Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X "
330 "level %d",
331 fs_info->sb->s_id, buf->start,
332 val, found, btrfs_header_level(buf));
333 if (result != (char *)&inline_result)
334 kfree(result);
335 return -EUCLEAN;
336 }
337 } else {
338 write_extent_buffer(buf, result, 0, csum_size);
339 }
340 if (result != (char *)&inline_result)
341 kfree(result);
342 return 0;
343 }
344
345 /*
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
350 */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 struct extent_buffer *eb, u64 parent_transid,
353 int atomic)
354 {
355 struct extent_state *cached_state = NULL;
356 int ret;
357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358
359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 return 0;
361
362 if (atomic)
363 return -EAGAIN;
364
365 if (need_lock) {
366 btrfs_tree_read_lock(eb);
367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 }
369
370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 &cached_state);
372 if (extent_buffer_uptodate(eb) &&
373 btrfs_header_generation(eb) == parent_transid) {
374 ret = 0;
375 goto out;
376 }
377 btrfs_err_rl(eb->fs_info,
378 "parent transid verify failed on %llu wanted %llu found %llu",
379 eb->start,
380 parent_transid, btrfs_header_generation(eb));
381 ret = 1;
382
383 /*
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
386 * block that has been freed and re-allocated. So don't clear uptodate
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
390 */
391 if (!extent_buffer_under_io(eb))
392 clear_extent_buffer_uptodate(eb);
393 out:
394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 &cached_state, GFP_NOFS);
396 if (need_lock)
397 btrfs_tree_read_unlock_blocking(eb);
398 return ret;
399 }
400
401 /*
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
404 */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 break;
474
475 num_copies = btrfs_num_copies(root->fs_info,
476 eb->start, eb->len);
477 if (num_copies == 1)
478 break;
479
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
485 mirror_num++;
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
489 if (mirror_num > num_copies)
490 break;
491 }
492
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
497 }
498
499 /*
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
502 */
503
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506 u64 start = page_offset(page);
507 u64 found_start;
508 struct extent_buffer *eb;
509
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
513
514 found_start = btrfs_header_bytenr(eb);
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527 return csum_tree_block(fs_info, eb, 0);
528 }
529
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *eb)
532 {
533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546 }
547
548 #define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
550 "root=%llu, slot=%d", reason, \
551 btrfs_header_bytenr(eb), root->objectid, slot)
552
553 static noinline int check_leaf(struct btrfs_root *root,
554 struct extent_buffer *leaf)
555 {
556 struct btrfs_key key;
557 struct btrfs_key leaf_key;
558 u32 nritems = btrfs_header_nritems(leaf);
559 int slot;
560
561 if (nritems == 0) {
562 struct btrfs_root *check_root;
563
564 key.objectid = btrfs_header_owner(leaf);
565 key.type = BTRFS_ROOT_ITEM_KEY;
566 key.offset = (u64)-1;
567
568 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
569 /*
570 * The only reason we also check NULL here is that during
571 * open_ctree() some roots has not yet been set up.
572 */
573 if (!IS_ERR_OR_NULL(check_root)) {
574 /* if leaf is the root, then it's fine */
575 if (leaf->start !=
576 btrfs_root_bytenr(&check_root->root_item)) {
577 CORRUPT("non-root leaf's nritems is 0",
578 leaf, root, 0);
579 return -EIO;
580 }
581 }
582 return 0;
583 }
584
585 /* Check the 0 item */
586 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
587 BTRFS_LEAF_DATA_SIZE(root)) {
588 CORRUPT("invalid item offset size pair", leaf, root, 0);
589 return -EIO;
590 }
591
592 /*
593 * Check to make sure each items keys are in the correct order and their
594 * offsets make sense. We only have to loop through nritems-1 because
595 * we check the current slot against the next slot, which verifies the
596 * next slot's offset+size makes sense and that the current's slot
597 * offset is correct.
598 */
599 for (slot = 0; slot < nritems - 1; slot++) {
600 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
601 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
602
603 /* Make sure the keys are in the right order */
604 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
605 CORRUPT("bad key order", leaf, root, slot);
606 return -EIO;
607 }
608
609 /*
610 * Make sure the offset and ends are right, remember that the
611 * item data starts at the end of the leaf and grows towards the
612 * front.
613 */
614 if (btrfs_item_offset_nr(leaf, slot) !=
615 btrfs_item_end_nr(leaf, slot + 1)) {
616 CORRUPT("slot offset bad", leaf, root, slot);
617 return -EIO;
618 }
619
620 /*
621 * Check to make sure that we don't point outside of the leaf,
622 * just in case all the items are consistent to each other, but
623 * all point outside of the leaf.
624 */
625 if (btrfs_item_end_nr(leaf, slot) >
626 BTRFS_LEAF_DATA_SIZE(root)) {
627 CORRUPT("slot end outside of leaf", leaf, root, slot);
628 return -EIO;
629 }
630 }
631
632 return 0;
633 }
634
635 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
636 {
637 unsigned long nr = btrfs_header_nritems(node);
638
639 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
640 btrfs_crit(root->fs_info,
641 "corrupt node: block %llu root %llu nritems %lu",
642 node->start, root->objectid, nr);
643 return -EIO;
644 }
645 return 0;
646 }
647
648 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
649 u64 phy_offset, struct page *page,
650 u64 start, u64 end, int mirror)
651 {
652 u64 found_start;
653 int found_level;
654 struct extent_buffer *eb;
655 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 int ret = 0;
658 int reads_done;
659
660 if (!page->private)
661 goto out;
662
663 eb = (struct extent_buffer *)page->private;
664
665 /* the pending IO might have been the only thing that kept this buffer
666 * in memory. Make sure we have a ref for all this other checks
667 */
668 extent_buffer_get(eb);
669
670 reads_done = atomic_dec_and_test(&eb->io_pages);
671 if (!reads_done)
672 goto err;
673
674 eb->read_mirror = mirror;
675 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
676 ret = -EIO;
677 goto err;
678 }
679
680 found_start = btrfs_header_bytenr(eb);
681 if (found_start != eb->start) {
682 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
683 found_start, eb->start);
684 ret = -EIO;
685 goto err;
686 }
687 if (check_tree_block_fsid(fs_info, eb)) {
688 btrfs_err_rl(fs_info, "bad fsid on block %llu",
689 eb->start);
690 ret = -EIO;
691 goto err;
692 }
693 found_level = btrfs_header_level(eb);
694 if (found_level >= BTRFS_MAX_LEVEL) {
695 btrfs_err(fs_info, "bad tree block level %d",
696 (int)btrfs_header_level(eb));
697 ret = -EIO;
698 goto err;
699 }
700
701 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
702 eb, found_level);
703
704 ret = csum_tree_block(fs_info, eb, 1);
705 if (ret)
706 goto err;
707
708 /*
709 * If this is a leaf block and it is corrupt, set the corrupt bit so
710 * that we don't try and read the other copies of this block, just
711 * return -EIO.
712 */
713 if (found_level == 0 && check_leaf(root, eb)) {
714 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
715 ret = -EIO;
716 }
717
718 if (found_level > 0 && check_node(root, eb))
719 ret = -EIO;
720
721 if (!ret)
722 set_extent_buffer_uptodate(eb);
723 err:
724 if (reads_done &&
725 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
726 btree_readahead_hook(fs_info, eb, eb->start, ret);
727
728 if (ret) {
729 /*
730 * our io error hook is going to dec the io pages
731 * again, we have to make sure it has something
732 * to decrement
733 */
734 atomic_inc(&eb->io_pages);
735 clear_extent_buffer_uptodate(eb);
736 }
737 free_extent_buffer(eb);
738 out:
739 return ret;
740 }
741
742 static int btree_io_failed_hook(struct page *page, int failed_mirror)
743 {
744 struct extent_buffer *eb;
745
746 eb = (struct extent_buffer *)page->private;
747 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
748 eb->read_mirror = failed_mirror;
749 atomic_dec(&eb->io_pages);
750 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
751 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
752 return -EIO; /* we fixed nothing */
753 }
754
755 static void end_workqueue_bio(struct bio *bio)
756 {
757 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
758 struct btrfs_fs_info *fs_info;
759 struct btrfs_workqueue *wq;
760 btrfs_work_func_t func;
761
762 fs_info = end_io_wq->info;
763 end_io_wq->error = bio->bi_error;
764
765 if (bio_op(bio) == REQ_OP_WRITE) {
766 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
767 wq = fs_info->endio_meta_write_workers;
768 func = btrfs_endio_meta_write_helper;
769 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
770 wq = fs_info->endio_freespace_worker;
771 func = btrfs_freespace_write_helper;
772 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
773 wq = fs_info->endio_raid56_workers;
774 func = btrfs_endio_raid56_helper;
775 } else {
776 wq = fs_info->endio_write_workers;
777 func = btrfs_endio_write_helper;
778 }
779 } else {
780 if (unlikely(end_io_wq->metadata ==
781 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
782 wq = fs_info->endio_repair_workers;
783 func = btrfs_endio_repair_helper;
784 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
785 wq = fs_info->endio_raid56_workers;
786 func = btrfs_endio_raid56_helper;
787 } else if (end_io_wq->metadata) {
788 wq = fs_info->endio_meta_workers;
789 func = btrfs_endio_meta_helper;
790 } else {
791 wq = fs_info->endio_workers;
792 func = btrfs_endio_helper;
793 }
794 }
795
796 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
797 btrfs_queue_work(wq, &end_io_wq->work);
798 }
799
800 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
801 enum btrfs_wq_endio_type metadata)
802 {
803 struct btrfs_end_io_wq *end_io_wq;
804
805 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
806 if (!end_io_wq)
807 return -ENOMEM;
808
809 end_io_wq->private = bio->bi_private;
810 end_io_wq->end_io = bio->bi_end_io;
811 end_io_wq->info = info;
812 end_io_wq->error = 0;
813 end_io_wq->bio = bio;
814 end_io_wq->metadata = metadata;
815
816 bio->bi_private = end_io_wq;
817 bio->bi_end_io = end_workqueue_bio;
818 return 0;
819 }
820
821 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
822 {
823 unsigned long limit = min_t(unsigned long,
824 info->thread_pool_size,
825 info->fs_devices->open_devices);
826 return 256 * limit;
827 }
828
829 static void run_one_async_start(struct btrfs_work *work)
830 {
831 struct async_submit_bio *async;
832 int ret;
833
834 async = container_of(work, struct async_submit_bio, work);
835 ret = async->submit_bio_start(async->inode, async->bio,
836 async->mirror_num, async->bio_flags,
837 async->bio_offset);
838 if (ret)
839 async->error = ret;
840 }
841
842 static void run_one_async_done(struct btrfs_work *work)
843 {
844 struct btrfs_fs_info *fs_info;
845 struct async_submit_bio *async;
846 int limit;
847
848 async = container_of(work, struct async_submit_bio, work);
849 fs_info = BTRFS_I(async->inode)->root->fs_info;
850
851 limit = btrfs_async_submit_limit(fs_info);
852 limit = limit * 2 / 3;
853
854 /*
855 * atomic_dec_return implies a barrier for waitqueue_active
856 */
857 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
858 waitqueue_active(&fs_info->async_submit_wait))
859 wake_up(&fs_info->async_submit_wait);
860
861 /* If an error occurred we just want to clean up the bio and move on */
862 if (async->error) {
863 async->bio->bi_error = async->error;
864 bio_endio(async->bio);
865 return;
866 }
867
868 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
869 async->bio_flags, async->bio_offset);
870 }
871
872 static void run_one_async_free(struct btrfs_work *work)
873 {
874 struct async_submit_bio *async;
875
876 async = container_of(work, struct async_submit_bio, work);
877 kfree(async);
878 }
879
880 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
881 struct bio *bio, int mirror_num,
882 unsigned long bio_flags,
883 u64 bio_offset,
884 extent_submit_bio_hook_t *submit_bio_start,
885 extent_submit_bio_hook_t *submit_bio_done)
886 {
887 struct async_submit_bio *async;
888
889 async = kmalloc(sizeof(*async), GFP_NOFS);
890 if (!async)
891 return -ENOMEM;
892
893 async->inode = inode;
894 async->bio = bio;
895 async->mirror_num = mirror_num;
896 async->submit_bio_start = submit_bio_start;
897 async->submit_bio_done = submit_bio_done;
898
899 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
900 run_one_async_done, run_one_async_free);
901
902 async->bio_flags = bio_flags;
903 async->bio_offset = bio_offset;
904
905 async->error = 0;
906
907 atomic_inc(&fs_info->nr_async_submits);
908
909 if (bio->bi_opf & REQ_SYNC)
910 btrfs_set_work_high_priority(&async->work);
911
912 btrfs_queue_work(fs_info->workers, &async->work);
913
914 while (atomic_read(&fs_info->async_submit_draining) &&
915 atomic_read(&fs_info->nr_async_submits)) {
916 wait_event(fs_info->async_submit_wait,
917 (atomic_read(&fs_info->nr_async_submits) == 0));
918 }
919
920 return 0;
921 }
922
923 static int btree_csum_one_bio(struct bio *bio)
924 {
925 struct bio_vec *bvec;
926 struct btrfs_root *root;
927 int i, ret = 0;
928
929 bio_for_each_segment_all(bvec, bio, i) {
930 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
931 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
932 if (ret)
933 break;
934 }
935
936 return ret;
937 }
938
939 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
940 int mirror_num, unsigned long bio_flags,
941 u64 bio_offset)
942 {
943 /*
944 * when we're called for a write, we're already in the async
945 * submission context. Just jump into btrfs_map_bio
946 */
947 return btree_csum_one_bio(bio);
948 }
949
950 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
951 int mirror_num, unsigned long bio_flags,
952 u64 bio_offset)
953 {
954 int ret;
955
956 /*
957 * when we're called for a write, we're already in the async
958 * submission context. Just jump into btrfs_map_bio
959 */
960 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
961 if (ret) {
962 bio->bi_error = ret;
963 bio_endio(bio);
964 }
965 return ret;
966 }
967
968 static int check_async_write(struct inode *inode, unsigned long bio_flags)
969 {
970 if (bio_flags & EXTENT_BIO_TREE_LOG)
971 return 0;
972 #ifdef CONFIG_X86
973 if (static_cpu_has(X86_FEATURE_XMM4_2))
974 return 0;
975 #endif
976 return 1;
977 }
978
979 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
980 int mirror_num, unsigned long bio_flags,
981 u64 bio_offset)
982 {
983 int async = check_async_write(inode, bio_flags);
984 int ret;
985
986 if (bio_op(bio) != REQ_OP_WRITE) {
987 /*
988 * called for a read, do the setup so that checksum validation
989 * can happen in the async kernel threads
990 */
991 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
992 bio, BTRFS_WQ_ENDIO_METADATA);
993 if (ret)
994 goto out_w_error;
995 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
996 } else if (!async) {
997 ret = btree_csum_one_bio(bio);
998 if (ret)
999 goto out_w_error;
1000 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1001 } else {
1002 /*
1003 * kthread helpers are used to submit writes so that
1004 * checksumming can happen in parallel across all CPUs
1005 */
1006 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1007 inode, bio, mirror_num, 0,
1008 bio_offset,
1009 __btree_submit_bio_start,
1010 __btree_submit_bio_done);
1011 }
1012
1013 if (ret)
1014 goto out_w_error;
1015 return 0;
1016
1017 out_w_error:
1018 bio->bi_error = ret;
1019 bio_endio(bio);
1020 return ret;
1021 }
1022
1023 #ifdef CONFIG_MIGRATION
1024 static int btree_migratepage(struct address_space *mapping,
1025 struct page *newpage, struct page *page,
1026 enum migrate_mode mode)
1027 {
1028 /*
1029 * we can't safely write a btree page from here,
1030 * we haven't done the locking hook
1031 */
1032 if (PageDirty(page))
1033 return -EAGAIN;
1034 /*
1035 * Buffers may be managed in a filesystem specific way.
1036 * We must have no buffers or drop them.
1037 */
1038 if (page_has_private(page) &&
1039 !try_to_release_page(page, GFP_KERNEL))
1040 return -EAGAIN;
1041 return migrate_page(mapping, newpage, page, mode);
1042 }
1043 #endif
1044
1045
1046 static int btree_writepages(struct address_space *mapping,
1047 struct writeback_control *wbc)
1048 {
1049 struct btrfs_fs_info *fs_info;
1050 int ret;
1051
1052 if (wbc->sync_mode == WB_SYNC_NONE) {
1053
1054 if (wbc->for_kupdate)
1055 return 0;
1056
1057 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1058 /* this is a bit racy, but that's ok */
1059 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1060 BTRFS_DIRTY_METADATA_THRESH);
1061 if (ret < 0)
1062 return 0;
1063 }
1064 return btree_write_cache_pages(mapping, wbc);
1065 }
1066
1067 static int btree_readpage(struct file *file, struct page *page)
1068 {
1069 struct extent_io_tree *tree;
1070 tree = &BTRFS_I(page->mapping->host)->io_tree;
1071 return extent_read_full_page(tree, page, btree_get_extent, 0);
1072 }
1073
1074 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1075 {
1076 if (PageWriteback(page) || PageDirty(page))
1077 return 0;
1078
1079 return try_release_extent_buffer(page);
1080 }
1081
1082 static void btree_invalidatepage(struct page *page, unsigned int offset,
1083 unsigned int length)
1084 {
1085 struct extent_io_tree *tree;
1086 tree = &BTRFS_I(page->mapping->host)->io_tree;
1087 extent_invalidatepage(tree, page, offset);
1088 btree_releasepage(page, GFP_NOFS);
1089 if (PagePrivate(page)) {
1090 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1091 "page private not zero on page %llu",
1092 (unsigned long long)page_offset(page));
1093 ClearPagePrivate(page);
1094 set_page_private(page, 0);
1095 put_page(page);
1096 }
1097 }
1098
1099 static int btree_set_page_dirty(struct page *page)
1100 {
1101 #ifdef DEBUG
1102 struct extent_buffer *eb;
1103
1104 BUG_ON(!PagePrivate(page));
1105 eb = (struct extent_buffer *)page->private;
1106 BUG_ON(!eb);
1107 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1108 BUG_ON(!atomic_read(&eb->refs));
1109 btrfs_assert_tree_locked(eb);
1110 #endif
1111 return __set_page_dirty_nobuffers(page);
1112 }
1113
1114 static const struct address_space_operations btree_aops = {
1115 .readpage = btree_readpage,
1116 .writepages = btree_writepages,
1117 .releasepage = btree_releasepage,
1118 .invalidatepage = btree_invalidatepage,
1119 #ifdef CONFIG_MIGRATION
1120 .migratepage = btree_migratepage,
1121 #endif
1122 .set_page_dirty = btree_set_page_dirty,
1123 };
1124
1125 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1126 {
1127 struct extent_buffer *buf = NULL;
1128 struct inode *btree_inode = root->fs_info->btree_inode;
1129
1130 buf = btrfs_find_create_tree_block(root, bytenr);
1131 if (IS_ERR(buf))
1132 return;
1133 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1134 buf, WAIT_NONE, btree_get_extent, 0);
1135 free_extent_buffer(buf);
1136 }
1137
1138 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1139 int mirror_num, struct extent_buffer **eb)
1140 {
1141 struct extent_buffer *buf = NULL;
1142 struct inode *btree_inode = root->fs_info->btree_inode;
1143 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1144 int ret;
1145
1146 buf = btrfs_find_create_tree_block(root, bytenr);
1147 if (IS_ERR(buf))
1148 return 0;
1149
1150 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1151
1152 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1153 btree_get_extent, mirror_num);
1154 if (ret) {
1155 free_extent_buffer(buf);
1156 return ret;
1157 }
1158
1159 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1160 free_extent_buffer(buf);
1161 return -EIO;
1162 } else if (extent_buffer_uptodate(buf)) {
1163 *eb = buf;
1164 } else {
1165 free_extent_buffer(buf);
1166 }
1167 return 0;
1168 }
1169
1170 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1171 u64 bytenr)
1172 {
1173 return find_extent_buffer(fs_info, bytenr);
1174 }
1175
1176 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1177 u64 bytenr)
1178 {
1179 if (btrfs_is_testing(root->fs_info))
1180 return alloc_test_extent_buffer(root->fs_info, bytenr,
1181 root->nodesize);
1182 return alloc_extent_buffer(root->fs_info, bytenr);
1183 }
1184
1185
1186 int btrfs_write_tree_block(struct extent_buffer *buf)
1187 {
1188 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1189 buf->start + buf->len - 1);
1190 }
1191
1192 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1193 {
1194 return filemap_fdatawait_range(buf->pages[0]->mapping,
1195 buf->start, buf->start + buf->len - 1);
1196 }
1197
1198 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1199 u64 parent_transid)
1200 {
1201 struct extent_buffer *buf = NULL;
1202 int ret;
1203
1204 buf = btrfs_find_create_tree_block(root, bytenr);
1205 if (IS_ERR(buf))
1206 return buf;
1207
1208 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1209 if (ret) {
1210 free_extent_buffer(buf);
1211 return ERR_PTR(ret);
1212 }
1213 return buf;
1214
1215 }
1216
1217 void clean_tree_block(struct btrfs_trans_handle *trans,
1218 struct btrfs_fs_info *fs_info,
1219 struct extent_buffer *buf)
1220 {
1221 if (btrfs_header_generation(buf) ==
1222 fs_info->running_transaction->transid) {
1223 btrfs_assert_tree_locked(buf);
1224
1225 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1226 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1227 -buf->len,
1228 fs_info->dirty_metadata_batch);
1229 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1230 btrfs_set_lock_blocking(buf);
1231 clear_extent_buffer_dirty(buf);
1232 }
1233 }
1234 }
1235
1236 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1237 {
1238 struct btrfs_subvolume_writers *writers;
1239 int ret;
1240
1241 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1242 if (!writers)
1243 return ERR_PTR(-ENOMEM);
1244
1245 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1246 if (ret < 0) {
1247 kfree(writers);
1248 return ERR_PTR(ret);
1249 }
1250
1251 init_waitqueue_head(&writers->wait);
1252 return writers;
1253 }
1254
1255 static void
1256 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1257 {
1258 percpu_counter_destroy(&writers->counter);
1259 kfree(writers);
1260 }
1261
1262 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1263 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1264 u64 objectid)
1265 {
1266 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1267 root->node = NULL;
1268 root->commit_root = NULL;
1269 root->sectorsize = sectorsize;
1270 root->nodesize = nodesize;
1271 root->stripesize = stripesize;
1272 root->state = 0;
1273 root->orphan_cleanup_state = 0;
1274
1275 root->objectid = objectid;
1276 root->last_trans = 0;
1277 root->highest_objectid = 0;
1278 root->nr_delalloc_inodes = 0;
1279 root->nr_ordered_extents = 0;
1280 root->name = NULL;
1281 root->inode_tree = RB_ROOT;
1282 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1283 root->block_rsv = NULL;
1284 root->orphan_block_rsv = NULL;
1285
1286 INIT_LIST_HEAD(&root->dirty_list);
1287 INIT_LIST_HEAD(&root->root_list);
1288 INIT_LIST_HEAD(&root->delalloc_inodes);
1289 INIT_LIST_HEAD(&root->delalloc_root);
1290 INIT_LIST_HEAD(&root->ordered_extents);
1291 INIT_LIST_HEAD(&root->ordered_root);
1292 INIT_LIST_HEAD(&root->logged_list[0]);
1293 INIT_LIST_HEAD(&root->logged_list[1]);
1294 spin_lock_init(&root->orphan_lock);
1295 spin_lock_init(&root->inode_lock);
1296 spin_lock_init(&root->delalloc_lock);
1297 spin_lock_init(&root->ordered_extent_lock);
1298 spin_lock_init(&root->accounting_lock);
1299 spin_lock_init(&root->log_extents_lock[0]);
1300 spin_lock_init(&root->log_extents_lock[1]);
1301 mutex_init(&root->objectid_mutex);
1302 mutex_init(&root->log_mutex);
1303 mutex_init(&root->ordered_extent_mutex);
1304 mutex_init(&root->delalloc_mutex);
1305 init_waitqueue_head(&root->log_writer_wait);
1306 init_waitqueue_head(&root->log_commit_wait[0]);
1307 init_waitqueue_head(&root->log_commit_wait[1]);
1308 INIT_LIST_HEAD(&root->log_ctxs[0]);
1309 INIT_LIST_HEAD(&root->log_ctxs[1]);
1310 atomic_set(&root->log_commit[0], 0);
1311 atomic_set(&root->log_commit[1], 0);
1312 atomic_set(&root->log_writers, 0);
1313 atomic_set(&root->log_batch, 0);
1314 atomic_set(&root->orphan_inodes, 0);
1315 atomic_set(&root->refs, 1);
1316 atomic_set(&root->will_be_snapshoted, 0);
1317 atomic_set(&root->qgroup_meta_rsv, 0);
1318 root->log_transid = 0;
1319 root->log_transid_committed = -1;
1320 root->last_log_commit = 0;
1321 if (!dummy)
1322 extent_io_tree_init(&root->dirty_log_pages,
1323 fs_info->btree_inode->i_mapping);
1324
1325 memset(&root->root_key, 0, sizeof(root->root_key));
1326 memset(&root->root_item, 0, sizeof(root->root_item));
1327 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1328 if (!dummy)
1329 root->defrag_trans_start = fs_info->generation;
1330 else
1331 root->defrag_trans_start = 0;
1332 root->root_key.objectid = objectid;
1333 root->anon_dev = 0;
1334
1335 spin_lock_init(&root->root_item_lock);
1336 }
1337
1338 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1339 gfp_t flags)
1340 {
1341 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1342 if (root)
1343 root->fs_info = fs_info;
1344 return root;
1345 }
1346
1347 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1348 /* Should only be used by the testing infrastructure */
1349 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1350 u32 sectorsize, u32 nodesize)
1351 {
1352 struct btrfs_root *root;
1353
1354 if (!fs_info)
1355 return ERR_PTR(-EINVAL);
1356
1357 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1358 if (!root)
1359 return ERR_PTR(-ENOMEM);
1360 /* We don't use the stripesize in selftest, set it as sectorsize */
1361 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1362 BTRFS_ROOT_TREE_OBJECTID);
1363 root->alloc_bytenr = 0;
1364
1365 return root;
1366 }
1367 #endif
1368
1369 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1370 struct btrfs_fs_info *fs_info,
1371 u64 objectid)
1372 {
1373 struct extent_buffer *leaf;
1374 struct btrfs_root *tree_root = fs_info->tree_root;
1375 struct btrfs_root *root;
1376 struct btrfs_key key;
1377 int ret = 0;
1378 uuid_le uuid;
1379
1380 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1381 if (!root)
1382 return ERR_PTR(-ENOMEM);
1383
1384 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1385 tree_root->stripesize, root, fs_info, objectid);
1386 root->root_key.objectid = objectid;
1387 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1388 root->root_key.offset = 0;
1389
1390 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1391 if (IS_ERR(leaf)) {
1392 ret = PTR_ERR(leaf);
1393 leaf = NULL;
1394 goto fail;
1395 }
1396
1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 btrfs_set_header_bytenr(leaf, leaf->start);
1399 btrfs_set_header_generation(leaf, trans->transid);
1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(leaf, objectid);
1402 root->node = leaf;
1403
1404 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1405 BTRFS_FSID_SIZE);
1406 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1407 btrfs_header_chunk_tree_uuid(leaf),
1408 BTRFS_UUID_SIZE);
1409 btrfs_mark_buffer_dirty(leaf);
1410
1411 root->commit_root = btrfs_root_node(root);
1412 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1413
1414 root->root_item.flags = 0;
1415 root->root_item.byte_limit = 0;
1416 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1417 btrfs_set_root_generation(&root->root_item, trans->transid);
1418 btrfs_set_root_level(&root->root_item, 0);
1419 btrfs_set_root_refs(&root->root_item, 1);
1420 btrfs_set_root_used(&root->root_item, leaf->len);
1421 btrfs_set_root_last_snapshot(&root->root_item, 0);
1422 btrfs_set_root_dirid(&root->root_item, 0);
1423 uuid_le_gen(&uuid);
1424 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1425 root->root_item.drop_level = 0;
1426
1427 key.objectid = objectid;
1428 key.type = BTRFS_ROOT_ITEM_KEY;
1429 key.offset = 0;
1430 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1431 if (ret)
1432 goto fail;
1433
1434 btrfs_tree_unlock(leaf);
1435
1436 return root;
1437
1438 fail:
1439 if (leaf) {
1440 btrfs_tree_unlock(leaf);
1441 free_extent_buffer(root->commit_root);
1442 free_extent_buffer(leaf);
1443 }
1444 kfree(root);
1445
1446 return ERR_PTR(ret);
1447 }
1448
1449 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1450 struct btrfs_fs_info *fs_info)
1451 {
1452 struct btrfs_root *root;
1453 struct btrfs_root *tree_root = fs_info->tree_root;
1454 struct extent_buffer *leaf;
1455
1456 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1457 if (!root)
1458 return ERR_PTR(-ENOMEM);
1459
1460 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1461 tree_root->stripesize, root, fs_info,
1462 BTRFS_TREE_LOG_OBJECTID);
1463
1464 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1465 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1466 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1467
1468 /*
1469 * DON'T set REF_COWS for log trees
1470 *
1471 * log trees do not get reference counted because they go away
1472 * before a real commit is actually done. They do store pointers
1473 * to file data extents, and those reference counts still get
1474 * updated (along with back refs to the log tree).
1475 */
1476
1477 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1478 NULL, 0, 0, 0);
1479 if (IS_ERR(leaf)) {
1480 kfree(root);
1481 return ERR_CAST(leaf);
1482 }
1483
1484 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1485 btrfs_set_header_bytenr(leaf, leaf->start);
1486 btrfs_set_header_generation(leaf, trans->transid);
1487 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1488 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1489 root->node = leaf;
1490
1491 write_extent_buffer(root->node, root->fs_info->fsid,
1492 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1493 btrfs_mark_buffer_dirty(root->node);
1494 btrfs_tree_unlock(root->node);
1495 return root;
1496 }
1497
1498 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1499 struct btrfs_fs_info *fs_info)
1500 {
1501 struct btrfs_root *log_root;
1502
1503 log_root = alloc_log_tree(trans, fs_info);
1504 if (IS_ERR(log_root))
1505 return PTR_ERR(log_root);
1506 WARN_ON(fs_info->log_root_tree);
1507 fs_info->log_root_tree = log_root;
1508 return 0;
1509 }
1510
1511 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1512 struct btrfs_root *root)
1513 {
1514 struct btrfs_root *log_root;
1515 struct btrfs_inode_item *inode_item;
1516
1517 log_root = alloc_log_tree(trans, root->fs_info);
1518 if (IS_ERR(log_root))
1519 return PTR_ERR(log_root);
1520
1521 log_root->last_trans = trans->transid;
1522 log_root->root_key.offset = root->root_key.objectid;
1523
1524 inode_item = &log_root->root_item.inode;
1525 btrfs_set_stack_inode_generation(inode_item, 1);
1526 btrfs_set_stack_inode_size(inode_item, 3);
1527 btrfs_set_stack_inode_nlink(inode_item, 1);
1528 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1529 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1530
1531 btrfs_set_root_node(&log_root->root_item, log_root->node);
1532
1533 WARN_ON(root->log_root);
1534 root->log_root = log_root;
1535 root->log_transid = 0;
1536 root->log_transid_committed = -1;
1537 root->last_log_commit = 0;
1538 return 0;
1539 }
1540
1541 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1542 struct btrfs_key *key)
1543 {
1544 struct btrfs_root *root;
1545 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1546 struct btrfs_path *path;
1547 u64 generation;
1548 int ret;
1549
1550 path = btrfs_alloc_path();
1551 if (!path)
1552 return ERR_PTR(-ENOMEM);
1553
1554 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1555 if (!root) {
1556 ret = -ENOMEM;
1557 goto alloc_fail;
1558 }
1559
1560 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1561 tree_root->stripesize, root, fs_info, key->objectid);
1562
1563 ret = btrfs_find_root(tree_root, key, path,
1564 &root->root_item, &root->root_key);
1565 if (ret) {
1566 if (ret > 0)
1567 ret = -ENOENT;
1568 goto find_fail;
1569 }
1570
1571 generation = btrfs_root_generation(&root->root_item);
1572 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1573 generation);
1574 if (IS_ERR(root->node)) {
1575 ret = PTR_ERR(root->node);
1576 goto find_fail;
1577 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1578 ret = -EIO;
1579 free_extent_buffer(root->node);
1580 goto find_fail;
1581 }
1582 root->commit_root = btrfs_root_node(root);
1583 out:
1584 btrfs_free_path(path);
1585 return root;
1586
1587 find_fail:
1588 kfree(root);
1589 alloc_fail:
1590 root = ERR_PTR(ret);
1591 goto out;
1592 }
1593
1594 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1595 struct btrfs_key *location)
1596 {
1597 struct btrfs_root *root;
1598
1599 root = btrfs_read_tree_root(tree_root, location);
1600 if (IS_ERR(root))
1601 return root;
1602
1603 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1604 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1605 btrfs_check_and_init_root_item(&root->root_item);
1606 }
1607
1608 return root;
1609 }
1610
1611 int btrfs_init_fs_root(struct btrfs_root *root)
1612 {
1613 int ret;
1614 struct btrfs_subvolume_writers *writers;
1615
1616 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1617 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1618 GFP_NOFS);
1619 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1620 ret = -ENOMEM;
1621 goto fail;
1622 }
1623
1624 writers = btrfs_alloc_subvolume_writers();
1625 if (IS_ERR(writers)) {
1626 ret = PTR_ERR(writers);
1627 goto fail;
1628 }
1629 root->subv_writers = writers;
1630
1631 btrfs_init_free_ino_ctl(root);
1632 spin_lock_init(&root->ino_cache_lock);
1633 init_waitqueue_head(&root->ino_cache_wait);
1634
1635 ret = get_anon_bdev(&root->anon_dev);
1636 if (ret)
1637 goto fail;
1638
1639 mutex_lock(&root->objectid_mutex);
1640 ret = btrfs_find_highest_objectid(root,
1641 &root->highest_objectid);
1642 if (ret) {
1643 mutex_unlock(&root->objectid_mutex);
1644 goto fail;
1645 }
1646
1647 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1648
1649 mutex_unlock(&root->objectid_mutex);
1650
1651 return 0;
1652 fail:
1653 /* the caller is responsible to call free_fs_root */
1654 return ret;
1655 }
1656
1657 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1658 u64 root_id)
1659 {
1660 struct btrfs_root *root;
1661
1662 spin_lock(&fs_info->fs_roots_radix_lock);
1663 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1664 (unsigned long)root_id);
1665 spin_unlock(&fs_info->fs_roots_radix_lock);
1666 return root;
1667 }
1668
1669 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1670 struct btrfs_root *root)
1671 {
1672 int ret;
1673
1674 ret = radix_tree_preload(GFP_NOFS);
1675 if (ret)
1676 return ret;
1677
1678 spin_lock(&fs_info->fs_roots_radix_lock);
1679 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1680 (unsigned long)root->root_key.objectid,
1681 root);
1682 if (ret == 0)
1683 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1684 spin_unlock(&fs_info->fs_roots_radix_lock);
1685 radix_tree_preload_end();
1686
1687 return ret;
1688 }
1689
1690 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1691 struct btrfs_key *location,
1692 bool check_ref)
1693 {
1694 struct btrfs_root *root;
1695 struct btrfs_path *path;
1696 struct btrfs_key key;
1697 int ret;
1698
1699 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1700 return fs_info->tree_root;
1701 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1702 return fs_info->extent_root;
1703 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1704 return fs_info->chunk_root;
1705 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1706 return fs_info->dev_root;
1707 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1708 return fs_info->csum_root;
1709 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1710 return fs_info->quota_root ? fs_info->quota_root :
1711 ERR_PTR(-ENOENT);
1712 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1713 return fs_info->uuid_root ? fs_info->uuid_root :
1714 ERR_PTR(-ENOENT);
1715 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1716 return fs_info->free_space_root ? fs_info->free_space_root :
1717 ERR_PTR(-ENOENT);
1718 again:
1719 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1720 if (root) {
1721 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1722 return ERR_PTR(-ENOENT);
1723 return root;
1724 }
1725
1726 root = btrfs_read_fs_root(fs_info->tree_root, location);
1727 if (IS_ERR(root))
1728 return root;
1729
1730 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1731 ret = -ENOENT;
1732 goto fail;
1733 }
1734
1735 ret = btrfs_init_fs_root(root);
1736 if (ret)
1737 goto fail;
1738
1739 path = btrfs_alloc_path();
1740 if (!path) {
1741 ret = -ENOMEM;
1742 goto fail;
1743 }
1744 key.objectid = BTRFS_ORPHAN_OBJECTID;
1745 key.type = BTRFS_ORPHAN_ITEM_KEY;
1746 key.offset = location->objectid;
1747
1748 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1749 btrfs_free_path(path);
1750 if (ret < 0)
1751 goto fail;
1752 if (ret == 0)
1753 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1754
1755 ret = btrfs_insert_fs_root(fs_info, root);
1756 if (ret) {
1757 if (ret == -EEXIST) {
1758 free_fs_root(root);
1759 goto again;
1760 }
1761 goto fail;
1762 }
1763 return root;
1764 fail:
1765 free_fs_root(root);
1766 return ERR_PTR(ret);
1767 }
1768
1769 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1770 {
1771 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1772 int ret = 0;
1773 struct btrfs_device *device;
1774 struct backing_dev_info *bdi;
1775
1776 rcu_read_lock();
1777 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1778 if (!device->bdev)
1779 continue;
1780 bdi = blk_get_backing_dev_info(device->bdev);
1781 if (bdi_congested(bdi, bdi_bits)) {
1782 ret = 1;
1783 break;
1784 }
1785 }
1786 rcu_read_unlock();
1787 return ret;
1788 }
1789
1790 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1791 {
1792 int err;
1793
1794 err = bdi_setup_and_register(bdi, "btrfs");
1795 if (err)
1796 return err;
1797
1798 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1799 bdi->congested_fn = btrfs_congested_fn;
1800 bdi->congested_data = info;
1801 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1802 return 0;
1803 }
1804
1805 /*
1806 * called by the kthread helper functions to finally call the bio end_io
1807 * functions. This is where read checksum verification actually happens
1808 */
1809 static void end_workqueue_fn(struct btrfs_work *work)
1810 {
1811 struct bio *bio;
1812 struct btrfs_end_io_wq *end_io_wq;
1813
1814 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1815 bio = end_io_wq->bio;
1816
1817 bio->bi_error = end_io_wq->error;
1818 bio->bi_private = end_io_wq->private;
1819 bio->bi_end_io = end_io_wq->end_io;
1820 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1821 bio_endio(bio);
1822 }
1823
1824 static int cleaner_kthread(void *arg)
1825 {
1826 struct btrfs_root *root = arg;
1827 int again;
1828 struct btrfs_trans_handle *trans;
1829
1830 do {
1831 again = 0;
1832
1833 /* Make the cleaner go to sleep early. */
1834 if (btrfs_need_cleaner_sleep(root))
1835 goto sleep;
1836
1837 /*
1838 * Do not do anything if we might cause open_ctree() to block
1839 * before we have finished mounting the filesystem.
1840 */
1841 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1842 goto sleep;
1843
1844 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1845 goto sleep;
1846
1847 /*
1848 * Avoid the problem that we change the status of the fs
1849 * during the above check and trylock.
1850 */
1851 if (btrfs_need_cleaner_sleep(root)) {
1852 mutex_unlock(&root->fs_info->cleaner_mutex);
1853 goto sleep;
1854 }
1855
1856 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1857 btrfs_run_delayed_iputs(root);
1858 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1859
1860 again = btrfs_clean_one_deleted_snapshot(root);
1861 mutex_unlock(&root->fs_info->cleaner_mutex);
1862
1863 /*
1864 * The defragger has dealt with the R/O remount and umount,
1865 * needn't do anything special here.
1866 */
1867 btrfs_run_defrag_inodes(root->fs_info);
1868
1869 /*
1870 * Acquires fs_info->bg_delete_sem to avoid racing with
1871 * relocation (btrfs_relocate_chunk) and relocation acquires
1872 * fs_info->cleaner_mutex (btrfs_relocate_block_group) after
1873 * acquiring fs_info->bg_delete_sem. So we can't hold, nor need
1874 * to, fs_info->cleaner_mutex when deleting unused block groups.
1875 */
1876 btrfs_delete_unused_bgs(root->fs_info);
1877 sleep:
1878 if (!again) {
1879 set_current_state(TASK_INTERRUPTIBLE);
1880 if (!kthread_should_stop())
1881 schedule();
1882 __set_current_state(TASK_RUNNING);
1883 }
1884 } while (!kthread_should_stop());
1885
1886 /*
1887 * Transaction kthread is stopped before us and wakes us up.
1888 * However we might have started a new transaction and COWed some
1889 * tree blocks when deleting unused block groups for example. So
1890 * make sure we commit the transaction we started to have a clean
1891 * shutdown when evicting the btree inode - if it has dirty pages
1892 * when we do the final iput() on it, eviction will trigger a
1893 * writeback for it which will fail with null pointer dereferences
1894 * since work queues and other resources were already released and
1895 * destroyed by the time the iput/eviction/writeback is made.
1896 */
1897 trans = btrfs_attach_transaction(root);
1898 if (IS_ERR(trans)) {
1899 if (PTR_ERR(trans) != -ENOENT)
1900 btrfs_err(root->fs_info,
1901 "cleaner transaction attach returned %ld",
1902 PTR_ERR(trans));
1903 } else {
1904 int ret;
1905
1906 ret = btrfs_commit_transaction(trans, root);
1907 if (ret)
1908 btrfs_err(root->fs_info,
1909 "cleaner open transaction commit returned %d",
1910 ret);
1911 }
1912
1913 return 0;
1914 }
1915
1916 static int transaction_kthread(void *arg)
1917 {
1918 struct btrfs_root *root = arg;
1919 struct btrfs_trans_handle *trans;
1920 struct btrfs_transaction *cur;
1921 u64 transid;
1922 unsigned long now;
1923 unsigned long delay;
1924 bool cannot_commit;
1925
1926 do {
1927 cannot_commit = false;
1928 delay = HZ * root->fs_info->commit_interval;
1929 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1930
1931 spin_lock(&root->fs_info->trans_lock);
1932 cur = root->fs_info->running_transaction;
1933 if (!cur) {
1934 spin_unlock(&root->fs_info->trans_lock);
1935 goto sleep;
1936 }
1937
1938 now = get_seconds();
1939 if (cur->state < TRANS_STATE_BLOCKED &&
1940 (now < cur->start_time ||
1941 now - cur->start_time < root->fs_info->commit_interval)) {
1942 spin_unlock(&root->fs_info->trans_lock);
1943 delay = HZ * 5;
1944 goto sleep;
1945 }
1946 transid = cur->transid;
1947 spin_unlock(&root->fs_info->trans_lock);
1948
1949 /* If the file system is aborted, this will always fail. */
1950 trans = btrfs_attach_transaction(root);
1951 if (IS_ERR(trans)) {
1952 if (PTR_ERR(trans) != -ENOENT)
1953 cannot_commit = true;
1954 goto sleep;
1955 }
1956 if (transid == trans->transid) {
1957 btrfs_commit_transaction(trans, root);
1958 } else {
1959 btrfs_end_transaction(trans, root);
1960 }
1961 sleep:
1962 wake_up_process(root->fs_info->cleaner_kthread);
1963 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1964
1965 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1966 &root->fs_info->fs_state)))
1967 btrfs_cleanup_transaction(root);
1968 set_current_state(TASK_INTERRUPTIBLE);
1969 if (!kthread_should_stop() &&
1970 (!btrfs_transaction_blocked(root->fs_info) ||
1971 cannot_commit))
1972 schedule_timeout(delay);
1973 __set_current_state(TASK_RUNNING);
1974 } while (!kthread_should_stop());
1975 return 0;
1976 }
1977
1978 /*
1979 * this will find the highest generation in the array of
1980 * root backups. The index of the highest array is returned,
1981 * or -1 if we can't find anything.
1982 *
1983 * We check to make sure the array is valid by comparing the
1984 * generation of the latest root in the array with the generation
1985 * in the super block. If they don't match we pitch it.
1986 */
1987 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1988 {
1989 u64 cur;
1990 int newest_index = -1;
1991 struct btrfs_root_backup *root_backup;
1992 int i;
1993
1994 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1995 root_backup = info->super_copy->super_roots + i;
1996 cur = btrfs_backup_tree_root_gen(root_backup);
1997 if (cur == newest_gen)
1998 newest_index = i;
1999 }
2000
2001 /* check to see if we actually wrapped around */
2002 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2003 root_backup = info->super_copy->super_roots;
2004 cur = btrfs_backup_tree_root_gen(root_backup);
2005 if (cur == newest_gen)
2006 newest_index = 0;
2007 }
2008 return newest_index;
2009 }
2010
2011
2012 /*
2013 * find the oldest backup so we know where to store new entries
2014 * in the backup array. This will set the backup_root_index
2015 * field in the fs_info struct
2016 */
2017 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2018 u64 newest_gen)
2019 {
2020 int newest_index = -1;
2021
2022 newest_index = find_newest_super_backup(info, newest_gen);
2023 /* if there was garbage in there, just move along */
2024 if (newest_index == -1) {
2025 info->backup_root_index = 0;
2026 } else {
2027 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2028 }
2029 }
2030
2031 /*
2032 * copy all the root pointers into the super backup array.
2033 * this will bump the backup pointer by one when it is
2034 * done
2035 */
2036 static void backup_super_roots(struct btrfs_fs_info *info)
2037 {
2038 int next_backup;
2039 struct btrfs_root_backup *root_backup;
2040 int last_backup;
2041
2042 next_backup = info->backup_root_index;
2043 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2044 BTRFS_NUM_BACKUP_ROOTS;
2045
2046 /*
2047 * just overwrite the last backup if we're at the same generation
2048 * this happens only at umount
2049 */
2050 root_backup = info->super_for_commit->super_roots + last_backup;
2051 if (btrfs_backup_tree_root_gen(root_backup) ==
2052 btrfs_header_generation(info->tree_root->node))
2053 next_backup = last_backup;
2054
2055 root_backup = info->super_for_commit->super_roots + next_backup;
2056
2057 /*
2058 * make sure all of our padding and empty slots get zero filled
2059 * regardless of which ones we use today
2060 */
2061 memset(root_backup, 0, sizeof(*root_backup));
2062
2063 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2064
2065 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2066 btrfs_set_backup_tree_root_gen(root_backup,
2067 btrfs_header_generation(info->tree_root->node));
2068
2069 btrfs_set_backup_tree_root_level(root_backup,
2070 btrfs_header_level(info->tree_root->node));
2071
2072 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2073 btrfs_set_backup_chunk_root_gen(root_backup,
2074 btrfs_header_generation(info->chunk_root->node));
2075 btrfs_set_backup_chunk_root_level(root_backup,
2076 btrfs_header_level(info->chunk_root->node));
2077
2078 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2079 btrfs_set_backup_extent_root_gen(root_backup,
2080 btrfs_header_generation(info->extent_root->node));
2081 btrfs_set_backup_extent_root_level(root_backup,
2082 btrfs_header_level(info->extent_root->node));
2083
2084 /*
2085 * we might commit during log recovery, which happens before we set
2086 * the fs_root. Make sure it is valid before we fill it in.
2087 */
2088 if (info->fs_root && info->fs_root->node) {
2089 btrfs_set_backup_fs_root(root_backup,
2090 info->fs_root->node->start);
2091 btrfs_set_backup_fs_root_gen(root_backup,
2092 btrfs_header_generation(info->fs_root->node));
2093 btrfs_set_backup_fs_root_level(root_backup,
2094 btrfs_header_level(info->fs_root->node));
2095 }
2096
2097 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2098 btrfs_set_backup_dev_root_gen(root_backup,
2099 btrfs_header_generation(info->dev_root->node));
2100 btrfs_set_backup_dev_root_level(root_backup,
2101 btrfs_header_level(info->dev_root->node));
2102
2103 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2104 btrfs_set_backup_csum_root_gen(root_backup,
2105 btrfs_header_generation(info->csum_root->node));
2106 btrfs_set_backup_csum_root_level(root_backup,
2107 btrfs_header_level(info->csum_root->node));
2108
2109 btrfs_set_backup_total_bytes(root_backup,
2110 btrfs_super_total_bytes(info->super_copy));
2111 btrfs_set_backup_bytes_used(root_backup,
2112 btrfs_super_bytes_used(info->super_copy));
2113 btrfs_set_backup_num_devices(root_backup,
2114 btrfs_super_num_devices(info->super_copy));
2115
2116 /*
2117 * if we don't copy this out to the super_copy, it won't get remembered
2118 * for the next commit
2119 */
2120 memcpy(&info->super_copy->super_roots,
2121 &info->super_for_commit->super_roots,
2122 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2123 }
2124
2125 /*
2126 * this copies info out of the root backup array and back into
2127 * the in-memory super block. It is meant to help iterate through
2128 * the array, so you send it the number of backups you've already
2129 * tried and the last backup index you used.
2130 *
2131 * this returns -1 when it has tried all the backups
2132 */
2133 static noinline int next_root_backup(struct btrfs_fs_info *info,
2134 struct btrfs_super_block *super,
2135 int *num_backups_tried, int *backup_index)
2136 {
2137 struct btrfs_root_backup *root_backup;
2138 int newest = *backup_index;
2139
2140 if (*num_backups_tried == 0) {
2141 u64 gen = btrfs_super_generation(super);
2142
2143 newest = find_newest_super_backup(info, gen);
2144 if (newest == -1)
2145 return -1;
2146
2147 *backup_index = newest;
2148 *num_backups_tried = 1;
2149 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2150 /* we've tried all the backups, all done */
2151 return -1;
2152 } else {
2153 /* jump to the next oldest backup */
2154 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2155 BTRFS_NUM_BACKUP_ROOTS;
2156 *backup_index = newest;
2157 *num_backups_tried += 1;
2158 }
2159 root_backup = super->super_roots + newest;
2160
2161 btrfs_set_super_generation(super,
2162 btrfs_backup_tree_root_gen(root_backup));
2163 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2164 btrfs_set_super_root_level(super,
2165 btrfs_backup_tree_root_level(root_backup));
2166 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2167
2168 /*
2169 * fixme: the total bytes and num_devices need to match or we should
2170 * need a fsck
2171 */
2172 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2173 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2174 return 0;
2175 }
2176
2177 /* helper to cleanup workers */
2178 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2179 {
2180 btrfs_destroy_workqueue(fs_info->fixup_workers);
2181 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2182 btrfs_destroy_workqueue(fs_info->workers);
2183 btrfs_destroy_workqueue(fs_info->endio_workers);
2184 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2185 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2186 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2187 btrfs_destroy_workqueue(fs_info->rmw_workers);
2188 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2189 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2190 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2191 btrfs_destroy_workqueue(fs_info->submit_workers);
2192 btrfs_destroy_workqueue(fs_info->delayed_workers);
2193 btrfs_destroy_workqueue(fs_info->caching_workers);
2194 btrfs_destroy_workqueue(fs_info->readahead_workers);
2195 btrfs_destroy_workqueue(fs_info->flush_workers);
2196 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2197 btrfs_destroy_workqueue(fs_info->extent_workers);
2198 }
2199
2200 static void free_root_extent_buffers(struct btrfs_root *root)
2201 {
2202 if (root) {
2203 free_extent_buffer(root->node);
2204 free_extent_buffer(root->commit_root);
2205 root->node = NULL;
2206 root->commit_root = NULL;
2207 }
2208 }
2209
2210 /* helper to cleanup tree roots */
2211 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2212 {
2213 free_root_extent_buffers(info->tree_root);
2214
2215 free_root_extent_buffers(info->dev_root);
2216 free_root_extent_buffers(info->extent_root);
2217 free_root_extent_buffers(info->csum_root);
2218 free_root_extent_buffers(info->quota_root);
2219 free_root_extent_buffers(info->uuid_root);
2220 if (chunk_root)
2221 free_root_extent_buffers(info->chunk_root);
2222 free_root_extent_buffers(info->free_space_root);
2223 }
2224
2225 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2226 {
2227 int ret;
2228 struct btrfs_root *gang[8];
2229 int i;
2230
2231 while (!list_empty(&fs_info->dead_roots)) {
2232 gang[0] = list_entry(fs_info->dead_roots.next,
2233 struct btrfs_root, root_list);
2234 list_del(&gang[0]->root_list);
2235
2236 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2237 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2238 } else {
2239 free_extent_buffer(gang[0]->node);
2240 free_extent_buffer(gang[0]->commit_root);
2241 btrfs_put_fs_root(gang[0]);
2242 }
2243 }
2244
2245 while (1) {
2246 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2247 (void **)gang, 0,
2248 ARRAY_SIZE(gang));
2249 if (!ret)
2250 break;
2251 for (i = 0; i < ret; i++)
2252 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2253 }
2254
2255 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2256 btrfs_free_log_root_tree(NULL, fs_info);
2257 btrfs_destroy_pinned_extent(fs_info->tree_root,
2258 fs_info->pinned_extents);
2259 }
2260 }
2261
2262 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2263 {
2264 mutex_init(&fs_info->scrub_lock);
2265 atomic_set(&fs_info->scrubs_running, 0);
2266 atomic_set(&fs_info->scrub_pause_req, 0);
2267 atomic_set(&fs_info->scrubs_paused, 0);
2268 atomic_set(&fs_info->scrub_cancel_req, 0);
2269 init_waitqueue_head(&fs_info->scrub_pause_wait);
2270 fs_info->scrub_workers_refcnt = 0;
2271 }
2272
2273 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2274 {
2275 spin_lock_init(&fs_info->balance_lock);
2276 mutex_init(&fs_info->balance_mutex);
2277 atomic_set(&fs_info->balance_running, 0);
2278 atomic_set(&fs_info->balance_pause_req, 0);
2279 atomic_set(&fs_info->balance_cancel_req, 0);
2280 fs_info->balance_ctl = NULL;
2281 init_waitqueue_head(&fs_info->balance_wait_q);
2282 }
2283
2284 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2285 struct btrfs_root *tree_root)
2286 {
2287 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2288 set_nlink(fs_info->btree_inode, 1);
2289 /*
2290 * we set the i_size on the btree inode to the max possible int.
2291 * the real end of the address space is determined by all of
2292 * the devices in the system
2293 */
2294 fs_info->btree_inode->i_size = OFFSET_MAX;
2295 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2296
2297 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2298 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2299 fs_info->btree_inode->i_mapping);
2300 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2301 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2302
2303 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2304
2305 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2306 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2307 sizeof(struct btrfs_key));
2308 set_bit(BTRFS_INODE_DUMMY,
2309 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2310 btrfs_insert_inode_hash(fs_info->btree_inode);
2311 }
2312
2313 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2314 {
2315 fs_info->dev_replace.lock_owner = 0;
2316 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2317 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2318 rwlock_init(&fs_info->dev_replace.lock);
2319 atomic_set(&fs_info->dev_replace.read_locks, 0);
2320 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2321 init_waitqueue_head(&fs_info->replace_wait);
2322 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2323 }
2324
2325 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2326 {
2327 spin_lock_init(&fs_info->qgroup_lock);
2328 mutex_init(&fs_info->qgroup_ioctl_lock);
2329 fs_info->qgroup_tree = RB_ROOT;
2330 fs_info->qgroup_op_tree = RB_ROOT;
2331 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2332 fs_info->qgroup_seq = 1;
2333 fs_info->qgroup_ulist = NULL;
2334 fs_info->qgroup_rescan_running = false;
2335 mutex_init(&fs_info->qgroup_rescan_lock);
2336 }
2337
2338 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2339 struct btrfs_fs_devices *fs_devices)
2340 {
2341 int max_active = fs_info->thread_pool_size;
2342 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2343
2344 fs_info->workers =
2345 btrfs_alloc_workqueue(fs_info, "worker",
2346 flags | WQ_HIGHPRI, max_active, 16);
2347
2348 fs_info->delalloc_workers =
2349 btrfs_alloc_workqueue(fs_info, "delalloc",
2350 flags, max_active, 2);
2351
2352 fs_info->flush_workers =
2353 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2354 flags, max_active, 0);
2355
2356 fs_info->caching_workers =
2357 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2358
2359 /*
2360 * a higher idle thresh on the submit workers makes it much more
2361 * likely that bios will be send down in a sane order to the
2362 * devices
2363 */
2364 fs_info->submit_workers =
2365 btrfs_alloc_workqueue(fs_info, "submit", flags,
2366 min_t(u64, fs_devices->num_devices,
2367 max_active), 64);
2368
2369 fs_info->fixup_workers =
2370 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2371
2372 /*
2373 * endios are largely parallel and should have a very
2374 * low idle thresh
2375 */
2376 fs_info->endio_workers =
2377 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2378 fs_info->endio_meta_workers =
2379 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2380 max_active, 4);
2381 fs_info->endio_meta_write_workers =
2382 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2383 max_active, 2);
2384 fs_info->endio_raid56_workers =
2385 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2386 max_active, 4);
2387 fs_info->endio_repair_workers =
2388 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2389 fs_info->rmw_workers =
2390 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2391 fs_info->endio_write_workers =
2392 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2393 max_active, 2);
2394 fs_info->endio_freespace_worker =
2395 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2396 max_active, 0);
2397 fs_info->delayed_workers =
2398 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2399 max_active, 0);
2400 fs_info->readahead_workers =
2401 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2402 max_active, 2);
2403 fs_info->qgroup_rescan_workers =
2404 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2405 fs_info->extent_workers =
2406 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2407 min_t(u64, fs_devices->num_devices,
2408 max_active), 8);
2409
2410 if (!(fs_info->workers && fs_info->delalloc_workers &&
2411 fs_info->submit_workers && fs_info->flush_workers &&
2412 fs_info->endio_workers && fs_info->endio_meta_workers &&
2413 fs_info->endio_meta_write_workers &&
2414 fs_info->endio_repair_workers &&
2415 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2416 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2417 fs_info->caching_workers && fs_info->readahead_workers &&
2418 fs_info->fixup_workers && fs_info->delayed_workers &&
2419 fs_info->extent_workers &&
2420 fs_info->qgroup_rescan_workers)) {
2421 return -ENOMEM;
2422 }
2423
2424 return 0;
2425 }
2426
2427 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2428 struct btrfs_fs_devices *fs_devices)
2429 {
2430 int ret;
2431 struct btrfs_root *tree_root = fs_info->tree_root;
2432 struct btrfs_root *log_tree_root;
2433 struct btrfs_super_block *disk_super = fs_info->super_copy;
2434 u64 bytenr = btrfs_super_log_root(disk_super);
2435
2436 if (fs_devices->rw_devices == 0) {
2437 btrfs_warn(fs_info, "log replay required on RO media");
2438 return -EIO;
2439 }
2440
2441 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2442 if (!log_tree_root)
2443 return -ENOMEM;
2444
2445 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2446 tree_root->stripesize, log_tree_root, fs_info,
2447 BTRFS_TREE_LOG_OBJECTID);
2448
2449 log_tree_root->node = read_tree_block(tree_root, bytenr,
2450 fs_info->generation + 1);
2451 if (IS_ERR(log_tree_root->node)) {
2452 btrfs_warn(fs_info, "failed to read log tree");
2453 ret = PTR_ERR(log_tree_root->node);
2454 kfree(log_tree_root);
2455 return ret;
2456 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2457 btrfs_err(fs_info, "failed to read log tree");
2458 free_extent_buffer(log_tree_root->node);
2459 kfree(log_tree_root);
2460 return -EIO;
2461 }
2462 /* returns with log_tree_root freed on success */
2463 ret = btrfs_recover_log_trees(log_tree_root);
2464 if (ret) {
2465 btrfs_handle_fs_error(tree_root->fs_info, ret,
2466 "Failed to recover log tree");
2467 free_extent_buffer(log_tree_root->node);
2468 kfree(log_tree_root);
2469 return ret;
2470 }
2471
2472 if (fs_info->sb->s_flags & MS_RDONLY) {
2473 ret = btrfs_commit_super(tree_root);
2474 if (ret)
2475 return ret;
2476 }
2477
2478 return 0;
2479 }
2480
2481 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2482 struct btrfs_root *tree_root)
2483 {
2484 struct btrfs_root *root;
2485 struct btrfs_key location;
2486 int ret;
2487
2488 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2489 location.type = BTRFS_ROOT_ITEM_KEY;
2490 location.offset = 0;
2491
2492 root = btrfs_read_tree_root(tree_root, &location);
2493 if (IS_ERR(root))
2494 return PTR_ERR(root);
2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 fs_info->extent_root = root;
2497
2498 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2499 root = btrfs_read_tree_root(tree_root, &location);
2500 if (IS_ERR(root))
2501 return PTR_ERR(root);
2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503 fs_info->dev_root = root;
2504 btrfs_init_devices_late(fs_info);
2505
2506 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2507 root = btrfs_read_tree_root(tree_root, &location);
2508 if (IS_ERR(root))
2509 return PTR_ERR(root);
2510 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2511 fs_info->csum_root = root;
2512
2513 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2514 root = btrfs_read_tree_root(tree_root, &location);
2515 if (!IS_ERR(root)) {
2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2518 fs_info->quota_root = root;
2519 }
2520
2521 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2522 root = btrfs_read_tree_root(tree_root, &location);
2523 if (IS_ERR(root)) {
2524 ret = PTR_ERR(root);
2525 if (ret != -ENOENT)
2526 return ret;
2527 } else {
2528 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2529 fs_info->uuid_root = root;
2530 }
2531
2532 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2533 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2534 root = btrfs_read_tree_root(tree_root, &location);
2535 if (IS_ERR(root))
2536 return PTR_ERR(root);
2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 fs_info->free_space_root = root;
2539 }
2540
2541 return 0;
2542 }
2543
2544 int open_ctree(struct super_block *sb,
2545 struct btrfs_fs_devices *fs_devices,
2546 char *options)
2547 {
2548 u32 sectorsize;
2549 u32 nodesize;
2550 u32 stripesize;
2551 u64 generation;
2552 u64 features;
2553 struct btrfs_key location;
2554 struct buffer_head *bh;
2555 struct btrfs_super_block *disk_super;
2556 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2557 struct btrfs_root *tree_root;
2558 struct btrfs_root *chunk_root;
2559 int ret;
2560 int err = -EINVAL;
2561 int num_backups_tried = 0;
2562 int backup_index = 0;
2563 int max_active;
2564
2565 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2566 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2567 if (!tree_root || !chunk_root) {
2568 err = -ENOMEM;
2569 goto fail;
2570 }
2571
2572 ret = init_srcu_struct(&fs_info->subvol_srcu);
2573 if (ret) {
2574 err = ret;
2575 goto fail;
2576 }
2577
2578 ret = setup_bdi(fs_info, &fs_info->bdi);
2579 if (ret) {
2580 err = ret;
2581 goto fail_srcu;
2582 }
2583
2584 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2585 if (ret) {
2586 err = ret;
2587 goto fail_bdi;
2588 }
2589 fs_info->dirty_metadata_batch = PAGE_SIZE *
2590 (1 + ilog2(nr_cpu_ids));
2591
2592 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2593 if (ret) {
2594 err = ret;
2595 goto fail_dirty_metadata_bytes;
2596 }
2597
2598 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2599 if (ret) {
2600 err = ret;
2601 goto fail_delalloc_bytes;
2602 }
2603
2604 fs_info->btree_inode = new_inode(sb);
2605 if (!fs_info->btree_inode) {
2606 err = -ENOMEM;
2607 goto fail_bio_counter;
2608 }
2609
2610 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2611
2612 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2613 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2614 INIT_LIST_HEAD(&fs_info->trans_list);
2615 INIT_LIST_HEAD(&fs_info->dead_roots);
2616 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2617 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2618 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2619 spin_lock_init(&fs_info->delalloc_root_lock);
2620 spin_lock_init(&fs_info->trans_lock);
2621 spin_lock_init(&fs_info->fs_roots_radix_lock);
2622 spin_lock_init(&fs_info->delayed_iput_lock);
2623 spin_lock_init(&fs_info->defrag_inodes_lock);
2624 spin_lock_init(&fs_info->free_chunk_lock);
2625 spin_lock_init(&fs_info->tree_mod_seq_lock);
2626 spin_lock_init(&fs_info->super_lock);
2627 spin_lock_init(&fs_info->qgroup_op_lock);
2628 spin_lock_init(&fs_info->buffer_lock);
2629 spin_lock_init(&fs_info->unused_bgs_lock);
2630 rwlock_init(&fs_info->tree_mod_log_lock);
2631 mutex_init(&fs_info->unused_bg_unpin_mutex);
2632 mutex_init(&fs_info->reloc_mutex);
2633 mutex_init(&fs_info->delalloc_root_mutex);
2634 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2635 seqlock_init(&fs_info->profiles_lock);
2636
2637 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2638 INIT_LIST_HEAD(&fs_info->space_info);
2639 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2640 INIT_LIST_HEAD(&fs_info->unused_bgs);
2641 btrfs_mapping_init(&fs_info->mapping_tree);
2642 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2643 BTRFS_BLOCK_RSV_GLOBAL);
2644 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2645 BTRFS_BLOCK_RSV_DELALLOC);
2646 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2647 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2648 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2649 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2650 BTRFS_BLOCK_RSV_DELOPS);
2651 atomic_set(&fs_info->nr_async_submits, 0);
2652 atomic_set(&fs_info->async_delalloc_pages, 0);
2653 atomic_set(&fs_info->async_submit_draining, 0);
2654 atomic_set(&fs_info->nr_async_bios, 0);
2655 atomic_set(&fs_info->defrag_running, 0);
2656 atomic_set(&fs_info->qgroup_op_seq, 0);
2657 atomic_set(&fs_info->reada_works_cnt, 0);
2658 atomic64_set(&fs_info->tree_mod_seq, 0);
2659 fs_info->fs_frozen = 0;
2660 fs_info->sb = sb;
2661 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2662 fs_info->metadata_ratio = 0;
2663 fs_info->defrag_inodes = RB_ROOT;
2664 fs_info->free_chunk_space = 0;
2665 fs_info->tree_mod_log = RB_ROOT;
2666 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2667 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2668 /* readahead state */
2669 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2670 spin_lock_init(&fs_info->reada_lock);
2671
2672 fs_info->thread_pool_size = min_t(unsigned long,
2673 num_online_cpus() + 2, 8);
2674
2675 INIT_LIST_HEAD(&fs_info->ordered_roots);
2676 spin_lock_init(&fs_info->ordered_root_lock);
2677 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2678 GFP_KERNEL);
2679 if (!fs_info->delayed_root) {
2680 err = -ENOMEM;
2681 goto fail_iput;
2682 }
2683 btrfs_init_delayed_root(fs_info->delayed_root);
2684
2685 btrfs_init_scrub(fs_info);
2686 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2687 fs_info->check_integrity_print_mask = 0;
2688 #endif
2689 btrfs_init_balance(fs_info);
2690 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2691
2692 sb->s_blocksize = 4096;
2693 sb->s_blocksize_bits = blksize_bits(4096);
2694 sb->s_bdi = &fs_info->bdi;
2695
2696 btrfs_init_btree_inode(fs_info, tree_root);
2697
2698 spin_lock_init(&fs_info->block_group_cache_lock);
2699 fs_info->block_group_cache_tree = RB_ROOT;
2700 fs_info->first_logical_byte = (u64)-1;
2701
2702 extent_io_tree_init(&fs_info->freed_extents[0],
2703 fs_info->btree_inode->i_mapping);
2704 extent_io_tree_init(&fs_info->freed_extents[1],
2705 fs_info->btree_inode->i_mapping);
2706 fs_info->pinned_extents = &fs_info->freed_extents[0];
2707 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2708
2709 mutex_init(&fs_info->ordered_operations_mutex);
2710 mutex_init(&fs_info->tree_log_mutex);
2711 mutex_init(&fs_info->chunk_mutex);
2712 mutex_init(&fs_info->transaction_kthread_mutex);
2713 mutex_init(&fs_info->cleaner_mutex);
2714 mutex_init(&fs_info->volume_mutex);
2715 mutex_init(&fs_info->ro_block_group_mutex);
2716 init_rwsem(&fs_info->commit_root_sem);
2717 init_rwsem(&fs_info->cleanup_work_sem);
2718 init_rwsem(&fs_info->subvol_sem);
2719 init_rwsem(&fs_info->bg_delete_sem);
2720 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2721
2722 btrfs_init_dev_replace_locks(fs_info);
2723 btrfs_init_qgroup(fs_info);
2724
2725 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2726 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2727
2728 init_waitqueue_head(&fs_info->transaction_throttle);
2729 init_waitqueue_head(&fs_info->transaction_wait);
2730 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2731 init_waitqueue_head(&fs_info->async_submit_wait);
2732
2733 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2734
2735 ret = btrfs_alloc_stripe_hash_table(fs_info);
2736 if (ret) {
2737 err = ret;
2738 goto fail_alloc;
2739 }
2740
2741 __setup_root(4096, 4096, 4096, tree_root,
2742 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2743
2744 invalidate_bdev(fs_devices->latest_bdev);
2745
2746 /*
2747 * Read super block and check the signature bytes only
2748 */
2749 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2750 if (IS_ERR(bh)) {
2751 err = PTR_ERR(bh);
2752 goto fail_alloc;
2753 }
2754
2755 /*
2756 * We want to check superblock checksum, the type is stored inside.
2757 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2758 */
2759 if (btrfs_check_super_csum(bh->b_data)) {
2760 btrfs_err(fs_info, "superblock checksum mismatch");
2761 err = -EINVAL;
2762 brelse(bh);
2763 goto fail_alloc;
2764 }
2765
2766 /*
2767 * super_copy is zeroed at allocation time and we never touch the
2768 * following bytes up to INFO_SIZE, the checksum is calculated from
2769 * the whole block of INFO_SIZE
2770 */
2771 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2772 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2773 sizeof(*fs_info->super_for_commit));
2774 brelse(bh);
2775
2776 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2777
2778 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2779 if (ret) {
2780 btrfs_err(fs_info, "superblock contains fatal errors");
2781 err = -EINVAL;
2782 goto fail_alloc;
2783 }
2784
2785 disk_super = fs_info->super_copy;
2786 if (!btrfs_super_root(disk_super))
2787 goto fail_alloc;
2788
2789 /* check FS state, whether FS is broken. */
2790 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2791 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2792
2793 /*
2794 * run through our array of backup supers and setup
2795 * our ring pointer to the oldest one
2796 */
2797 generation = btrfs_super_generation(disk_super);
2798 find_oldest_super_backup(fs_info, generation);
2799
2800 /*
2801 * In the long term, we'll store the compression type in the super
2802 * block, and it'll be used for per file compression control.
2803 */
2804 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2805
2806 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2807 if (ret) {
2808 err = ret;
2809 goto fail_alloc;
2810 }
2811
2812 features = btrfs_super_incompat_flags(disk_super) &
2813 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2814 if (features) {
2815 btrfs_err(fs_info,
2816 "cannot mount because of unsupported optional features (%llx)",
2817 features);
2818 err = -EINVAL;
2819 goto fail_alloc;
2820 }
2821
2822 features = btrfs_super_incompat_flags(disk_super);
2823 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2824 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2825 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2826
2827 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2828 btrfs_info(fs_info, "has skinny extents");
2829
2830 /*
2831 * flag our filesystem as having big metadata blocks if
2832 * they are bigger than the page size
2833 */
2834 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2835 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2836 btrfs_info(fs_info,
2837 "flagging fs with big metadata feature");
2838 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2839 }
2840
2841 nodesize = btrfs_super_nodesize(disk_super);
2842 sectorsize = btrfs_super_sectorsize(disk_super);
2843 stripesize = sectorsize;
2844 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2845 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2846
2847 /*
2848 * mixed block groups end up with duplicate but slightly offset
2849 * extent buffers for the same range. It leads to corruptions
2850 */
2851 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2852 (sectorsize != nodesize)) {
2853 btrfs_err(fs_info,
2854 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2855 nodesize, sectorsize);
2856 goto fail_alloc;
2857 }
2858
2859 /*
2860 * Needn't use the lock because there is no other task which will
2861 * update the flag.
2862 */
2863 btrfs_set_super_incompat_flags(disk_super, features);
2864
2865 features = btrfs_super_compat_ro_flags(disk_super) &
2866 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2867 if (!(sb->s_flags & MS_RDONLY) && features) {
2868 btrfs_err(fs_info,
2869 "cannot mount read-write because of unsupported optional features (%llx)",
2870 features);
2871 err = -EINVAL;
2872 goto fail_alloc;
2873 }
2874
2875 max_active = fs_info->thread_pool_size;
2876
2877 ret = btrfs_init_workqueues(fs_info, fs_devices);
2878 if (ret) {
2879 err = ret;
2880 goto fail_sb_buffer;
2881 }
2882
2883 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2884 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2885 SZ_4M / PAGE_SIZE);
2886
2887 tree_root->nodesize = nodesize;
2888 tree_root->sectorsize = sectorsize;
2889 tree_root->stripesize = stripesize;
2890
2891 sb->s_blocksize = sectorsize;
2892 sb->s_blocksize_bits = blksize_bits(sectorsize);
2893
2894 mutex_lock(&fs_info->chunk_mutex);
2895 ret = btrfs_read_sys_array(tree_root);
2896 mutex_unlock(&fs_info->chunk_mutex);
2897 if (ret) {
2898 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2899 goto fail_sb_buffer;
2900 }
2901
2902 generation = btrfs_super_chunk_root_generation(disk_super);
2903
2904 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2905 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2906
2907 chunk_root->node = read_tree_block(chunk_root,
2908 btrfs_super_chunk_root(disk_super),
2909 generation);
2910 if (IS_ERR(chunk_root->node) ||
2911 !extent_buffer_uptodate(chunk_root->node)) {
2912 btrfs_err(fs_info, "failed to read chunk root");
2913 if (!IS_ERR(chunk_root->node))
2914 free_extent_buffer(chunk_root->node);
2915 chunk_root->node = NULL;
2916 goto fail_tree_roots;
2917 }
2918 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2919 chunk_root->commit_root = btrfs_root_node(chunk_root);
2920
2921 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2922 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2923
2924 ret = btrfs_read_chunk_tree(chunk_root);
2925 if (ret) {
2926 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2927 goto fail_tree_roots;
2928 }
2929
2930 /*
2931 * keep the device that is marked to be the target device for the
2932 * dev_replace procedure
2933 */
2934 btrfs_close_extra_devices(fs_devices, 0);
2935
2936 if (!fs_devices->latest_bdev) {
2937 btrfs_err(fs_info, "failed to read devices");
2938 goto fail_tree_roots;
2939 }
2940
2941 retry_root_backup:
2942 generation = btrfs_super_generation(disk_super);
2943
2944 tree_root->node = read_tree_block(tree_root,
2945 btrfs_super_root(disk_super),
2946 generation);
2947 if (IS_ERR(tree_root->node) ||
2948 !extent_buffer_uptodate(tree_root->node)) {
2949 btrfs_warn(fs_info, "failed to read tree root");
2950 if (!IS_ERR(tree_root->node))
2951 free_extent_buffer(tree_root->node);
2952 tree_root->node = NULL;
2953 goto recovery_tree_root;
2954 }
2955
2956 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2957 tree_root->commit_root = btrfs_root_node(tree_root);
2958 btrfs_set_root_refs(&tree_root->root_item, 1);
2959
2960 mutex_lock(&tree_root->objectid_mutex);
2961 ret = btrfs_find_highest_objectid(tree_root,
2962 &tree_root->highest_objectid);
2963 if (ret) {
2964 mutex_unlock(&tree_root->objectid_mutex);
2965 goto recovery_tree_root;
2966 }
2967
2968 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2969
2970 mutex_unlock(&tree_root->objectid_mutex);
2971
2972 ret = btrfs_read_roots(fs_info, tree_root);
2973 if (ret)
2974 goto recovery_tree_root;
2975
2976 fs_info->generation = generation;
2977 fs_info->last_trans_committed = generation;
2978
2979 ret = btrfs_recover_balance(fs_info);
2980 if (ret) {
2981 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2982 goto fail_block_groups;
2983 }
2984
2985 ret = btrfs_init_dev_stats(fs_info);
2986 if (ret) {
2987 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2988 goto fail_block_groups;
2989 }
2990
2991 ret = btrfs_init_dev_replace(fs_info);
2992 if (ret) {
2993 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2994 goto fail_block_groups;
2995 }
2996
2997 btrfs_close_extra_devices(fs_devices, 1);
2998
2999 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3000 if (ret) {
3001 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3002 ret);
3003 goto fail_block_groups;
3004 }
3005
3006 ret = btrfs_sysfs_add_device(fs_devices);
3007 if (ret) {
3008 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3009 ret);
3010 goto fail_fsdev_sysfs;
3011 }
3012
3013 ret = btrfs_sysfs_add_mounted(fs_info);
3014 if (ret) {
3015 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3016 goto fail_fsdev_sysfs;
3017 }
3018
3019 ret = btrfs_init_space_info(fs_info);
3020 if (ret) {
3021 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3022 goto fail_sysfs;
3023 }
3024
3025 ret = btrfs_read_block_groups(fs_info->extent_root);
3026 if (ret) {
3027 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3028 goto fail_sysfs;
3029 }
3030 fs_info->num_tolerated_disk_barrier_failures =
3031 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3032 if (fs_info->fs_devices->missing_devices >
3033 fs_info->num_tolerated_disk_barrier_failures &&
3034 !(sb->s_flags & MS_RDONLY)) {
3035 btrfs_warn(fs_info,
3036 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3037 fs_info->fs_devices->missing_devices,
3038 fs_info->num_tolerated_disk_barrier_failures);
3039 goto fail_sysfs;
3040 }
3041
3042 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3043 "btrfs-cleaner");
3044 if (IS_ERR(fs_info->cleaner_kthread))
3045 goto fail_sysfs;
3046
3047 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3048 tree_root,
3049 "btrfs-transaction");
3050 if (IS_ERR(fs_info->transaction_kthread))
3051 goto fail_cleaner;
3052
3053 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3054 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3055 !fs_info->fs_devices->rotating) {
3056 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3057 btrfs_set_opt(fs_info->mount_opt, SSD);
3058 }
3059
3060 /*
3061 * Mount does not set all options immediately, we can do it now and do
3062 * not have to wait for transaction commit
3063 */
3064 btrfs_apply_pending_changes(fs_info);
3065
3066 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3067 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3068 ret = btrfsic_mount(tree_root, fs_devices,
3069 btrfs_test_opt(tree_root->fs_info,
3070 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3071 1 : 0,
3072 fs_info->check_integrity_print_mask);
3073 if (ret)
3074 btrfs_warn(fs_info,
3075 "failed to initialize integrity check module: %d",
3076 ret);
3077 }
3078 #endif
3079 ret = btrfs_read_qgroup_config(fs_info);
3080 if (ret)
3081 goto fail_trans_kthread;
3082
3083 /* do not make disk changes in broken FS or nologreplay is given */
3084 if (btrfs_super_log_root(disk_super) != 0 &&
3085 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3086 ret = btrfs_replay_log(fs_info, fs_devices);
3087 if (ret) {
3088 err = ret;
3089 goto fail_qgroup;
3090 }
3091 }
3092
3093 ret = btrfs_find_orphan_roots(tree_root);
3094 if (ret)
3095 goto fail_qgroup;
3096
3097 if (!(sb->s_flags & MS_RDONLY)) {
3098 ret = btrfs_cleanup_fs_roots(fs_info);
3099 if (ret)
3100 goto fail_qgroup;
3101
3102 mutex_lock(&fs_info->cleaner_mutex);
3103 ret = btrfs_recover_relocation(tree_root);
3104 mutex_unlock(&fs_info->cleaner_mutex);
3105 if (ret < 0) {
3106 btrfs_warn(fs_info, "failed to recover relocation: %d",
3107 ret);
3108 err = -EINVAL;
3109 goto fail_qgroup;
3110 }
3111 }
3112
3113 location.objectid = BTRFS_FS_TREE_OBJECTID;
3114 location.type = BTRFS_ROOT_ITEM_KEY;
3115 location.offset = 0;
3116
3117 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3118 if (IS_ERR(fs_info->fs_root)) {
3119 err = PTR_ERR(fs_info->fs_root);
3120 goto fail_qgroup;
3121 }
3122
3123 if (sb->s_flags & MS_RDONLY)
3124 return 0;
3125
3126 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3127 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3128 btrfs_info(fs_info, "creating free space tree");
3129 ret = btrfs_create_free_space_tree(fs_info);
3130 if (ret) {
3131 btrfs_warn(fs_info,
3132 "failed to create free space tree: %d", ret);
3133 close_ctree(tree_root);
3134 return ret;
3135 }
3136 }
3137
3138 down_read(&fs_info->cleanup_work_sem);
3139 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3140 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3141 up_read(&fs_info->cleanup_work_sem);
3142 close_ctree(tree_root);
3143 return ret;
3144 }
3145 up_read(&fs_info->cleanup_work_sem);
3146
3147 ret = btrfs_resume_balance_async(fs_info);
3148 if (ret) {
3149 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3150 close_ctree(tree_root);
3151 return ret;
3152 }
3153
3154 ret = btrfs_resume_dev_replace_async(fs_info);
3155 if (ret) {
3156 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3157 close_ctree(tree_root);
3158 return ret;
3159 }
3160
3161 btrfs_qgroup_rescan_resume(fs_info);
3162
3163 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3164 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3165 btrfs_info(fs_info, "clearing free space tree");
3166 ret = btrfs_clear_free_space_tree(fs_info);
3167 if (ret) {
3168 btrfs_warn(fs_info,
3169 "failed to clear free space tree: %d", ret);
3170 close_ctree(tree_root);
3171 return ret;
3172 }
3173 }
3174
3175 if (!fs_info->uuid_root) {
3176 btrfs_info(fs_info, "creating UUID tree");
3177 ret = btrfs_create_uuid_tree(fs_info);
3178 if (ret) {
3179 btrfs_warn(fs_info,
3180 "failed to create the UUID tree: %d", ret);
3181 close_ctree(tree_root);
3182 return ret;
3183 }
3184 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3185 fs_info->generation !=
3186 btrfs_super_uuid_tree_generation(disk_super)) {
3187 btrfs_info(fs_info, "checking UUID tree");
3188 ret = btrfs_check_uuid_tree(fs_info);
3189 if (ret) {
3190 btrfs_warn(fs_info,
3191 "failed to check the UUID tree: %d", ret);
3192 close_ctree(tree_root);
3193 return ret;
3194 }
3195 } else {
3196 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3197 }
3198 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3199
3200 /*
3201 * backuproot only affect mount behavior, and if open_ctree succeeded,
3202 * no need to keep the flag
3203 */
3204 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3205
3206 return 0;
3207
3208 fail_qgroup:
3209 btrfs_free_qgroup_config(fs_info);
3210 fail_trans_kthread:
3211 kthread_stop(fs_info->transaction_kthread);
3212 btrfs_cleanup_transaction(fs_info->tree_root);
3213 btrfs_free_fs_roots(fs_info);
3214 fail_cleaner:
3215 kthread_stop(fs_info->cleaner_kthread);
3216
3217 /*
3218 * make sure we're done with the btree inode before we stop our
3219 * kthreads
3220 */
3221 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3222
3223 fail_sysfs:
3224 btrfs_sysfs_remove_mounted(fs_info);
3225
3226 fail_fsdev_sysfs:
3227 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3228
3229 fail_block_groups:
3230 btrfs_put_block_group_cache(fs_info);
3231 btrfs_free_block_groups(fs_info);
3232
3233 fail_tree_roots:
3234 free_root_pointers(fs_info, 1);
3235 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3236
3237 fail_sb_buffer:
3238 btrfs_stop_all_workers(fs_info);
3239 fail_alloc:
3240 fail_iput:
3241 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3242
3243 iput(fs_info->btree_inode);
3244 fail_bio_counter:
3245 percpu_counter_destroy(&fs_info->bio_counter);
3246 fail_delalloc_bytes:
3247 percpu_counter_destroy(&fs_info->delalloc_bytes);
3248 fail_dirty_metadata_bytes:
3249 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3250 fail_bdi:
3251 bdi_destroy(&fs_info->bdi);
3252 fail_srcu:
3253 cleanup_srcu_struct(&fs_info->subvol_srcu);
3254 fail:
3255 btrfs_free_stripe_hash_table(fs_info);
3256 btrfs_close_devices(fs_info->fs_devices);
3257 return err;
3258
3259 recovery_tree_root:
3260 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3261 goto fail_tree_roots;
3262
3263 free_root_pointers(fs_info, 0);
3264
3265 /* don't use the log in recovery mode, it won't be valid */
3266 btrfs_set_super_log_root(disk_super, 0);
3267
3268 /* we can't trust the free space cache either */
3269 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3270
3271 ret = next_root_backup(fs_info, fs_info->super_copy,
3272 &num_backups_tried, &backup_index);
3273 if (ret == -1)
3274 goto fail_block_groups;
3275 goto retry_root_backup;
3276 }
3277
3278 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3279 {
3280 if (uptodate) {
3281 set_buffer_uptodate(bh);
3282 } else {
3283 struct btrfs_device *device = (struct btrfs_device *)
3284 bh->b_private;
3285
3286 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3287 "lost page write due to IO error on %s",
3288 rcu_str_deref(device->name));
3289 /* note, we don't set_buffer_write_io_error because we have
3290 * our own ways of dealing with the IO errors
3291 */
3292 clear_buffer_uptodate(bh);
3293 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3294 }
3295 unlock_buffer(bh);
3296 put_bh(bh);
3297 }
3298
3299 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3300 struct buffer_head **bh_ret)
3301 {
3302 struct buffer_head *bh;
3303 struct btrfs_super_block *super;
3304 u64 bytenr;
3305
3306 bytenr = btrfs_sb_offset(copy_num);
3307 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3308 return -EINVAL;
3309
3310 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3311 /*
3312 * If we fail to read from the underlying devices, as of now
3313 * the best option we have is to mark it EIO.
3314 */
3315 if (!bh)
3316 return -EIO;
3317
3318 super = (struct btrfs_super_block *)bh->b_data;
3319 if (btrfs_super_bytenr(super) != bytenr ||
3320 btrfs_super_magic(super) != BTRFS_MAGIC) {
3321 brelse(bh);
3322 return -EINVAL;
3323 }
3324
3325 *bh_ret = bh;
3326 return 0;
3327 }
3328
3329
3330 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3331 {
3332 struct buffer_head *bh;
3333 struct buffer_head *latest = NULL;
3334 struct btrfs_super_block *super;
3335 int i;
3336 u64 transid = 0;
3337 int ret = -EINVAL;
3338
3339 /* we would like to check all the supers, but that would make
3340 * a btrfs mount succeed after a mkfs from a different FS.
3341 * So, we need to add a special mount option to scan for
3342 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3343 */
3344 for (i = 0; i < 1; i++) {
3345 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3346 if (ret)
3347 continue;
3348
3349 super = (struct btrfs_super_block *)bh->b_data;
3350
3351 if (!latest || btrfs_super_generation(super) > transid) {
3352 brelse(latest);
3353 latest = bh;
3354 transid = btrfs_super_generation(super);
3355 } else {
3356 brelse(bh);
3357 }
3358 }
3359
3360 if (!latest)
3361 return ERR_PTR(ret);
3362
3363 return latest;
3364 }
3365
3366 /*
3367 * this should be called twice, once with wait == 0 and
3368 * once with wait == 1. When wait == 0 is done, all the buffer heads
3369 * we write are pinned.
3370 *
3371 * They are released when wait == 1 is done.
3372 * max_mirrors must be the same for both runs, and it indicates how
3373 * many supers on this one device should be written.
3374 *
3375 * max_mirrors == 0 means to write them all.
3376 */
3377 static int write_dev_supers(struct btrfs_device *device,
3378 struct btrfs_super_block *sb,
3379 int do_barriers, int wait, int max_mirrors)
3380 {
3381 struct buffer_head *bh;
3382 int i;
3383 int ret;
3384 int errors = 0;
3385 u32 crc;
3386 u64 bytenr;
3387
3388 if (max_mirrors == 0)
3389 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3390
3391 for (i = 0; i < max_mirrors; i++) {
3392 bytenr = btrfs_sb_offset(i);
3393 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3394 device->commit_total_bytes)
3395 break;
3396
3397 if (wait) {
3398 bh = __find_get_block(device->bdev, bytenr / 4096,
3399 BTRFS_SUPER_INFO_SIZE);
3400 if (!bh) {
3401 errors++;
3402 continue;
3403 }
3404 wait_on_buffer(bh);
3405 if (!buffer_uptodate(bh))
3406 errors++;
3407
3408 /* drop our reference */
3409 brelse(bh);
3410
3411 /* drop the reference from the wait == 0 run */
3412 brelse(bh);
3413 continue;
3414 } else {
3415 btrfs_set_super_bytenr(sb, bytenr);
3416
3417 crc = ~(u32)0;
3418 crc = btrfs_csum_data((char *)sb +
3419 BTRFS_CSUM_SIZE, crc,
3420 BTRFS_SUPER_INFO_SIZE -
3421 BTRFS_CSUM_SIZE);
3422 btrfs_csum_final(crc, sb->csum);
3423
3424 /*
3425 * one reference for us, and we leave it for the
3426 * caller
3427 */
3428 bh = __getblk(device->bdev, bytenr / 4096,
3429 BTRFS_SUPER_INFO_SIZE);
3430 if (!bh) {
3431 btrfs_err(device->dev_root->fs_info,
3432 "couldn't get super buffer head for bytenr %llu",
3433 bytenr);
3434 errors++;
3435 continue;
3436 }
3437
3438 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3439
3440 /* one reference for submit_bh */
3441 get_bh(bh);
3442
3443 set_buffer_uptodate(bh);
3444 lock_buffer(bh);
3445 bh->b_end_io = btrfs_end_buffer_write_sync;
3446 bh->b_private = device;
3447 }
3448
3449 /*
3450 * we fua the first super. The others we allow
3451 * to go down lazy.
3452 */
3453 if (i == 0)
3454 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3455 else
3456 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3457 if (ret)
3458 errors++;
3459 }
3460 return errors < i ? 0 : -1;
3461 }
3462
3463 /*
3464 * endio for the write_dev_flush, this will wake anyone waiting
3465 * for the barrier when it is done
3466 */
3467 static void btrfs_end_empty_barrier(struct bio *bio)
3468 {
3469 if (bio->bi_private)
3470 complete(bio->bi_private);
3471 bio_put(bio);
3472 }
3473
3474 /*
3475 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3476 * sent down. With wait == 1, it waits for the previous flush.
3477 *
3478 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3479 * capable
3480 */
3481 static int write_dev_flush(struct btrfs_device *device, int wait)
3482 {
3483 struct bio *bio;
3484 int ret = 0;
3485
3486 if (device->nobarriers)
3487 return 0;
3488
3489 if (wait) {
3490 bio = device->flush_bio;
3491 if (!bio)
3492 return 0;
3493
3494 wait_for_completion(&device->flush_wait);
3495
3496 if (bio->bi_error) {
3497 ret = bio->bi_error;
3498 btrfs_dev_stat_inc_and_print(device,
3499 BTRFS_DEV_STAT_FLUSH_ERRS);
3500 }
3501
3502 /* drop the reference from the wait == 0 run */
3503 bio_put(bio);
3504 device->flush_bio = NULL;
3505
3506 return ret;
3507 }
3508
3509 /*
3510 * one reference for us, and we leave it for the
3511 * caller
3512 */
3513 device->flush_bio = NULL;
3514 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3515 if (!bio)
3516 return -ENOMEM;
3517
3518 bio->bi_end_io = btrfs_end_empty_barrier;
3519 bio->bi_bdev = device->bdev;
3520 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3521 init_completion(&device->flush_wait);
3522 bio->bi_private = &device->flush_wait;
3523 device->flush_bio = bio;
3524
3525 bio_get(bio);
3526 btrfsic_submit_bio(bio);
3527
3528 return 0;
3529 }
3530
3531 /*
3532 * send an empty flush down to each device in parallel,
3533 * then wait for them
3534 */
3535 static int barrier_all_devices(struct btrfs_fs_info *info)
3536 {
3537 struct list_head *head;
3538 struct btrfs_device *dev;
3539 int errors_send = 0;
3540 int errors_wait = 0;
3541 int ret;
3542
3543 /* send down all the barriers */
3544 head = &info->fs_devices->devices;
3545 list_for_each_entry_rcu(dev, head, dev_list) {
3546 if (dev->missing)
3547 continue;
3548 if (!dev->bdev) {
3549 errors_send++;
3550 continue;
3551 }
3552 if (!dev->in_fs_metadata || !dev->writeable)
3553 continue;
3554
3555 ret = write_dev_flush(dev, 0);
3556 if (ret)
3557 errors_send++;
3558 }
3559
3560 /* wait for all the barriers */
3561 list_for_each_entry_rcu(dev, head, dev_list) {
3562 if (dev->missing)
3563 continue;
3564 if (!dev->bdev) {
3565 errors_wait++;
3566 continue;
3567 }
3568 if (!dev->in_fs_metadata || !dev->writeable)
3569 continue;
3570
3571 ret = write_dev_flush(dev, 1);
3572 if (ret)
3573 errors_wait++;
3574 }
3575 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3576 errors_wait > info->num_tolerated_disk_barrier_failures)
3577 return -EIO;
3578 return 0;
3579 }
3580
3581 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3582 {
3583 int raid_type;
3584 int min_tolerated = INT_MAX;
3585
3586 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3587 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3588 min_tolerated = min(min_tolerated,
3589 btrfs_raid_array[BTRFS_RAID_SINGLE].
3590 tolerated_failures);
3591
3592 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3593 if (raid_type == BTRFS_RAID_SINGLE)
3594 continue;
3595 if (!(flags & btrfs_raid_group[raid_type]))
3596 continue;
3597 min_tolerated = min(min_tolerated,
3598 btrfs_raid_array[raid_type].
3599 tolerated_failures);
3600 }
3601
3602 if (min_tolerated == INT_MAX) {
3603 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3604 min_tolerated = 0;
3605 }
3606
3607 return min_tolerated;
3608 }
3609
3610 int btrfs_calc_num_tolerated_disk_barrier_failures(
3611 struct btrfs_fs_info *fs_info)
3612 {
3613 struct btrfs_ioctl_space_info space;
3614 struct btrfs_space_info *sinfo;
3615 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3616 BTRFS_BLOCK_GROUP_SYSTEM,
3617 BTRFS_BLOCK_GROUP_METADATA,
3618 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3619 int i;
3620 int c;
3621 int num_tolerated_disk_barrier_failures =
3622 (int)fs_info->fs_devices->num_devices;
3623
3624 for (i = 0; i < ARRAY_SIZE(types); i++) {
3625 struct btrfs_space_info *tmp;
3626
3627 sinfo = NULL;
3628 rcu_read_lock();
3629 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3630 if (tmp->flags == types[i]) {
3631 sinfo = tmp;
3632 break;
3633 }
3634 }
3635 rcu_read_unlock();
3636
3637 if (!sinfo)
3638 continue;
3639
3640 down_read(&sinfo->groups_sem);
3641 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3642 u64 flags;
3643
3644 if (list_empty(&sinfo->block_groups[c]))
3645 continue;
3646
3647 btrfs_get_block_group_info(&sinfo->block_groups[c],
3648 &space);
3649 if (space.total_bytes == 0 || space.used_bytes == 0)
3650 continue;
3651 flags = space.flags;
3652
3653 num_tolerated_disk_barrier_failures = min(
3654 num_tolerated_disk_barrier_failures,
3655 btrfs_get_num_tolerated_disk_barrier_failures(
3656 flags));
3657 }
3658 up_read(&sinfo->groups_sem);
3659 }
3660
3661 return num_tolerated_disk_barrier_failures;
3662 }
3663
3664 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3665 {
3666 struct list_head *head;
3667 struct btrfs_device *dev;
3668 struct btrfs_super_block *sb;
3669 struct btrfs_dev_item *dev_item;
3670 int ret;
3671 int do_barriers;
3672 int max_errors;
3673 int total_errors = 0;
3674 u64 flags;
3675
3676 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3677 backup_super_roots(root->fs_info);
3678
3679 sb = root->fs_info->super_for_commit;
3680 dev_item = &sb->dev_item;
3681
3682 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3683 head = &root->fs_info->fs_devices->devices;
3684 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3685
3686 if (do_barriers) {
3687 ret = barrier_all_devices(root->fs_info);
3688 if (ret) {
3689 mutex_unlock(
3690 &root->fs_info->fs_devices->device_list_mutex);
3691 btrfs_handle_fs_error(root->fs_info, ret,
3692 "errors while submitting device barriers.");
3693 return ret;
3694 }
3695 }
3696
3697 list_for_each_entry_rcu(dev, head, dev_list) {
3698 if (!dev->bdev) {
3699 total_errors++;
3700 continue;
3701 }
3702 if (!dev->in_fs_metadata || !dev->writeable)
3703 continue;
3704
3705 btrfs_set_stack_device_generation(dev_item, 0);
3706 btrfs_set_stack_device_type(dev_item, dev->type);
3707 btrfs_set_stack_device_id(dev_item, dev->devid);
3708 btrfs_set_stack_device_total_bytes(dev_item,
3709 dev->commit_total_bytes);
3710 btrfs_set_stack_device_bytes_used(dev_item,
3711 dev->commit_bytes_used);
3712 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3713 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3714 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3715 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3716 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3717
3718 flags = btrfs_super_flags(sb);
3719 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3720
3721 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3722 if (ret)
3723 total_errors++;
3724 }
3725 if (total_errors > max_errors) {
3726 btrfs_err(root->fs_info, "%d errors while writing supers",
3727 total_errors);
3728 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3729
3730 /* FUA is masked off if unsupported and can't be the reason */
3731 btrfs_handle_fs_error(root->fs_info, -EIO,
3732 "%d errors while writing supers", total_errors);
3733 return -EIO;
3734 }
3735
3736 total_errors = 0;
3737 list_for_each_entry_rcu(dev, head, dev_list) {
3738 if (!dev->bdev)
3739 continue;
3740 if (!dev->in_fs_metadata || !dev->writeable)
3741 continue;
3742
3743 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3744 if (ret)
3745 total_errors++;
3746 }
3747 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3748 if (total_errors > max_errors) {
3749 btrfs_handle_fs_error(root->fs_info, -EIO,
3750 "%d errors while writing supers", total_errors);
3751 return -EIO;
3752 }
3753 return 0;
3754 }
3755
3756 int write_ctree_super(struct btrfs_trans_handle *trans,
3757 struct btrfs_root *root, int max_mirrors)
3758 {
3759 return write_all_supers(root, max_mirrors);
3760 }
3761
3762 /* Drop a fs root from the radix tree and free it. */
3763 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3764 struct btrfs_root *root)
3765 {
3766 spin_lock(&fs_info->fs_roots_radix_lock);
3767 radix_tree_delete(&fs_info->fs_roots_radix,
3768 (unsigned long)root->root_key.objectid);
3769 spin_unlock(&fs_info->fs_roots_radix_lock);
3770
3771 if (btrfs_root_refs(&root->root_item) == 0)
3772 synchronize_srcu(&fs_info->subvol_srcu);
3773
3774 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3775 btrfs_free_log(NULL, root);
3776 if (root->reloc_root) {
3777 free_extent_buffer(root->reloc_root->node);
3778 free_extent_buffer(root->reloc_root->commit_root);
3779 btrfs_put_fs_root(root->reloc_root);
3780 root->reloc_root = NULL;
3781 }
3782 }
3783
3784 if (root->free_ino_pinned)
3785 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3786 if (root->free_ino_ctl)
3787 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3788 free_fs_root(root);
3789 }
3790
3791 static void free_fs_root(struct btrfs_root *root)
3792 {
3793 iput(root->ino_cache_inode);
3794 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3795 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3796 root->orphan_block_rsv = NULL;
3797 if (root->anon_dev)
3798 free_anon_bdev(root->anon_dev);
3799 if (root->subv_writers)
3800 btrfs_free_subvolume_writers(root->subv_writers);
3801 free_extent_buffer(root->node);
3802 free_extent_buffer(root->commit_root);
3803 kfree(root->free_ino_ctl);
3804 kfree(root->free_ino_pinned);
3805 kfree(root->name);
3806 btrfs_put_fs_root(root);
3807 }
3808
3809 void btrfs_free_fs_root(struct btrfs_root *root)
3810 {
3811 free_fs_root(root);
3812 }
3813
3814 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3815 {
3816 u64 root_objectid = 0;
3817 struct btrfs_root *gang[8];
3818 int i = 0;
3819 int err = 0;
3820 unsigned int ret = 0;
3821 int index;
3822
3823 while (1) {
3824 index = srcu_read_lock(&fs_info->subvol_srcu);
3825 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3826 (void **)gang, root_objectid,
3827 ARRAY_SIZE(gang));
3828 if (!ret) {
3829 srcu_read_unlock(&fs_info->subvol_srcu, index);
3830 break;
3831 }
3832 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3833
3834 for (i = 0; i < ret; i++) {
3835 /* Avoid to grab roots in dead_roots */
3836 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3837 gang[i] = NULL;
3838 continue;
3839 }
3840 /* grab all the search result for later use */
3841 gang[i] = btrfs_grab_fs_root(gang[i]);
3842 }
3843 srcu_read_unlock(&fs_info->subvol_srcu, index);
3844
3845 for (i = 0; i < ret; i++) {
3846 if (!gang[i])
3847 continue;
3848 root_objectid = gang[i]->root_key.objectid;
3849 err = btrfs_orphan_cleanup(gang[i]);
3850 if (err)
3851 break;
3852 btrfs_put_fs_root(gang[i]);
3853 }
3854 root_objectid++;
3855 }
3856
3857 /* release the uncleaned roots due to error */
3858 for (; i < ret; i++) {
3859 if (gang[i])
3860 btrfs_put_fs_root(gang[i]);
3861 }
3862 return err;
3863 }
3864
3865 int btrfs_commit_super(struct btrfs_root *root)
3866 {
3867 struct btrfs_trans_handle *trans;
3868
3869 mutex_lock(&root->fs_info->cleaner_mutex);
3870 btrfs_run_delayed_iputs(root);
3871 mutex_unlock(&root->fs_info->cleaner_mutex);
3872 wake_up_process(root->fs_info->cleaner_kthread);
3873
3874 /* wait until ongoing cleanup work done */
3875 down_write(&root->fs_info->cleanup_work_sem);
3876 up_write(&root->fs_info->cleanup_work_sem);
3877
3878 trans = btrfs_join_transaction(root);
3879 if (IS_ERR(trans))
3880 return PTR_ERR(trans);
3881 return btrfs_commit_transaction(trans, root);
3882 }
3883
3884 void close_ctree(struct btrfs_root *root)
3885 {
3886 struct btrfs_fs_info *fs_info = root->fs_info;
3887 int ret;
3888
3889 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3890
3891 /* wait for the qgroup rescan worker to stop */
3892 btrfs_qgroup_wait_for_completion(fs_info, false);
3893
3894 /* wait for the uuid_scan task to finish */
3895 down(&fs_info->uuid_tree_rescan_sem);
3896 /* avoid complains from lockdep et al., set sem back to initial state */
3897 up(&fs_info->uuid_tree_rescan_sem);
3898
3899 /* pause restriper - we want to resume on mount */
3900 btrfs_pause_balance(fs_info);
3901
3902 btrfs_dev_replace_suspend_for_unmount(fs_info);
3903
3904 btrfs_scrub_cancel(fs_info);
3905
3906 /* wait for any defraggers to finish */
3907 wait_event(fs_info->transaction_wait,
3908 (atomic_read(&fs_info->defrag_running) == 0));
3909
3910 /* clear out the rbtree of defraggable inodes */
3911 btrfs_cleanup_defrag_inodes(fs_info);
3912
3913 cancel_work_sync(&fs_info->async_reclaim_work);
3914
3915 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3916 /*
3917 * If the cleaner thread is stopped and there are
3918 * block groups queued for removal, the deletion will be
3919 * skipped when we quit the cleaner thread.
3920 */
3921 btrfs_delete_unused_bgs(root->fs_info);
3922
3923 ret = btrfs_commit_super(root);
3924 if (ret)
3925 btrfs_err(fs_info, "commit super ret %d", ret);
3926 }
3927
3928 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3929 btrfs_error_commit_super(root);
3930
3931 kthread_stop(fs_info->transaction_kthread);
3932 kthread_stop(fs_info->cleaner_kthread);
3933
3934 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3935
3936 btrfs_free_qgroup_config(fs_info);
3937
3938 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3939 btrfs_info(fs_info, "at unmount delalloc count %lld",
3940 percpu_counter_sum(&fs_info->delalloc_bytes));
3941 }
3942
3943 btrfs_sysfs_remove_mounted(fs_info);
3944 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3945
3946 btrfs_free_fs_roots(fs_info);
3947
3948 btrfs_put_block_group_cache(fs_info);
3949
3950 btrfs_free_block_groups(fs_info);
3951
3952 /*
3953 * we must make sure there is not any read request to
3954 * submit after we stopping all workers.
3955 */
3956 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3957 btrfs_stop_all_workers(fs_info);
3958
3959 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3960 free_root_pointers(fs_info, 1);
3961
3962 iput(fs_info->btree_inode);
3963
3964 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3965 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3966 btrfsic_unmount(root, fs_info->fs_devices);
3967 #endif
3968
3969 btrfs_close_devices(fs_info->fs_devices);
3970 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3971
3972 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3973 percpu_counter_destroy(&fs_info->delalloc_bytes);
3974 percpu_counter_destroy(&fs_info->bio_counter);
3975 bdi_destroy(&fs_info->bdi);
3976 cleanup_srcu_struct(&fs_info->subvol_srcu);
3977
3978 btrfs_free_stripe_hash_table(fs_info);
3979
3980 __btrfs_free_block_rsv(root->orphan_block_rsv);
3981 root->orphan_block_rsv = NULL;
3982
3983 lock_chunks(root);
3984 while (!list_empty(&fs_info->pinned_chunks)) {
3985 struct extent_map *em;
3986
3987 em = list_first_entry(&fs_info->pinned_chunks,
3988 struct extent_map, list);
3989 list_del_init(&em->list);
3990 free_extent_map(em);
3991 }
3992 unlock_chunks(root);
3993 }
3994
3995 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3996 int atomic)
3997 {
3998 int ret;
3999 struct inode *btree_inode = buf->pages[0]->mapping->host;
4000
4001 ret = extent_buffer_uptodate(buf);
4002 if (!ret)
4003 return ret;
4004
4005 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4006 parent_transid, atomic);
4007 if (ret == -EAGAIN)
4008 return ret;
4009 return !ret;
4010 }
4011
4012 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4013 {
4014 struct btrfs_root *root;
4015 u64 transid = btrfs_header_generation(buf);
4016 int was_dirty;
4017
4018 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4019 /*
4020 * This is a fast path so only do this check if we have sanity tests
4021 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4022 * outside of the sanity tests.
4023 */
4024 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4025 return;
4026 #endif
4027 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4028 btrfs_assert_tree_locked(buf);
4029 if (transid != root->fs_info->generation)
4030 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
4031 "found %llu running %llu\n",
4032 buf->start, transid, root->fs_info->generation);
4033 was_dirty = set_extent_buffer_dirty(buf);
4034 if (!was_dirty)
4035 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4036 buf->len,
4037 root->fs_info->dirty_metadata_batch);
4038 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4039 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4040 btrfs_print_leaf(root, buf);
4041 ASSERT(0);
4042 }
4043 #endif
4044 }
4045
4046 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4047 int flush_delayed)
4048 {
4049 /*
4050 * looks as though older kernels can get into trouble with
4051 * this code, they end up stuck in balance_dirty_pages forever
4052 */
4053 int ret;
4054
4055 if (current->flags & PF_MEMALLOC)
4056 return;
4057
4058 if (flush_delayed)
4059 btrfs_balance_delayed_items(root);
4060
4061 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4062 BTRFS_DIRTY_METADATA_THRESH);
4063 if (ret > 0) {
4064 balance_dirty_pages_ratelimited(
4065 root->fs_info->btree_inode->i_mapping);
4066 }
4067 }
4068
4069 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4070 {
4071 __btrfs_btree_balance_dirty(root, 1);
4072 }
4073
4074 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4075 {
4076 __btrfs_btree_balance_dirty(root, 0);
4077 }
4078
4079 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4080 {
4081 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4082 return btree_read_extent_buffer_pages(root, buf, parent_transid);
4083 }
4084
4085 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4086 int read_only)
4087 {
4088 struct btrfs_super_block *sb = fs_info->super_copy;
4089 u64 nodesize = btrfs_super_nodesize(sb);
4090 u64 sectorsize = btrfs_super_sectorsize(sb);
4091 int ret = 0;
4092
4093 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4094 printk(KERN_ERR "BTRFS: no valid FS found\n");
4095 ret = -EINVAL;
4096 }
4097 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4098 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4099 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4100 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4101 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4102 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4103 ret = -EINVAL;
4104 }
4105 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4106 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4107 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4108 ret = -EINVAL;
4109 }
4110 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4111 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4112 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4113 ret = -EINVAL;
4114 }
4115
4116 /*
4117 * Check sectorsize and nodesize first, other check will need it.
4118 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4119 */
4120 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4121 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4122 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4123 ret = -EINVAL;
4124 }
4125 /* Only PAGE SIZE is supported yet */
4126 if (sectorsize != PAGE_SIZE) {
4127 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4128 sectorsize, PAGE_SIZE);
4129 ret = -EINVAL;
4130 }
4131 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4132 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4133 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4134 ret = -EINVAL;
4135 }
4136 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4137 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4138 le32_to_cpu(sb->__unused_leafsize),
4139 nodesize);
4140 ret = -EINVAL;
4141 }
4142
4143 /* Root alignment check */
4144 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4145 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4146 btrfs_super_root(sb));
4147 ret = -EINVAL;
4148 }
4149 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4150 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4151 btrfs_super_chunk_root(sb));
4152 ret = -EINVAL;
4153 }
4154 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4155 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4156 btrfs_super_log_root(sb));
4157 ret = -EINVAL;
4158 }
4159
4160 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4161 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4162 fs_info->fsid, sb->dev_item.fsid);
4163 ret = -EINVAL;
4164 }
4165
4166 /*
4167 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4168 * done later
4169 */
4170 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4171 btrfs_err(fs_info, "bytes_used is too small %llu",
4172 btrfs_super_bytes_used(sb));
4173 ret = -EINVAL;
4174 }
4175 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4176 btrfs_err(fs_info, "invalid stripesize %u",
4177 btrfs_super_stripesize(sb));
4178 ret = -EINVAL;
4179 }
4180 if (btrfs_super_num_devices(sb) > (1UL << 31))
4181 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4182 btrfs_super_num_devices(sb));
4183 if (btrfs_super_num_devices(sb) == 0) {
4184 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4185 ret = -EINVAL;
4186 }
4187
4188 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4189 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4190 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4191 ret = -EINVAL;
4192 }
4193
4194 /*
4195 * Obvious sys_chunk_array corruptions, it must hold at least one key
4196 * and one chunk
4197 */
4198 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4199 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4200 btrfs_super_sys_array_size(sb),
4201 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4202 ret = -EINVAL;
4203 }
4204 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4205 + sizeof(struct btrfs_chunk)) {
4206 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4207 btrfs_super_sys_array_size(sb),
4208 sizeof(struct btrfs_disk_key)
4209 + sizeof(struct btrfs_chunk));
4210 ret = -EINVAL;
4211 }
4212
4213 /*
4214 * The generation is a global counter, we'll trust it more than the others
4215 * but it's still possible that it's the one that's wrong.
4216 */
4217 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4218 printk(KERN_WARNING
4219 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4220 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4221 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4222 && btrfs_super_cache_generation(sb) != (u64)-1)
4223 printk(KERN_WARNING
4224 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4225 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4226
4227 return ret;
4228 }
4229
4230 static void btrfs_error_commit_super(struct btrfs_root *root)
4231 {
4232 mutex_lock(&root->fs_info->cleaner_mutex);
4233 btrfs_run_delayed_iputs(root);
4234 mutex_unlock(&root->fs_info->cleaner_mutex);
4235
4236 down_write(&root->fs_info->cleanup_work_sem);
4237 up_write(&root->fs_info->cleanup_work_sem);
4238
4239 /* cleanup FS via transaction */
4240 btrfs_cleanup_transaction(root);
4241 }
4242
4243 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4244 {
4245 struct btrfs_ordered_extent *ordered;
4246
4247 spin_lock(&root->ordered_extent_lock);
4248 /*
4249 * This will just short circuit the ordered completion stuff which will
4250 * make sure the ordered extent gets properly cleaned up.
4251 */
4252 list_for_each_entry(ordered, &root->ordered_extents,
4253 root_extent_list)
4254 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4255 spin_unlock(&root->ordered_extent_lock);
4256 }
4257
4258 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4259 {
4260 struct btrfs_root *root;
4261 struct list_head splice;
4262
4263 INIT_LIST_HEAD(&splice);
4264
4265 spin_lock(&fs_info->ordered_root_lock);
4266 list_splice_init(&fs_info->ordered_roots, &splice);
4267 while (!list_empty(&splice)) {
4268 root = list_first_entry(&splice, struct btrfs_root,
4269 ordered_root);
4270 list_move_tail(&root->ordered_root,
4271 &fs_info->ordered_roots);
4272
4273 spin_unlock(&fs_info->ordered_root_lock);
4274 btrfs_destroy_ordered_extents(root);
4275
4276 cond_resched();
4277 spin_lock(&fs_info->ordered_root_lock);
4278 }
4279 spin_unlock(&fs_info->ordered_root_lock);
4280 }
4281
4282 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4283 struct btrfs_root *root)
4284 {
4285 struct rb_node *node;
4286 struct btrfs_delayed_ref_root *delayed_refs;
4287 struct btrfs_delayed_ref_node *ref;
4288 int ret = 0;
4289
4290 delayed_refs = &trans->delayed_refs;
4291
4292 spin_lock(&delayed_refs->lock);
4293 if (atomic_read(&delayed_refs->num_entries) == 0) {
4294 spin_unlock(&delayed_refs->lock);
4295 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4296 return ret;
4297 }
4298
4299 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4300 struct btrfs_delayed_ref_head *head;
4301 struct btrfs_delayed_ref_node *tmp;
4302 bool pin_bytes = false;
4303
4304 head = rb_entry(node, struct btrfs_delayed_ref_head,
4305 href_node);
4306 if (!mutex_trylock(&head->mutex)) {
4307 atomic_inc(&head->node.refs);
4308 spin_unlock(&delayed_refs->lock);
4309
4310 mutex_lock(&head->mutex);
4311 mutex_unlock(&head->mutex);
4312 btrfs_put_delayed_ref(&head->node);
4313 spin_lock(&delayed_refs->lock);
4314 continue;
4315 }
4316 spin_lock(&head->lock);
4317 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4318 list) {
4319 ref->in_tree = 0;
4320 list_del(&ref->list);
4321 atomic_dec(&delayed_refs->num_entries);
4322 btrfs_put_delayed_ref(ref);
4323 }
4324 if (head->must_insert_reserved)
4325 pin_bytes = true;
4326 btrfs_free_delayed_extent_op(head->extent_op);
4327 delayed_refs->num_heads--;
4328 if (head->processing == 0)
4329 delayed_refs->num_heads_ready--;
4330 atomic_dec(&delayed_refs->num_entries);
4331 head->node.in_tree = 0;
4332 rb_erase(&head->href_node, &delayed_refs->href_root);
4333 spin_unlock(&head->lock);
4334 spin_unlock(&delayed_refs->lock);
4335 mutex_unlock(&head->mutex);
4336
4337 if (pin_bytes)
4338 btrfs_pin_extent(root, head->node.bytenr,
4339 head->node.num_bytes, 1);
4340 btrfs_put_delayed_ref(&head->node);
4341 cond_resched();
4342 spin_lock(&delayed_refs->lock);
4343 }
4344
4345 spin_unlock(&delayed_refs->lock);
4346
4347 return ret;
4348 }
4349
4350 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4351 {
4352 struct btrfs_inode *btrfs_inode;
4353 struct list_head splice;
4354
4355 INIT_LIST_HEAD(&splice);
4356
4357 spin_lock(&root->delalloc_lock);
4358 list_splice_init(&root->delalloc_inodes, &splice);
4359
4360 while (!list_empty(&splice)) {
4361 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4362 delalloc_inodes);
4363
4364 list_del_init(&btrfs_inode->delalloc_inodes);
4365 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4366 &btrfs_inode->runtime_flags);
4367 spin_unlock(&root->delalloc_lock);
4368
4369 btrfs_invalidate_inodes(btrfs_inode->root);
4370
4371 spin_lock(&root->delalloc_lock);
4372 }
4373
4374 spin_unlock(&root->delalloc_lock);
4375 }
4376
4377 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4378 {
4379 struct btrfs_root *root;
4380 struct list_head splice;
4381
4382 INIT_LIST_HEAD(&splice);
4383
4384 spin_lock(&fs_info->delalloc_root_lock);
4385 list_splice_init(&fs_info->delalloc_roots, &splice);
4386 while (!list_empty(&splice)) {
4387 root = list_first_entry(&splice, struct btrfs_root,
4388 delalloc_root);
4389 list_del_init(&root->delalloc_root);
4390 root = btrfs_grab_fs_root(root);
4391 BUG_ON(!root);
4392 spin_unlock(&fs_info->delalloc_root_lock);
4393
4394 btrfs_destroy_delalloc_inodes(root);
4395 btrfs_put_fs_root(root);
4396
4397 spin_lock(&fs_info->delalloc_root_lock);
4398 }
4399 spin_unlock(&fs_info->delalloc_root_lock);
4400 }
4401
4402 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4403 struct extent_io_tree *dirty_pages,
4404 int mark)
4405 {
4406 int ret;
4407 struct extent_buffer *eb;
4408 u64 start = 0;
4409 u64 end;
4410
4411 while (1) {
4412 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4413 mark, NULL);
4414 if (ret)
4415 break;
4416
4417 clear_extent_bits(dirty_pages, start, end, mark);
4418 while (start <= end) {
4419 eb = btrfs_find_tree_block(root->fs_info, start);
4420 start += root->nodesize;
4421 if (!eb)
4422 continue;
4423 wait_on_extent_buffer_writeback(eb);
4424
4425 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4426 &eb->bflags))
4427 clear_extent_buffer_dirty(eb);
4428 free_extent_buffer_stale(eb);
4429 }
4430 }
4431
4432 return ret;
4433 }
4434
4435 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4436 struct extent_io_tree *pinned_extents)
4437 {
4438 struct extent_io_tree *unpin;
4439 u64 start;
4440 u64 end;
4441 int ret;
4442 bool loop = true;
4443
4444 unpin = pinned_extents;
4445 again:
4446 while (1) {
4447 ret = find_first_extent_bit(unpin, 0, &start, &end,
4448 EXTENT_DIRTY, NULL);
4449 if (ret)
4450 break;
4451
4452 clear_extent_dirty(unpin, start, end);
4453 btrfs_error_unpin_extent_range(root, start, end);
4454 cond_resched();
4455 }
4456
4457 if (loop) {
4458 if (unpin == &root->fs_info->freed_extents[0])
4459 unpin = &root->fs_info->freed_extents[1];
4460 else
4461 unpin = &root->fs_info->freed_extents[0];
4462 loop = false;
4463 goto again;
4464 }
4465
4466 return 0;
4467 }
4468
4469 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4470 {
4471 struct inode *inode;
4472
4473 inode = cache->io_ctl.inode;
4474 if (inode) {
4475 invalidate_inode_pages2(inode->i_mapping);
4476 BTRFS_I(inode)->generation = 0;
4477 cache->io_ctl.inode = NULL;
4478 iput(inode);
4479 }
4480 btrfs_put_block_group(cache);
4481 }
4482
4483 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4484 struct btrfs_root *root)
4485 {
4486 struct btrfs_block_group_cache *cache;
4487
4488 spin_lock(&cur_trans->dirty_bgs_lock);
4489 while (!list_empty(&cur_trans->dirty_bgs)) {
4490 cache = list_first_entry(&cur_trans->dirty_bgs,
4491 struct btrfs_block_group_cache,
4492 dirty_list);
4493 if (!cache) {
4494 btrfs_err(root->fs_info,
4495 "orphan block group dirty_bgs list");
4496 spin_unlock(&cur_trans->dirty_bgs_lock);
4497 return;
4498 }
4499
4500 if (!list_empty(&cache->io_list)) {
4501 spin_unlock(&cur_trans->dirty_bgs_lock);
4502 list_del_init(&cache->io_list);
4503 btrfs_cleanup_bg_io(cache);
4504 spin_lock(&cur_trans->dirty_bgs_lock);
4505 }
4506
4507 list_del_init(&cache->dirty_list);
4508 spin_lock(&cache->lock);
4509 cache->disk_cache_state = BTRFS_DC_ERROR;
4510 spin_unlock(&cache->lock);
4511
4512 spin_unlock(&cur_trans->dirty_bgs_lock);
4513 btrfs_put_block_group(cache);
4514 spin_lock(&cur_trans->dirty_bgs_lock);
4515 }
4516 spin_unlock(&cur_trans->dirty_bgs_lock);
4517
4518 while (!list_empty(&cur_trans->io_bgs)) {
4519 cache = list_first_entry(&cur_trans->io_bgs,
4520 struct btrfs_block_group_cache,
4521 io_list);
4522 if (!cache) {
4523 btrfs_err(root->fs_info,
4524 "orphan block group on io_bgs list");
4525 return;
4526 }
4527
4528 list_del_init(&cache->io_list);
4529 spin_lock(&cache->lock);
4530 cache->disk_cache_state = BTRFS_DC_ERROR;
4531 spin_unlock(&cache->lock);
4532 btrfs_cleanup_bg_io(cache);
4533 }
4534 }
4535
4536 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4537 struct btrfs_root *root)
4538 {
4539 btrfs_cleanup_dirty_bgs(cur_trans, root);
4540 ASSERT(list_empty(&cur_trans->dirty_bgs));
4541 ASSERT(list_empty(&cur_trans->io_bgs));
4542
4543 btrfs_destroy_delayed_refs(cur_trans, root);
4544
4545 cur_trans->state = TRANS_STATE_COMMIT_START;
4546 wake_up(&root->fs_info->transaction_blocked_wait);
4547
4548 cur_trans->state = TRANS_STATE_UNBLOCKED;
4549 wake_up(&root->fs_info->transaction_wait);
4550
4551 btrfs_destroy_delayed_inodes(root);
4552 btrfs_assert_delayed_root_empty(root);
4553
4554 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4555 EXTENT_DIRTY);
4556 btrfs_destroy_pinned_extent(root,
4557 root->fs_info->pinned_extents);
4558
4559 cur_trans->state =TRANS_STATE_COMPLETED;
4560 wake_up(&cur_trans->commit_wait);
4561
4562 /*
4563 memset(cur_trans, 0, sizeof(*cur_trans));
4564 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4565 */
4566 }
4567
4568 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4569 {
4570 struct btrfs_transaction *t;
4571
4572 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4573
4574 spin_lock(&root->fs_info->trans_lock);
4575 while (!list_empty(&root->fs_info->trans_list)) {
4576 t = list_first_entry(&root->fs_info->trans_list,
4577 struct btrfs_transaction, list);
4578 if (t->state >= TRANS_STATE_COMMIT_START) {
4579 atomic_inc(&t->use_count);
4580 spin_unlock(&root->fs_info->trans_lock);
4581 btrfs_wait_for_commit(root, t->transid);
4582 btrfs_put_transaction(t);
4583 spin_lock(&root->fs_info->trans_lock);
4584 continue;
4585 }
4586 if (t == root->fs_info->running_transaction) {
4587 t->state = TRANS_STATE_COMMIT_DOING;
4588 spin_unlock(&root->fs_info->trans_lock);
4589 /*
4590 * We wait for 0 num_writers since we don't hold a trans
4591 * handle open currently for this transaction.
4592 */
4593 wait_event(t->writer_wait,
4594 atomic_read(&t->num_writers) == 0);
4595 } else {
4596 spin_unlock(&root->fs_info->trans_lock);
4597 }
4598 btrfs_cleanup_one_transaction(t, root);
4599
4600 spin_lock(&root->fs_info->trans_lock);
4601 if (t == root->fs_info->running_transaction)
4602 root->fs_info->running_transaction = NULL;
4603 list_del_init(&t->list);
4604 spin_unlock(&root->fs_info->trans_lock);
4605
4606 btrfs_put_transaction(t);
4607 trace_btrfs_transaction_commit(root);
4608 spin_lock(&root->fs_info->trans_lock);
4609 }
4610 spin_unlock(&root->fs_info->trans_lock);
4611 btrfs_destroy_all_ordered_extents(root->fs_info);
4612 btrfs_destroy_delayed_inodes(root);
4613 btrfs_assert_delayed_root_empty(root);
4614 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4615 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4616 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4617
4618 return 0;
4619 }
4620
4621 static const struct extent_io_ops btree_extent_io_ops = {
4622 .readpage_end_io_hook = btree_readpage_end_io_hook,
4623 .readpage_io_failed_hook = btree_io_failed_hook,
4624 .submit_bio_hook = btree_submit_bio_hook,
4625 /* note we're sharing with inode.c for the merge bio hook */
4626 .merge_bio_hook = btrfs_merge_bio_hook,
4627 };
This page took 0.141253 seconds and 5 git commands to generate.