extent_buffer_uptodate(buf)) {
1164 *eb = buf;
1165 } else {
1166 free_extent_buffer(buf);
1167 }
1168 return 0;
1169 }
1170
1171 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1172 u64 bytenr)
1173 {
1174 return find_extent_buffer(fs_info, bytenr);
1175 }
1176
1177 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1178 u64 bytenr)
1179 {
1180 if (btrfs_is_testing(root->fs_info))
1181 return alloc_test_extent_buffer(root->fs_info, bytenr,
1182 root->nodesize);
1183 return alloc_extent_buffer(root->fs_info, bytenr);
1184 }
1185
1186
1187 int btrfs_write_tree_block(struct extent_buffer *buf)
1188 {
1189 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1190 buf->start + buf->len - 1);
1191 }
1192
1193 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1194 {
1195 return filemap_fdatawait_range(buf->pages[0]->mapping,
1196 buf->start, buf->start + buf->len - 1);
1197 }
1198
1199 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1200 u64 parent_transid)
1201 {
1202 struct extent_buffer *buf = NULL;
1203 int ret;
1204
1205 buf = btrfs_find_create_tree_block(root, bytenr);
1206 if (IS_ERR(buf))
1207 return buf;
1208
1209 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1210 if (ret) {
1211 free_extent_buffer(buf);
1212 return ERR_PTR(ret);
1213 }
1214 return buf;
1215
1216 }
1217
1218 void clean_tree_block(struct btrfs_trans_handle *trans,
1219 struct btrfs_fs_info *fs_info,
1220 struct extent_buffer *buf)
1221 {
1222 if (btrfs_header_generation(buf) ==
1223 fs_info->running_transaction->transid) {
1224 btrfs_assert_tree_locked(buf);
1225
1226 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1227 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1228 -buf->len,
1229 fs_info->dirty_metadata_batch);
1230 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1231 btrfs_set_lock_blocking(buf);
1232 clear_extent_buffer_dirty(buf);
1233 }
1234 }
1235 }
1236
1237 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1238 {
1239 struct btrfs_subvolume_writers *writers;
1240 int ret;
1241
1242 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1243 if (!writers)
1244 return ERR_PTR(-ENOMEM);
1245
1246 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1247 if (ret < 0) {
1248 kfree(writers);
1249 return ERR_PTR(ret);
1250 }
1251
1252 init_waitqueue_head(&writers->wait);
1253 return writers;
1254 }
1255
1256 static void
1257 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1258 {
1259 percpu_counter_destroy(&writers->counter);
1260 kfree(writers);
1261 }
1262
1263 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1264 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1265 u64 objectid)
1266 {
1267 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1268 root->node = NULL;
1269 root->commit_root = NULL;
1270 root->sectorsize = sectorsize;
1271 root->nodesize = nodesize;
1272 root->stripesize = stripesize;
1273 root->state = 0;
1274 root->orphan_cleanup_state = 0;
1275
1276 root->objectid = objectid;
1277 root->last_trans = 0;
1278 root->highest_objectid = 0;
1279 root->nr_delalloc_inodes = 0;
1280 root->nr_ordered_extents = 0;
1281 root->name = NULL;
1282 root->inode_tree = RB_ROOT;
1283 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1284 root->block_rsv = NULL;
1285 root->orphan_block_rsv = NULL;
1286
1287 INIT_LIST_HEAD(&root->dirty_list);
1288 INIT_LIST_HEAD(&root->root_list);
1289 INIT_LIST_HEAD(&root->delalloc_inodes);
1290 INIT_LIST_HEAD(&root->delalloc_root);
1291 INIT_LIST_HEAD(&root->ordered_extents);
1292 INIT_LIST_HEAD(&root->ordered_root);
1293 INIT_LIST_HEAD(&root->logged_list[0]);
1294 INIT_LIST_HEAD(&root->logged_list[1]);
1295 spin_lock_init(&root->orphan_lock);
1296 spin_lock_init(&root->inode_lock);
1297 spin_lock_init(&root->delalloc_lock);
1298 spin_lock_init(&root->ordered_extent_lock);
1299 spin_lock_init(&root->accounting_lock);
1300 spin_lock_init(&root->log_extents_lock[0]);
1301 spin_lock_init(&root->log_extents_lock[1]);
1302 mutex_init(&root->objectid_mutex);
1303 mutex_init(&root->log_mutex);
1304 mutex_init(&root->ordered_extent_mutex);
1305 mutex_init(&root->delalloc_mutex);
1306 init_waitqueue_head(&root->log_writer_wait);
1307 init_waitqueue_head(&root->log_commit_wait[0]);
1308 init_waitqueue_head(&root->log_commit_wait[1]);
1309 INIT_LIST_HEAD(&root->log_ctxs[0]);
1310 INIT_LIST_HEAD(&root->log_ctxs[1]);
1311 atomic_set(&root->log_commit[0], 0);
1312 atomic_set(&root->log_commit[1], 0);
1313 atomic_set(&root->log_writers, 0);
1314 atomic_set(&root->log_batch, 0);
1315 atomic_set(&root->orphan_inodes, 0);
1316 atomic_set(&root->refs, 1);
1317 atomic_set(&root->will_be_snapshoted, 0);
1318 atomic_set(&root->qgroup_meta_rsv, 0);
1319 root->log_transid = 0;
1320 root->log_transid_committed = -1;
1321 root->last_log_commit = 0;
1322 if (!dummy)
1323 extent_io_tree_init(&root->dirty_log_pages,
1324 fs_info->btree_inode->i_mapping);
1325
1326 memset(&root->root_key, 0, sizeof(root->root_key));
1327 memset(&root->root_item, 0, sizeof(root->root_item));
1328 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1329 if (!dummy)
1330 root->defrag_trans_start = fs_info->generation;
1331 else
1332 root->defrag_trans_start = 0;
1333 root->root_key.objectid = objectid;
1334 root->anon_dev = 0;
1335
1336 spin_lock_init(&root->root_item_lock);
1337 }
1338
1339 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1340 gfp_t flags)
1341 {
1342 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1343 if (root)
1344 root->fs_info = fs_info;
1345 return root;
1346 }
1347
1348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1349 /* Should only be used by the testing infrastructure */
1350 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1351 u32 sectorsize, u32 nodesize)
1352 {
1353 struct btrfs_root *root;
1354
1355 if (!fs_info)
1356 return ERR_PTR(-EINVAL);
1357
1358 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1359 if (!root)
1360 return ERR_PTR(-ENOMEM);
1361 /* We don't use the stripesize in selftest, set it as sectorsize */
1362 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1363 BTRFS_ROOT_TREE_OBJECTID);
1364 root->alloc_bytenr = 0;
1365
1366 return root;
1367 }
1368 #endif
1369
1370 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info,
1372 u64 objectid)
1373 {
1374 struct extent_buffer *leaf;
1375 struct btrfs_root *tree_root = fs_info->tree_root;
1376 struct btrfs_root *root;
1377 struct btrfs_key key;
1378 int ret = 0;
1379 uuid_le uuid;
1380
1381 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1382 if (!root)
1383 return ERR_PTR(-ENOMEM);
1384
1385 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1386 tree_root->stripesize, root, fs_info, objectid);
1387 root->root_key.objectid = objectid;
1388 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1389 root->root_key.offset = 0;
1390
1391 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1392 if (IS_ERR(leaf)) {
1393 ret = PTR_ERR(leaf);
1394 leaf = NULL;
1395 goto fail;
1396 }
1397
1398 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1399 btrfs_set_header_bytenr(leaf, leaf->start);
1400 btrfs_set_header_generation(leaf, trans->transid);
1401 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1402 btrfs_set_header_owner(leaf, objectid);
1403 root->node = leaf;
1404
1405 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1406 BTRFS_FSID_SIZE);
1407 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1408 btrfs_header_chunk_tree_uuid(leaf),
1409 BTRFS_UUID_SIZE);
1410 btrfs_mark_buffer_dirty(leaf);
1411
1412 root->commit_root = btrfs_root_node(root);
1413 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1414
1415 root->root_item.flags = 0;
1416 root->root_item.byte_limit = 0;
1417 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1418 btrfs_set_root_generation(&root->root_item, trans->transid);
1419 btrfs_set_root_level(&root->root_item, 0);
1420 btrfs_set_root_refs(&root->root_item, 1);
1421 btrfs_set_root_used(&root->root_item, leaf->len);
1422 btrfs_set_root_last_snapshot(&root->root_item, 0);
1423 btrfs_set_root_dirid(&root->root_item, 0);
1424 uuid_le_gen(&uuid);
1425 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1426 root->root_item.drop_level = 0;
1427
1428 key.objectid = objectid;
1429 key.type = BTRFS_ROOT_ITEM_KEY;
1430 key.offset = 0;
1431 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1432 if (ret)
1433 goto fail;
1434
1435 btrfs_tree_unlock(leaf);
1436
1437 return root;
1438
1439 fail:
1440 if (leaf) {
1441 btrfs_tree_unlock(leaf);
1442 free_extent_buffer(root->commit_root);
1443 free_extent_buffer(leaf);
1444 }
1445 kfree(root);
1446
1447 return ERR_PTR(ret);
1448 }
1449
1450 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1451 struct btrfs_fs_info *fs_info)
1452 {
1453 struct btrfs_root *root;
1454 struct btrfs_root *tree_root = fs_info->tree_root;
1455 struct extent_buffer *leaf;
1456
1457 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1458 if (!root)
1459 return ERR_PTR(-ENOMEM);
1460
1461 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1462 tree_root->stripesize, root, fs_info,
1463 BTRFS_TREE_LOG_OBJECTID);
1464
1465 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1466 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1467 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1468
1469 /*
1470 * DON'T set REF_COWS for log trees
1471 *
1472 * log trees do not get reference counted because they go away
1473 * before a real commit is actually done. They do store pointers
1474 * to file data extents, and those reference counts still get
1475 * updated (along with back refs to the log tree).
1476 */
1477
1478 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1479 NULL, 0, 0, 0);
1480 if (IS_ERR(leaf)) {
1481 kfree(root);
1482 return ERR_CAST(leaf);
1483 }
1484
1485 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1486 btrfs_set_header_bytenr(leaf, leaf->start);
1487 btrfs_set_header_generation(leaf, trans->transid);
1488 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1489 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1490 root->node = leaf;
1491
1492 write_extent_buffer(root->node, root->fs_info->fsid,
1493 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1494 btrfs_mark_buffer_dirty(root->node);
1495 btrfs_tree_unlock(root->node);
1496 return root;
1497 }
1498
1499 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1500 struct btrfs_fs_info *fs_info)
1501 {
1502 struct btrfs_root *log_root;
1503
1504 log_root = alloc_log_tree(trans, fs_info);
1505 if (IS_ERR(log_root))
1506 return PTR_ERR(log_root);
1507 WARN_ON(fs_info->log_root_tree);
1508 fs_info->log_root_tree = log_root;
1509 return 0;
1510 }
1511
1512 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1513 struct btrfs_root *root)
1514 {
1515 struct btrfs_root *log_root;
1516 struct btrfs_inode_item *inode_item;
1517
1518 log_root = alloc_log_tree(trans, root->fs_info);
1519 if (IS_ERR(log_root))
1520 return PTR_ERR(log_root);
1521
1522 log_root->last_trans = trans->transid;
1523 log_root->root_key.offset = root->root_key.objectid;
1524
1525 inode_item = &log_root->root_item.inode;
1526 btrfs_set_stack_inode_generation(inode_item, 1);
1527 btrfs_set_stack_inode_size(inode_item, 3);
1528 btrfs_set_stack_inode_nlink(inode_item, 1);
1529 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1530 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1531
1532 btrfs_set_root_node(&log_root->root_item, log_root->node);
1533
1534 WARN_ON(root->log_root);
1535 root->log_root = log_root;
1536 root->log_transid = 0;
1537 root->log_transid_committed = -1;
1538 root->last_log_commit = 0;
1539 return 0;
1540 }
1541
1542 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1543 struct btrfs_key *key)
1544 {
1545 struct btrfs_root *root;
1546 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1547 struct btrfs_path *path;
1548 u64 generation;
1549 int ret;
1550
1551 path = btrfs_alloc_path();
1552 if (!path)
1553 return ERR_PTR(-ENOMEM);
1554
1555 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1556 if (!root) {
1557 ret = -ENOMEM;
1558 goto alloc_fail;
1559 }
1560
1561 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1562 tree_root->stripesize, root, fs_info, key->objectid);
1563
1564 ret = btrfs_find_root(tree_root, key, path,
1565 &root->root_item, &root->root_key);
1566 if (ret) {
1567 if (ret > 0)
1568 ret = -ENOENT;
1569 goto find_fail;
1570 }
1571
1572 generation = btrfs_root_generation(&root->root_item);
1573 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1574 generation);
1575 if (IS_ERR(root->node)) {
1576 ret = PTR_ERR(root->node);
1577 goto find_fail;
1578 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1579 ret = -EIO;
1580 free_extent_buffer(root->node);
1581 goto find_fail;
1582 }
1583 root->commit_root = btrfs_root_node(root);
1584 out:
1585 btrfs_free_path(path);
1586 return root;
1587
1588 find_fail:
1589 kfree(root);
1590 alloc_fail:
1591 root = ERR_PTR(ret);
1592 goto out;
1593 }
1594
1595 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1596 struct btrfs_key *location)
1597 {
1598 struct btrfs_root *root;
1599
1600 root = btrfs_read_tree_root(tree_root, location);
1601 if (IS_ERR(root))
1602 return root;
1603
1604 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1605 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1606 btrfs_check_and_init_root_item(&root->root_item);
1607 }
1608
1609 return root;
1610 }
1611
1612 int btrfs_init_fs_root(struct btrfs_root *root)
1613 {
1614 int ret;
1615 struct btrfs_subvolume_writers *writers;
1616
1617 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1618 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1619 GFP_NOFS);
1620 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1621 ret = -ENOMEM;
1622 goto fail;
1623 }
1624
1625 writers = btrfs_alloc_subvolume_writers();
1626 if (IS_ERR(writers)) {
1627 ret = PTR_ERR(writers);
1628 goto fail;
1629 }
1630 root->subv_writers = writers;
1631
1632 btrfs_init_free_ino_ctl(root);
1633 spin_lock_init(&root->ino_cache_lock);
1634 init_waitqueue_head(&root->ino_cache_wait);
1635
1636 ret = get_anon_bdev(&root->anon_dev);
1637 if (ret)
1638 goto fail;
1639
1640 mutex_lock(&root->objectid_mutex);
1641 ret = btrfs_find_highest_objectid(root,
1642 &root->highest_objectid);
1643 if (ret) {
1644 mutex_unlock(&root->objectid_mutex);
1645 goto fail;
1646 }
1647
1648 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1649
1650 mutex_unlock(&root->objectid_mutex);
1651
1652 return 0;
1653 fail:
1654 /* the caller is responsible to call free_fs_root */
1655 return ret;
1656 }
1657
1658 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1659 u64 root_id)
1660 {
1661 struct btrfs_root *root;
1662
1663 spin_lock(&fs_info->fs_roots_radix_lock);
1664 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1665 (unsigned long)root_id);
1666 spin_unlock(&fs_info->fs_roots_radix_lock);
1667 return root;
1668 }
1669
1670 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1671 struct btrfs_root *root)
1672 {
1673 int ret;
1674
1675 ret = radix_tree_preload(GFP_NOFS);
1676 if (ret)
1677 return ret;
1678
1679 spin_lock(&fs_info->fs_roots_radix_lock);
1680 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1681 (unsigned long)root->root_key.objectid,
1682 root);
1683 if (ret == 0)
1684 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1685 spin_unlock(&fs_info->fs_roots_radix_lock);
1686 radix_tree_preload_end();
1687
1688 return ret;
1689 }
1690
1691 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1692 struct btrfs_key *location,
1693 bool check_ref)
1694 {
1695 struct btrfs_root *root;
1696 struct btrfs_path *path;
1697 struct btrfs_key key;
1698 int ret;
1699
1700 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1701 return fs_info->tree_root;
1702 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1703 return fs_info->extent_root;
1704 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1705 return fs_info->chunk_root;
1706 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1707 return fs_info->dev_root;
1708 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1709 return fs_info->csum_root;
1710 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1711 return fs_info->quota_root ? fs_info->quota_root :
1712 ERR_PTR(-ENOENT);
1713 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1714 return fs_info->uuid_root ? fs_info->uuid_root :
1715 ERR_PTR(-ENOENT);
1716 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1717 return fs_info->free_space_root ? fs_info->free_space_root :
1718 ERR_PTR(-ENOENT);
1719 again:
1720 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1721 if (root) {
1722 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1723 return ERR_PTR(-ENOENT);
1724 return root;
1725 }
1726
1727 root = btrfs_read_fs_root(fs_info->tree_root, location);
1728 if (IS_ERR(root))
1729 return root;
1730
1731 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1732 ret = -ENOENT;
1733 goto fail;
1734 }
1735
1736 ret = btrfs_init_fs_root(root);
1737 if (ret)
1738 goto fail;
1739
1740 path = btrfs_alloc_path();
1741 if (!path) {
1742 ret = -ENOMEM;
1743 goto fail;
1744 }
1745 key.objectid = BTRFS_ORPHAN_OBJECTID;
1746 key.type = BTRFS_ORPHAN_ITEM_KEY;
1747 key.offset = location->objectid;
1748
1749 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1750 btrfs_free_path(path);
1751 if (ret < 0)
1752 goto fail;
1753 if (ret == 0)
1754 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1755
1756 ret = btrfs_insert_fs_root(fs_info, root);
1757 if (ret) {
1758 if (ret == -EEXIST) {
1759 free_fs_root(root);
1760 goto again;
1761 }
1762 goto fail;
1763 }
1764 return root;
1765 fail:
1766 free_fs_root(root);
1767 return ERR_PTR(ret);
1768 }
1769
1770 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1771 {
1772 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1773 int ret = 0;
1774 struct btrfs_device *device;
1775 struct backing_dev_info *bdi;
1776
1777 rcu_read_lock();
1778 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1779 if (!device->bdev)
1780 continue;
1781 bdi = blk_get_backing_dev_info(device->bdev);
1782 if (bdi_congested(bdi, bdi_bits)) {
1783 ret = 1;
1784 break;
1785 }
1786 }
1787 rcu_read_unlock();
1788 return ret;
1789 }
1790
1791 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1792 {
1793 int err;
1794
1795 err = bdi_setup_and_register(bdi, "btrfs");
1796 if (err)
1797 return err;
1798
1799 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1800 bdi->congested_fn = btrfs_congested_fn;
1801 bdi->congested_data = info;
1802 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1803 return 0;
1804 }
1805
1806 /*
1807 * called by the kthread helper functions to finally call the bio end_io
1808 * functions. This is where read checksum verification actually happens
1809 */
1810 static void end_workqueue_fn(struct btrfs_work *work)
1811 {
1812 struct bio *bio;
1813 struct btrfs_end_io_wq *end_io_wq;
1814
1815 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1816 bio = end_io_wq->bio;
1817
1818 bio->bi_error = end_io_wq->error;
1819 bio->bi_private = end_io_wq->private;
1820 bio->bi_end_io = end_io_wq->end_io;
1821 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1822 bio_endio(bio);
1823 }
1824
1825 static int cleaner_kthread(void *arg)
1826 {
1827 struct btrfs_root *root = arg;
1828 int again;
1829 struct btrfs_trans_handle *trans;
1830
1831 do {
1832 again = 0;
1833
1834 /* Make the cleaner go to sleep early. */
1835 if (btrfs_need_cleaner_sleep(root))
1836 goto sleep;
1837
1838 /*
1839 * Do not do anything if we might cause open_ctree() to block
1840 * before we have finished mounting the filesystem.
1841 */
1842 if (!root->fs_info->open)
1843 goto sleep;
1844
1845 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1846 goto sleep;
1847
1848 /*
1849 * Avoid the problem that we change the status of the fs
1850 * during the above check and trylock.
1851 */
1852 if (btrfs_need_cleaner_sleep(root)) {
1853 mutex_unlock(&root->fs_info->cleaner_mutex);
1854 goto sleep;
1855 }
1856
1857 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1858 btrfs_run_delayed_iputs(root);
1859 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1860
1861 again = btrfs_clean_one_deleted_snapshot(root);
1862 mutex_unlock(&root->fs_info->cleaner_mutex);
1863
1864 /*
1865 * The defragger has dealt with the R/O remount and umount,
1866 * needn't do anything special here.
1867 */
1868 btrfs_run_defrag_inodes(root->fs_info);
1869
1870 /*
1871 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1872 * with relocation (btrfs_relocate_chunk) and relocation
1873 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1874 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1875 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1876 * unused block groups.
1877 */
1878 btrfs_delete_unused_bgs(root->fs_info);
1879 sleep:
1880 if (!again) {
1881 set_current_state(TASK_INTERRUPTIBLE);
1882 if (!kthread_should_stop())
1883 schedule();
1884 __set_current_state(TASK_RUNNING);
1885 }
1886 } while (!kthread_should_stop());
1887
1888 /*
1889 * Transaction kthread is stopped before us and wakes us up.
1890 * However we might have started a new transaction and COWed some
1891 * tree blocks when deleting unused block groups for example. So
1892 * make sure we commit the transaction we started to have a clean
1893 * shutdown when evicting the btree inode - if it has dirty pages
1894 * when we do the final iput() on it, eviction will trigger a
1895 * writeback for it which will fail with null pointer dereferences
1896 * since work queues and other resources were already released and
1897 * destroyed by the time the iput/eviction/writeback is made.
1898 */
1899 trans = btrfs_attach_transaction(root);
1900 if (IS_ERR(trans)) {
1901 if (PTR_ERR(trans) != -ENOENT)
1902 btrfs_err(root->fs_info,
1903 "cleaner transaction attach returned %ld",
1904 PTR_ERR(trans));
1905 } else {
1906 int ret;
1907
1908 ret = btrfs_commit_transaction(trans, root);
1909 if (ret)
1910 btrfs_err(root->fs_info,
1911 "cleaner open transaction commit returned %d",
1912 ret);
1913 }
1914
1915 return 0;
1916 }
1917
1918 static int transaction_kthread(void *arg)
1919 {
1920 struct btrfs_root *root = arg;
1921 struct btrfs_trans_handle *trans;
1922 struct btrfs_transaction *cur;
1923 u64 transid;
1924 unsigned long now;
1925 unsigned long delay;
1926 bool cannot_commit;
1927
1928 do {
1929 cannot_commit = false;
1930 delay = HZ * root->fs_info->commit_interval;
1931 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1932
1933 spin_lock(&root->fs_info->trans_lock);
1934 cur = root->fs_info->running_transaction;
1935 if (!cur) {
1936 spin_unlock(&root->fs_info->trans_lock);
1937 goto sleep;
1938 }
1939
1940 now = get_seconds();
1941 if (cur->state < TRANS_STATE_BLOCKED &&
1942 (now < cur->start_time ||
1943 now - cur->start_time < root->fs_info->commit_interval)) {
1944 spin_unlock(&root->fs_info->trans_lock);
1945 delay = HZ * 5;
1946 goto sleep;
1947 }
1948 transid = cur->transid;
1949 spin_unlock(&root->fs_info->trans_lock);
1950
1951 /* If the file system is aborted, this will always fail. */
1952 trans = btrfs_attach_transaction(root);
1953 if (IS_ERR(trans)) {
1954 if (PTR_ERR(trans) != -ENOENT)
1955 cannot_commit = true;
1956 goto sleep;
1957 }
1958 if (transid == trans->transid) {
1959 btrfs_commit_transaction(trans, root);
1960 } else {
1961 btrfs_end_transaction(trans, root);
1962 }
1963 sleep:
1964 wake_up_process(root->fs_info->cleaner_kthread);
1965 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1966
1967 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1968 &root->fs_info->fs_state)))
1969 btrfs_cleanup_transaction(root);
1970 set_current_state(TASK_INTERRUPTIBLE);
1971 if (!kthread_should_stop() &&
1972 (!btrfs_transaction_blocked(root->fs_info) ||
1973 cannot_commit))
1974 schedule_timeout(delay);
1975 __set_current_state(TASK_RUNNING);
1976 } while (!kthread_should_stop());
1977 return 0;
1978 }
1979
1980 /*
1981 * this will find the highest generation in the array of
1982 * root backups. The index of the highest array is returned,
1983 * or -1 if we can't find anything.
1984 *
1985 * We check to make sure the array is valid by comparing the
1986 * generation of the latest root in the array with the generation
1987 * in the super block. If they don't match we pitch it.
1988 */
1989 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1990 {
1991 u64 cur;
1992 int newest_index = -1;
1993 struct btrfs_root_backup *root_backup;
1994 int i;
1995
1996 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1997 root_backup = info->super_copy->super_roots + i;
1998 cur = btrfs_backup_tree_root_gen(root_backup);
1999 if (cur == newest_gen)
2000 newest_index = i;
2001 }
2002
2003 /* check to see if we actually wrapped around */
2004 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2005 root_backup = info->super_copy->super_roots;
2006 cur = btrfs_backup_tree_root_gen(root_backup);
2007 if (cur == newest_gen)
2008 newest_index = 0;
2009 }
2010 return newest_index;
2011 }
2012
2013
2014 /*
2015 * find the oldest backup so we know where to store new entries
2016 * in the backup array. This will set the backup_root_index
2017 * field in the fs_info struct
2018 */
2019 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2020 u64 newest_gen)
2021 {
2022 int newest_index = -1;
2023
2024 newest_index = find_newest_super_backup(info, newest_gen);
2025 /* if there was garbage in there, just move along */
2026 if (newest_index == -1) {
2027 info->backup_root_index = 0;
2028 } else {
2029 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2030 }
2031 }
2032
2033 /*
2034 * copy all the root pointers into the super backup array.
2035 * this will bump the backup pointer by one when it is
2036 * done
2037 */
2038 static void backup_super_roots(struct btrfs_fs_info *info)
2039 {
2040 int next_backup;
2041 struct btrfs_root_backup *root_backup;
2042 int last_backup;
2043
2044 next_backup = info->backup_root_index;
2045 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2046 BTRFS_NUM_BACKUP_ROOTS;
2047
2048 /*
2049 * just overwrite the last backup if we're at the same generation
2050 * this happens only at umount
2051 */
2052 root_backup = info->super_for_commit->super_roots + last_backup;
2053 if (btrfs_backup_tree_root_gen(root_backup) ==
2054 btrfs_header_generation(info->tree_root->node))
2055 next_backup = last_backup;
2056
2057 root_backup = info->super_for_commit->super_roots + next_backup;
2058
2059 /*
2060 * make sure all of our padding and empty slots get zero filled
2061 * regardless of which ones we use today
2062 */
2063 memset(root_backup, 0, sizeof(*root_backup));
2064
2065 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2066
2067 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2068 btrfs_set_backup_tree_root_gen(root_backup,
2069 btrfs_header_generation(info->tree_root->node));
2070
2071 btrfs_set_backup_tree_root_level(root_backup,
2072 btrfs_header_level(info->tree_root->node));
2073
2074 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2075 btrfs_set_backup_chunk_root_gen(root_backup,
2076 btrfs_header_generation(info->chunk_root->node));
2077 btrfs_set_backup_chunk_root_level(root_backup,
2078 btrfs_header_level(info->chunk_root->node));
2079
2080 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2081 btrfs_set_backup_extent_root_gen(root_backup,
2082 btrfs_header_generation(info->extent_root->node));
2083 btrfs_set_backup_extent_root_level(root_backup,
2084 btrfs_header_level(info->extent_root->node));
2085
2086 /*
2087 * we might commit during log recovery, which happens before we set
2088 * the fs_root. Make sure it is valid before we fill it in.
2089 */
2090 if (info->fs_root && info->fs_root->node) {
2091 btrfs_set_backup_fs_root(root_backup,
2092 info->fs_root->node->start);
2093 btrfs_set_backup_fs_root_gen(root_backup,
2094 btrfs_header_generation(info->fs_root->node));
2095 btrfs_set_backup_fs_root_level(root_backup,
2096 btrfs_header_level(info->fs_root->node));
2097 }
2098
2099 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2100 btrfs_set_backup_dev_root_gen(root_backup,
2101 btrfs_header_generation(info->dev_root->node));
2102 btrfs_set_backup_dev_root_level(root_backup,
2103 btrfs_header_level(info->dev_root->node));
2104
2105 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2106 btrfs_set_backup_csum_root_gen(root_backup,
2107 btrfs_header_generation(info->csum_root->node));
2108 btrfs_set_backup_csum_root_level(root_backup,
2109 btrfs_header_level(info->csum_root->node));
2110
2111 btrfs_set_backup_total_bytes(root_backup,
2112 btrfs_super_total_bytes(info->super_copy));
2113 btrfs_set_backup_bytes_used(root_backup,
2114 btrfs_super_bytes_used(info->super_copy));
2115 btrfs_set_backup_num_devices(root_backup,
2116 btrfs_super_num_devices(info->super_copy));
2117
2118 /*
2119 * if we don't copy this out to the super_copy, it won't get remembered
2120 * for the next commit
2121 */
2122 memcpy(&info->super_copy->super_roots,
2123 &info->super_for_commit->super_roots,
2124 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2125 }
2126
2127 /*
2128 * this copies info out of the root backup array and back into
2129 * the in-memory super block. It is meant to help iterate through
2130 * the array, so you send it the number of backups you've already
2131 * tried and the last backup index you used.
2132 *
2133 * this returns -1 when it has tried all the backups
2134 */
2135 static noinline int next_root_backup(struct btrfs_fs_info *info,
2136 struct btrfs_super_block *super,
2137 int *num_backups_tried, int *backup_index)
2138 {
2139 struct btrfs_root_backup *root_backup;
2140 int newest = *backup_index;
2141
2142 if (*num_backups_tried == 0) {
2143 u64 gen = btrfs_super_generation(super);
2144
2145 newest = find_newest_super_backup(info, gen);
2146 if (newest == -1)
2147 return -1;
2148
2149 *backup_index = newest;
2150 *num_backups_tried = 1;
2151 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2152 /* we've tried all the backups, all done */
2153 return -1;
2154 } else {
2155 /* jump to the next oldest backup */
2156 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2157 BTRFS_NUM_BACKUP_ROOTS;
2158 *backup_index = newest;
2159 *num_backups_tried += 1;
2160 }
2161 root_backup = super->super_roots + newest;
2162
2163 btrfs_set_super_generation(super,
2164 btrfs_backup_tree_root_gen(root_backup));
2165 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2166 btrfs_set_super_root_level(super,
2167 btrfs_backup_tree_root_level(root_backup));
2168 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2169
2170 /*
2171 * fixme: the total bytes and num_devices need to match or we should
2172 * need a fsck
2173 */
2174 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2175 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2176 return 0;
2177 }
2178
2179 /* helper to cleanup workers */
2180 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2181 {
2182 btrfs_destroy_workqueue(fs_info->fixup_workers);
2183 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2184 btrfs_destroy_workqueue(fs_info->workers);
2185 btrfs_destroy_workqueue(fs_info->endio_workers);
2186 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2187 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2188 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2189 btrfs_destroy_workqueue(fs_info->rmw_workers);
2190 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2191 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2192 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2193 btrfs_destroy_workqueue(fs_info->submit_workers);
2194 btrfs_destroy_workqueue(fs_info->delayed_workers);
2195 btrfs_destroy_workqueue(fs_info->caching_workers);
2196 btrfs_destroy_workqueue(fs_info->readahead_workers);
2197 btrfs_destroy_workqueue(fs_info->flush_workers);
2198 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2199 btrfs_destroy_workqueue(fs_info->extent_workers);
2200 }
2201
2202 static void free_root_extent_buffers(struct btrfs_root *root)
2203 {
2204 if (root) {
2205 free_extent_buffer(root->node);
2206 free_extent_buffer(root->commit_root);
2207 root->node = NULL;
2208 root->commit_root = NULL;
2209 }
2210 }
2211
2212 /* helper to cleanup tree roots */
2213 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2214 {
2215 free_root_extent_buffers(info->tree_root);
2216
2217 free_root_extent_buffers(info->dev_root);
2218 free_root_extent_buffers(info->extent_root);
2219 free_root_extent_buffers(info->csum_root);
2220 free_root_extent_buffers(info->quota_root);
2221 free_root_extent_buffers(info->uuid_root);
2222 if (chunk_root)
2223 free_root_extent_buffers(info->chunk_root);
2224 free_root_extent_buffers(info->free_space_root);
2225 }
2226
2227 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2228 {
2229 int ret;
2230 struct btrfs_root *gang[8];
2231 int i;
2232
2233 while (!list_empty(&fs_info->dead_roots)) {
2234 gang[0] = list_entry(fs_info->dead_roots.next,
2235 struct btrfs_root, root_list);
2236 list_del(&gang[0]->root_list);
2237
2238 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2239 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2240 } else {
2241 free_extent_buffer(gang[0]->node);
2242 free_extent_buffer(gang[0]->commit_root);
2243 btrfs_put_fs_root(gang[0]);
2244 }
2245 }
2246
2247 while (1) {
2248 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2249 (void **)gang, 0,
2250 ARRAY_SIZE(gang));
2251 if (!ret)
2252 break;
2253 for (i = 0; i < ret; i++)
2254 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2255 }
2256
2257 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2258 btrfs_free_log_root_tree(NULL, fs_info);
2259 btrfs_destroy_pinned_extent(fs_info->tree_root,
2260 fs_info->pinned_extents);
2261 }
2262 }
2263
2264 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2265 {
2266 mutex_init(&fs_info->scrub_lock);
2267 atomic_set(&fs_info->scrubs_running, 0);
2268 atomic_set(&fs_info->scrub_pause_req, 0);
2269 atomic_set(&fs_info->scrubs_paused, 0);
2270 atomic_set(&fs_info->scrub_cancel_req, 0);
2271 init_waitqueue_head(&fs_info->scrub_pause_wait);
2272 fs_info->scrub_workers_refcnt = 0;
2273 }
2274
2275 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2276 {
2277 spin_lock_init(&fs_info->balance_lock);
2278 mutex_init(&fs_info->balance_mutex);
2279 atomic_set(&fs_info->balance_running, 0);
2280 atomic_set(&fs_info->balance_pause_req, 0);
2281 atomic_set(&fs_info->balance_cancel_req, 0);
2282 fs_info->balance_ctl = NULL;
2283 init_waitqueue_head(&fs_info->balance_wait_q);
2284 }
2285
2286 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2287 struct btrfs_root *tree_root)
2288 {
2289 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2290 set_nlink(fs_info->btree_inode, 1);
2291 /*
2292 * we set the i_size on the btree inode to the max possible int.
2293 * the real end of the address space is determined by all of
2294 * the devices in the system
2295 */
2296 fs_info->btree_inode->i_size = OFFSET_MAX;
2297 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2298
2299 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2300 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2301 fs_info->btree_inode->i_mapping);
2302 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2303 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2304
2305 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2306
2307 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2308 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2309 sizeof(struct btrfs_key));
2310 set_bit(BTRFS_INODE_DUMMY,
2311 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2312 btrfs_insert_inode_hash(fs_info->btree_inode);
2313 }
2314
2315 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2316 {
2317 fs_info->dev_replace.lock_owner = 0;
2318 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2319 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2320 rwlock_init(&fs_info->dev_replace.lock);
2321 atomic_set(&fs_info->dev_replace.read_locks, 0);
2322 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2323 init_waitqueue_head(&fs_info->replace_wait);
2324 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2325 }
2326
2327 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2328 {
2329 spin_lock_init(&fs_info->qgroup_lock);
2330 mutex_init(&fs_info->qgroup_ioctl_lock);
2331 fs_info->qgroup_tree = RB_ROOT;
2332 fs_info->qgroup_op_tree = RB_ROOT;
2333 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2334 fs_info->qgroup_seq = 1;
2335 fs_info->quota_enabled = 0;
2336 fs_info->pending_quota_state = 0;
2337 fs_info->qgroup_ulist = NULL;
2338 fs_info->qgroup_rescan_running = false;
2339 mutex_init(&fs_info->qgroup_rescan_lock);
2340 }
2341
2342 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2343 struct btrfs_fs_devices *fs_devices)
2344 {
2345 int max_active = fs_info->thread_pool_size;
2346 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2347
2348 fs_info->workers =
2349 btrfs_alloc_workqueue(fs_info, "worker",
2350 flags | WQ_HIGHPRI, max_active, 16);
2351
2352 fs_info->delalloc_workers =
2353 btrfs_alloc_workqueue(fs_info, "delalloc",
2354 flags, max_active, 2);
2355
2356 fs_info->flush_workers =
2357 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2358 flags, max_active, 0);
2359
2360 fs_info->caching_workers =
2361 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2362
2363 /*
2364 * a higher idle thresh on the submit workers makes it much more
2365 * likely that bios will be send down in a sane order to the
2366 * devices
2367 */
2368 fs_info->submit_workers =
2369 btrfs_alloc_workqueue(fs_info, "submit", flags,
2370 min_t(u64, fs_devices->num_devices,
2371 max_active), 64);
2372
2373 fs_info->fixup_workers =
2374 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2375
2376 /*
2377 * endios are largely parallel and should have a very
2378 * low idle thresh
2379 */
2380 fs_info->endio_workers =
2381 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2382 fs_info->endio_meta_workers =
2383 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2384 max_active, 4);
2385 fs_info->endio_meta_write_workers =
2386 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2387 max_active, 2);
2388 fs_info->endio_raid56_workers =
2389 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2390 max_active, 4);
2391 fs_info->endio_repair_workers =
2392 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2393 fs_info->rmw_workers =
2394 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2395 fs_info->endio_write_workers =
2396 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2397 max_active, 2);
2398 fs_info->endio_freespace_worker =
2399 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2400 max_active, 0);
2401 fs_info->delayed_workers =
2402 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2403 max_active, 0);
2404 fs_info->readahead_workers =
2405 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2406 max_active, 2);
2407 fs_info->qgroup_rescan_workers =
2408 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2409 fs_info->extent_workers =
2410 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2411 min_t(u64, fs_devices->num_devices,
2412 max_active), 8);
2413
2414 if (!(fs_info->workers && fs_info->delalloc_workers &&
2415 fs_info->submit_workers && fs_info->flush_workers &&
2416 fs_info->endio_workers && fs_info->endio_meta_workers &&
2417 fs_info->endio_meta_write_workers &&
2418 fs_info->endio_repair_workers &&
2419 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2420 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2421 fs_info->caching_workers && fs_info->readahead_workers &&
2422 fs_info->fixup_workers && fs_info->delayed_workers &&
2423 fs_info->extent_workers &&
2424 fs_info->qgroup_rescan_workers)) {
2425 return -ENOMEM;
2426 }
2427
2428 return 0;
2429 }
2430
2431 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2432 struct btrfs_fs_devices *fs_devices)
2433 {
2434 int ret;
2435 struct btrfs_root *tree_root = fs_info->tree_root;
2436 struct btrfs_root *log_tree_root;
2437 struct btrfs_super_block *disk_super = fs_info->super_copy;
2438 u64 bytenr = btrfs_super_log_root(disk_super);
2439
2440 if (fs_devices->rw_devices == 0) {
2441 btrfs_warn(fs_info, "log replay required on RO media");
2442 return -EIO;
2443 }
2444
2445 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2446 if (!log_tree_root)
2447 return -ENOMEM;
2448
2449 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2450 tree_root->stripesize, log_tree_root, fs_info,
2451 BTRFS_TREE_LOG_OBJECTID);
2452
2453 log_tree_root->node = read_tree_block(tree_root, bytenr,
2454 fs_info->generation + 1);
2455 if (IS_ERR(log_tree_root->node)) {
2456 btrfs_warn(fs_info, "failed to read log tree");
2457 ret = PTR_ERR(log_tree_root->node);
2458 kfree(log_tree_root);
2459 return ret;
2460 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2461 btrfs_err(fs_info, "failed to read log tree");
2462 free_extent_buffer(log_tree_root->node);
2463 kfree(log_tree_root);
2464 return -EIO;
2465 }
2466 /* returns with log_tree_root freed on success */
2467 ret = btrfs_recover_log_trees(log_tree_root);
2468 if (ret) {
2469 btrfs_handle_fs_error(tree_root->fs_info, ret,
2470 "Failed to recover log tree");
2471 free_extent_buffer(log_tree_root->node);
2472 kfree(log_tree_root);
2473 return ret;
2474 }
2475
2476 if (fs_info->sb->s_flags & MS_RDONLY) {
2477 ret = btrfs_commit_super(tree_root);
2478 if (ret)
2479 return ret;
2480 }
2481
2482 return 0;
2483 }
2484
2485 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2486 struct btrfs_root *tree_root)
2487 {
2488 struct btrfs_root *root;
2489 struct btrfs_key location;
2490 int ret;
2491
2492 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2493 location.type = BTRFS_ROOT_ITEM_KEY;
2494 location.offset = 0;
2495
2496 root = btrfs_read_tree_root(tree_root, &location);
2497 if (IS_ERR(root))
2498 return PTR_ERR(root);
2499 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2500 fs_info->extent_root = root;
2501
2502 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2503 root = btrfs_read_tree_root(tree_root, &location);
2504 if (IS_ERR(root))
2505 return PTR_ERR(root);
2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 fs_info->dev_root = root;
2508 btrfs_init_devices_late(fs_info);
2509
2510 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2511 root = btrfs_read_tree_root(tree_root, &location);
2512 if (IS_ERR(root))
2513 return PTR_ERR(root);
2514 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2515 fs_info->csum_root = root;
2516
2517 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2518 root = btrfs_read_tree_root(tree_root, &location);
2519 if (!IS_ERR(root)) {
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->quota_enabled = 1;
2522 fs_info->pending_quota_state = 1;
2523 fs_info->quota_root = root;
2524 }
2525
2526 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2527 root = btrfs_read_tree_root(tree_root, &location);
2528 if (IS_ERR(root)) {
2529 ret = PTR_ERR(root);
2530 if (ret != -ENOENT)
2531 return ret;
2532 } else {
2533 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2534 fs_info->uuid_root = root;
2535 }
2536
2537 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2538 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2539 root = btrfs_read_tree_root(tree_root, &location);
2540 if (IS_ERR(root))
2541 return PTR_ERR(root);
2542 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2543 fs_info->free_space_root = root;
2544 }
2545
2546 return 0;
2547 }
2548
2549 int open_ctree(struct super_block *sb,
2550 struct btrfs_fs_devices *fs_devices,
2551 char *options)
2552 {
2553 u32 sectorsize;
2554 u32 nodesize;
2555 u32 stripesize;
2556 u64 generation;
2557 u64 features;
2558 struct btrfs_key location;
2559 struct buffer_head *bh;
2560 struct btrfs_super_block *disk_super;
2561 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2562 struct btrfs_root *tree_root;
2563 struct btrfs_root *chunk_root;
2564 int ret;
2565 int err = -EINVAL;
2566 int num_backups_tried = 0;
2567 int backup_index = 0;
2568 int max_active;
2569
2570 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2571 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2572 if (!tree_root || !chunk_root) {
2573 err = -ENOMEM;
2574 goto fail;
2575 }
2576
2577 ret = init_srcu_struct(&fs_info->subvol_srcu);
2578 if (ret) {
2579 err = ret;
2580 goto fail;
2581 }
2582
2583 ret = setup_bdi(fs_info, &fs_info->bdi);
2584 if (ret) {
2585 err = ret;
2586 goto fail_srcu;
2587 }
2588
2589 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2590 if (ret) {
2591 err = ret;
2592 goto fail_bdi;
2593 }
2594 fs_info->dirty_metadata_batch = PAGE_SIZE *
2595 (1 + ilog2(nr_cpu_ids));
2596
2597 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2598 if (ret) {
2599 err = ret;
2600 goto fail_dirty_metadata_bytes;
2601 }
2602
2603 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2604 if (ret) {
2605 err = ret;
2606 goto fail_delalloc_bytes;
2607 }
2608
2609 fs_info->btree_inode = new_inode(sb);
2610 if (!fs_info->btree_inode) {
2611 err = -ENOMEM;
2612 goto fail_bio_counter;
2613 }
2614
2615 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2616
2617 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2618 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2619 INIT_LIST_HEAD(&fs_info->trans_list);
2620 INIT_LIST_HEAD(&fs_info->dead_roots);
2621 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2622 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2623 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2624 spin_lock_init(&fs_info->delalloc_root_lock);
2625 spin_lock_init(&fs_info->trans_lock);
2626 spin_lock_init(&fs_info->fs_roots_radix_lock);
2627 spin_lock_init(&fs_info->delayed_iput_lock);
2628 spin_lock_init(&fs_info->defrag_inodes_lock);
2629 spin_lock_init(&fs_info->free_chunk_lock);
2630 spin_lock_init(&fs_info->tree_mod_seq_lock);
2631 spin_lock_init(&fs_info->super_lock);
2632 spin_lock_init(&fs_info->qgroup_op_lock);
2633 spin_lock_init(&fs_info->buffer_lock);
2634 spin_lock_init(&fs_info->unused_bgs_lock);
2635 rwlock_init(&fs_info->tree_mod_log_lock);
2636 mutex_init(&fs_info->unused_bg_unpin_mutex);
2637 mutex_init(&fs_info->delete_unused_bgs_mutex);
2638 mutex_init(&fs_info->reloc_mutex);
2639 mutex_init(&fs_info->delalloc_root_mutex);
2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2641 seqlock_init(&fs_info->profiles_lock);
2642
2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2644 INIT_LIST_HEAD(&fs_info->space_info);
2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2646 INIT_LIST_HEAD(&fs_info->unused_bgs);
2647 btrfs_mapping_init(&fs_info->mapping_tree);
2648 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649 BTRFS_BLOCK_RSV_GLOBAL);
2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651 BTRFS_BLOCK_RSV_DELALLOC);
2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656 BTRFS_BLOCK_RSV_DELOPS);
2657 atomic_set(&fs_info->nr_async_submits, 0);
2658 atomic_set(&fs_info->async_delalloc_pages, 0);
2659 atomic_set(&fs_info->async_submit_draining, 0);
2660 atomic_set(&fs_info->nr_async_bios, 0);
2661 atomic_set(&fs_info->defrag_running, 0);
2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2663 atomic_set(&fs_info->reada_works_cnt, 0);
2664 atomic64_set(&fs_info->tree_mod_seq, 0);
2665 fs_info->fs_frozen = 0;
2666 fs_info->sb = sb;
2667 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2668 fs_info->metadata_ratio = 0;
2669 fs_info->defrag_inodes = RB_ROOT;
2670 fs_info->free_chunk_space = 0;
2671 fs_info->tree_mod_log = RB_ROOT;
2672 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2673 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2674 /* readahead state */
2675 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2676 spin_lock_init(&fs_info->reada_lock);
2677
2678 fs_info->thread_pool_size = min_t(unsigned long,
2679 num_online_cpus() + 2, 8);
2680
2681 INIT_LIST_HEAD(&fs_info->ordered_roots);
2682 spin_lock_init(&fs_info->ordered_root_lock);
2683 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2684 GFP_KERNEL);
2685 if (!fs_info->delayed_root) {
2686 err = -ENOMEM;
2687 goto fail_iput;
2688 }
2689 btrfs_init_delayed_root(fs_info->delayed_root);
2690
2691 btrfs_init_scrub(fs_info);
2692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2693 fs_info->check_integrity_print_mask = 0;
2694 #endif
2695 btrfs_init_balance(fs_info);
2696 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2697
2698 sb->s_blocksize = 4096;
2699 sb->s_blocksize_bits = blksize_bits(4096);
2700 sb->s_bdi = &fs_info->bdi;
2701
2702 btrfs_init_btree_inode(fs_info, tree_root);
2703
2704 spin_lock_init(&fs_info->block_group_cache_lock);
2705 fs_info->block_group_cache_tree = RB_ROOT;
2706 fs_info->first_logical_byte = (u64)-1;
2707
2708 extent_io_tree_init(&fs_info->freed_extents[0],
2709 fs_info->btree_inode->i_mapping);
2710 extent_io_tree_init(&fs_info->freed_extents[1],
2711 fs_info->btree_inode->i_mapping);
2712 fs_info->pinned_extents = &fs_info->freed_extents[0];
2713 fs_info->do_barriers = 1;
2714
2715
2716 mutex_init(&fs_info->ordered_operations_mutex);
2717 mutex_init(&fs_info->tree_log_mutex);
2718 mutex_init(&fs_info->chunk_mutex);
2719 mutex_init(&fs_info->transaction_kthread_mutex);
2720 mutex_init(&fs_info->cleaner_mutex);
2721 mutex_init(&fs_info->volume_mutex);
2722 mutex_init(&fs_info->ro_block_group_mutex);
2723 init_rwsem(&fs_info->commit_root_sem);
2724 init_rwsem(&fs_info->cleanup_work_sem);
2725 init_rwsem(&fs_info->subvol_sem);
2726 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2727
2728 btrfs_init_dev_replace_locks(fs_info);
2729 btrfs_init_qgroup(fs_info);
2730
2731 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2732 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2733
2734 init_waitqueue_head(&fs_info->transaction_throttle);
2735 init_waitqueue_head(&fs_info->transaction_wait);
2736 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2737 init_waitqueue_head(&fs_info->async_submit_wait);
2738
2739 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2740
2741 ret = btrfs_alloc_stripe_hash_table(fs_info);
2742 if (ret) {
2743 err = ret;
2744 goto fail_alloc;
2745 }
2746
2747 __setup_root(4096, 4096, 4096, tree_root,
2748 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2749
2750 invalidate_bdev(fs_devices->latest_bdev);
2751
2752 /*
2753 * Read super block and check the signature bytes only
2754 */
2755 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2756 if (IS_ERR(bh)) {
2757 err = PTR_ERR(bh);
2758 goto fail_alloc;
2759 }
2760
2761 /*
2762 * We want to check superblock checksum, the type is stored inside.
2763 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2764 */
2765 if (btrfs_check_super_csum(bh->b_data)) {
2766 btrfs_err(fs_info, "superblock checksum mismatch");
2767 err = -EINVAL;
2768 brelse(bh);
2769 goto fail_alloc;
2770 }
2771
2772 /*
2773 * super_copy is zeroed at allocation time and we never touch the
2774 * following bytes up to INFO_SIZE, the checksum is calculated from
2775 * the whole block of INFO_SIZE
2776 */
2777 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2778 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2779 sizeof(*fs_info->super_for_commit));
2780 brelse(bh);
2781
2782 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2783
2784 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2785 if (ret) {
2786 btrfs_err(fs_info, "superblock contains fatal errors");
2787 err = -EINVAL;
2788 goto fail_alloc;
2789 }
2790
2791 disk_super = fs_info->super_copy;
2792 if (!btrfs_super_root(disk_super))
2793 goto fail_alloc;
2794
2795 /* check FS state, whether FS is broken. */
2796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2797 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2798
2799 /*
2800 * run through our array of backup supers and setup
2801 * our ring pointer to the oldest one
2802 */
2803 generation = btrfs_super_generation(disk_super);
2804 find_oldest_super_backup(fs_info, generation);
2805
2806 /*
2807 * In the long term, we'll store the compression type in the super
2808 * block, and it'll be used for per file compression control.
2809 */
2810 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2811
2812 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2813 if (ret) {
2814 err = ret;
2815 goto fail_alloc;
2816 }
2817
2818 features = btrfs_super_incompat_flags(disk_super) &
2819 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2820 if (features) {
2821 btrfs_err(fs_info,
2822 "cannot mount because of unsupported optional features (%llx)",
2823 features);
2824 err = -EINVAL;
2825 goto fail_alloc;
2826 }
2827
2828 features = btrfs_super_incompat_flags(disk_super);
2829 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2830 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2831 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2832
2833 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2834 btrfs_info(fs_info, "has skinny extents");
2835
2836 /*
2837 * flag our filesystem as having big metadata blocks if
2838 * they are bigger than the page size
2839 */
2840 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2841 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2842 btrfs_info(fs_info,
2843 "flagging fs with big metadata feature");
2844 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2845 }
2846
2847 nodesize = btrfs_super_nodesize(disk_super);
2848 sectorsize = btrfs_super_sectorsize(disk_super);
2849 stripesize = sectorsize;
2850 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2851 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2852
2853 /*
2854 * mixed block groups end up with duplicate but slightly offset
2855 * extent buffers for the same range. It leads to corruptions
2856 */
2857 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2858 (sectorsize != nodesize)) {
2859 btrfs_err(fs_info,
2860 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2861 nodesize, sectorsize);
2862 goto fail_alloc;
2863 }
2864
2865 /*
2866 * Needn't use the lock because there is no other task which will
2867 * update the flag.
2868 */
2869 btrfs_set_super_incompat_flags(disk_super, features);
2870
2871 features = btrfs_super_compat_ro_flags(disk_super) &
2872 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2873 if (!(sb->s_flags & MS_RDONLY) && features) {
2874 btrfs_err(fs_info,
2875 "cannot mount read-write because of unsupported optional features (%llx)",
2876 features);
2877 err = -EINVAL;
2878 goto fail_alloc;
2879 }
2880
2881 max_active = fs_info->thread_pool_size;
2882
2883 ret = btrfs_init_workqueues(fs_info, fs_devices);
2884 if (ret) {
2885 err = ret;
2886 goto fail_sb_buffer;
2887 }
2888
2889 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2890 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2891 SZ_4M / PAGE_SIZE);
2892
2893 tree_root->nodesize = nodesize;
2894 tree_root->sectorsize = sectorsize;
2895 tree_root->stripesize = stripesize;
2896
2897 sb->s_blocksize = sectorsize;
2898 sb->s_blocksize_bits = blksize_bits(sectorsize);
2899
2900 mutex_lock(&fs_info->chunk_mutex);
2901 ret = btrfs_read_sys_array(tree_root);
2902 mutex_unlock(&fs_info->chunk_mutex);
2903 if (ret) {
2904 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2905 goto fail_sb_buffer;
2906 }
2907
2908 generation = btrfs_super_chunk_root_generation(disk_super);
2909
2910 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2911 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2912
2913 chunk_root->node = read_tree_block(chunk_root,
2914 btrfs_super_chunk_root(disk_super),
2915 generation);
2916 if (IS_ERR(chunk_root->node) ||
2917 !extent_buffer_uptodate(chunk_root->node)) {
2918 btrfs_err(fs_info, "failed to read chunk root");
2919 if (!IS_ERR(chunk_root->node))
2920 free_extent_buffer(chunk_root->node);
2921 chunk_root->node = NULL;
2922 goto fail_tree_roots;
2923 }
2924 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2925 chunk_root->commit_root = btrfs_root_node(chunk_root);
2926
2927 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2928 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2929
2930 ret = btrfs_read_chunk_tree(chunk_root);
2931 if (ret) {
2932 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2933 goto fail_tree_roots;
2934 }
2935
2936 /*
2937 * keep the device that is marked to be the target device for the
2938 * dev_replace procedure
2939 */
2940 btrfs_close_extra_devices(fs_devices, 0);
2941
2942 if (!fs_devices->latest_bdev) {
2943 btrfs_err(fs_info, "failed to read devices");
2944 goto fail_tree_roots;
2945 }
2946
2947 retry_root_backup:
2948 generation = btrfs_super_generation(disk_super);
2949
2950 tree_root->node = read_tree_block(tree_root,
2951 btrfs_super_root(disk_super),
2952 generation);
2953 if (IS_ERR(tree_root->node) ||
2954 !extent_buffer_uptodate(tree_root->node)) {
2955 btrfs_warn(fs_info, "failed to read tree root");
2956 if (!IS_ERR(tree_root->node))
2957 free_extent_buffer(tree_root->node);
2958 tree_root->node = NULL;
2959 goto recovery_tree_root;
2960 }
2961
2962 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2963 tree_root->commit_root = btrfs_root_node(tree_root);
2964 btrfs_set_root_refs(&tree_root->root_item, 1);
2965
2966 mutex_lock(&tree_root->objectid_mutex);
2967 ret = btrfs_find_highest_objectid(tree_root,
2968 &tree_root->highest_objectid);
2969 if (ret) {
2970 mutex_unlock(&tree_root->objectid_mutex);
2971 goto recovery_tree_root;
2972 }
2973
2974 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2975
2976 mutex_unlock(&tree_root->objectid_mutex);
2977
2978 ret = btrfs_read_roots(fs_info, tree_root);
2979 if (ret)
2980 goto recovery_tree_root;
2981
2982 fs_info->generation = generation;
2983 fs_info->last_trans_committed = generation;
2984
2985 ret = btrfs_recover_balance(fs_info);
2986 if (ret) {
2987 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2988 goto fail_block_groups;
2989 }
2990
2991 ret = btrfs_init_dev_stats(fs_info);
2992 if (ret) {
2993 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2994 goto fail_block_groups;
2995 }
2996
2997 ret = btrfs_init_dev_replace(fs_info);
2998 if (ret) {
2999 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3000 goto fail_block_groups;
3001 }
3002
3003 btrfs_close_extra_devices(fs_devices, 1);
3004
3005 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3006 if (ret) {
3007 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3008 ret);
3009 goto fail_block_groups;
3010 }
3011
3012 ret = btrfs_sysfs_add_device(fs_devices);
3013 if (ret) {
3014 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3015 ret);
3016 goto fail_fsdev_sysfs;
3017 }
3018
3019 ret = btrfs_sysfs_add_mounted(fs_info);
3020 if (ret) {
3021 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3022 goto fail_fsdev_sysfs;
3023 }
3024
3025 ret = btrfs_init_space_info(fs_info);
3026 if (ret) {
3027 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3028 goto fail_sysfs;
3029 }
3030
3031 ret = btrfs_read_block_groups(fs_info->extent_root);
3032 if (ret) {
3033 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3034 goto fail_sysfs;
3035 }
3036 fs_info->num_tolerated_disk_barrier_failures =
3037 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3038 if (fs_info->fs_devices->missing_devices >
3039 fs_info->num_tolerated_disk_barrier_failures &&
3040 !(sb->s_flags & MS_RDONLY)) {
3041 btrfs_warn(fs_info,
3042 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3043 fs_info->fs_devices->missing_devices,
3044 fs_info->num_tolerated_disk_barrier_failures);
3045 goto fail_sysfs;
3046 }
3047
3048 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3049 "btrfs-cleaner");
3050 if (IS_ERR(fs_info->cleaner_kthread))
3051 goto fail_sysfs;
3052
3053 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3054 tree_root,
3055 "btrfs-transaction");
3056 if (IS_ERR(fs_info->transaction_kthread))
3057 goto fail_cleaner;
3058
3059 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3060 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3061 !fs_info->fs_devices->rotating) {
3062 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3063 btrfs_set_opt(fs_info->mount_opt, SSD);
3064 }
3065
3066 /*
3067 * Mount does not set all options immediately, we can do it now and do
3068 * not have to wait for transaction commit
3069 */
3070 btrfs_apply_pending_changes(fs_info);
3071
3072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3073 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3074 ret = btrfsic_mount(tree_root, fs_devices,
3075 btrfs_test_opt(tree_root->fs_info,
3076 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3077 1 : 0,
3078 fs_info->check_integrity_print_mask);
3079 if (ret)
3080 btrfs_warn(fs_info,
3081 "failed to initialize integrity check module: %d",
3082 ret);
3083 }
3084 #endif
3085 ret = btrfs_read_qgroup_config(fs_info);
3086 if (ret)
3087 goto fail_trans_kthread;
3088
3089 /* do not make disk changes in broken FS or nologreplay is given */
3090 if (btrfs_super_log_root(disk_super) != 0 &&
3091 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3092 ret = btrfs_replay_log(fs_info, fs_devices);
3093 if (ret) {
3094 err = ret;
3095 goto fail_qgroup;
3096 }
3097 }
3098
3099 ret = btrfs_find_orphan_roots(tree_root);
3100 if (ret)
3101 goto fail_qgroup;
3102
3103 if (!(sb->s_flags & MS_RDONLY)) {
3104 ret = btrfs_cleanup_fs_roots(fs_info);
3105 if (ret)
3106 goto fail_qgroup;
3107
3108 mutex_lock(&fs_info->cleaner_mutex);
3109 ret = btrfs_recover_relocation(tree_root);
3110 mutex_unlock(&fs_info->cleaner_mutex);
3111 if (ret < 0) {
3112 btrfs_warn(fs_info, "failed to recover relocation: %d",
3113 ret);
3114 err = -EINVAL;
3115 goto fail_qgroup;
3116 }
3117 }
3118
3119 location.objectid = BTRFS_FS_TREE_OBJECTID;
3120 location.type = BTRFS_ROOT_ITEM_KEY;
3121 location.offset = 0;
3122
3123 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3124 if (IS_ERR(fs_info->fs_root)) {
3125 err = PTR_ERR(fs_info->fs_root);
3126 goto fail_qgroup;
3127 }
3128
3129 if (sb->s_flags & MS_RDONLY)
3130 return 0;
3131
3132 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3133 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3134 btrfs_info(fs_info, "creating free space tree");
3135 ret = btrfs_create_free_space_tree(fs_info);
3136 if (ret) {
3137 btrfs_warn(fs_info,
3138 "failed to create free space tree: %d", ret);
3139 close_ctree(tree_root);
3140 return ret;
3141 }
3142 }
3143
3144 down_read(&fs_info->cleanup_work_sem);
3145 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3146 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3147 up_read(&fs_info->cleanup_work_sem);
3148 close_ctree(tree_root);
3149 return ret;
3150 }
3151 up_read(&fs_info->cleanup_work_sem);
3152
3153 ret = btrfs_resume_balance_async(fs_info);
3154 if (ret) {
3155 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3156 close_ctree(tree_root);
3157 return ret;
3158 }
3159
3160 ret = btrfs_resume_dev_replace_async(fs_info);
3161 if (ret) {
3162 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3163 close_ctree(tree_root);
3164 return ret;
3165 }
3166
3167 btrfs_qgroup_rescan_resume(fs_info);
3168
3169 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3170 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3171 btrfs_info(fs_info, "clearing free space tree");
3172 ret = btrfs_clear_free_space_tree(fs_info);
3173 if (ret) {
3174 btrfs_warn(fs_info,
3175 "failed to clear free space tree: %d", ret);
3176 close_ctree(tree_root);
3177 return ret;
3178 }
3179 }
3180
3181 if (!fs_info->uuid_root) {
3182 btrfs_info(fs_info, "creating UUID tree");
3183 ret = btrfs_create_uuid_tree(fs_info);
3184 if (ret) {
3185 btrfs_warn(fs_info,
3186 "failed to create the UUID tree: %d", ret);
3187 close_ctree(tree_root);
3188 return ret;
3189 }
3190 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3191 fs_info->generation !=
3192 btrfs_super_uuid_tree_generation(disk_super)) {
3193 btrfs_info(fs_info, "checking UUID tree");
3194 ret = btrfs_check_uuid_tree(fs_info);
3195 if (ret) {
3196 btrfs_warn(fs_info,
3197 "failed to check the UUID tree: %d", ret);
3198 close_ctree(tree_root);
3199 return ret;
3200 }
3201 } else {
3202 fs_info->update_uuid_tree_gen = 1;
3203 }
3204
3205 fs_info->open = 1;
3206
3207 /*
3208 * backuproot only affect mount behavior, and if open_ctree succeeded,
3209 * no need to keep the flag
3210 */
3211 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3212
3213 return 0;
3214
3215 fail_qgroup:
3216 btrfs_free_qgroup_config(fs_info);
3217 fail_trans_kthread:
3218 kthread_stop(fs_info->transaction_kthread);
3219 btrfs_cleanup_transaction(fs_info->tree_root);
3220 btrfs_free_fs_roots(fs_info);
3221 fail_cleaner:
3222 kthread_stop(fs_info->cleaner_kthread);
3223
3224 /*
3225 * make sure we're done with the btree inode before we stop our
3226 * kthreads
3227 */
3228 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3229
3230 fail_sysfs:
3231 btrfs_sysfs_remove_mounted(fs_info);
3232
3233 fail_fsdev_sysfs:
3234 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3235
3236 fail_block_groups:
3237 btrfs_put_block_group_cache(fs_info);
3238 btrfs_free_block_groups(fs_info);
3239
3240 fail_tree_roots:
3241 free_root_pointers(fs_info, 1);
3242 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3243
3244 fail_sb_buffer:
3245 btrfs_stop_all_workers(fs_info);
3246 fail_alloc:
3247 fail_iput:
3248 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3249
3250 iput(fs_info->btree_inode);
3251 fail_bio_counter:
3252 percpu_counter_destroy(&fs_info->bio_counter);
3253 fail_delalloc_bytes:
3254 percpu_counter_destroy(&fs_info->delalloc_bytes);
3255 fail_dirty_metadata_bytes:
3256 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3257 fail_bdi:
3258 bdi_destroy(&fs_info->bdi);
3259 fail_srcu:
3260 cleanup_srcu_struct(&fs_info->subvol_srcu);
3261 fail:
3262 btrfs_free_stripe_hash_table(fs_info);
3263 btrfs_close_devices(fs_info->fs_devices);
3264 return err;
3265
3266 recovery_tree_root:
3267 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3268 goto fail_tree_roots;
3269
3270 free_root_pointers(fs_info, 0);
3271
3272 /* don't use the log in recovery mode, it won't be valid */
3273 btrfs_set_super_log_root(disk_super, 0);
3274
3275 /* we can't trust the free space cache either */
3276 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3277
3278 ret = next_root_backup(fs_info, fs_info->super_copy,
3279 &num_backups_tried, &backup_index);
3280 if (ret == -1)
3281 goto fail_block_groups;
3282 goto retry_root_backup;
3283 }
3284
3285 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3286 {
3287 if (uptodate) {
3288 set_buffer_uptodate(bh);
3289 } else {
3290 struct btrfs_device *device = (struct btrfs_device *)
3291 bh->b_private;
3292
3293 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3294 "lost page write due to IO error on %s",
3295 rcu_str_deref(device->name));
3296 /* note, we don't set_buffer_write_io_error because we have
3297 * our own ways of dealing with the IO errors
3298 */
3299 clear_buffer_uptodate(bh);
3300 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3301 }
3302 unlock_buffer(bh);
3303 put_bh(bh);
3304 }
3305
3306 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3307 struct buffer_head **bh_ret)
3308 {
3309 struct buffer_head *bh;
3310 struct btrfs_super_block *super;
3311 u64 bytenr;
3312
3313 bytenr = btrfs_sb_offset(copy_num);
3314 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3315 return -EINVAL;
3316
3317 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3318 /*
3319 * If we fail to read from the underlying devices, as of now
3320 * the best option we have is to mark it EIO.
3321 */
3322 if (!bh)
3323 return -EIO;
3324
3325 super = (struct btrfs_super_block *)bh->b_data;
3326 if (btrfs_super_bytenr(super) != bytenr ||
3327 btrfs_super_magic(super) != BTRFS_MAGIC) {
3328 brelse(bh);
3329 return -EINVAL;
3330 }
3331
3332 *bh_ret = bh;
3333 return 0;
3334 }
3335
3336
3337 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3338 {
3339 struct buffer_head *bh;
3340 struct buffer_head *latest = NULL;
3341 struct btrfs_super_block *super;
3342 int i;
3343 u64 transid = 0;
3344 int ret = -EINVAL;
3345
3346 /* we would like to check all the supers, but that would make
3347 * a btrfs mount succeed after a mkfs from a different FS.
3348 * So, we need to add a special mount option to scan for
3349 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3350 */
3351 for (i = 0; i < 1; i++) {
3352 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3353 if (ret)
3354 continue;
3355
3356 super = (struct btrfs_super_block *)bh->b_data;
3357
3358 if (!latest || btrfs_super_generation(super) > transid) {
3359 brelse(latest);
3360 latest = bh;
3361 transid = btrfs_super_generation(super);
3362 } else {
3363 brelse(bh);
3364 }
3365 }
3366
3367 if (!latest)
3368 return ERR_PTR(ret);
3369
3370 return latest;
3371 }
3372
3373 /*
3374 * this should be called twice, once with wait == 0 and
3375 * once with wait == 1. When wait == 0 is done, all the buffer heads
3376 * we write are pinned.
3377 *
3378 * They are released when wait == 1 is done.
3379 * max_mirrors must be the same for both runs, and it indicates how
3380 * many supers on this one device should be written.
3381 *
3382 * max_mirrors == 0 means to write them all.
3383 */
3384 static int write_dev_supers(struct btrfs_device *device,
3385 struct btrfs_super_block *sb,
3386 int do_barriers, int wait, int max_mirrors)
3387 {
3388 struct buffer_head *bh;
3389 int i;
3390 int ret;
3391 int errors = 0;
3392 u32 crc;
3393 u64 bytenr;
3394
3395 if (max_mirrors == 0)
3396 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3397
3398 for (i = 0; i < max_mirrors; i++) {
3399 bytenr = btrfs_sb_offset(i);
3400 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3401 device->commit_total_bytes)
3402 break;
3403
3404 if (wait) {
3405 bh = __find_get_block(device->bdev, bytenr / 4096,
3406 BTRFS_SUPER_INFO_SIZE);
3407 if (!bh) {
3408 errors++;
3409 continue;
3410 }
3411 wait_on_buffer(bh);
3412 if (!buffer_uptodate(bh))
3413 errors++;
3414
3415 /* drop our reference */
3416 brelse(bh);
3417
3418 /* drop the reference from the wait == 0 run */
3419 brelse(bh);
3420 continue;
3421 } else {
3422 btrfs_set_super_bytenr(sb, bytenr);
3423
3424 crc = ~(u32)0;
3425 crc = btrfs_csum_data((char *)sb +
3426 BTRFS_CSUM_SIZE, crc,
3427 BTRFS_SUPER_INFO_SIZE -
3428 BTRFS_CSUM_SIZE);
3429 btrfs_csum_final(crc, sb->csum);
3430
3431 /*
3432 * one reference for us, and we leave it for the
3433 * caller
3434 */
3435 bh = __getblk(device->bdev, bytenr / 4096,
3436 BTRFS_SUPER_INFO_SIZE);
3437 if (!bh) {
3438 btrfs_err(device->dev_root->fs_info,
3439 "couldn't get super buffer head for bytenr %llu",
3440 bytenr);
3441 errors++;
3442 continue;
3443 }
3444
3445 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3446
3447 /* one reference for submit_bh */
3448 get_bh(bh);
3449
3450 set_buffer_uptodate(bh);
3451 lock_buffer(bh);
3452 bh->b_end_io = btrfs_end_buffer_write_sync;
3453 bh->b_private = device;
3454 }
3455
3456 /*
3457 * we fua the first super. The others we allow
3458 * to go down lazy.
3459 */
3460 if (i == 0)
3461 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3462 else
3463 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3464 if (ret)
3465 errors++;
3466 }
3467 return errors < i ? 0 : -1;
3468 }
3469
3470 /*
3471 * endio for the write_dev_flush, this will wake anyone waiting
3472 * for the barrier when it is done
3473 */
3474 static void btrfs_end_empty_barrier(struct bio *bio)
3475 {
3476 if (bio->bi_private)
3477 complete(bio->bi_private);
3478 bio_put(bio);
3479 }
3480
3481 /*
3482 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3483 * sent down. With wait == 1, it waits for the previous flush.
3484 *
3485 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3486 * capable
3487 */
3488 static int write_dev_flush(struct btrfs_device *device, int wait)
3489 {
3490 struct bio *bio;
3491 int ret = 0;
3492
3493 if (device->nobarriers)
3494 return 0;
3495
3496 if (wait) {
3497 bio = device->flush_bio;
3498 if (!bio)
3499 return 0;
3500
3501 wait_for_completion(&device->flush_wait);
3502
3503 if (bio->bi_error) {
3504 ret = bio->bi_error;
3505 btrfs_dev_stat_inc_and_print(device,
3506 BTRFS_DEV_STAT_FLUSH_ERRS);
3507 }
3508
3509 /* drop the reference from the wait == 0 run */
3510 bio_put(bio);
3511 device->flush_bio = NULL;
3512
3513 return ret;
3514 }
3515
3516 /*
3517 * one reference for us, and we leave it for the
3518 * caller
3519 */
3520 device->flush_bio = NULL;
3521 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3522 if (!bio)
3523 return -ENOMEM;
3524
3525 bio->bi_end_io = btrfs_end_empty_barrier;
3526 bio->bi_bdev = device->bdev;
3527 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3528 init_completion(&device->flush_wait);
3529 bio->bi_private = &device->flush_wait;
3530 device->flush_bio = bio;
3531
3532 bio_get(bio);
3533 btrfsic_submit_bio(bio);
3534
3535 return 0;
3536 }
3537
3538 /*
3539 * send an empty flush down to each device in parallel,
3540 * then wait for them
3541 */
3542 static int barrier_all_devices(struct btrfs_fs_info *info)
3543 {
3544 struct list_head *head;
3545 struct btrfs_device *dev;
3546 int errors_send = 0;
3547 int errors_wait = 0;
3548 int ret;
3549
3550 /* send down all the barriers */
3551 head = &info->fs_devices->devices;
3552 list_for_each_entry_rcu(dev, head, dev_list) {
3553 if (dev->missing)
3554 continue;
3555 if (!dev->bdev) {
3556 errors_send++;
3557 continue;
3558 }
3559 if (!dev->in_fs_metadata || !dev->writeable)
3560 continue;
3561
3562 ret = write_dev_flush(dev, 0);
3563 if (ret)
3564 errors_send++;
3565 }
3566
3567 /* wait for all the barriers */
3568 list_for_each_entry_rcu(dev, head, dev_list) {
3569 if (dev->missing)
3570 continue;
3571 if (!dev->bdev) {
3572 errors_wait++;
3573 continue;
3574 }
3575 if (!dev->in_fs_metadata || !dev->writeable)
3576 continue;
3577
3578 ret = write_dev_flush(dev, 1);
3579 if (ret)
3580 errors_wait++;
3581 }
3582 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3583 errors_wait > info->num_tolerated_disk_barrier_failures)
3584 return -EIO;
3585 return 0;
3586 }
3587
3588 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3589 {
3590 int raid_type;
3591 int min_tolerated = INT_MAX;
3592
3593 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3594 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3595 min_tolerated = min(min_tolerated,
3596 btrfs_raid_array[BTRFS_RAID_SINGLE].
3597 tolerated_failures);
3598
3599 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3600 if (raid_type == BTRFS_RAID_SINGLE)
3601 continue;
3602 if (!(flags & btrfs_raid_group[raid_type]))
3603 continue;
3604 min_tolerated = min(min_tolerated,
3605 btrfs_raid_array[raid_type].
3606 tolerated_failures);
3607 }
3608
3609 if (min_tolerated == INT_MAX) {
3610 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3611 min_tolerated = 0;
3612 }
3613
3614 return min_tolerated;
3615 }
3616
3617 int btrfs_calc_num_tolerated_disk_barrier_failures(
3618 struct btrfs_fs_info *fs_info)
3619 {
3620 struct btrfs_ioctl_space_info space;
3621 struct btrfs_space_info *sinfo;
3622 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3623 BTRFS_BLOCK_GROUP_SYSTEM,
3624 BTRFS_BLOCK_GROUP_METADATA,
3625 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3626 int i;
3627 int c;
3628 int num_tolerated_disk_barrier_failures =
3629 (int)fs_info->fs_devices->num_devices;
3630
3631 for (i = 0; i < ARRAY_SIZE(types); i++) {
3632 struct btrfs_space_info *tmp;
3633
3634 sinfo = NULL;
3635 rcu_read_lock();
3636 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3637 if (tmp->flags == types[i]) {
3638 sinfo = tmp;
3639 break;
3640 }
3641 }
3642 rcu_read_unlock();
3643
3644 if (!sinfo)
3645 continue;
3646
3647 down_read(&sinfo->groups_sem);
3648 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3649 u64 flags;
3650
3651 if (list_empty(&sinfo->block_groups[c]))
3652 continue;
3653
3654 btrfs_get_block_group_info(&sinfo->block_groups[c],
3655 &space);
3656 if (space.total_bytes == 0 || space.used_bytes == 0)
3657 continue;
3658 flags = space.flags;
3659
3660 num_tolerated_disk_barrier_failures = min(
3661 num_tolerated_disk_barrier_failures,
3662 btrfs_get_num_tolerated_disk_barrier_failures(
3663 flags));
3664 }
3665 up_read(&sinfo->groups_sem);
3666 }
3667
3668 return num_tolerated_disk_barrier_failures;
3669 }
3670
3671 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3672 {
3673 struct list_head *head;
3674 struct btrfs_device *dev;
3675 struct btrfs_super_block *sb;
3676 struct btrfs_dev_item *dev_item;
3677 int ret;
3678 int do_barriers;
3679 int max_errors;
3680 int total_errors = 0;
3681 u64 flags;
3682
3683 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3684 backup_super_roots(root->fs_info);
3685
3686 sb = root->fs_info->super_for_commit;
3687 dev_item = &sb->dev_item;
3688
3689 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3690 head = &root->fs_info->fs_devices->devices;
3691 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3692
3693 if (do_barriers) {
3694 ret = barrier_all_devices(root->fs_info);
3695 if (ret) {
3696 mutex_unlock(
3697 &root->fs_info->fs_devices->device_list_mutex);
3698 btrfs_handle_fs_error(root->fs_info, ret,
3699 "errors while submitting device barriers.");
3700 return ret;
3701 }
3702 }
3703
3704 list_for_each_entry_rcu(dev, head, dev_list) {
3705 if (!dev->bdev) {
3706 total_errors++;
3707 continue;
3708 }
3709 if (!dev->in_fs_metadata || !dev->writeable)
3710 continue;
3711
3712 btrfs_set_stack_device_generation(dev_item, 0);
3713 btrfs_set_stack_device_type(dev_item, dev->type);
3714 btrfs_set_stack_device_id(dev_item, dev->devid);
3715 btrfs_set_stack_device_total_bytes(dev_item,
3716 dev->commit_total_bytes);
3717 btrfs_set_stack_device_bytes_used(dev_item,
3718 dev->commit_bytes_used);
3719 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3720 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3721 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3722 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3723 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3724
3725 flags = btrfs_super_flags(sb);
3726 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3727
3728 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3729 if (ret)
3730 total_errors++;
3731 }
3732 if (total_errors > max_errors) {
3733 btrfs_err(root->fs_info, "%d errors while writing supers",
3734 total_errors);
3735 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3736
3737 /* FUA is masked off if unsupported and can't be the reason */
3738 btrfs_handle_fs_error(root->fs_info, -EIO,
3739 "%d errors while writing supers", total_errors);
3740 return -EIO;
3741 }
3742
3743 total_errors = 0;
3744 list_for_each_entry_rcu(dev, head, dev_list) {
3745 if (!dev->bdev)
3746 continue;
3747 if (!dev->in_fs_metadata || !dev->writeable)
3748 continue;
3749
3750 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3751 if (ret)
3752 total_errors++;
3753 }
3754 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3755 if (total_errors > max_errors) {
3756 btrfs_handle_fs_error(root->fs_info, -EIO,
3757 "%d errors while writing supers", total_errors);
3758 return -EIO;
3759 }
3760 return 0;
3761 }
3762
3763 int write_ctree_super(struct btrfs_trans_handle *trans,
3764 struct btrfs_root *root, int max_mirrors)
3765 {
3766 return write_all_supers(root, max_mirrors);
3767 }
3768
3769 /* Drop a fs root from the radix tree and free it. */
3770 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3771 struct btrfs_root *root)
3772 {
3773 spin_lock(&fs_info->fs_roots_radix_lock);
3774 radix_tree_delete(&fs_info->fs_roots_radix,
3775 (unsigned long)root->root_key.objectid);
3776 spin_unlock(&fs_info->fs_roots_radix_lock);
3777
3778 if (btrfs_root_refs(&root->root_item) == 0)
3779 synchronize_srcu(&fs_info->subvol_srcu);
3780
3781 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3782 btrfs_free_log(NULL, root);
3783 if (root->reloc_root) {
3784 free_extent_buffer(root->reloc_root->node);
3785 free_extent_buffer(root->reloc_root->commit_root);
3786 btrfs_put_fs_root(root->reloc_root);
3787 root->reloc_root = NULL;
3788 }
3789 }
3790
3791 if (root->free_ino_pinned)
3792 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3793 if (root->free_ino_ctl)
3794 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3795 free_fs_root(root);
3796 }
3797
3798 static void free_fs_root(struct btrfs_root *root)
3799 {
3800 iput(root->ino_cache_inode);
3801 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3802 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3803 root->orphan_block_rsv = NULL;
3804 if (root->anon_dev)
3805 free_anon_bdev(root->anon_dev);
3806 if (root->subv_writers)
3807 btrfs_free_subvolume_writers(root->subv_writers);
3808 free_extent_buffer(root->node);
3809 free_extent_buffer(root->commit_root);
3810 kfree(root->free_ino_ctl);
3811 kfree(root->free_ino_pinned);
3812 kfree(root->name);
3813 btrfs_put_fs_root(root);
3814 }
3815
3816 void btrfs_free_fs_root(struct btrfs_root *root)
3817 {
3818 free_fs_root(root);
3819 }
3820
3821 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3822 {
3823 u64 root_objectid = 0;
3824 struct btrfs_root *gang[8];
3825 int i = 0;
3826 int err = 0;
3827 unsigned int ret = 0;
3828 int index;
3829
3830 while (1) {
3831 index = srcu_read_lock(&fs_info->subvol_srcu);
3832 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3833 (void **)gang, root_objectid,
3834 ARRAY_SIZE(gang));
3835 if (!ret) {
3836 srcu_read_unlock(&fs_info->subvol_srcu, index);
3837 break;
3838 }
3839 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3840
3841 for (i = 0; i < ret; i++) {
3842 /* Avoid to grab roots in dead_roots */
3843 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3844 gang[i] = NULL;
3845 continue;
3846 }
3847 /* grab all the search result for later use */
3848 gang[i] = btrfs_grab_fs_root(gang[i]);
3849 }
3850 srcu_read_unlock(&fs_info->subvol_srcu, index);
3851
3852 for (i = 0; i < ret; i++) {
3853 if (!gang[i])
3854 continue;
3855 root_objectid = gang[i]->root_key.objectid;
3856 err = btrfs_orphan_cleanup(gang[i]);
3857 if (err)
3858 break;
3859 btrfs_put_fs_root(gang[i]);
3860 }
3861 root_objectid++;
3862 }
3863
3864 /* release the uncleaned roots due to error */
3865 for (; i < ret; i++) {
3866 if (gang[i])
3867 btrfs_put_fs_root(gang[i]);
3868 }
3869 return err;
3870 }
3871
3872 int btrfs_commit_super(struct btrfs_root *root)
3873 {
3874 struct btrfs_trans_handle *trans;
3875
3876 mutex_lock(&root->fs_info->cleaner_mutex);
3877 btrfs_run_delayed_iputs(root);
3878 mutex_unlock(&root->fs_info->cleaner_mutex);
3879 wake_up_process(root->fs_info->cleaner_kthread);
3880
3881 /* wait until ongoing cleanup work done */
3882 down_write(&root->fs_info->cleanup_work_sem);
3883 up_write(&root->fs_info->cleanup_work_sem);
3884
3885 trans = btrfs_join_transaction(root);
3886 if (IS_ERR(trans))
3887 return PTR_ERR(trans);
3888 return btrfs_commit_transaction(trans, root);
3889 }
3890
3891 void close_ctree(struct btrfs_root *root)
3892 {
3893 struct btrfs_fs_info *fs_info = root->fs_info;
3894 int ret;
3895
3896 fs_info->closing = 1;
3897 smp_mb();
3898
3899 /* wait for the qgroup rescan worker to stop */
3900 btrfs_qgroup_wait_for_completion(fs_info, false);
3901
3902 /* wait for the uuid_scan task to finish */
3903 down(&fs_info->uuid_tree_rescan_sem);
3904 /* avoid complains from lockdep et al., set sem back to initial state */
3905 up(&fs_info->uuid_tree_rescan_sem);
3906
3907 /* pause restriper - we want to resume on mount */
3908 btrfs_pause_balance(fs_info);
3909
3910 btrfs_dev_replace_suspend_for_unmount(fs_info);
3911
3912 btrfs_scrub_cancel(fs_info);
3913
3914 /* wait for any defraggers to finish */
3915 wait_event(fs_info->transaction_wait,
3916 (atomic_read(&fs_info->defrag_running) == 0));
3917
3918 /* clear out the rbtree of defraggable inodes */
3919 btrfs_cleanup_defrag_inodes(fs_info);
3920
3921 cancel_work_sync(&fs_info->async_reclaim_work);
3922
3923 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3924 /*
3925 * If the cleaner thread is stopped and there are
3926 * block groups queued for removal, the deletion will be
3927 * skipped when we quit the cleaner thread.
3928 */
3929 btrfs_delete_unused_bgs(root->fs_info);
3930
3931 ret = btrfs_commit_super(root);
3932 if (ret)
3933 btrfs_err(fs_info, "commit super ret %d", ret);
3934 }
3935
3936 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3937 btrfs_error_commit_super(root);
3938
3939 kthread_stop(fs_info->transaction_kthread);
3940 kthread_stop(fs_info->cleaner_kthread);
3941
3942 fs_info->closing = 2;
3943 smp_mb();
3944
3945 btrfs_free_qgroup_config(fs_info);
3946
3947 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3948 btrfs_info(fs_info, "at unmount delalloc count %lld",
3949 percpu_counter_sum(&fs_info->delalloc_bytes));
3950 }
3951
3952 btrfs_sysfs_remove_mounted(fs_info);
3953 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3954
3955 btrfs_free_fs_roots(fs_info);
3956
3957 btrfs_put_block_group_cache(fs_info);
3958
3959 btrfs_free_block_groups(fs_info);
3960
3961 /*
3962 * we must make sure there is not any read request to
3963 * submit after we stopping all workers.
3964 */
3965 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3966 btrfs_stop_all_workers(fs_info);
3967
3968 fs_info->open = 0;
3969 free_root_pointers(fs_info, 1);
3970
3971 iput(fs_info->btree_inode);
3972
3973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3974 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3975 btrfsic_unmount(root, fs_info->fs_devices);
3976 #endif
3977
3978 btrfs_close_devices(fs_info->fs_devices);
3979 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3980
3981 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3982 percpu_counter_destroy(&fs_info->delalloc_bytes);
3983 percpu_counter_destroy(&fs_info->bio_counter);
3984 bdi_destroy(&fs_info->bdi);
3985 cleanup_srcu_struct(&fs_info->subvol_srcu);
3986
3987 btrfs_free_stripe_hash_table(fs_info);
3988
3989 __btrfs_free_block_rsv(root->orphan_block_rsv);
3990 root->orphan_block_rsv = NULL;
3991
3992 lock_chunks(root);
3993 while (!list_empty(&fs_info->pinned_chunks)) {
3994 struct extent_map *em;
3995
3996 em = list_first_entry(&fs_info->pinned_chunks,
3997 struct extent_map, list);
3998 list_del_init(&em->list);
3999 free_extent_map(em);
4000 }
4001 unlock_chunks(root);
4002 }
4003
4004 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4005 int atomic)
4006 {
4007 int ret;
4008 struct inode *btree_inode = buf->pages[0]->mapping->host;
4009
4010 ret = extent_buffer_uptodate(buf);
4011 if (!ret)
4012 return ret;
4013
4014 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4015 parent_transid, atomic);
4016 if (ret == -EAGAIN)
4017 return ret;
4018 return !ret;
4019 }
4020
4021 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4022 {
4023 struct btrfs_root *root;
4024 u64 transid = btrfs_header_generation(buf);
4025 int was_dirty;
4026
4027 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4028 /*
4029 * This is a fast path so only do this check if we have sanity tests
4030 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4031 * outside of the sanity tests.
4032 */
4033 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4034 return;
4035 #endif
4036 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4037 btrfs_assert_tree_locked(buf);
4038 if (transid != root->fs_info->generation)
4039 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
4040 "found %llu running %llu\n",
4041 buf->start, transid, root->fs_info->generation);
4042 was_dirty = set_extent_buffer_dirty(buf);
4043 if (!was_dirty)
4044 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4045 buf->len,
4046 root->fs_info->dirty_metadata_batch);
4047 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4048 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4049 btrfs_print_leaf(root, buf);
4050 ASSERT(0);
4051 }
4052 #endif
4053 }
4054
4055 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4056 int flush_delayed)
4057 {
4058 /*
4059 * looks as though older kernels can get into trouble with
4060 * this code, they end up stuck in balance_dirty_pages forever
4061 */
4062 int ret;
4063
4064 if (current->flags & PF_MEMALLOC)
4065 return;
4066
4067 if (flush_delayed)
4068 btrfs_balance_delayed_items(root);
4069
4070 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4071 BTRFS_DIRTY_METADATA_THRESH);
4072 if (ret > 0) {
4073 balance_dirty_pages_ratelimited(
4074 root->fs_info->btree_inode->i_mapping);
4075 }
4076 }
4077
4078 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4079 {
4080 __btrfs_btree_balance_dirty(root, 1);
4081 }
4082
4083 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4084 {
4085 __btrfs_btree_balance_dirty(root, 0);
4086 }
4087
4088 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4089 {
4090 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4091 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4092 }
4093
4094 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4095 int read_only)
4096 {
4097 struct btrfs_super_block *sb = fs_info->super_copy;
4098 u64 nodesize = btrfs_super_nodesize(sb);
4099 u64 sectorsize = btrfs_super_sectorsize(sb);
4100 int ret = 0;
4101
4102 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4103 printk(KERN_ERR "BTRFS: no valid FS found\n");
4104 ret = -EINVAL;
4105 }
4106 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4107 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4108 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4109 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4110 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4111 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4112 ret = -EINVAL;
4113 }
4114 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4115 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4116 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4117 ret = -EINVAL;
4118 }
4119 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4120 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4121 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4122 ret = -EINVAL;
4123 }
4124
4125 /*
4126 * Check sectorsize and nodesize first, other check will need it.
4127 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4128 */
4129 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4130 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4131 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4132 ret = -EINVAL;
4133 }
4134 /* Only PAGE SIZE is supported yet */
4135 if (sectorsize != PAGE_SIZE) {
4136 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4137 sectorsize, PAGE_SIZE);
4138 ret = -EINVAL;
4139 }
4140 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4141 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4142 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4143 ret = -EINVAL;
4144 }
4145 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4146 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4147 le32_to_cpu(sb->__unused_leafsize),
4148 nodesize);
4149 ret = -EINVAL;
4150 }
4151
4152 /* Root alignment check */
4153 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4154 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4155 btrfs_super_root(sb));
4156 ret = -EINVAL;
4157 }
4158 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4159 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4160 btrfs_super_chunk_root(sb));
4161 ret = -EINVAL;
4162 }
4163 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4164 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4165 btrfs_super_log_root(sb));
4166 ret = -EINVAL;
4167 }
4168
4169 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4170 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4171 fs_info->fsid, sb->dev_item.fsid);
4172 ret = -EINVAL;
4173 }
4174
4175 /*
4176 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4177 * done later
4178 */
4179 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4180 btrfs_err(fs_info, "bytes_used is too small %llu",
4181 btrfs_super_bytes_used(sb));
4182 ret = -EINVAL;
4183 }
4184 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4185 btrfs_err(fs_info, "invalid stripesize %u",
4186 btrfs_super_stripesize(sb));
4187 ret = -EINVAL;
4188 }
4189 if (btrfs_super_num_devices(sb) > (1UL << 31))
4190 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4191 btrfs_super_num_devices(sb));
4192 if (btrfs_super_num_devices(sb) == 0) {
4193 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4194 ret = -EINVAL;
4195 }
4196
4197 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4198 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4199 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4200 ret = -EINVAL;
4201 }
4202
4203 /*
4204 * Obvious sys_chunk_array corruptions, it must hold at least one key
4205 * and one chunk
4206 */
4207 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4208 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4209 btrfs_super_sys_array_size(sb),
4210 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4211 ret = -EINVAL;
4212 }
4213 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4214 + sizeof(struct btrfs_chunk)) {
4215 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4216 btrfs_super_sys_array_size(sb),
4217 sizeof(struct btrfs_disk_key)
4218 + sizeof(struct btrfs_chunk));
4219 ret = -EINVAL;
4220 }
4221
4222 /*
4223 * The generation is a global counter, we'll trust it more than the others
4224 * but it's still possible that it's the one that's wrong.
4225 */
4226 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4227 printk(KERN_WARNING
4228 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4229 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4230 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4231 && btrfs_super_cache_generation(sb) != (u64)-1)
4232 printk(KERN_WARNING
4233 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4234 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4235
4236 return ret;
4237 }
4238
4239 static void btrfs_error_commit_super(struct btrfs_root *root)
4240 {
4241 mutex_lock(&root->fs_info->cleaner_mutex);
4242 btrfs_run_delayed_iputs(root);
4243 mutex_unlock(&root->fs_info->cleaner_mutex);
4244
4245 down_write(&root->fs_info->cleanup_work_sem);
4246 up_write(&root->fs_info->cleanup_work_sem);
4247
4248 /* cleanup FS via transaction */
4249 btrfs_cleanup_transaction(root);
4250 }
4251
4252 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4253 {
4254 struct btrfs_ordered_extent *ordered;
4255
4256 spin_lock(&root->ordered_extent_lock);
4257 /*
4258 * This will just short circuit the ordered completion stuff which will
4259 * make sure the ordered extent gets properly cleaned up.
4260 */
4261 list_for_each_entry(ordered, &root->ordered_extents,
4262 root_extent_list)
4263 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4264 spin_unlock(&root->ordered_extent_lock);
4265 }
4266
4267 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4268 {
4269 struct btrfs_root *root;
4270 struct list_head splice;
4271
4272 INIT_LIST_HEAD(&splice);
4273
4274 spin_lock(&fs_info->ordered_root_lock);
4275 list_splice_init(&fs_info->ordered_roots, &splice);
4276 while (!list_empty(&splice)) {
4277 root = list_first_entry(&splice, struct btrfs_root,
4278 ordered_root);
4279 list_move_tail(&root->ordered_root,
4280 &fs_info->ordered_roots);
4281
4282 spin_unlock(&fs_info->ordered_root_lock);
4283 btrfs_destroy_ordered_extents(root);
4284
4285 cond_resched();
4286 spin_lock(&fs_info->ordered_root_lock);
4287 }
4288 spin_unlock(&fs_info->ordered_root_lock);
4289 }
4290
4291 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4292 struct btrfs_root *root)
4293 {
4294 struct rb_node *node;
4295 struct btrfs_delayed_ref_root *delayed_refs;
4296 struct btrfs_delayed_ref_node *ref;
4297 int ret = 0;
4298
4299 delayed_refs = &trans->delayed_refs;
4300
4301 spin_lock(&delayed_refs->lock);
4302 if (atomic_read(&delayed_refs->num_entries) == 0) {
4303 spin_unlock(&delayed_refs->lock);
4304 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4305 return ret;
4306 }
4307
4308 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4309 struct btrfs_delayed_ref_head *head;
4310 struct btrfs_delayed_ref_node *tmp;
4311 bool pin_bytes = false;
4312
4313 head = rb_entry(node, struct btrfs_delayed_ref_head,
4314 href_node);
4315 if (!mutex_trylock(&head->mutex)) {
4316 atomic_inc(&head->node.refs);
4317 spin_unlock(&delayed_refs->lock);
4318
4319 mutex_lock(&head->mutex);
4320 mutex_unlock(&head->mutex);
4321 btrfs_put_delayed_ref(&head->node);
4322 spin_lock(&delayed_refs->lock);
4323 continue;
4324 }
4325 spin_lock(&head->lock);
4326 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4327 list) {
4328 ref->in_tree = 0;
4329 list_del(&ref->list);
4330 atomic_dec(&delayed_refs->num_entries);
4331 btrfs_put_delayed_ref(ref);
4332 }
4333 if (head->must_insert_reserved)
4334 pin_bytes = true;
4335 btrfs_free_delayed_extent_op(head->extent_op);
4336 delayed_refs->num_heads--;
4337 if (head->processing == 0)
4338 delayed_refs->num_heads_ready--;
4339 atomic_dec(&delayed_refs->num_entries);
4340 head->node.in_tree = 0;
4341 rb_erase(&head->href_node, &delayed_refs->href_root);
4342 spin_unlock(&head->lock);
4343 spin_unlock(&delayed_refs->lock);
4344 mutex_unlock(&head->mutex);
4345
4346 if (pin_bytes)
4347 btrfs_pin_extent(root, head->node.bytenr,
4348 head->node.num_bytes, 1);
4349 btrfs_put_delayed_ref(&head->node);
4350 cond_resched();
4351 spin_lock(&delayed_refs->lock);
4352 }
4353
4354 spin_unlock(&delayed_refs->lock);
4355
4356 return ret;
4357 }
4358
4359 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4360 {
4361 struct btrfs_inode *btrfs_inode;
4362 struct list_head splice;
4363
4364 INIT_LIST_HEAD(&splice);
4365
4366 spin_lock(&root->delalloc_lock);
4367 list_splice_init(&root->delalloc_inodes, &splice);
4368
4369 while (!list_empty(&splice)) {
4370 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4371 delalloc_inodes);
4372
4373 list_del_init(&btrfs_inode->delalloc_inodes);
4374 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4375 &btrfs_inode->runtime_flags);
4376 spin_unlock(&root->delalloc_lock);
4377
4378 btrfs_invalidate_inodes(btrfs_inode->root);
4379
4380 spin_lock(&root->delalloc_lock);
4381 }
4382
4383 spin_unlock(&root->delalloc_lock);
4384 }
4385
4386 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4387 {
4388 struct btrfs_root *root;
4389 struct list_head splice;
4390
4391 INIT_LIST_HEAD(&splice);
4392
4393 spin_lock(&fs_info->delalloc_root_lock);
4394 list_splice_init(&fs_info->delalloc_roots, &splice);
4395 while (!list_empty(&splice)) {
4396 root = list_first_entry(&splice, struct btrfs_root,
4397 delalloc_root);
4398 list_del_init(&root->delalloc_root);
4399 root = btrfs_grab_fs_root(root);
4400 BUG_ON(!root);
4401 spin_unlock(&fs_info->delalloc_root_lock);
4402
4403 btrfs_destroy_delalloc_inodes(root);
4404 btrfs_put_fs_root(root);
4405
4406 spin_lock(&fs_info->delalloc_root_lock);
4407 }
4408 spin_unlock(&fs_info->delalloc_root_lock);
4409 }
4410
4411 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4412 struct extent_io_tree *dirty_pages,
4413 int mark)
4414 {
4415 int ret;
4416 struct extent_buffer *eb;
4417 u64 start = 0;
4418 u64 end;
4419
4420 while (1) {
4421 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4422 mark, NULL);
4423 if (ret)
4424 break;
4425
4426 clear_extent_bits(dirty_pages, start, end, mark);
4427 while (start <= end) {
4428 eb = btrfs_find_tree_block(root->fs_info, start);
4429 start += root->nodesize;
4430 if (!eb)
4431 continue;
4432 wait_on_extent_buffer_writeback(eb);
4433
4434 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4435 &eb->bflags))
4436 clear_extent_buffer_dirty(eb);
4437 free_extent_buffer_stale(eb);
4438 }
4439 }
4440
4441 return ret;
4442 }
4443
4444 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4445 struct extent_io_tree *pinned_extents)
4446 {
4447 struct extent_io_tree *unpin;
4448 u64 start;
4449 u64 end;
4450 int ret;
4451 bool loop = true;
4452
4453 unpin = pinned_extents;
4454 again:
4455 while (1) {
4456 ret = find_first_extent_bit(unpin, 0, &start, &end,
4457 EXTENT_DIRTY, NULL);
4458 if (ret)
4459 break;
4460
4461 clear_extent_dirty(unpin, start, end);
4462 btrfs_error_unpin_extent_range(root, start, end);
4463 cond_resched();
4464 }
4465
4466 if (loop) {
4467 if (unpin == &root->fs_info->freed_extents[0])
4468 unpin = &root->fs_info->freed_extents[1];
4469 else
4470 unpin = &root->fs_info->freed_extents[0];
4471 loop = false;
4472 goto again;
4473 }
4474
4475 return 0;
4476 }
4477
4478 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4479 struct btrfs_root *root)
4480 {
4481 btrfs_destroy_delayed_refs(cur_trans, root);
4482
4483 cur_trans->state = TRANS_STATE_COMMIT_START;
4484 wake_up(&root->fs_info->transaction_blocked_wait);
4485
4486 cur_trans->state = TRANS_STATE_UNBLOCKED;
4487 wake_up(&root->fs_info->transaction_wait);
4488
4489 btrfs_destroy_delayed_inodes(root);
4490 btrfs_assert_delayed_root_empty(root);
4491
4492 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4493 EXTENT_DIRTY);
4494 btrfs_destroy_pinned_extent(root,
4495 root->fs_info->pinned_extents);
4496
4497 cur_trans->state =TRANS_STATE_COMPLETED;
4498 wake_up(&cur_trans->commit_wait);
4499
4500 /*
4501 memset(cur_trans, 0, sizeof(*cur_trans));
4502 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4503 */
4504 }
4505
4506 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4507 {
4508 struct btrfs_transaction *t;
4509
4510 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4511
4512 spin_lock(&root->fs_info->trans_lock);
4513 while (!list_empty(&root->fs_info->trans_list)) {
4514 t = list_first_entry(&root->fs_info->trans_list,
4515 struct btrfs_transaction, list);
4516 if (t->state >= TRANS_STATE_COMMIT_START) {
4517 atomic_inc(&t->use_count);
4518 spin_unlock(&root->fs_info->trans_lock);
4519 btrfs_wait_for_commit(root, t->transid);
4520 btrfs_put_transaction(t);
4521 spin_lock(&root->fs_info->trans_lock);
4522 continue;
4523 }
4524 if (t == root->fs_info->running_transaction) {
4525 t->state = TRANS_STATE_COMMIT_DOING;
4526 spin_unlock(&root->fs_info->trans_lock);
4527 /*
4528 * We wait for 0 num_writers since we don't hold a trans
4529 * handle open currently for this transaction.
4530 */
4531 wait_event(t->writer_wait,
4532 atomic_read(&t->num_writers) == 0);
4533 } else {
4534 spin_unlock(&root->fs_info->trans_lock);
4535 }
4536 btrfs_cleanup_one_transaction(t, root);
4537
4538 spin_lock(&root->fs_info->trans_lock);
4539 if (t == root->fs_info->running_transaction)
4540 root->fs_info->running_transaction = NULL;
4541 list_del_init(&t->list);
4542 spin_unlock(&root->fs_info->trans_lock);
4543
4544 btrfs_put_transaction(t);
4545 trace_btrfs_transaction_commit(root);
4546 spin_lock(&root->fs_info->trans_lock);
4547 }
4548 spin_unlock(&root->fs_info->trans_lock);
4549 btrfs_destroy_all_ordered_extents(root->fs_info);
4550 btrfs_destroy_delayed_inodes(root);
4551 btrfs_assert_delayed_root_empty(root);
4552 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4553 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4554 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4555
4556 return 0;
4557 }
4558
4559 static const struct extent_io_ops btree_extent_io_ops = {
4560 .readpage_end_io_hook = btree_readpage_end_io_hook,
4561 .readpage_io_failed_hook = btree_io_failed_hook,
4562 .submit_bio_hook = btree_submit_bio_hook,
4563 /* note we're sharing with inode.c for the merge bio hook */
4564 .merge_bio_hook = btrfs_merge_bio_hook,
4565 };
This page took 0.180744 seconds and 5 git commands to generate.