vfio/pci: Fix typos in comments
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 int dump_block_groups);
92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
93 u64 ram_bytes, u64 num_bytes, int delalloc);
94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 num_bytes, int delalloc);
96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
97 u64 num_bytes);
98 int btrfs_pin_extent(struct btrfs_root *root,
99 u64 bytenr, u64 num_bytes, int reserved);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137 }
138
139 /*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145 {
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177 }
178
179 /*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186 {
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
227 {
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE);
233 return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238 {
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE);
248 }
249
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252 {
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334 {
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349 }
350 #endif
351
352 /*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
362
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
370
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
390 }
391
392 return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
399 struct btrfs_root *extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
408
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
413 path = btrfs_alloc_path();
414 if (!path)
415 return -ENOMEM;
416
417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418
419 #ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427 #endif
428 /*
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
433 */
434 path->skip_locking = 1;
435 path->search_commit_root = 1;
436 path->reada = READA_FORWARD;
437
438 key.objectid = last;
439 key.offset = 0;
440 key.type = BTRFS_EXTENT_ITEM_KEY;
441
442 next:
443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 if (ret < 0)
445 goto out;
446
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
450 while (1) {
451 if (btrfs_fs_closing(fs_info) > 1) {
452 last = (u64)-1;
453 break;
454 }
455
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
461 break;
462
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info->commit_root_sem)) {
465 if (wakeup)
466 caching_ctl->progress = last;
467 btrfs_release_path(path);
468 up_read(&fs_info->commit_root_sem);
469 mutex_unlock(&caching_ctl->mutex);
470 cond_resched();
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
474 }
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
478 goto out;
479 if (ret)
480 break;
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
484 }
485
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
491 if (wakeup)
492 caching_ctl->progress = last;
493 btrfs_release_path(path);
494 goto next;
495 }
496
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
499 continue;
500 }
501
502 if (key.objectid >= block_group->key.objectid +
503 block_group->key.offset)
504 break;
505
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
513 fs_info->tree_root->nodesize;
514 else
515 last = key.objectid + key.offset;
516
517 if (total_found > CACHING_CTL_WAKE_UP) {
518 total_found = 0;
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
521 }
522 }
523 path->slots[0]++;
524 }
525 ret = 0;
526
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
530 caching_ctl->progress = (u64)-1;
531
532 out:
533 btrfs_free_path(path);
534 return ret;
535 }
536
537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
542 struct btrfs_root *extent_root;
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
548 extent_root = fs_info->extent_root;
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
557
558 spin_lock(&block_group->lock);
559 block_group->caching_ctl = NULL;
560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 spin_unlock(&block_group->lock);
562
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576 #endif
577
578 caching_ctl->progress = (u64)-1;
579
580 up_read(&fs_info->commit_root_sem);
581 free_excluded_extents(fs_info->extent_root, block_group);
582 mutex_unlock(&caching_ctl->mutex);
583
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
587 btrfs_put_block_group(block_group);
588 }
589
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 int load_cache_only)
592 {
593 DEFINE_WAIT(wait);
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
596 int ret = 0;
597
598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 if (!caching_ctl)
600 return -ENOMEM;
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
642 return 0;
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
648
649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 mutex_lock(&caching_ctl->mutex);
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
658 caching_ctl->progress = (u64)-1;
659 } else {
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
665 cache->has_caching_ctl = 1;
666 }
667 }
668 spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684 #endif
685 mutex_unlock(&caching_ctl->mutex);
686
687 wake_up(&caching_ctl->wait);
688 if (ret == 1) {
689 put_caching_control(caching_ctl);
690 free_excluded_extents(fs_info->extent_root, cache);
691 return 0;
692 }
693 } else {
694 /*
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
704 cache->has_caching_ctl = 1;
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
708 }
709
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
712 return 0;
713 }
714
715 down_write(&fs_info->commit_root_sem);
716 atomic_inc(&caching_ctl->count);
717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 up_write(&fs_info->commit_root_sem);
719
720 btrfs_get_block_group(cache);
721
722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723
724 return ret;
725 }
726
727 /*
728 * return the block group that starts at or after bytenr
729 */
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 struct btrfs_block_group_cache *cache;
734
735 cache = block_group_cache_tree_search(info, bytenr, 0);
736
737 return cache;
738 }
739
740 /*
741 * return the block group that contains the given bytenr
742 */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
746 {
747 struct btrfs_block_group_cache *cache;
748
749 cache = block_group_cache_tree_search(info, bytenr, 1);
750
751 return cache;
752 }
753
754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
755 u64 flags)
756 {
757 struct list_head *head = &info->space_info;
758 struct btrfs_space_info *found;
759
760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
761
762 rcu_read_lock();
763 list_for_each_entry_rcu(found, head, list) {
764 if (found->flags & flags) {
765 rcu_read_unlock();
766 return found;
767 }
768 }
769 rcu_read_unlock();
770 return NULL;
771 }
772
773 /*
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
776 */
777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
778 {
779 struct list_head *head = &info->space_info;
780 struct btrfs_space_info *found;
781
782 rcu_read_lock();
783 list_for_each_entry_rcu(found, head, list)
784 found->full = 0;
785 rcu_read_unlock();
786 }
787
788 /* simple helper to search for an existing data extent at a given offset */
789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
790 {
791 int ret;
792 struct btrfs_key key;
793 struct btrfs_path *path;
794
795 path = btrfs_alloc_path();
796 if (!path)
797 return -ENOMEM;
798
799 key.objectid = start;
800 key.offset = len;
801 key.type = BTRFS_EXTENT_ITEM_KEY;
802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
803 0, 0);
804 btrfs_free_path(path);
805 return ret;
806 }
807
808 /*
809 * helper function to lookup reference count and flags of a tree block.
810 *
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
816 */
817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, u64 bytenr,
819 u64 offset, int metadata, u64 *refs, u64 *flags)
820 {
821 struct btrfs_delayed_ref_head *head;
822 struct btrfs_delayed_ref_root *delayed_refs;
823 struct btrfs_path *path;
824 struct btrfs_extent_item *ei;
825 struct extent_buffer *leaf;
826 struct btrfs_key key;
827 u32 item_size;
828 u64 num_refs;
829 u64 extent_flags;
830 int ret;
831
832 /*
833 * If we don't have skinny metadata, don't bother doing anything
834 * different
835 */
836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
837 offset = root->nodesize;
838 metadata = 0;
839 }
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
845 if (!trans) {
846 path->skip_locking = 1;
847 path->search_commit_root = 1;
848 }
849
850 search_again:
851 key.objectid = bytenr;
852 key.offset = offset;
853 if (metadata)
854 key.type = BTRFS_METADATA_ITEM_KEY;
855 else
856 key.type = BTRFS_EXTENT_ITEM_KEY;
857
858 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
859 &key, path, 0, 0);
860 if (ret < 0)
861 goto out_free;
862
863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
864 if (path->slots[0]) {
865 path->slots[0]--;
866 btrfs_item_key_to_cpu(path->nodes[0], &key,
867 path->slots[0]);
868 if (key.objectid == bytenr &&
869 key.type == BTRFS_EXTENT_ITEM_KEY &&
870 key.offset == root->nodesize)
871 ret = 0;
872 }
873 }
874
875 if (ret == 0) {
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 if (item_size >= sizeof(*ei)) {
879 ei = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item);
881 num_refs = btrfs_extent_refs(leaf, ei);
882 extent_flags = btrfs_extent_flags(leaf, ei);
883 } else {
884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0 *ei0;
886 BUG_ON(item_size != sizeof(*ei0));
887 ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item_v0);
889 num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 /* FIXME: this isn't correct for data */
891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
892 #else
893 BUG();
894 #endif
895 }
896 BUG_ON(num_refs == 0);
897 } else {
898 num_refs = 0;
899 extent_flags = 0;
900 ret = 0;
901 }
902
903 if (!trans)
904 goto out;
905
906 delayed_refs = &trans->transaction->delayed_refs;
907 spin_lock(&delayed_refs->lock);
908 head = btrfs_find_delayed_ref_head(trans, bytenr);
909 if (head) {
910 if (!mutex_trylock(&head->mutex)) {
911 atomic_inc(&head->node.refs);
912 spin_unlock(&delayed_refs->lock);
913
914 btrfs_release_path(path);
915
916 /*
917 * Mutex was contended, block until it's released and try
918 * again
919 */
920 mutex_lock(&head->mutex);
921 mutex_unlock(&head->mutex);
922 btrfs_put_delayed_ref(&head->node);
923 goto search_again;
924 }
925 spin_lock(&head->lock);
926 if (head->extent_op && head->extent_op->update_flags)
927 extent_flags |= head->extent_op->flags_to_set;
928 else
929 BUG_ON(num_refs == 0);
930
931 num_refs += head->node.ref_mod;
932 spin_unlock(&head->lock);
933 mutex_unlock(&head->mutex);
934 }
935 spin_unlock(&delayed_refs->lock);
936 out:
937 WARN_ON(num_refs == 0);
938 if (refs)
939 *refs = num_refs;
940 if (flags)
941 *flags = extent_flags;
942 out_free:
943 btrfs_free_path(path);
944 return ret;
945 }
946
947 /*
948 * Back reference rules. Back refs have three main goals:
949 *
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
953 *
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
956 *
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
960 *
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
971 *
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
978 *
979 * When a tree block is COWed through a tree, there are four cases:
980 *
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
983 *
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
994 *
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
998 *
999 * Back Reference Key composing:
1000 *
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1004 * of back refs.
1005 *
1006 * File extents can be referenced by:
1007 *
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
1009 * - different files inside a single subvolume
1010 * - different offsets inside a file (bookend extents in file.c)
1011 *
1012 * The extent ref structure for the implicit back refs has fields for:
1013 *
1014 * - Objectid of the subvolume root
1015 * - objectid of the file holding the reference
1016 * - original offset in the file
1017 * - how many bookend extents
1018 *
1019 * The key offset for the implicit back refs is hash of the first
1020 * three fields.
1021 *
1022 * The extent ref structure for the full back refs has field for:
1023 *
1024 * - number of pointers in the tree leaf
1025 *
1026 * The key offset for the implicit back refs is the first byte of
1027 * the tree leaf
1028 *
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
1031 *
1032 * (root_key.objectid, inode objectid, offset in file, 1)
1033 *
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
1036 *
1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1038 *
1039 * Btree extents can be referenced by:
1040 *
1041 * - Different subvolumes
1042 *
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
1047 *
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
1051 */
1052
1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 owner, u32 extra_size)
1058 {
1059 struct btrfs_extent_item *item;
1060 struct btrfs_extent_item_v0 *ei0;
1061 struct btrfs_extent_ref_v0 *ref0;
1062 struct btrfs_tree_block_info *bi;
1063 struct extent_buffer *leaf;
1064 struct btrfs_key key;
1065 struct btrfs_key found_key;
1066 u32 new_size = sizeof(*item);
1067 u64 refs;
1068 int ret;
1069
1070 leaf = path->nodes[0];
1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1072
1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_item_v0);
1076 refs = btrfs_extent_refs_v0(leaf, ei0);
1077
1078 if (owner == (u64)-1) {
1079 while (1) {
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 return ret;
1084 BUG_ON(ret > 0); /* Corruption */
1085 leaf = path->nodes[0];
1086 }
1087 btrfs_item_key_to_cpu(leaf, &found_key,
1088 path->slots[0]);
1089 BUG_ON(key.objectid != found_key.objectid);
1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1091 path->slots[0]++;
1092 continue;
1093 }
1094 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_extent_ref_v0);
1096 owner = btrfs_ref_objectid_v0(leaf, ref0);
1097 break;
1098 }
1099 }
1100 btrfs_release_path(path);
1101
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 new_size += sizeof(*bi);
1104
1105 new_size -= sizeof(*ei0);
1106 ret = btrfs_search_slot(trans, root, &key, path,
1107 new_size + extra_size, 1);
1108 if (ret < 0)
1109 return ret;
1110 BUG_ON(ret); /* Corruption */
1111
1112 btrfs_extend_item(root, path, new_size);
1113
1114 leaf = path->nodes[0];
1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 btrfs_set_extent_refs(leaf, item, refs);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf, item, 0);
1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 btrfs_set_extent_flags(leaf, item,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 bi = (struct btrfs_tree_block_info *)(item + 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1127 } else {
1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1129 }
1130 btrfs_mark_buffer_dirty(leaf);
1131 return 0;
1132 }
1133 #endif
1134
1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1136 {
1137 u32 high_crc = ~(u32)0;
1138 u32 low_crc = ~(u32)0;
1139 __le64 lenum;
1140
1141 lenum = cpu_to_le64(root_objectid);
1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1143 lenum = cpu_to_le64(owner);
1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1145 lenum = cpu_to_le64(offset);
1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1147
1148 return ((u64)high_crc << 31) ^ (u64)low_crc;
1149 }
1150
1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref)
1153 {
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 btrfs_extent_data_ref_objectid(leaf, ref),
1156 btrfs_extent_data_ref_offset(leaf, ref));
1157 }
1158
1159 static int match_extent_data_ref(struct extent_buffer *leaf,
1160 struct btrfs_extent_data_ref *ref,
1161 u64 root_objectid, u64 owner, u64 offset)
1162 {
1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1166 return 0;
1167 return 1;
1168 }
1169
1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 u64 bytenr, u64 parent,
1174 u64 root_objectid,
1175 u64 owner, u64 offset)
1176 {
1177 struct btrfs_key key;
1178 struct btrfs_extent_data_ref *ref;
1179 struct extent_buffer *leaf;
1180 u32 nritems;
1181 int ret;
1182 int recow;
1183 int err = -ENOENT;
1184
1185 key.objectid = bytenr;
1186 if (parent) {
1187 key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 key.offset = parent;
1189 } else {
1190 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 key.offset = hash_extent_data_ref(root_objectid,
1192 owner, offset);
1193 }
1194 again:
1195 recow = 0;
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
1201
1202 if (parent) {
1203 if (!ret)
1204 return 0;
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key.type = BTRFS_EXTENT_REF_V0_KEY;
1207 btrfs_release_path(path);
1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 if (ret < 0) {
1210 err = ret;
1211 goto fail;
1212 }
1213 if (!ret)
1214 return 0;
1215 #endif
1216 goto fail;
1217 }
1218
1219 leaf = path->nodes[0];
1220 nritems = btrfs_header_nritems(leaf);
1221 while (1) {
1222 if (path->slots[0] >= nritems) {
1223 ret = btrfs_next_leaf(root, path);
1224 if (ret < 0)
1225 err = ret;
1226 if (ret)
1227 goto fail;
1228
1229 leaf = path->nodes[0];
1230 nritems = btrfs_header_nritems(leaf);
1231 recow = 1;
1232 }
1233
1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 if (key.objectid != bytenr ||
1236 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1237 goto fail;
1238
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset)) {
1244 if (recow) {
1245 btrfs_release_path(path);
1246 goto again;
1247 }
1248 err = 0;
1249 break;
1250 }
1251 path->slots[0]++;
1252 }
1253 fail:
1254 return err;
1255 }
1256
1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root,
1259 struct btrfs_path *path,
1260 u64 bytenr, u64 parent,
1261 u64 root_objectid, u64 owner,
1262 u64 offset, int refs_to_add)
1263 {
1264 struct btrfs_key key;
1265 struct extent_buffer *leaf;
1266 u32 size;
1267 u32 num_refs;
1268 int ret;
1269
1270 key.objectid = bytenr;
1271 if (parent) {
1272 key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 key.offset = parent;
1274 size = sizeof(struct btrfs_shared_data_ref);
1275 } else {
1276 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 key.offset = hash_extent_data_ref(root_objectid,
1278 owner, offset);
1279 size = sizeof(struct btrfs_extent_data_ref);
1280 }
1281
1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 if (ret && ret != -EEXIST)
1284 goto fail;
1285
1286 leaf = path->nodes[0];
1287 if (parent) {
1288 struct btrfs_shared_data_ref *ref;
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1291 if (ret == 0) {
1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1293 } else {
1294 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 num_refs += refs_to_add;
1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1297 }
1298 } else {
1299 struct btrfs_extent_data_ref *ref;
1300 while (ret == -EEXIST) {
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (match_extent_data_ref(leaf, ref, root_objectid,
1304 owner, offset))
1305 break;
1306 btrfs_release_path(path);
1307 key.offset++;
1308 ret = btrfs_insert_empty_item(trans, root, path, &key,
1309 size);
1310 if (ret && ret != -EEXIST)
1311 goto fail;
1312
1313 leaf = path->nodes[0];
1314 }
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (ret == 0) {
1318 btrfs_set_extent_data_ref_root(leaf, ref,
1319 root_objectid);
1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1323 } else {
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 num_refs += refs_to_add;
1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1327 }
1328 }
1329 btrfs_mark_buffer_dirty(leaf);
1330 ret = 0;
1331 fail:
1332 btrfs_release_path(path);
1333 return ret;
1334 }
1335
1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 int refs_to_drop, int *last_ref)
1340 {
1341 struct btrfs_key key;
1342 struct btrfs_extent_data_ref *ref1 = NULL;
1343 struct btrfs_shared_data_ref *ref2 = NULL;
1344 struct extent_buffer *leaf;
1345 u32 num_refs = 0;
1346 int ret = 0;
1347
1348 leaf = path->nodes[0];
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350
1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_data_ref);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_shared_data_ref);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 struct btrfs_extent_ref_v0 *ref0;
1362 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_extent_ref_v0);
1364 num_refs = btrfs_ref_count_v0(leaf, ref0);
1365 #endif
1366 } else {
1367 BUG();
1368 }
1369
1370 BUG_ON(num_refs < refs_to_drop);
1371 num_refs -= refs_to_drop;
1372
1373 if (num_refs == 0) {
1374 ret = btrfs_del_item(trans, root, path);
1375 *last_ref = 1;
1376 } else {
1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 else {
1383 struct btrfs_extent_ref_v0 *ref0;
1384 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_extent_ref_v0);
1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1387 }
1388 #endif
1389 btrfs_mark_buffer_dirty(leaf);
1390 }
1391 return ret;
1392 }
1393
1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1395 struct btrfs_extent_inline_ref *iref)
1396 {
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_data_ref *ref1;
1400 struct btrfs_shared_data_ref *ref2;
1401 u32 num_refs = 0;
1402
1403 leaf = path->nodes[0];
1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1405 if (iref) {
1406 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 BTRFS_EXTENT_DATA_REF_KEY) {
1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else {
1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1413 }
1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_extent_data_ref);
1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_shared_data_ref);
1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 struct btrfs_extent_ref_v0 *ref0;
1425 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 struct btrfs_extent_ref_v0);
1427 num_refs = btrfs_ref_count_v0(leaf, ref0);
1428 #endif
1429 } else {
1430 WARN_ON(1);
1431 }
1432 return num_refs;
1433 }
1434
1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 u64 bytenr, u64 parent,
1439 u64 root_objectid)
1440 {
1441 struct btrfs_key key;
1442 int ret;
1443
1444 key.objectid = bytenr;
1445 if (parent) {
1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 key.offset = parent;
1448 } else {
1449 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 key.offset = root_objectid;
1451 }
1452
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret > 0)
1455 ret = -ENOENT;
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret == -ENOENT && parent) {
1458 btrfs_release_path(path);
1459 key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 }
1464 #endif
1465 return ret;
1466 }
1467
1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 bytenr, u64 parent,
1472 u64 root_objectid)
1473 {
1474 struct btrfs_key key;
1475 int ret;
1476
1477 key.objectid = bytenr;
1478 if (parent) {
1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 key.offset = parent;
1481 } else {
1482 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 key.offset = root_objectid;
1484 }
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 btrfs_release_path(path);
1488 return ret;
1489 }
1490
1491 static inline int extent_ref_type(u64 parent, u64 owner)
1492 {
1493 int type;
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 if (parent > 0)
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 else
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1499 } else {
1500 if (parent > 0)
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1502 else
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1504 }
1505 return type;
1506 }
1507
1508 static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
1510
1511 {
1512 for (; level < BTRFS_MAX_LEVEL; level++) {
1513 if (!path->nodes[level])
1514 break;
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1517 continue;
1518 if (level == 0)
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1521 else
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1524 return 0;
1525 }
1526 return 1;
1527 }
1528
1529 /*
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1532 *
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1535 *
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1538 *
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1541 */
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1550 {
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1565 SKINNY_METADATA);
1566
1567 key.objectid = bytenr;
1568 key.type = BTRFS_EXTENT_ITEM_KEY;
1569 key.offset = num_bytes;
1570
1571 want = extent_ref_type(parent, owner);
1572 if (insert) {
1573 extra_size = btrfs_extent_inline_ref_size(want);
1574 path->keep_locks = 1;
1575 } else
1576 extra_size = -1;
1577
1578 /*
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1581 */
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1584 key.offset = owner;
1585 }
1586
1587 again:
1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1589 if (ret < 0) {
1590 err = ret;
1591 goto out;
1592 }
1593
1594 /*
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1597 */
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1607 ret = 0;
1608 }
1609 if (ret) {
1610 key.objectid = bytenr;
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1614 goto again;
1615 }
1616 }
1617
1618 if (ret && !insert) {
1619 err = -ENOENT;
1620 goto out;
1621 } else if (WARN_ON(ret)) {
1622 err = -EIO;
1623 goto out;
1624 }
1625
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1630 if (!insert) {
1631 err = -ENOENT;
1632 goto out;
1633 }
1634 ret = convert_extent_item_v0(trans, root, path, owner,
1635 extra_size);
1636 if (ret < 0) {
1637 err = ret;
1638 goto out;
1639 }
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 }
1643 #endif
1644 BUG_ON(item_size < sizeof(*ei));
1645
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1648
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1651
1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1653 ptr += sizeof(struct btrfs_tree_block_info);
1654 BUG_ON(ptr > end);
1655 }
1656
1657 err = -ENOENT;
1658 while (1) {
1659 if (ptr >= end) {
1660 WARN_ON(ptr > end);
1661 break;
1662 }
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1665 if (want < type)
1666 break;
1667 if (want > type) {
1668 ptr += btrfs_extent_inline_ref_size(type);
1669 continue;
1670 }
1671
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1676 owner, offset)) {
1677 err = 0;
1678 break;
1679 }
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1682 break;
1683 } else {
1684 u64 ref_offset;
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 if (parent > 0) {
1687 if (parent == ref_offset) {
1688 err = 0;
1689 break;
1690 }
1691 if (ref_offset < parent)
1692 break;
1693 } else {
1694 if (root_objectid == ref_offset) {
1695 err = 0;
1696 break;
1697 }
1698 if (ref_offset < root_objectid)
1699 break;
1700 }
1701 }
1702 ptr += btrfs_extent_inline_ref_size(type);
1703 }
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 /*
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1715 */
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1719 err = -EAGAIN;
1720 goto out;
1721 }
1722 }
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724 out:
1725 if (insert) {
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1728 }
1729 return err;
1730 }
1731
1732 /*
1733 * helper to add new inline back ref
1734 */
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_root *root,
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
1742 {
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1745 unsigned long ptr;
1746 unsigned long end;
1747 unsigned long item_offset;
1748 u64 refs;
1749 int size;
1750 int type;
1751
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1755
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1758
1759 btrfs_extend_item(root, path, size);
1760
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1765 if (extent_op)
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1767
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1772 end - size - ptr);
1773
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 } else {
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 }
1793 btrfs_mark_buffer_dirty(leaf);
1794 }
1795
1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1802 {
1803 int ret;
1804
1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1808 if (ret != -ENOENT)
1809 return ret;
1810
1811 btrfs_release_path(path);
1812 *ref_ret = NULL;
1813
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1816 root_objectid);
1817 } else {
1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 root_objectid, owner, offset);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * helper to update/remove inline back ref
1826 */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_root *root,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
1834 {
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
1866 }
1867
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
1877 *last_ref = 1;
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
1886 btrfs_truncate_item(root, path, item_size, 1);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(root, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(root, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
1915 }
1916 return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 int ret = 0;
1945
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
1948 update_inline_extent_backref(root, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1952 last_ref);
1953 } else {
1954 *last_ref = 1;
1955 ret = btrfs_del_item(trans, root, path);
1956 }
1957 return ret;
1958 }
1959
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1963 {
1964 int j, ret = 0;
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
1973
1974 *discarded_bytes = 0;
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 GFP_NOFS, 0);
2027 if (!ret)
2028 *discarded_bytes += bytes_left;
2029 }
2030 return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 int ret;
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2039
2040
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(root->fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2048 bytenr, &num_bytes, &bbio, 0);
2049 /* Error condition is -ENOMEM */
2050 if (!ret) {
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 int i;
2053
2054
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 u64 bytes;
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
2062 stripe->length,
2063 &bytes);
2064 if (!ret)
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
2075 }
2076 btrfs_put_bbio(bbio);
2077 }
2078 btrfs_bio_counter_dec(root->fs_info);
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
2083
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
2086 return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 int ret;
2096 struct btrfs_fs_info *fs_info = root->fs_info;
2097
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 num_bytes,
2104 parent, root_objectid, (int)owner,
2105 BTRFS_ADD_DELAYED_REF, NULL);
2106 } else {
2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2108 num_bytes, parent, root_objectid,
2109 owner, offset, 0,
2110 BTRFS_ADD_DELAYED_REF, NULL);
2111 }
2112 return ret;
2113 }
2114
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *root,
2117 struct btrfs_delayed_ref_node *node,
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121 {
2122 struct btrfs_fs_info *fs_info = root->fs_info;
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
2126 struct btrfs_key key;
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
2129 u64 refs;
2130 int ret;
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
2136 path->reada = READA_FORWARD;
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 bytenr, num_bytes, parent,
2141 root_objectid, owner, offset,
2142 refs_to_add, extent_op);
2143 if ((ret < 0 && ret != -EAGAIN) || !ret)
2144 goto out;
2145
2146 /*
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2149 * normal backref.
2150 */
2151 leaf = path->nodes[0];
2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 refs = btrfs_extent_refs(leaf, item);
2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 if (extent_op)
2157 __run_delayed_extent_op(extent_op, leaf, item);
2158
2159 btrfs_mark_buffer_dirty(leaf);
2160 btrfs_release_path(path);
2161
2162 path->reada = READA_FORWARD;
2163 path->leave_spinning = 1;
2164 /* now insert the actual backref */
2165 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2166 path, bytenr, parent, root_objectid,
2167 owner, offset, refs_to_add);
2168 if (ret)
2169 btrfs_abort_transaction(trans, ret);
2170 out:
2171 btrfs_free_path(path);
2172 return ret;
2173 }
2174
2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_data_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 u64 flags = 0;
2187
2188 ins.objectid = node->bytenr;
2189 ins.offset = node->num_bytes;
2190 ins.type = BTRFS_EXTENT_ITEM_KEY;
2191
2192 ref = btrfs_delayed_node_to_data_ref(node);
2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2194
2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 parent = ref->parent;
2197 ref_root = ref->root;
2198
2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2200 if (extent_op)
2201 flags |= extent_op->flags_to_set;
2202 ret = alloc_reserved_file_extent(trans, root,
2203 parent, ref_root, flags,
2204 ref->objectid, ref->offset,
2205 &ins, node->ref_mod);
2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
2210 extent_op);
2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2212 ret = __btrfs_free_extent(trans, root, node, parent,
2213 ref_root, ref->objectid,
2214 ref->offset, node->ref_mod,
2215 extent_op);
2216 } else {
2217 BUG();
2218 }
2219 return ret;
2220 }
2221
2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 struct extent_buffer *leaf,
2224 struct btrfs_extent_item *ei)
2225 {
2226 u64 flags = btrfs_extent_flags(leaf, ei);
2227 if (extent_op->update_flags) {
2228 flags |= extent_op->flags_to_set;
2229 btrfs_set_extent_flags(leaf, ei, flags);
2230 }
2231
2232 if (extent_op->update_key) {
2233 struct btrfs_tree_block_info *bi;
2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2237 }
2238 }
2239
2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 struct btrfs_root *root,
2242 struct btrfs_delayed_ref_node *node,
2243 struct btrfs_delayed_extent_op *extent_op)
2244 {
2245 struct btrfs_key key;
2246 struct btrfs_path *path;
2247 struct btrfs_extent_item *ei;
2248 struct extent_buffer *leaf;
2249 u32 item_size;
2250 int ret;
2251 int err = 0;
2252 int metadata = !extent_op->is_data;
2253
2254 if (trans->aborted)
2255 return 0;
2256
2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 metadata = 0;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = node->bytenr;
2265
2266 if (metadata) {
2267 key.type = BTRFS_METADATA_ITEM_KEY;
2268 key.offset = extent_op->level;
2269 } else {
2270 key.type = BTRFS_EXTENT_ITEM_KEY;
2271 key.offset = node->num_bytes;
2272 }
2273
2274 again:
2275 path->reada = READA_FORWARD;
2276 path->leave_spinning = 1;
2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2278 path, 0, 1);
2279 if (ret < 0) {
2280 err = ret;
2281 goto out;
2282 }
2283 if (ret > 0) {
2284 if (metadata) {
2285 if (path->slots[0] > 0) {
2286 path->slots[0]--;
2287 btrfs_item_key_to_cpu(path->nodes[0], &key,
2288 path->slots[0]);
2289 if (key.objectid == node->bytenr &&
2290 key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 key.offset == node->num_bytes)
2292 ret = 0;
2293 }
2294 if (ret > 0) {
2295 btrfs_release_path(path);
2296 metadata = 0;
2297
2298 key.objectid = node->bytenr;
2299 key.offset = node->num_bytes;
2300 key.type = BTRFS_EXTENT_ITEM_KEY;
2301 goto again;
2302 }
2303 } else {
2304 err = -EIO;
2305 goto out;
2306 }
2307 }
2308
2309 leaf = path->nodes[0];
2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size < sizeof(*ei)) {
2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2314 path, (u64)-1, 0);
2315 if (ret < 0) {
2316 err = ret;
2317 goto out;
2318 }
2319 leaf = path->nodes[0];
2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 }
2322 #endif
2323 BUG_ON(item_size < sizeof(*ei));
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 __run_delayed_extent_op(extent_op, leaf, ei);
2326
2327 btrfs_mark_buffer_dirty(leaf);
2328 out:
2329 btrfs_free_path(path);
2330 return err;
2331 }
2332
2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_delayed_ref_node *node,
2336 struct btrfs_delayed_extent_op *extent_op,
2337 int insert_reserved)
2338 {
2339 int ret = 0;
2340 struct btrfs_delayed_tree_ref *ref;
2341 struct btrfs_key ins;
2342 u64 parent = 0;
2343 u64 ref_root = 0;
2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 SKINNY_METADATA);
2346
2347 ref = btrfs_delayed_node_to_tree_ref(node);
2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2349
2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 parent = ref->parent;
2352 ref_root = ref->root;
2353
2354 ins.objectid = node->bytenr;
2355 if (skinny_metadata) {
2356 ins.offset = ref->level;
2357 ins.type = BTRFS_METADATA_ITEM_KEY;
2358 } else {
2359 ins.offset = node->num_bytes;
2360 ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 }
2362
2363 BUG_ON(node->ref_mod != 1);
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, root,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
2370 ref->level, &ins);
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, root, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
2375 extent_op);
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, root, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
2380 } else {
2381 BUG();
2382 }
2383 return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2392 {
2393 int ret = 0;
2394
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
2399 return 0;
2400 }
2401
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(root->fs_info, node, head,
2413 node->action);
2414
2415 if (insert_reserved) {
2416 btrfs_pin_extent(root, node->bytenr,
2417 node->num_bytes, 1);
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, root,
2420 node->bytenr,
2421 node->num_bytes);
2422 }
2423 }
2424
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 head->qgroup_ref_root,
2428 head->qgroup_reserved);
2429 return ret;
2430 }
2431
2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2435 insert_reserved);
2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 ret = run_delayed_data_ref(trans, root, node, extent_op,
2439 insert_reserved);
2440 else
2441 BUG();
2442 return ret;
2443 }
2444
2445 static inline struct btrfs_delayed_ref_node *
2446 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2447 {
2448 struct btrfs_delayed_ref_node *ref;
2449
2450 if (list_empty(&head->ref_list))
2451 return NULL;
2452
2453 /*
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2458 */
2459 list_for_each_entry(ref, &head->ref_list, list) {
2460 if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 return ref;
2462 }
2463
2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2465 list);
2466 }
2467
2468 /*
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471 */
2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 unsigned long nr)
2475 {
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
2479 struct btrfs_delayed_extent_op *extent_op;
2480 struct btrfs_fs_info *fs_info = root->fs_info;
2481 ktime_t start = ktime_get();
2482 int ret;
2483 unsigned long count = 0;
2484 unsigned long actual_count = 0;
2485 int must_insert_reserved = 0;
2486
2487 delayed_refs = &trans->transaction->delayed_refs;
2488 while (1) {
2489 if (!locked_ref) {
2490 if (count >= nr)
2491 break;
2492
2493 spin_lock(&delayed_refs->lock);
2494 locked_ref = btrfs_select_ref_head(trans);
2495 if (!locked_ref) {
2496 spin_unlock(&delayed_refs->lock);
2497 break;
2498 }
2499
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2503 spin_unlock(&delayed_refs->lock);
2504 /*
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2509 */
2510 if (ret == -EAGAIN) {
2511 locked_ref = NULL;
2512 count++;
2513 continue;
2514 }
2515 }
2516
2517 /*
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2522 * get a good ref.
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2528 */
2529 spin_lock(&locked_ref->lock);
2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 locked_ref);
2532
2533 /*
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2536 */
2537 ref = select_delayed_ref(locked_ref);
2538
2539 if (ref && ref->seq &&
2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2541 spin_unlock(&locked_ref->lock);
2542 btrfs_delayed_ref_unlock(locked_ref);
2543 spin_lock(&delayed_refs->lock);
2544 locked_ref->processing = 0;
2545 delayed_refs->num_heads_ready++;
2546 spin_unlock(&delayed_refs->lock);
2547 locked_ref = NULL;
2548 cond_resched();
2549 count++;
2550 continue;
2551 }
2552
2553 /*
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2556 */
2557 must_insert_reserved = locked_ref->must_insert_reserved;
2558 locked_ref->must_insert_reserved = 0;
2559
2560 extent_op = locked_ref->extent_op;
2561 locked_ref->extent_op = NULL;
2562
2563 if (!ref) {
2564
2565
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2569 */
2570 ref = &locked_ref->node;
2571
2572 if (extent_op && must_insert_reserved) {
2573 btrfs_free_delayed_extent_op(extent_op);
2574 extent_op = NULL;
2575 }
2576
2577 if (extent_op) {
2578 spin_unlock(&locked_ref->lock);
2579 ret = run_delayed_extent_op(trans, root,
2580 ref, extent_op);
2581 btrfs_free_delayed_extent_op(extent_op);
2582
2583 if (ret) {
2584 /*
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2588 * properly.
2589 */
2590 if (must_insert_reserved)
2591 locked_ref->must_insert_reserved = 1;
2592 locked_ref->processing = 0;
2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2594 btrfs_delayed_ref_unlock(locked_ref);
2595 return ret;
2596 }
2597 continue;
2598 }
2599
2600 /*
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2603 * nobody got added.
2604 */
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
2608 if (!list_empty(&locked_ref->ref_list) ||
2609 locked_ref->extent_op) {
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2612 continue;
2613 }
2614 ref->in_tree = 0;
2615 delayed_refs->num_heads--;
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
2618 spin_unlock(&delayed_refs->lock);
2619 } else {
2620 actual_count++;
2621 ref->in_tree = 0;
2622 list_del(&ref->list);
2623 }
2624 atomic_dec(&delayed_refs->num_entries);
2625
2626 if (!btrfs_delayed_ref_is_head(ref)) {
2627 /*
2628 * when we play the delayed ref, also correct the
2629 * ref_mod on head
2630 */
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2635 break;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2638 break;
2639 default:
2640 WARN_ON(1);
2641 }
2642 }
2643 spin_unlock(&locked_ref->lock);
2644
2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 must_insert_reserved);
2647
2648 btrfs_free_delayed_extent_op(extent_op);
2649 if (ret) {
2650 locked_ref->processing = 0;
2651 btrfs_delayed_ref_unlock(locked_ref);
2652 btrfs_put_delayed_ref(ref);
2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2654 return ret;
2655 }
2656
2657 /*
2658 * If this node is a head, that means all the refs in this head
2659 * have been dealt with, and we will pick the next head to deal
2660 * with, so we must unlock the head and drop it from the cluster
2661 * list before we release it.
2662 */
2663 if (btrfs_delayed_ref_is_head(ref)) {
2664 if (locked_ref->is_data &&
2665 locked_ref->total_ref_mod < 0) {
2666 spin_lock(&delayed_refs->lock);
2667 delayed_refs->pending_csums -= ref->num_bytes;
2668 spin_unlock(&delayed_refs->lock);
2669 }
2670 btrfs_delayed_ref_unlock(locked_ref);
2671 locked_ref = NULL;
2672 }
2673 btrfs_put_delayed_ref(ref);
2674 count++;
2675 cond_resched();
2676 }
2677
2678 /*
2679 * We don't want to include ref heads since we can have empty ref heads
2680 * and those will drastically skew our runtime down since we just do
2681 * accounting, no actual extent tree updates.
2682 */
2683 if (actual_count > 0) {
2684 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2685 u64 avg;
2686
2687 /*
2688 * We weigh the current average higher than our current runtime
2689 * to avoid large swings in the average.
2690 */
2691 spin_lock(&delayed_refs->lock);
2692 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2693 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2694 spin_unlock(&delayed_refs->lock);
2695 }
2696 return 0;
2697 }
2698
2699 #ifdef SCRAMBLE_DELAYED_REFS
2700 /*
2701 * Normally delayed refs get processed in ascending bytenr order. This
2702 * correlates in most cases to the order added. To expose dependencies on this
2703 * order, we start to process the tree in the middle instead of the beginning
2704 */
2705 static u64 find_middle(struct rb_root *root)
2706 {
2707 struct rb_node *n = root->rb_node;
2708 struct btrfs_delayed_ref_node *entry;
2709 int alt = 1;
2710 u64 middle;
2711 u64 first = 0, last = 0;
2712
2713 n = rb_first(root);
2714 if (n) {
2715 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2716 first = entry->bytenr;
2717 }
2718 n = rb_last(root);
2719 if (n) {
2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 last = entry->bytenr;
2722 }
2723 n = root->rb_node;
2724
2725 while (n) {
2726 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2727 WARN_ON(!entry->in_tree);
2728
2729 middle = entry->bytenr;
2730
2731 if (alt)
2732 n = n->rb_left;
2733 else
2734 n = n->rb_right;
2735
2736 alt = 1 - alt;
2737 }
2738 return middle;
2739 }
2740 #endif
2741
2742 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2743 {
2744 u64 num_bytes;
2745
2746 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2747 sizeof(struct btrfs_extent_inline_ref));
2748 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2749 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2750
2751 /*
2752 * We don't ever fill up leaves all the way so multiply by 2 just to be
2753 * closer to what we're really going to want to use.
2754 */
2755 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2756 }
2757
2758 /*
2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2760 * would require to store the csums for that many bytes.
2761 */
2762 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2763 {
2764 u64 csum_size;
2765 u64 num_csums_per_leaf;
2766 u64 num_csums;
2767
2768 csum_size = BTRFS_MAX_ITEM_SIZE(root);
2769 num_csums_per_leaf = div64_u64(csum_size,
2770 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2771 num_csums = div64_u64(csum_bytes, root->sectorsize);
2772 num_csums += num_csums_per_leaf - 1;
2773 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2774 return num_csums;
2775 }
2776
2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root)
2779 {
2780 struct btrfs_block_rsv *global_rsv;
2781 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2782 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2783 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2784 u64 num_bytes, num_dirty_bgs_bytes;
2785 int ret = 0;
2786
2787 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2788 num_heads = heads_to_leaves(root, num_heads);
2789 if (num_heads > 1)
2790 num_bytes += (num_heads - 1) * root->nodesize;
2791 num_bytes <<= 1;
2792 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2794 num_dirty_bgs);
2795 global_rsv = &root->fs_info->global_block_rsv;
2796
2797 /*
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2800 */
2801 if (global_rsv->space_info->full) {
2802 num_dirty_bgs_bytes <<= 1;
2803 num_bytes <<= 1;
2804 }
2805
2806 spin_lock(&global_rsv->lock);
2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2808 ret = 1;
2809 spin_unlock(&global_rsv->lock);
2810 return ret;
2811 }
2812
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 struct btrfs_root *root)
2815 {
2816 struct btrfs_fs_info *fs_info = root->fs_info;
2817 u64 num_entries =
2818 atomic_read(&trans->transaction->delayed_refs.num_entries);
2819 u64 avg_runtime;
2820 u64 val;
2821
2822 smp_mb();
2823 avg_runtime = fs_info->avg_delayed_ref_runtime;
2824 val = num_entries * avg_runtime;
2825 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2826 return 1;
2827 if (val >= NSEC_PER_SEC / 2)
2828 return 2;
2829
2830 return btrfs_check_space_for_delayed_refs(trans, root);
2831 }
2832
2833 struct async_delayed_refs {
2834 struct btrfs_root *root;
2835 u64 transid;
2836 int count;
2837 int error;
2838 int sync;
2839 struct completion wait;
2840 struct btrfs_work work;
2841 };
2842
2843 static void delayed_ref_async_start(struct btrfs_work *work)
2844 {
2845 struct async_delayed_refs *async;
2846 struct btrfs_trans_handle *trans;
2847 int ret;
2848
2849 async = container_of(work, struct async_delayed_refs, work);
2850
2851 /* if the commit is already started, we don't need to wait here */
2852 if (btrfs_transaction_blocked(async->root->fs_info))
2853 goto done;
2854
2855 trans = btrfs_join_transaction(async->root);
2856 if (IS_ERR(trans)) {
2857 async->error = PTR_ERR(trans);
2858 goto done;
2859 }
2860
2861 /*
2862 * trans->sync means that when we call end_transaction, we won't
2863 * wait on delayed refs
2864 */
2865 trans->sync = true;
2866
2867 /* Don't bother flushing if we got into a different transaction */
2868 if (trans->transid > async->transid)
2869 goto end;
2870
2871 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2872 if (ret)
2873 async->error = ret;
2874 end:
2875 ret = btrfs_end_transaction(trans, async->root);
2876 if (ret && !async->error)
2877 async->error = ret;
2878 done:
2879 if (async->sync)
2880 complete(&async->wait);
2881 else
2882 kfree(async);
2883 }
2884
2885 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2886 unsigned long count, u64 transid, int wait)
2887 {
2888 struct async_delayed_refs *async;
2889 int ret;
2890
2891 async = kmalloc(sizeof(*async), GFP_NOFS);
2892 if (!async)
2893 return -ENOMEM;
2894
2895 async->root = root->fs_info->tree_root;
2896 async->count = count;
2897 async->error = 0;
2898 async->transid = transid;
2899 if (wait)
2900 async->sync = 1;
2901 else
2902 async->sync = 0;
2903 init_completion(&async->wait);
2904
2905 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2906 delayed_ref_async_start, NULL, NULL);
2907
2908 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2909
2910 if (wait) {
2911 wait_for_completion(&async->wait);
2912 ret = async->error;
2913 kfree(async);
2914 return ret;
2915 }
2916 return 0;
2917 }
2918
2919 /*
2920 * this starts processing the delayed reference count updates and
2921 * extent insertions we have queued up so far. count can be
2922 * 0, which means to process everything in the tree at the start
2923 * of the run (but not newly added entries), or it can be some target
2924 * number you'd like to process.
2925 *
2926 * Returns 0 on success or if called with an aborted transaction
2927 * Returns <0 on error and aborts the transaction
2928 */
2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2930 struct btrfs_root *root, unsigned long count)
2931 {
2932 struct rb_node *node;
2933 struct btrfs_delayed_ref_root *delayed_refs;
2934 struct btrfs_delayed_ref_head *head;
2935 int ret;
2936 int run_all = count == (unsigned long)-1;
2937 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2938
2939 /* We'll clean this up in btrfs_cleanup_transaction */
2940 if (trans->aborted)
2941 return 0;
2942
2943 if (root->fs_info->creating_free_space_tree)
2944 return 0;
2945
2946 if (root == root->fs_info->extent_root)
2947 root = root->fs_info->tree_root;
2948
2949 delayed_refs = &trans->transaction->delayed_refs;
2950 if (count == 0)
2951 count = atomic_read(&delayed_refs->num_entries) * 2;
2952
2953 again:
2954 #ifdef SCRAMBLE_DELAYED_REFS
2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2956 #endif
2957 trans->can_flush_pending_bgs = false;
2958 ret = __btrfs_run_delayed_refs(trans, root, count);
2959 if (ret < 0) {
2960 btrfs_abort_transaction(trans, ret);
2961 return ret;
2962 }
2963
2964 if (run_all) {
2965 if (!list_empty(&trans->new_bgs))
2966 btrfs_create_pending_block_groups(trans, root);
2967
2968 spin_lock(&delayed_refs->lock);
2969 node = rb_first(&delayed_refs->href_root);
2970 if (!node) {
2971 spin_unlock(&delayed_refs->lock);
2972 goto out;
2973 }
2974 count = (unsigned long)-1;
2975
2976 while (node) {
2977 head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 href_node);
2979 if (btrfs_delayed_ref_is_head(&head->node)) {
2980 struct btrfs_delayed_ref_node *ref;
2981
2982 ref = &head->node;
2983 atomic_inc(&ref->refs);
2984
2985 spin_unlock(&delayed_refs->lock);
2986 /*
2987 * Mutex was contended, block until it's
2988 * released and try again
2989 */
2990 mutex_lock(&head->mutex);
2991 mutex_unlock(&head->mutex);
2992
2993 btrfs_put_delayed_ref(ref);
2994 cond_resched();
2995 goto again;
2996 } else {
2997 WARN_ON(1);
2998 }
2999 node = rb_next(node);
3000 }
3001 spin_unlock(&delayed_refs->lock);
3002 cond_resched();
3003 goto again;
3004 }
3005 out:
3006 assert_qgroups_uptodate(trans);
3007 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3008 return 0;
3009 }
3010
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 struct btrfs_root *root,
3013 u64 bytenr, u64 num_bytes, u64 flags,
3014 int level, int is_data)
3015 {
3016 struct btrfs_delayed_extent_op *extent_op;
3017 int ret;
3018
3019 extent_op = btrfs_alloc_delayed_extent_op();
3020 if (!extent_op)
3021 return -ENOMEM;
3022
3023 extent_op->flags_to_set = flags;
3024 extent_op->update_flags = true;
3025 extent_op->update_key = false;
3026 extent_op->is_data = is_data ? true : false;
3027 extent_op->level = level;
3028
3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3030 num_bytes, extent_op);
3031 if (ret)
3032 btrfs_free_delayed_extent_op(extent_op);
3033 return ret;
3034 }
3035
3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root,
3038 struct btrfs_path *path,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_delayed_ref_head *head;
3042 struct btrfs_delayed_ref_node *ref;
3043 struct btrfs_delayed_data_ref *data_ref;
3044 struct btrfs_delayed_ref_root *delayed_refs;
3045 int ret = 0;
3046
3047 delayed_refs = &trans->transaction->delayed_refs;
3048 spin_lock(&delayed_refs->lock);
3049 head = btrfs_find_delayed_ref_head(trans, bytenr);
3050 if (!head) {
3051 spin_unlock(&delayed_refs->lock);
3052 return 0;
3053 }
3054
3055 if (!mutex_trylock(&head->mutex)) {
3056 atomic_inc(&head->node.refs);
3057 spin_unlock(&delayed_refs->lock);
3058
3059 btrfs_release_path(path);
3060
3061 /*
3062 * Mutex was contended, block until it's released and let
3063 * caller try again
3064 */
3065 mutex_lock(&head->mutex);
3066 mutex_unlock(&head->mutex);
3067 btrfs_put_delayed_ref(&head->node);
3068 return -EAGAIN;
3069 }
3070 spin_unlock(&delayed_refs->lock);
3071
3072 spin_lock(&head->lock);
3073 list_for_each_entry(ref, &head->ref_list, list) {
3074 /* If it's a shared ref we know a cross reference exists */
3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3076 ret = 1;
3077 break;
3078 }
3079
3080 data_ref = btrfs_delayed_node_to_data_ref(ref);
3081
3082 /*
3083 * If our ref doesn't match the one we're currently looking at
3084 * then we have a cross reference.
3085 */
3086 if (data_ref->root != root->root_key.objectid ||
3087 data_ref->objectid != objectid ||
3088 data_ref->offset != offset) {
3089 ret = 1;
3090 break;
3091 }
3092 }
3093 spin_unlock(&head->lock);
3094 mutex_unlock(&head->mutex);
3095 return ret;
3096 }
3097
3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 u64 objectid, u64 offset, u64 bytenr)
3102 {
3103 struct btrfs_root *extent_root = root->fs_info->extent_root;
3104 struct extent_buffer *leaf;
3105 struct btrfs_extent_data_ref *ref;
3106 struct btrfs_extent_inline_ref *iref;
3107 struct btrfs_extent_item *ei;
3108 struct btrfs_key key;
3109 u32 item_size;
3110 int ret;
3111
3112 key.objectid = bytenr;
3113 key.offset = (u64)-1;
3114 key.type = BTRFS_EXTENT_ITEM_KEY;
3115
3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3117 if (ret < 0)
3118 goto out;
3119 BUG_ON(ret == 0); /* Corruption */
3120
3121 ret = -ENOENT;
3122 if (path->slots[0] == 0)
3123 goto out;
3124
3125 path->slots[0]--;
3126 leaf = path->nodes[0];
3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3128
3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3130 goto out;
3131
3132 ret = 1;
3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 if (item_size < sizeof(*ei)) {
3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3137 goto out;
3138 }
3139 #endif
3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3141
3142 if (item_size != sizeof(*ei) +
3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3144 goto out;
3145
3146 if (btrfs_extent_generation(leaf, ei) <=
3147 btrfs_root_last_snapshot(&root->root_item))
3148 goto out;
3149
3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3151 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3152 BTRFS_EXTENT_DATA_REF_KEY)
3153 goto out;
3154
3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3156 if (btrfs_extent_refs(leaf, ei) !=
3157 btrfs_extent_data_ref_count(leaf, ref) ||
3158 btrfs_extent_data_ref_root(leaf, ref) !=
3159 root->root_key.objectid ||
3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3161 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3162 goto out;
3163
3164 ret = 0;
3165 out:
3166 return ret;
3167 }
3168
3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3170 struct btrfs_root *root,
3171 u64 objectid, u64 offset, u64 bytenr)
3172 {
3173 struct btrfs_path *path;
3174 int ret;
3175 int ret2;
3176
3177 path = btrfs_alloc_path();
3178 if (!path)
3179 return -ENOENT;
3180
3181 do {
3182 ret = check_committed_ref(trans, root, path, objectid,
3183 offset, bytenr);
3184 if (ret && ret != -ENOENT)
3185 goto out;
3186
3187 ret2 = check_delayed_ref(trans, root, path, objectid,
3188 offset, bytenr);
3189 } while (ret2 == -EAGAIN);
3190
3191 if (ret2 && ret2 != -ENOENT) {
3192 ret = ret2;
3193 goto out;
3194 }
3195
3196 if (ret != -ENOENT || ret2 != -ENOENT)
3197 ret = 0;
3198 out:
3199 btrfs_free_path(path);
3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3201 WARN_ON(ret > 0);
3202 return ret;
3203 }
3204
3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3206 struct btrfs_root *root,
3207 struct extent_buffer *buf,
3208 int full_backref, int inc)
3209 {
3210 u64 bytenr;
3211 u64 num_bytes;
3212 u64 parent;
3213 u64 ref_root;
3214 u32 nritems;
3215 struct btrfs_key key;
3216 struct btrfs_file_extent_item *fi;
3217 int i;
3218 int level;
3219 int ret = 0;
3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3221 u64, u64, u64, u64, u64, u64);
3222
3223
3224 if (btrfs_is_testing(root->fs_info))
3225 return 0;
3226
3227 ref_root = btrfs_header_owner(buf);
3228 nritems = btrfs_header_nritems(buf);
3229 level = btrfs_header_level(buf);
3230
3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3232 return 0;
3233
3234 if (inc)
3235 process_func = btrfs_inc_extent_ref;
3236 else
3237 process_func = btrfs_free_extent;
3238
3239 if (full_backref)
3240 parent = buf->start;
3241 else
3242 parent = 0;
3243
3244 for (i = 0; i < nritems; i++) {
3245 if (level == 0) {
3246 btrfs_item_key_to_cpu(buf, &key, i);
3247 if (key.type != BTRFS_EXTENT_DATA_KEY)
3248 continue;
3249 fi = btrfs_item_ptr(buf, i,
3250 struct btrfs_file_extent_item);
3251 if (btrfs_file_extent_type(buf, fi) ==
3252 BTRFS_FILE_EXTENT_INLINE)
3253 continue;
3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3255 if (bytenr == 0)
3256 continue;
3257
3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3259 key.offset -= btrfs_file_extent_offset(buf, fi);
3260 ret = process_func(trans, root, bytenr, num_bytes,
3261 parent, ref_root, key.objectid,
3262 key.offset);
3263 if (ret)
3264 goto fail;
3265 } else {
3266 bytenr = btrfs_node_blockptr(buf, i);
3267 num_bytes = root->nodesize;
3268 ret = process_func(trans, root, bytenr, num_bytes,
3269 parent, ref_root, level - 1, 0);
3270 if (ret)
3271 goto fail;
3272 }
3273 }
3274 return 0;
3275 fail:
3276 return ret;
3277 }
3278
3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3280 struct extent_buffer *buf, int full_backref)
3281 {
3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3283 }
3284
3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3286 struct extent_buffer *buf, int full_backref)
3287 {
3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3289 }
3290
3291 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *root,
3293 struct btrfs_path *path,
3294 struct btrfs_block_group_cache *cache)
3295 {
3296 int ret;
3297 struct btrfs_root *extent_root = root->fs_info->extent_root;
3298 unsigned long bi;
3299 struct extent_buffer *leaf;
3300
3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3302 if (ret) {
3303 if (ret > 0)
3304 ret = -ENOENT;
3305 goto fail;
3306 }
3307
3308 leaf = path->nodes[0];
3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3311 btrfs_mark_buffer_dirty(leaf);
3312 fail:
3313 btrfs_release_path(path);
3314 return ret;
3315
3316 }
3317
3318 static struct btrfs_block_group_cache *
3319 next_block_group(struct btrfs_root *root,
3320 struct btrfs_block_group_cache *cache)
3321 {
3322 struct rb_node *node;
3323
3324 spin_lock(&root->fs_info->block_group_cache_lock);
3325
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache->cache_node)) {
3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3329
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 btrfs_put_block_group(cache);
3332 cache = btrfs_lookup_first_block_group(root->fs_info,
3333 next_bytenr);
3334 return cache;
3335 }
3336 node = rb_next(&cache->cache_node);
3337 btrfs_put_block_group(cache);
3338 if (node) {
3339 cache = rb_entry(node, struct btrfs_block_group_cache,
3340 cache_node);
3341 btrfs_get_block_group(cache);
3342 } else
3343 cache = NULL;
3344 spin_unlock(&root->fs_info->block_group_cache_lock);
3345 return cache;
3346 }
3347
3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3349 struct btrfs_trans_handle *trans,
3350 struct btrfs_path *path)
3351 {
3352 struct btrfs_root *root = block_group->fs_info->tree_root;
3353 struct inode *inode = NULL;
3354 u64 alloc_hint = 0;
3355 int dcs = BTRFS_DC_ERROR;
3356 u64 num_pages = 0;
3357 int retries = 0;
3358 int ret = 0;
3359
3360 /*
3361 * If this block group is smaller than 100 megs don't bother caching the
3362 * block group.
3363 */
3364 if (block_group->key.offset < (100 * SZ_1M)) {
3365 spin_lock(&block_group->lock);
3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3367 spin_unlock(&block_group->lock);
3368 return 0;
3369 }
3370
3371 if (trans->aborted)
3372 return 0;
3373 again:
3374 inode = lookup_free_space_inode(root, block_group, path);
3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3376 ret = PTR_ERR(inode);
3377 btrfs_release_path(path);
3378 goto out;
3379 }
3380
3381 if (IS_ERR(inode)) {
3382 BUG_ON(retries);
3383 retries++;
3384
3385 if (block_group->ro)
3386 goto out_free;
3387
3388 ret = create_free_space_inode(root, trans, block_group, path);
3389 if (ret)
3390 goto out_free;
3391 goto again;
3392 }
3393
3394 /* We've already setup this transaction, go ahead and exit */
3395 if (block_group->cache_generation == trans->transid &&
3396 i_size_read(inode)) {
3397 dcs = BTRFS_DC_SETUP;
3398 goto out_put;
3399 }
3400
3401 /*
3402 * We want to set the generation to 0, that way if anything goes wrong
3403 * from here on out we know not to trust this cache when we load up next
3404 * time.
3405 */
3406 BTRFS_I(inode)->generation = 0;
3407 ret = btrfs_update_inode(trans, root, inode);
3408 if (ret) {
3409 /*
3410 * So theoretically we could recover from this, simply set the
3411 * super cache generation to 0 so we know to invalidate the
3412 * cache, but then we'd have to keep track of the block groups
3413 * that fail this way so we know we _have_ to reset this cache
3414 * before the next commit or risk reading stale cache. So to
3415 * limit our exposure to horrible edge cases lets just abort the
3416 * transaction, this only happens in really bad situations
3417 * anyway.
3418 */
3419 btrfs_abort_transaction(trans, ret);
3420 goto out_put;
3421 }
3422 WARN_ON(ret);
3423
3424 if (i_size_read(inode) > 0) {
3425 ret = btrfs_check_trunc_cache_free_space(root,
3426 &root->fs_info->global_block_rsv);
3427 if (ret)
3428 goto out_put;
3429
3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3431 if (ret)
3432 goto out_put;
3433 }
3434
3435 spin_lock(&block_group->lock);
3436 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3438 /*
3439 * don't bother trying to write stuff out _if_
3440 * a) we're not cached,
3441 * b) we're with nospace_cache mount option.
3442 */
3443 dcs = BTRFS_DC_WRITTEN;
3444 spin_unlock(&block_group->lock);
3445 goto out_put;
3446 }
3447 spin_unlock(&block_group->lock);
3448
3449 /*
3450 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 * skip doing the setup, we've already cleared the cache so we're safe.
3452 */
3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3454 ret = -ENOSPC;
3455 goto out_put;
3456 }
3457
3458 /*
3459 * Try to preallocate enough space based on how big the block group is.
3460 * Keep in mind this has to include any pinned space which could end up
3461 * taking up quite a bit since it's not folded into the other space
3462 * cache.
3463 */
3464 num_pages = div_u64(block_group->key.offset, SZ_256M);
3465 if (!num_pages)
3466 num_pages = 1;
3467
3468 num_pages *= 16;
3469 num_pages *= PAGE_SIZE;
3470
3471 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3472 if (ret)
3473 goto out_put;
3474
3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3476 num_pages, num_pages,
3477 &alloc_hint);
3478 /*
3479 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 * of metadata or split extents when writing the cache out, which means
3481 * we can enospc if we are heavily fragmented in addition to just normal
3482 * out of space conditions. So if we hit this just skip setting up any
3483 * other block groups for this transaction, maybe we'll unpin enough
3484 * space the next time around.
3485 */
3486 if (!ret)
3487 dcs = BTRFS_DC_SETUP;
3488 else if (ret == -ENOSPC)
3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3490
3491 out_put:
3492 iput(inode);
3493 out_free:
3494 btrfs_release_path(path);
3495 out:
3496 spin_lock(&block_group->lock);
3497 if (!ret && dcs == BTRFS_DC_SETUP)
3498 block_group->cache_generation = trans->transid;
3499 block_group->disk_cache_state = dcs;
3500 spin_unlock(&block_group->lock);
3501
3502 return ret;
3503 }
3504
3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root)
3507 {
3508 struct btrfs_block_group_cache *cache, *tmp;
3509 struct btrfs_transaction *cur_trans = trans->transaction;
3510 struct btrfs_path *path;
3511
3512 if (list_empty(&cur_trans->dirty_bgs) ||
3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3514 return 0;
3515
3516 path = btrfs_alloc_path();
3517 if (!path)
3518 return -ENOMEM;
3519
3520 /* Could add new block groups, use _safe just in case */
3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3522 dirty_list) {
3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3524 cache_save_setup(cache, trans, path);
3525 }
3526
3527 btrfs_free_path(path);
3528 return 0;
3529 }
3530
3531 /*
3532 * transaction commit does final block group cache writeback during a
3533 * critical section where nothing is allowed to change the FS. This is
3534 * required in order for the cache to actually match the block group,
3535 * but can introduce a lot of latency into the commit.
3536 *
3537 * So, btrfs_start_dirty_block_groups is here to kick off block group
3538 * cache IO. There's a chance we'll have to redo some of it if the
3539 * block group changes again during the commit, but it greatly reduces
3540 * the commit latency by getting rid of the easy block groups while
3541 * we're still allowing others to join the commit.
3542 */
3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root)
3545 {
3546 struct btrfs_block_group_cache *cache;
3547 struct btrfs_transaction *cur_trans = trans->transaction;
3548 int ret = 0;
3549 int should_put;
3550 struct btrfs_path *path = NULL;
3551 LIST_HEAD(dirty);
3552 struct list_head *io = &cur_trans->io_bgs;
3553 int num_started = 0;
3554 int loops = 0;
3555
3556 spin_lock(&cur_trans->dirty_bgs_lock);
3557 if (list_empty(&cur_trans->dirty_bgs)) {
3558 spin_unlock(&cur_trans->dirty_bgs_lock);
3559 return 0;
3560 }
3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3563
3564 again:
3565 /*
3566 * make sure all the block groups on our dirty list actually
3567 * exist
3568 */
3569 btrfs_create_pending_block_groups(trans, root);
3570
3571 if (!path) {
3572 path = btrfs_alloc_path();
3573 if (!path)
3574 return -ENOMEM;
3575 }
3576
3577 /*
3578 * cache_write_mutex is here only to save us from balance or automatic
3579 * removal of empty block groups deleting this block group while we are
3580 * writing out the cache
3581 */
3582 mutex_lock(&trans->transaction->cache_write_mutex);
3583 while (!list_empty(&dirty)) {
3584 cache = list_first_entry(&dirty,
3585 struct btrfs_block_group_cache,
3586 dirty_list);
3587 /*
3588 * this can happen if something re-dirties a block
3589 * group that is already under IO. Just wait for it to
3590 * finish and then do it all again
3591 */
3592 if (!list_empty(&cache->io_list)) {
3593 list_del_init(&cache->io_list);
3594 btrfs_wait_cache_io(root, trans, cache,
3595 &cache->io_ctl, path,
3596 cache->key.objectid);
3597 btrfs_put_block_group(cache);
3598 }
3599
3600
3601 /*
3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 * if it should update the cache_state. Don't delete
3604 * until after we wait.
3605 *
3606 * Since we're not running in the commit critical section
3607 * we need the dirty_bgs_lock to protect from update_block_group
3608 */
3609 spin_lock(&cur_trans->dirty_bgs_lock);
3610 list_del_init(&cache->dirty_list);
3611 spin_unlock(&cur_trans->dirty_bgs_lock);
3612
3613 should_put = 1;
3614
3615 cache_save_setup(cache, trans, path);
3616
3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 cache->io_ctl.inode = NULL;
3619 ret = btrfs_write_out_cache(root, trans, cache, path);
3620 if (ret == 0 && cache->io_ctl.inode) {
3621 num_started++;
3622 should_put = 0;
3623
3624 /*
3625 * the cache_write_mutex is protecting
3626 * the io_list
3627 */
3628 list_add_tail(&cache->io_list, io);
3629 } else {
3630 /*
3631 * if we failed to write the cache, the
3632 * generation will be bad and life goes on
3633 */
3634 ret = 0;
3635 }
3636 }
3637 if (!ret) {
3638 ret = write_one_cache_group(trans, root, path, cache);
3639 /*
3640 * Our block group might still be attached to the list
3641 * of new block groups in the transaction handle of some
3642 * other task (struct btrfs_trans_handle->new_bgs). This
3643 * means its block group item isn't yet in the extent
3644 * tree. If this happens ignore the error, as we will
3645 * try again later in the critical section of the
3646 * transaction commit.
3647 */
3648 if (ret == -ENOENT) {
3649 ret = 0;
3650 spin_lock(&cur_trans->dirty_bgs_lock);
3651 if (list_empty(&cache->dirty_list)) {
3652 list_add_tail(&cache->dirty_list,
3653 &cur_trans->dirty_bgs);
3654 btrfs_get_block_group(cache);
3655 }
3656 spin_unlock(&cur_trans->dirty_bgs_lock);
3657 } else if (ret) {
3658 btrfs_abort_transaction(trans, ret);
3659 }
3660 }
3661
3662 /* if its not on the io list, we need to put the block group */
3663 if (should_put)
3664 btrfs_put_block_group(cache);
3665
3666 if (ret)
3667 break;
3668
3669 /*
3670 * Avoid blocking other tasks for too long. It might even save
3671 * us from writing caches for block groups that are going to be
3672 * removed.
3673 */
3674 mutex_unlock(&trans->transaction->cache_write_mutex);
3675 mutex_lock(&trans->transaction->cache_write_mutex);
3676 }
3677 mutex_unlock(&trans->transaction->cache_write_mutex);
3678
3679 /*
3680 * go through delayed refs for all the stuff we've just kicked off
3681 * and then loop back (just once)
3682 */
3683 ret = btrfs_run_delayed_refs(trans, root, 0);
3684 if (!ret && loops == 0) {
3685 loops++;
3686 spin_lock(&cur_trans->dirty_bgs_lock);
3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3688 /*
3689 * dirty_bgs_lock protects us from concurrent block group
3690 * deletes too (not just cache_write_mutex).
3691 */
3692 if (!list_empty(&dirty)) {
3693 spin_unlock(&cur_trans->dirty_bgs_lock);
3694 goto again;
3695 }
3696 spin_unlock(&cur_trans->dirty_bgs_lock);
3697 }
3698
3699 btrfs_free_path(path);
3700 return ret;
3701 }
3702
3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3704 struct btrfs_root *root)
3705 {
3706 struct btrfs_block_group_cache *cache;
3707 struct btrfs_transaction *cur_trans = trans->transaction;
3708 int ret = 0;
3709 int should_put;
3710 struct btrfs_path *path;
3711 struct list_head *io = &cur_trans->io_bgs;
3712 int num_started = 0;
3713
3714 path = btrfs_alloc_path();
3715 if (!path)
3716 return -ENOMEM;
3717
3718 /*
3719 * Even though we are in the critical section of the transaction commit,
3720 * we can still have concurrent tasks adding elements to this
3721 * transaction's list of dirty block groups. These tasks correspond to
3722 * endio free space workers started when writeback finishes for a
3723 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3724 * allocate new block groups as a result of COWing nodes of the root
3725 * tree when updating the free space inode. The writeback for the space
3726 * caches is triggered by an earlier call to
3727 * btrfs_start_dirty_block_groups() and iterations of the following
3728 * loop.
3729 * Also we want to do the cache_save_setup first and then run the
3730 * delayed refs to make sure we have the best chance at doing this all
3731 * in one shot.
3732 */
3733 spin_lock(&cur_trans->dirty_bgs_lock);
3734 while (!list_empty(&cur_trans->dirty_bgs)) {
3735 cache = list_first_entry(&cur_trans->dirty_bgs,
3736 struct btrfs_block_group_cache,
3737 dirty_list);
3738
3739 /*
3740 * this can happen if cache_save_setup re-dirties a block
3741 * group that is already under IO. Just wait for it to
3742 * finish and then do it all again
3743 */
3744 if (!list_empty(&cache->io_list)) {
3745 spin_unlock(&cur_trans->dirty_bgs_lock);
3746 list_del_init(&cache->io_list);
3747 btrfs_wait_cache_io(root, trans, cache,
3748 &cache->io_ctl, path,
3749 cache->key.objectid);
3750 btrfs_put_block_group(cache);
3751 spin_lock(&cur_trans->dirty_bgs_lock);
3752 }
3753
3754 /*
3755 * don't remove from the dirty list until after we've waited
3756 * on any pending IO
3757 */
3758 list_del_init(&cache->dirty_list);
3759 spin_unlock(&cur_trans->dirty_bgs_lock);
3760 should_put = 1;
3761
3762 cache_save_setup(cache, trans, path);
3763
3764 if (!ret)
3765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3766
3767 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3768 cache->io_ctl.inode = NULL;
3769 ret = btrfs_write_out_cache(root, trans, cache, path);
3770 if (ret == 0 && cache->io_ctl.inode) {
3771 num_started++;
3772 should_put = 0;
3773 list_add_tail(&cache->io_list, io);
3774 } else {
3775 /*
3776 * if we failed to write the cache, the
3777 * generation will be bad and life goes on
3778 */
3779 ret = 0;
3780 }
3781 }
3782 if (!ret) {
3783 ret = write_one_cache_group(trans, root, path, cache);
3784 /*
3785 * One of the free space endio workers might have
3786 * created a new block group while updating a free space
3787 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3788 * and hasn't released its transaction handle yet, in
3789 * which case the new block group is still attached to
3790 * its transaction handle and its creation has not
3791 * finished yet (no block group item in the extent tree
3792 * yet, etc). If this is the case, wait for all free
3793 * space endio workers to finish and retry. This is a
3794 * a very rare case so no need for a more efficient and
3795 * complex approach.
3796 */
3797 if (ret == -ENOENT) {
3798 wait_event(cur_trans->writer_wait,
3799 atomic_read(&cur_trans->num_writers) == 1);
3800 ret = write_one_cache_group(trans, root, path,
3801 cache);
3802 }
3803 if (ret)
3804 btrfs_abort_transaction(trans, ret);
3805 }
3806
3807 /* if its not on the io list, we need to put the block group */
3808 if (should_put)
3809 btrfs_put_block_group(cache);
3810 spin_lock(&cur_trans->dirty_bgs_lock);
3811 }
3812 spin_unlock(&cur_trans->dirty_bgs_lock);
3813
3814 while (!list_empty(io)) {
3815 cache = list_first_entry(io, struct btrfs_block_group_cache,
3816 io_list);
3817 list_del_init(&cache->io_list);
3818 btrfs_wait_cache_io(root, trans, cache,
3819 &cache->io_ctl, path, cache->key.objectid);
3820 btrfs_put_block_group(cache);
3821 }
3822
3823 btrfs_free_path(path);
3824 return ret;
3825 }
3826
3827 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3828 {
3829 struct btrfs_block_group_cache *block_group;
3830 int readonly = 0;
3831
3832 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3833 if (!block_group || block_group->ro)
3834 readonly = 1;
3835 if (block_group)
3836 btrfs_put_block_group(block_group);
3837 return readonly;
3838 }
3839
3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3841 {
3842 struct btrfs_block_group_cache *bg;
3843 bool ret = true;
3844
3845 bg = btrfs_lookup_block_group(fs_info, bytenr);
3846 if (!bg)
3847 return false;
3848
3849 spin_lock(&bg->lock);
3850 if (bg->ro)
3851 ret = false;
3852 else
3853 atomic_inc(&bg->nocow_writers);
3854 spin_unlock(&bg->lock);
3855
3856 /* no put on block group, done by btrfs_dec_nocow_writers */
3857 if (!ret)
3858 btrfs_put_block_group(bg);
3859
3860 return ret;
3861
3862 }
3863
3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3865 {
3866 struct btrfs_block_group_cache *bg;
3867
3868 bg = btrfs_lookup_block_group(fs_info, bytenr);
3869 ASSERT(bg);
3870 if (atomic_dec_and_test(&bg->nocow_writers))
3871 wake_up_atomic_t(&bg->nocow_writers);
3872 /*
3873 * Once for our lookup and once for the lookup done by a previous call
3874 * to btrfs_inc_nocow_writers()
3875 */
3876 btrfs_put_block_group(bg);
3877 btrfs_put_block_group(bg);
3878 }
3879
3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3881 {
3882 schedule();
3883 return 0;
3884 }
3885
3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3887 {
3888 wait_on_atomic_t(&bg->nocow_writers,
3889 btrfs_wait_nocow_writers_atomic_t,
3890 TASK_UNINTERRUPTIBLE);
3891 }
3892
3893 static const char *alloc_name(u64 flags)
3894 {
3895 switch (flags) {
3896 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3897 return "mixed";
3898 case BTRFS_BLOCK_GROUP_METADATA:
3899 return "metadata";
3900 case BTRFS_BLOCK_GROUP_DATA:
3901 return "data";
3902 case BTRFS_BLOCK_GROUP_SYSTEM:
3903 return "system";
3904 default:
3905 WARN_ON(1);
3906 return "invalid-combination";
3907 };
3908 }
3909
3910 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3911 u64 total_bytes, u64 bytes_used,
3912 u64 bytes_readonly,
3913 struct btrfs_space_info **space_info)
3914 {
3915 struct btrfs_space_info *found;
3916 int i;
3917 int factor;
3918 int ret;
3919
3920 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3921 BTRFS_BLOCK_GROUP_RAID10))
3922 factor = 2;
3923 else
3924 factor = 1;
3925
3926 found = __find_space_info(info, flags);
3927 if (found) {
3928 spin_lock(&found->lock);
3929 found->total_bytes += total_bytes;
3930 found->disk_total += total_bytes * factor;
3931 found->bytes_used += bytes_used;
3932 found->disk_used += bytes_used * factor;
3933 found->bytes_readonly += bytes_readonly;
3934 if (total_bytes > 0)
3935 found->full = 0;
3936 space_info_add_new_bytes(info, found, total_bytes -
3937 bytes_used - bytes_readonly);
3938 spin_unlock(&found->lock);
3939 *space_info = found;
3940 return 0;
3941 }
3942 found = kzalloc(sizeof(*found), GFP_NOFS);
3943 if (!found)
3944 return -ENOMEM;
3945
3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3947 if (ret) {
3948 kfree(found);
3949 return ret;
3950 }
3951
3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953 INIT_LIST_HEAD(&found->block_groups[i]);
3954 init_rwsem(&found->groups_sem);
3955 spin_lock_init(&found->lock);
3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957 found->total_bytes = total_bytes;
3958 found->disk_total = total_bytes * factor;
3959 found->bytes_used = bytes_used;
3960 found->disk_used = bytes_used * factor;
3961 found->bytes_pinned = 0;
3962 found->bytes_reserved = 0;
3963 found->bytes_readonly = bytes_readonly;
3964 found->bytes_may_use = 0;
3965 found->full = 0;
3966 found->max_extent_size = 0;
3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3968 found->chunk_alloc = 0;
3969 found->flush = 0;
3970 init_waitqueue_head(&found->wait);
3971 INIT_LIST_HEAD(&found->ro_bgs);
3972 INIT_LIST_HEAD(&found->tickets);
3973 INIT_LIST_HEAD(&found->priority_tickets);
3974
3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976 info->space_info_kobj, "%s",
3977 alloc_name(found->flags));
3978 if (ret) {
3979 kfree(found);
3980 return ret;
3981 }
3982
3983 *space_info = found;
3984 list_add_rcu(&found->list, &info->space_info);
3985 if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 info->data_sinfo = found;
3987
3988 return ret;
3989 }
3990
3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3992 {
3993 u64 extra_flags = chunk_to_extended(flags) &
3994 BTRFS_EXTENDED_PROFILE_MASK;
3995
3996 write_seqlock(&fs_info->profiles_lock);
3997 if (flags & BTRFS_BLOCK_GROUP_DATA)
3998 fs_info->avail_data_alloc_bits |= extra_flags;
3999 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000 fs_info->avail_metadata_alloc_bits |= extra_flags;
4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002 fs_info->avail_system_alloc_bits |= extra_flags;
4003 write_sequnlock(&fs_info->profiles_lock);
4004 }
4005
4006 /*
4007 * returns target flags in extended format or 0 if restripe for this
4008 * chunk_type is not in progress
4009 *
4010 * should be called with either volume_mutex or balance_lock held
4011 */
4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4013 {
4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 u64 target = 0;
4016
4017 if (!bctl)
4018 return 0;
4019
4020 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4029 }
4030
4031 return target;
4032 }
4033
4034 /*
4035 * @flags: available profiles in extended format (see ctree.h)
4036 *
4037 * Returns reduced profile in chunk format. If profile changing is in
4038 * progress (either running or paused) picks the target profile (if it's
4039 * already available), otherwise falls back to plain reducing.
4040 */
4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4042 {
4043 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4044 u64 target;
4045 u64 raid_type;
4046 u64 allowed = 0;
4047
4048 /*
4049 * see if restripe for this chunk_type is in progress, if so
4050 * try to reduce to the target profile
4051 */
4052 spin_lock(&root->fs_info->balance_lock);
4053 target = get_restripe_target(root->fs_info, flags);
4054 if (target) {
4055 /* pick target profile only if it's already available */
4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4057 spin_unlock(&root->fs_info->balance_lock);
4058 return extended_to_chunk(target);
4059 }
4060 }
4061 spin_unlock(&root->fs_info->balance_lock);
4062
4063 /* First, mask out the RAID levels which aren't possible */
4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066 allowed |= btrfs_raid_group[raid_type];
4067 }
4068 allowed &= flags;
4069
4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071 allowed = BTRFS_BLOCK_GROUP_RAID6;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073 allowed = BTRFS_BLOCK_GROUP_RAID5;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075 allowed = BTRFS_BLOCK_GROUP_RAID10;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077 allowed = BTRFS_BLOCK_GROUP_RAID1;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079 allowed = BTRFS_BLOCK_GROUP_RAID0;
4080
4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4082
4083 return extended_to_chunk(flags | allowed);
4084 }
4085
4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4087 {
4088 unsigned seq;
4089 u64 flags;
4090
4091 do {
4092 flags = orig_flags;
4093 seq = read_seqbegin(&root->fs_info->profiles_lock);
4094
4095 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 flags |= root->fs_info->avail_data_alloc_bits;
4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098 flags |= root->fs_info->avail_system_alloc_bits;
4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100 flags |= root->fs_info->avail_metadata_alloc_bits;
4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4102
4103 return btrfs_reduce_alloc_profile(root, flags);
4104 }
4105
4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4107 {
4108 u64 flags;
4109 u64 ret;
4110
4111 if (data)
4112 flags = BTRFS_BLOCK_GROUP_DATA;
4113 else if (root == root->fs_info->chunk_root)
4114 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4115 else
4116 flags = BTRFS_BLOCK_GROUP_METADATA;
4117
4118 ret = get_alloc_profile(root, flags);
4119 return ret;
4120 }
4121
4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4123 {
4124 struct btrfs_space_info *data_sinfo;
4125 struct btrfs_root *root = BTRFS_I(inode)->root;
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 used;
4128 int ret = 0;
4129 int need_commit = 2;
4130 int have_pinned_space;
4131
4132 /* make sure bytes are sectorsize aligned */
4133 bytes = ALIGN(bytes, root->sectorsize);
4134
4135 if (btrfs_is_free_space_inode(inode)) {
4136 need_commit = 0;
4137 ASSERT(current->journal_info);
4138 }
4139
4140 data_sinfo = fs_info->data_sinfo;
4141 if (!data_sinfo)
4142 goto alloc;
4143
4144 again:
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo->lock);
4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 data_sinfo->bytes_may_use;
4150
4151 if (used + bytes > data_sinfo->total_bytes) {
4152 struct btrfs_trans_handle *trans;
4153
4154 /*
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4157 */
4158 if (!data_sinfo->full) {
4159 u64 alloc_target;
4160
4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162 spin_unlock(&data_sinfo->lock);
4163 alloc:
4164 alloc_target = btrfs_get_alloc_profile(root, 1);
4165 /*
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4173 * the fs.
4174 */
4175 trans = btrfs_join_transaction(root);
4176 if (IS_ERR(trans))
4177 return PTR_ERR(trans);
4178
4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4180 alloc_target,
4181 CHUNK_ALLOC_NO_FORCE);
4182 btrfs_end_transaction(trans, root);
4183 if (ret < 0) {
4184 if (ret != -ENOSPC)
4185 return ret;
4186 else {
4187 have_pinned_space = 1;
4188 goto commit_trans;
4189 }
4190 }
4191
4192 if (!data_sinfo)
4193 data_sinfo = fs_info->data_sinfo;
4194
4195 goto again;
4196 }
4197
4198 /*
4199 * If we don't have enough pinned space to deal with this
4200 * allocation, and no removed chunk in current transaction,
4201 * don't bother committing the transaction.
4202 */
4203 have_pinned_space = percpu_counter_compare(
4204 &data_sinfo->total_bytes_pinned,
4205 used + bytes - data_sinfo->total_bytes);
4206 spin_unlock(&data_sinfo->lock);
4207
4208 /* commit the current transaction and try again */
4209 commit_trans:
4210 if (need_commit &&
4211 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4212 need_commit--;
4213
4214 if (need_commit > 0) {
4215 btrfs_start_delalloc_roots(fs_info, 0, -1);
4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4217 }
4218
4219 trans = btrfs_join_transaction(root);
4220 if (IS_ERR(trans))
4221 return PTR_ERR(trans);
4222 if (have_pinned_space >= 0 ||
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 &trans->transaction->flags) ||
4225 need_commit > 0) {
4226 ret = btrfs_commit_transaction(trans, root);
4227 if (ret)
4228 return ret;
4229 /*
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
4233 */
4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4236 goto again;
4237 } else {
4238 btrfs_end_transaction(trans, root);
4239 }
4240 }
4241
4242 trace_btrfs_space_reservation(root->fs_info,
4243 "space_info:enospc",
4244 data_sinfo->flags, bytes, 1);
4245 return -ENOSPC;
4246 }
4247 data_sinfo->bytes_may_use += bytes;
4248 trace_btrfs_space_reservation(root->fs_info, "space_info",
4249 data_sinfo->flags, bytes, 1);
4250 spin_unlock(&data_sinfo->lock);
4251
4252 return ret;
4253 }
4254
4255 /*
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4259 */
4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4261 {
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 int ret;
4264
4265 /* align the range */
4266 len = round_up(start + len, root->sectorsize) -
4267 round_down(start, root->sectorsize);
4268 start = round_down(start, root->sectorsize);
4269
4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271 if (ret < 0)
4272 return ret;
4273
4274 /*
4275 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4276 *
4277 * TODO: Find a good method to avoid reserve data space for NOCOW
4278 * range, but don't impact performance on quota disable case.
4279 */
4280 ret = btrfs_qgroup_reserve_data(inode, start, len);
4281 return ret;
4282 }
4283
4284 /*
4285 * Called if we need to clear a data reservation for this inode
4286 * Normally in a error case.
4287 *
4288 * This one will *NOT* use accurate qgroup reserved space API, just for case
4289 * which we can't sleep and is sure it won't affect qgroup reserved space.
4290 * Like clear_bit_hook().
4291 */
4292 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4293 u64 len)
4294 {
4295 struct btrfs_root *root = BTRFS_I(inode)->root;
4296 struct btrfs_space_info *data_sinfo;
4297
4298 /* Make sure the range is aligned to sectorsize */
4299 len = round_up(start + len, root->sectorsize) -
4300 round_down(start, root->sectorsize);
4301 start = round_down(start, root->sectorsize);
4302
4303 data_sinfo = root->fs_info->data_sinfo;
4304 spin_lock(&data_sinfo->lock);
4305 if (WARN_ON(data_sinfo->bytes_may_use < len))
4306 data_sinfo->bytes_may_use = 0;
4307 else
4308 data_sinfo->bytes_may_use -= len;
4309 trace_btrfs_space_reservation(root->fs_info, "space_info",
4310 data_sinfo->flags, len, 0);
4311 spin_unlock(&data_sinfo->lock);
4312 }
4313
4314 /*
4315 * Called if we need to clear a data reservation for this inode
4316 * Normally in a error case.
4317 *
4318 * This one will handle the per-inode data rsv map for accurate reserved
4319 * space framework.
4320 */
4321 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4322 {
4323 btrfs_free_reserved_data_space_noquota(inode, start, len);
4324 btrfs_qgroup_free_data(inode, start, len);
4325 }
4326
4327 static void force_metadata_allocation(struct btrfs_fs_info *info)
4328 {
4329 struct list_head *head = &info->space_info;
4330 struct btrfs_space_info *found;
4331
4332 rcu_read_lock();
4333 list_for_each_entry_rcu(found, head, list) {
4334 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4335 found->force_alloc = CHUNK_ALLOC_FORCE;
4336 }
4337 rcu_read_unlock();
4338 }
4339
4340 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4341 {
4342 return (global->size << 1);
4343 }
4344
4345 static int should_alloc_chunk(struct btrfs_root *root,
4346 struct btrfs_space_info *sinfo, int force)
4347 {
4348 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4349 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4350 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4351 u64 thresh;
4352
4353 if (force == CHUNK_ALLOC_FORCE)
4354 return 1;
4355
4356 /*
4357 * We need to take into account the global rsv because for all intents
4358 * and purposes it's used space. Don't worry about locking the
4359 * global_rsv, it doesn't change except when the transaction commits.
4360 */
4361 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4362 num_allocated += calc_global_rsv_need_space(global_rsv);
4363
4364 /*
4365 * in limited mode, we want to have some free space up to
4366 * about 1% of the FS size.
4367 */
4368 if (force == CHUNK_ALLOC_LIMITED) {
4369 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4370 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4371
4372 if (num_bytes - num_allocated < thresh)
4373 return 1;
4374 }
4375
4376 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4377 return 0;
4378 return 1;
4379 }
4380
4381 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4382 {
4383 u64 num_dev;
4384
4385 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4386 BTRFS_BLOCK_GROUP_RAID0 |
4387 BTRFS_BLOCK_GROUP_RAID5 |
4388 BTRFS_BLOCK_GROUP_RAID6))
4389 num_dev = root->fs_info->fs_devices->rw_devices;
4390 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4391 num_dev = 2;
4392 else
4393 num_dev = 1; /* DUP or single */
4394
4395 return num_dev;
4396 }
4397
4398 /*
4399 * If @is_allocation is true, reserve space in the system space info necessary
4400 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4401 * removing a chunk.
4402 */
4403 void check_system_chunk(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
4405 u64 type)
4406 {
4407 struct btrfs_space_info *info;
4408 u64 left;
4409 u64 thresh;
4410 int ret = 0;
4411 u64 num_devs;
4412
4413 /*
4414 * Needed because we can end up allocating a system chunk and for an
4415 * atomic and race free space reservation in the chunk block reserve.
4416 */
4417 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4418
4419 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4420 spin_lock(&info->lock);
4421 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4422 info->bytes_reserved - info->bytes_readonly -
4423 info->bytes_may_use;
4424 spin_unlock(&info->lock);
4425
4426 num_devs = get_profile_num_devs(root, type);
4427
4428 /* num_devs device items to update and 1 chunk item to add or remove */
4429 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4430 btrfs_calc_trans_metadata_size(root, 1);
4431
4432 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4433 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4434 left, thresh, type);
4435 dump_space_info(info, 0, 0);
4436 }
4437
4438 if (left < thresh) {
4439 u64 flags;
4440
4441 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4442 /*
4443 * Ignore failure to create system chunk. We might end up not
4444 * needing it, as we might not need to COW all nodes/leafs from
4445 * the paths we visit in the chunk tree (they were already COWed
4446 * or created in the current transaction for example).
4447 */
4448 ret = btrfs_alloc_chunk(trans, root, flags);
4449 }
4450
4451 if (!ret) {
4452 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4453 &root->fs_info->chunk_block_rsv,
4454 thresh, BTRFS_RESERVE_NO_FLUSH);
4455 if (!ret)
4456 trans->chunk_bytes_reserved += thresh;
4457 }
4458 }
4459
4460 /*
4461 * If force is CHUNK_ALLOC_FORCE:
4462 * - return 1 if it successfully allocates a chunk,
4463 * - return errors including -ENOSPC otherwise.
4464 * If force is NOT CHUNK_ALLOC_FORCE:
4465 * - return 0 if it doesn't need to allocate a new chunk,
4466 * - return 1 if it successfully allocates a chunk,
4467 * - return errors including -ENOSPC otherwise.
4468 */
4469 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4470 struct btrfs_root *extent_root, u64 flags, int force)
4471 {
4472 struct btrfs_space_info *space_info;
4473 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4474 int wait_for_alloc = 0;
4475 int ret = 0;
4476
4477 /* Don't re-enter if we're already allocating a chunk */
4478 if (trans->allocating_chunk)
4479 return -ENOSPC;
4480
4481 space_info = __find_space_info(extent_root->fs_info, flags);
4482 if (!space_info) {
4483 ret = update_space_info(extent_root->fs_info, flags,
4484 0, 0, 0, &space_info);
4485 BUG_ON(ret); /* -ENOMEM */
4486 }
4487 BUG_ON(!space_info); /* Logic error */
4488
4489 again:
4490 spin_lock(&space_info->lock);
4491 if (force < space_info->force_alloc)
4492 force = space_info->force_alloc;
4493 if (space_info->full) {
4494 if (should_alloc_chunk(extent_root, space_info, force))
4495 ret = -ENOSPC;
4496 else
4497 ret = 0;
4498 spin_unlock(&space_info->lock);
4499 return ret;
4500 }
4501
4502 if (!should_alloc_chunk(extent_root, space_info, force)) {
4503 spin_unlock(&space_info->lock);
4504 return 0;
4505 } else if (space_info->chunk_alloc) {
4506 wait_for_alloc = 1;
4507 } else {
4508 space_info->chunk_alloc = 1;
4509 }
4510
4511 spin_unlock(&space_info->lock);
4512
4513 mutex_lock(&fs_info->chunk_mutex);
4514
4515 /*
4516 * The chunk_mutex is held throughout the entirety of a chunk
4517 * allocation, so once we've acquired the chunk_mutex we know that the
4518 * other guy is done and we need to recheck and see if we should
4519 * allocate.
4520 */
4521 if (wait_for_alloc) {
4522 mutex_unlock(&fs_info->chunk_mutex);
4523 wait_for_alloc = 0;
4524 goto again;
4525 }
4526
4527 trans->allocating_chunk = true;
4528
4529 /*
4530 * If we have mixed data/metadata chunks we want to make sure we keep
4531 * allocating mixed chunks instead of individual chunks.
4532 */
4533 if (btrfs_mixed_space_info(space_info))
4534 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4535
4536 /*
4537 * if we're doing a data chunk, go ahead and make sure that
4538 * we keep a reasonable number of metadata chunks allocated in the
4539 * FS as well.
4540 */
4541 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4542 fs_info->data_chunk_allocations++;
4543 if (!(fs_info->data_chunk_allocations %
4544 fs_info->metadata_ratio))
4545 force_metadata_allocation(fs_info);
4546 }
4547
4548 /*
4549 * Check if we have enough space in SYSTEM chunk because we may need
4550 * to update devices.
4551 */
4552 check_system_chunk(trans, extent_root, flags);
4553
4554 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4555 trans->allocating_chunk = false;
4556
4557 spin_lock(&space_info->lock);
4558 if (ret < 0 && ret != -ENOSPC)
4559 goto out;
4560 if (ret)
4561 space_info->full = 1;
4562 else
4563 ret = 1;
4564
4565 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4566 out:
4567 space_info->chunk_alloc = 0;
4568 spin_unlock(&space_info->lock);
4569 mutex_unlock(&fs_info->chunk_mutex);
4570 /*
4571 * When we allocate a new chunk we reserve space in the chunk block
4572 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4573 * add new nodes/leafs to it if we end up needing to do it when
4574 * inserting the chunk item and updating device items as part of the
4575 * second phase of chunk allocation, performed by
4576 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4577 * large number of new block groups to create in our transaction
4578 * handle's new_bgs list to avoid exhausting the chunk block reserve
4579 * in extreme cases - like having a single transaction create many new
4580 * block groups when starting to write out the free space caches of all
4581 * the block groups that were made dirty during the lifetime of the
4582 * transaction.
4583 */
4584 if (trans->can_flush_pending_bgs &&
4585 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4586 btrfs_create_pending_block_groups(trans, extent_root);
4587 btrfs_trans_release_chunk_metadata(trans);
4588 }
4589 return ret;
4590 }
4591
4592 static int can_overcommit(struct btrfs_root *root,
4593 struct btrfs_space_info *space_info, u64 bytes,
4594 enum btrfs_reserve_flush_enum flush)
4595 {
4596 struct btrfs_block_rsv *global_rsv;
4597 u64 profile;
4598 u64 space_size;
4599 u64 avail;
4600 u64 used;
4601
4602 /* Don't overcommit when in mixed mode. */
4603 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4604 return 0;
4605
4606 BUG_ON(root->fs_info == NULL);
4607 global_rsv = &root->fs_info->global_block_rsv;
4608 profile = btrfs_get_alloc_profile(root, 0);
4609 used = space_info->bytes_used + space_info->bytes_reserved +
4610 space_info->bytes_pinned + space_info->bytes_readonly;
4611
4612 /*
4613 * We only want to allow over committing if we have lots of actual space
4614 * free, but if we don't have enough space to handle the global reserve
4615 * space then we could end up having a real enospc problem when trying
4616 * to allocate a chunk or some other such important allocation.
4617 */
4618 spin_lock(&global_rsv->lock);
4619 space_size = calc_global_rsv_need_space(global_rsv);
4620 spin_unlock(&global_rsv->lock);
4621 if (used + space_size >= space_info->total_bytes)
4622 return 0;
4623
4624 used += space_info->bytes_may_use;
4625
4626 spin_lock(&root->fs_info->free_chunk_lock);
4627 avail = root->fs_info->free_chunk_space;
4628 spin_unlock(&root->fs_info->free_chunk_lock);
4629
4630 /*
4631 * If we have dup, raid1 or raid10 then only half of the free
4632 * space is actually useable. For raid56, the space info used
4633 * doesn't include the parity drive, so we don't have to
4634 * change the math
4635 */
4636 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4637 BTRFS_BLOCK_GROUP_RAID1 |
4638 BTRFS_BLOCK_GROUP_RAID10))
4639 avail >>= 1;
4640
4641 /*
4642 * If we aren't flushing all things, let us overcommit up to
4643 * 1/2th of the space. If we can flush, don't let us overcommit
4644 * too much, let it overcommit up to 1/8 of the space.
4645 */
4646 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4647 avail >>= 3;
4648 else
4649 avail >>= 1;
4650
4651 if (used + bytes < space_info->total_bytes + avail)
4652 return 1;
4653 return 0;
4654 }
4655
4656 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4657 unsigned long nr_pages, int nr_items)
4658 {
4659 struct super_block *sb = root->fs_info->sb;
4660
4661 if (down_read_trylock(&sb->s_umount)) {
4662 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4663 up_read(&sb->s_umount);
4664 } else {
4665 /*
4666 * We needn't worry the filesystem going from r/w to r/o though
4667 * we don't acquire ->s_umount mutex, because the filesystem
4668 * should guarantee the delalloc inodes list be empty after
4669 * the filesystem is readonly(all dirty pages are written to
4670 * the disk).
4671 */
4672 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4673 if (!current->journal_info)
4674 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4675 0, (u64)-1);
4676 }
4677 }
4678
4679 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4680 {
4681 u64 bytes;
4682 int nr;
4683
4684 bytes = btrfs_calc_trans_metadata_size(root, 1);
4685 nr = (int)div64_u64(to_reclaim, bytes);
4686 if (!nr)
4687 nr = 1;
4688 return nr;
4689 }
4690
4691 #define EXTENT_SIZE_PER_ITEM SZ_256K
4692
4693 /*
4694 * shrink metadata reservation for delalloc
4695 */
4696 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4697 bool wait_ordered)
4698 {
4699 struct btrfs_block_rsv *block_rsv;
4700 struct btrfs_space_info *space_info;
4701 struct btrfs_trans_handle *trans;
4702 u64 delalloc_bytes;
4703 u64 max_reclaim;
4704 long time_left;
4705 unsigned long nr_pages;
4706 int loops;
4707 int items;
4708 enum btrfs_reserve_flush_enum flush;
4709
4710 /* Calc the number of the pages we need flush for space reservation */
4711 items = calc_reclaim_items_nr(root, to_reclaim);
4712 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4713
4714 trans = (struct btrfs_trans_handle *)current->journal_info;
4715 block_rsv = &root->fs_info->delalloc_block_rsv;
4716 space_info = block_rsv->space_info;
4717
4718 delalloc_bytes = percpu_counter_sum_positive(
4719 &root->fs_info->delalloc_bytes);
4720 if (delalloc_bytes == 0) {
4721 if (trans)
4722 return;
4723 if (wait_ordered)
4724 btrfs_wait_ordered_roots(root->fs_info, items,
4725 0, (u64)-1);
4726 return;
4727 }
4728
4729 loops = 0;
4730 while (delalloc_bytes && loops < 3) {
4731 max_reclaim = min(delalloc_bytes, to_reclaim);
4732 nr_pages = max_reclaim >> PAGE_SHIFT;
4733 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4734 /*
4735 * We need to wait for the async pages to actually start before
4736 * we do anything.
4737 */
4738 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4739 if (!max_reclaim)
4740 goto skip_async;
4741
4742 if (max_reclaim <= nr_pages)
4743 max_reclaim = 0;
4744 else
4745 max_reclaim -= nr_pages;
4746
4747 wait_event(root->fs_info->async_submit_wait,
4748 atomic_read(&root->fs_info->async_delalloc_pages) <=
4749 (int)max_reclaim);
4750 skip_async:
4751 if (!trans)
4752 flush = BTRFS_RESERVE_FLUSH_ALL;
4753 else
4754 flush = BTRFS_RESERVE_NO_FLUSH;
4755 spin_lock(&space_info->lock);
4756 if (can_overcommit(root, space_info, orig, flush)) {
4757 spin_unlock(&space_info->lock);
4758 break;
4759 }
4760 if (list_empty(&space_info->tickets) &&
4761 list_empty(&space_info->priority_tickets)) {
4762 spin_unlock(&space_info->lock);
4763 break;
4764 }
4765 spin_unlock(&space_info->lock);
4766
4767 loops++;
4768 if (wait_ordered && !trans) {
4769 btrfs_wait_ordered_roots(root->fs_info, items,
4770 0, (u64)-1);
4771 } else {
4772 time_left = schedule_timeout_killable(1);
4773 if (time_left)
4774 break;
4775 }
4776 delalloc_bytes = percpu_counter_sum_positive(
4777 &root->fs_info->delalloc_bytes);
4778 }
4779 }
4780
4781 /**
4782 * maybe_commit_transaction - possibly commit the transaction if its ok to
4783 * @root - the root we're allocating for
4784 * @bytes - the number of bytes we want to reserve
4785 * @force - force the commit
4786 *
4787 * This will check to make sure that committing the transaction will actually
4788 * get us somewhere and then commit the transaction if it does. Otherwise it
4789 * will return -ENOSPC.
4790 */
4791 static int may_commit_transaction(struct btrfs_root *root,
4792 struct btrfs_space_info *space_info,
4793 u64 bytes, int force)
4794 {
4795 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4796 struct btrfs_trans_handle *trans;
4797
4798 trans = (struct btrfs_trans_handle *)current->journal_info;
4799 if (trans)
4800 return -EAGAIN;
4801
4802 if (force)
4803 goto commit;
4804
4805 /* See if there is enough pinned space to make this reservation */
4806 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4807 bytes) >= 0)
4808 goto commit;
4809
4810 /*
4811 * See if there is some space in the delayed insertion reservation for
4812 * this reservation.
4813 */
4814 if (space_info != delayed_rsv->space_info)
4815 return -ENOSPC;
4816
4817 spin_lock(&delayed_rsv->lock);
4818 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4819 bytes - delayed_rsv->size) >= 0) {
4820 spin_unlock(&delayed_rsv->lock);
4821 return -ENOSPC;
4822 }
4823 spin_unlock(&delayed_rsv->lock);
4824
4825 commit:
4826 trans = btrfs_join_transaction(root);
4827 if (IS_ERR(trans))
4828 return -ENOSPC;
4829
4830 return btrfs_commit_transaction(trans, root);
4831 }
4832
4833 struct reserve_ticket {
4834 u64 bytes;
4835 int error;
4836 struct list_head list;
4837 wait_queue_head_t wait;
4838 };
4839
4840 static int flush_space(struct btrfs_root *root,
4841 struct btrfs_space_info *space_info, u64 num_bytes,
4842 u64 orig_bytes, int state)
4843 {
4844 struct btrfs_trans_handle *trans;
4845 int nr;
4846 int ret = 0;
4847
4848 switch (state) {
4849 case FLUSH_DELAYED_ITEMS_NR:
4850 case FLUSH_DELAYED_ITEMS:
4851 if (state == FLUSH_DELAYED_ITEMS_NR)
4852 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4853 else
4854 nr = -1;
4855
4856 trans = btrfs_join_transaction(root);
4857 if (IS_ERR(trans)) {
4858 ret = PTR_ERR(trans);
4859 break;
4860 }
4861 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4862 btrfs_end_transaction(trans, root);
4863 break;
4864 case FLUSH_DELALLOC:
4865 case FLUSH_DELALLOC_WAIT:
4866 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4867 state == FLUSH_DELALLOC_WAIT);
4868 break;
4869 case ALLOC_CHUNK:
4870 trans = btrfs_join_transaction(root);
4871 if (IS_ERR(trans)) {
4872 ret = PTR_ERR(trans);
4873 break;
4874 }
4875 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4876 btrfs_get_alloc_profile(root, 0),
4877 CHUNK_ALLOC_NO_FORCE);
4878 btrfs_end_transaction(trans, root);
4879 if (ret > 0 || ret == -ENOSPC)
4880 ret = 0;
4881 break;
4882 case COMMIT_TRANS:
4883 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4884 break;
4885 default:
4886 ret = -ENOSPC;
4887 break;
4888 }
4889
4890 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4891 orig_bytes, state, ret);
4892 return ret;
4893 }
4894
4895 static inline u64
4896 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4897 struct btrfs_space_info *space_info)
4898 {
4899 struct reserve_ticket *ticket;
4900 u64 used;
4901 u64 expected;
4902 u64 to_reclaim = 0;
4903
4904 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4905 if (can_overcommit(root, space_info, to_reclaim,
4906 BTRFS_RESERVE_FLUSH_ALL))
4907 return 0;
4908
4909 list_for_each_entry(ticket, &space_info->tickets, list)
4910 to_reclaim += ticket->bytes;
4911 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4912 to_reclaim += ticket->bytes;
4913 if (to_reclaim)
4914 return to_reclaim;
4915
4916 used = space_info->bytes_used + space_info->bytes_reserved +
4917 space_info->bytes_pinned + space_info->bytes_readonly +
4918 space_info->bytes_may_use;
4919 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4920 expected = div_factor_fine(space_info->total_bytes, 95);
4921 else
4922 expected = div_factor_fine(space_info->total_bytes, 90);
4923
4924 if (used > expected)
4925 to_reclaim = used - expected;
4926 else
4927 to_reclaim = 0;
4928 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4929 space_info->bytes_reserved);
4930 return to_reclaim;
4931 }
4932
4933 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4934 struct btrfs_root *root, u64 used)
4935 {
4936 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4937
4938 /* If we're just plain full then async reclaim just slows us down. */
4939 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4940 return 0;
4941
4942 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4943 return 0;
4944
4945 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4946 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4947 &root->fs_info->fs_state));
4948 }
4949
4950 static void wake_all_tickets(struct list_head *head)
4951 {
4952 struct reserve_ticket *ticket;
4953
4954 while (!list_empty(head)) {
4955 ticket = list_first_entry(head, struct reserve_ticket, list);
4956 list_del_init(&ticket->list);
4957 ticket->error = -ENOSPC;
4958 wake_up(&ticket->wait);
4959 }
4960 }
4961
4962 /*
4963 * This is for normal flushers, we can wait all goddamned day if we want to. We
4964 * will loop and continuously try to flush as long as we are making progress.
4965 * We count progress as clearing off tickets each time we have to loop.
4966 */
4967 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4968 {
4969 struct reserve_ticket *last_ticket = NULL;
4970 struct btrfs_fs_info *fs_info;
4971 struct btrfs_space_info *space_info;
4972 u64 to_reclaim;
4973 int flush_state;
4974 int commit_cycles = 0;
4975
4976 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4977 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4978
4979 spin_lock(&space_info->lock);
4980 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4981 space_info);
4982 if (!to_reclaim) {
4983 space_info->flush = 0;
4984 spin_unlock(&space_info->lock);
4985 return;
4986 }
4987 last_ticket = list_first_entry(&space_info->tickets,
4988 struct reserve_ticket, list);
4989 spin_unlock(&space_info->lock);
4990
4991 flush_state = FLUSH_DELAYED_ITEMS_NR;
4992 do {
4993 struct reserve_ticket *ticket;
4994 int ret;
4995
4996 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4997 to_reclaim, flush_state);
4998 spin_lock(&space_info->lock);
4999 if (list_empty(&space_info->tickets)) {
5000 space_info->flush = 0;
5001 spin_unlock(&space_info->lock);
5002 return;
5003 }
5004 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5005 space_info);
5006 ticket = list_first_entry(&space_info->tickets,
5007 struct reserve_ticket, list);
5008 if (last_ticket == ticket) {
5009 flush_state++;
5010 } else {
5011 last_ticket = ticket;
5012 flush_state = FLUSH_DELAYED_ITEMS_NR;
5013 if (commit_cycles)
5014 commit_cycles--;
5015 }
5016
5017 if (flush_state > COMMIT_TRANS) {
5018 commit_cycles++;
5019 if (commit_cycles > 2) {
5020 wake_all_tickets(&space_info->tickets);
5021 space_info->flush = 0;
5022 } else {
5023 flush_state = FLUSH_DELAYED_ITEMS_NR;
5024 }
5025 }
5026 spin_unlock(&space_info->lock);
5027 } while (flush_state <= COMMIT_TRANS);
5028 }
5029
5030 void btrfs_init_async_reclaim_work(struct work_struct *work)
5031 {
5032 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5033 }
5034
5035 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5036 struct btrfs_space_info *space_info,
5037 struct reserve_ticket *ticket)
5038 {
5039 u64 to_reclaim;
5040 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5041
5042 spin_lock(&space_info->lock);
5043 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5044 space_info);
5045 if (!to_reclaim) {
5046 spin_unlock(&space_info->lock);
5047 return;
5048 }
5049 spin_unlock(&space_info->lock);
5050
5051 do {
5052 flush_space(fs_info->fs_root, space_info, to_reclaim,
5053 to_reclaim, flush_state);
5054 flush_state++;
5055 spin_lock(&space_info->lock);
5056 if (ticket->bytes == 0) {
5057 spin_unlock(&space_info->lock);
5058 return;
5059 }
5060 spin_unlock(&space_info->lock);
5061
5062 /*
5063 * Priority flushers can't wait on delalloc without
5064 * deadlocking.
5065 */
5066 if (flush_state == FLUSH_DELALLOC ||
5067 flush_state == FLUSH_DELALLOC_WAIT)
5068 flush_state = ALLOC_CHUNK;
5069 } while (flush_state < COMMIT_TRANS);
5070 }
5071
5072 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5073 struct btrfs_space_info *space_info,
5074 struct reserve_ticket *ticket, u64 orig_bytes)
5075
5076 {
5077 DEFINE_WAIT(wait);
5078 int ret = 0;
5079
5080 spin_lock(&space_info->lock);
5081 while (ticket->bytes > 0 && ticket->error == 0) {
5082 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5083 if (ret) {
5084 ret = -EINTR;
5085 break;
5086 }
5087 spin_unlock(&space_info->lock);
5088
5089 schedule();
5090
5091 finish_wait(&ticket->wait, &wait);
5092 spin_lock(&space_info->lock);
5093 }
5094 if (!ret)
5095 ret = ticket->error;
5096 if (!list_empty(&ticket->list))
5097 list_del_init(&ticket->list);
5098 if (ticket->bytes && ticket->bytes < orig_bytes) {
5099 u64 num_bytes = orig_bytes - ticket->bytes;
5100 space_info->bytes_may_use -= num_bytes;
5101 trace_btrfs_space_reservation(fs_info, "space_info",
5102 space_info->flags, num_bytes, 0);
5103 }
5104 spin_unlock(&space_info->lock);
5105
5106 return ret;
5107 }
5108
5109 /**
5110 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5111 * @root - the root we're allocating for
5112 * @space_info - the space info we want to allocate from
5113 * @orig_bytes - the number of bytes we want
5114 * @flush - whether or not we can flush to make our reservation
5115 *
5116 * This will reserve orig_bytes number of bytes from the space info associated
5117 * with the block_rsv. If there is not enough space it will make an attempt to
5118 * flush out space to make room. It will do this by flushing delalloc if
5119 * possible or committing the transaction. If flush is 0 then no attempts to
5120 * regain reservations will be made and this will fail if there is not enough
5121 * space already.
5122 */
5123 static int __reserve_metadata_bytes(struct btrfs_root *root,
5124 struct btrfs_space_info *space_info,
5125 u64 orig_bytes,
5126 enum btrfs_reserve_flush_enum flush)
5127 {
5128 struct reserve_ticket ticket;
5129 u64 used;
5130 int ret = 0;
5131
5132 ASSERT(orig_bytes);
5133 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5134
5135 spin_lock(&space_info->lock);
5136 ret = -ENOSPC;
5137 used = space_info->bytes_used + space_info->bytes_reserved +
5138 space_info->bytes_pinned + space_info->bytes_readonly +
5139 space_info->bytes_may_use;
5140
5141 /*
5142 * If we have enough space then hooray, make our reservation and carry
5143 * on. If not see if we can overcommit, and if we can, hooray carry on.
5144 * If not things get more complicated.
5145 */
5146 if (used + orig_bytes <= space_info->total_bytes) {
5147 space_info->bytes_may_use += orig_bytes;
5148 trace_btrfs_space_reservation(root->fs_info, "space_info",
5149 space_info->flags, orig_bytes,
5150 1);
5151 ret = 0;
5152 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5153 space_info->bytes_may_use += orig_bytes;
5154 trace_btrfs_space_reservation(root->fs_info, "space_info",
5155 space_info->flags, orig_bytes,
5156 1);
5157 ret = 0;
5158 }
5159
5160 /*
5161 * If we couldn't make a reservation then setup our reservation ticket
5162 * and kick the async worker if it's not already running.
5163 *
5164 * If we are a priority flusher then we just need to add our ticket to
5165 * the list and we will do our own flushing further down.
5166 */
5167 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5168 ticket.bytes = orig_bytes;
5169 ticket.error = 0;
5170 init_waitqueue_head(&ticket.wait);
5171 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5172 list_add_tail(&ticket.list, &space_info->tickets);
5173 if (!space_info->flush) {
5174 space_info->flush = 1;
5175 trace_btrfs_trigger_flush(root->fs_info,
5176 space_info->flags,
5177 orig_bytes, flush,
5178 "enospc");
5179 queue_work(system_unbound_wq,
5180 &root->fs_info->async_reclaim_work);
5181 }
5182 } else {
5183 list_add_tail(&ticket.list,
5184 &space_info->priority_tickets);
5185 }
5186 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5187 used += orig_bytes;
5188 /*
5189 * We will do the space reservation dance during log replay,
5190 * which means we won't have fs_info->fs_root set, so don't do
5191 * the async reclaim as we will panic.
5192 */
5193 if (!root->fs_info->log_root_recovering &&
5194 need_do_async_reclaim(space_info, root, used) &&
5195 !work_busy(&root->fs_info->async_reclaim_work)) {
5196 trace_btrfs_trigger_flush(root->fs_info,
5197 space_info->flags,
5198 orig_bytes, flush,
5199 "preempt");
5200 queue_work(system_unbound_wq,
5201 &root->fs_info->async_reclaim_work);
5202 }
5203 }
5204 spin_unlock(&space_info->lock);
5205 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5206 return ret;
5207
5208 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5209 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5210 orig_bytes);
5211
5212 ret = 0;
5213 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5214 spin_lock(&space_info->lock);
5215 if (ticket.bytes) {
5216 if (ticket.bytes < orig_bytes) {
5217 u64 num_bytes = orig_bytes - ticket.bytes;
5218 space_info->bytes_may_use -= num_bytes;
5219 trace_btrfs_space_reservation(root->fs_info,
5220 "space_info", space_info->flags,
5221 num_bytes, 0);
5222
5223 }
5224 list_del_init(&ticket.list);
5225 ret = -ENOSPC;
5226 }
5227 spin_unlock(&space_info->lock);
5228 ASSERT(list_empty(&ticket.list));
5229 return ret;
5230 }
5231
5232 /**
5233 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5234 * @root - the root we're allocating for
5235 * @block_rsv - the block_rsv we're allocating for
5236 * @orig_bytes - the number of bytes we want
5237 * @flush - whether or not we can flush to make our reservation
5238 *
5239 * This will reserve orgi_bytes number of bytes from the space info associated
5240 * with the block_rsv. If there is not enough space it will make an attempt to
5241 * flush out space to make room. It will do this by flushing delalloc if
5242 * possible or committing the transaction. If flush is 0 then no attempts to
5243 * regain reservations will be made and this will fail if there is not enough
5244 * space already.
5245 */
5246 static int reserve_metadata_bytes(struct btrfs_root *root,
5247 struct btrfs_block_rsv *block_rsv,
5248 u64 orig_bytes,
5249 enum btrfs_reserve_flush_enum flush)
5250 {
5251 int ret;
5252
5253 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5254 flush);
5255 if (ret == -ENOSPC &&
5256 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5257 struct btrfs_block_rsv *global_rsv =
5258 &root->fs_info->global_block_rsv;
5259
5260 if (block_rsv != global_rsv &&
5261 !block_rsv_use_bytes(global_rsv, orig_bytes))
5262 ret = 0;
5263 }
5264 if (ret == -ENOSPC)
5265 trace_btrfs_space_reservation(root->fs_info,
5266 "space_info:enospc",
5267 block_rsv->space_info->flags,
5268 orig_bytes, 1);
5269 return ret;
5270 }
5271
5272 static struct btrfs_block_rsv *get_block_rsv(
5273 const struct btrfs_trans_handle *trans,
5274 const struct btrfs_root *root)
5275 {
5276 struct btrfs_block_rsv *block_rsv = NULL;
5277
5278 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5279 (root == root->fs_info->csum_root && trans->adding_csums) ||
5280 (root == root->fs_info->uuid_root))
5281 block_rsv = trans->block_rsv;
5282
5283 if (!block_rsv)
5284 block_rsv = root->block_rsv;
5285
5286 if (!block_rsv)
5287 block_rsv = &root->fs_info->empty_block_rsv;
5288
5289 return block_rsv;
5290 }
5291
5292 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5293 u64 num_bytes)
5294 {
5295 int ret = -ENOSPC;
5296 spin_lock(&block_rsv->lock);
5297 if (block_rsv->reserved >= num_bytes) {
5298 block_rsv->reserved -= num_bytes;
5299 if (block_rsv->reserved < block_rsv->size)
5300 block_rsv->full = 0;
5301 ret = 0;
5302 }
5303 spin_unlock(&block_rsv->lock);
5304 return ret;
5305 }
5306
5307 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5308 u64 num_bytes, int update_size)
5309 {
5310 spin_lock(&block_rsv->lock);
5311 block_rsv->reserved += num_bytes;
5312 if (update_size)
5313 block_rsv->size += num_bytes;
5314 else if (block_rsv->reserved >= block_rsv->size)
5315 block_rsv->full = 1;
5316 spin_unlock(&block_rsv->lock);
5317 }
5318
5319 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5320 struct btrfs_block_rsv *dest, u64 num_bytes,
5321 int min_factor)
5322 {
5323 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5324 u64 min_bytes;
5325
5326 if (global_rsv->space_info != dest->space_info)
5327 return -ENOSPC;
5328
5329 spin_lock(&global_rsv->lock);
5330 min_bytes = div_factor(global_rsv->size, min_factor);
5331 if (global_rsv->reserved < min_bytes + num_bytes) {
5332 spin_unlock(&global_rsv->lock);
5333 return -ENOSPC;
5334 }
5335 global_rsv->reserved -= num_bytes;
5336 if (global_rsv->reserved < global_rsv->size)
5337 global_rsv->full = 0;
5338 spin_unlock(&global_rsv->lock);
5339
5340 block_rsv_add_bytes(dest, num_bytes, 1);
5341 return 0;
5342 }
5343
5344 /*
5345 * This is for space we already have accounted in space_info->bytes_may_use, so
5346 * basically when we're returning space from block_rsv's.
5347 */
5348 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5349 struct btrfs_space_info *space_info,
5350 u64 num_bytes)
5351 {
5352 struct reserve_ticket *ticket;
5353 struct list_head *head;
5354 u64 used;
5355 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5356 bool check_overcommit = false;
5357
5358 spin_lock(&space_info->lock);
5359 head = &space_info->priority_tickets;
5360
5361 /*
5362 * If we are over our limit then we need to check and see if we can
5363 * overcommit, and if we can't then we just need to free up our space
5364 * and not satisfy any requests.
5365 */
5366 used = space_info->bytes_used + space_info->bytes_reserved +
5367 space_info->bytes_pinned + space_info->bytes_readonly +
5368 space_info->bytes_may_use;
5369 if (used - num_bytes >= space_info->total_bytes)
5370 check_overcommit = true;
5371 again:
5372 while (!list_empty(head) && num_bytes) {
5373 ticket = list_first_entry(head, struct reserve_ticket,
5374 list);
5375 /*
5376 * We use 0 bytes because this space is already reserved, so
5377 * adding the ticket space would be a double count.
5378 */
5379 if (check_overcommit &&
5380 !can_overcommit(fs_info->extent_root, space_info, 0,
5381 flush))
5382 break;
5383 if (num_bytes >= ticket->bytes) {
5384 list_del_init(&ticket->list);
5385 num_bytes -= ticket->bytes;
5386 ticket->bytes = 0;
5387 wake_up(&ticket->wait);
5388 } else {
5389 ticket->bytes -= num_bytes;
5390 num_bytes = 0;
5391 }
5392 }
5393
5394 if (num_bytes && head == &space_info->priority_tickets) {
5395 head = &space_info->tickets;
5396 flush = BTRFS_RESERVE_FLUSH_ALL;
5397 goto again;
5398 }
5399 space_info->bytes_may_use -= num_bytes;
5400 trace_btrfs_space_reservation(fs_info, "space_info",
5401 space_info->flags, num_bytes, 0);
5402 spin_unlock(&space_info->lock);
5403 }
5404
5405 /*
5406 * This is for newly allocated space that isn't accounted in
5407 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5408 * we use this helper.
5409 */
5410 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5411 struct btrfs_space_info *space_info,
5412 u64 num_bytes)
5413 {
5414 struct reserve_ticket *ticket;
5415 struct list_head *head = &space_info->priority_tickets;
5416
5417 again:
5418 while (!list_empty(head) && num_bytes) {
5419 ticket = list_first_entry(head, struct reserve_ticket,
5420 list);
5421 if (num_bytes >= ticket->bytes) {
5422 trace_btrfs_space_reservation(fs_info, "space_info",
5423 space_info->flags,
5424 ticket->bytes, 1);
5425 list_del_init(&ticket->list);
5426 num_bytes -= ticket->bytes;
5427 space_info->bytes_may_use += ticket->bytes;
5428 ticket->bytes = 0;
5429 wake_up(&ticket->wait);
5430 } else {
5431 trace_btrfs_space_reservation(fs_info, "space_info",
5432 space_info->flags,
5433 num_bytes, 1);
5434 space_info->bytes_may_use += num_bytes;
5435 ticket->bytes -= num_bytes;
5436 num_bytes = 0;
5437 }
5438 }
5439
5440 if (num_bytes && head == &space_info->priority_tickets) {
5441 head = &space_info->tickets;
5442 goto again;
5443 }
5444 }
5445
5446 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5447 struct btrfs_block_rsv *block_rsv,
5448 struct btrfs_block_rsv *dest, u64 num_bytes)
5449 {
5450 struct btrfs_space_info *space_info = block_rsv->space_info;
5451
5452 spin_lock(&block_rsv->lock);
5453 if (num_bytes == (u64)-1)
5454 num_bytes = block_rsv->size;
5455 block_rsv->size -= num_bytes;
5456 if (block_rsv->reserved >= block_rsv->size) {
5457 num_bytes = block_rsv->reserved - block_rsv->size;
5458 block_rsv->reserved = block_rsv->size;
5459 block_rsv->full = 1;
5460 } else {
5461 num_bytes = 0;
5462 }
5463 spin_unlock(&block_rsv->lock);
5464
5465 if (num_bytes > 0) {
5466 if (dest) {
5467 spin_lock(&dest->lock);
5468 if (!dest->full) {
5469 u64 bytes_to_add;
5470
5471 bytes_to_add = dest->size - dest->reserved;
5472 bytes_to_add = min(num_bytes, bytes_to_add);
5473 dest->reserved += bytes_to_add;
5474 if (dest->reserved >= dest->size)
5475 dest->full = 1;
5476 num_bytes -= bytes_to_add;
5477 }
5478 spin_unlock(&dest->lock);
5479 }
5480 if (num_bytes)
5481 space_info_add_old_bytes(fs_info, space_info,
5482 num_bytes);
5483 }
5484 }
5485
5486 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5487 struct btrfs_block_rsv *dst, u64 num_bytes,
5488 int update_size)
5489 {
5490 int ret;
5491
5492 ret = block_rsv_use_bytes(src, num_bytes);
5493 if (ret)
5494 return ret;
5495
5496 block_rsv_add_bytes(dst, num_bytes, update_size);
5497 return 0;
5498 }
5499
5500 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5501 {
5502 memset(rsv, 0, sizeof(*rsv));
5503 spin_lock_init(&rsv->lock);
5504 rsv->type = type;
5505 }
5506
5507 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5508 unsigned short type)
5509 {
5510 struct btrfs_block_rsv *block_rsv;
5511 struct btrfs_fs_info *fs_info = root->fs_info;
5512
5513 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5514 if (!block_rsv)
5515 return NULL;
5516
5517 btrfs_init_block_rsv(block_rsv, type);
5518 block_rsv->space_info = __find_space_info(fs_info,
5519 BTRFS_BLOCK_GROUP_METADATA);
5520 return block_rsv;
5521 }
5522
5523 void btrfs_free_block_rsv(struct btrfs_root *root,
5524 struct btrfs_block_rsv *rsv)
5525 {
5526 if (!rsv)
5527 return;
5528 btrfs_block_rsv_release(root, rsv, (u64)-1);
5529 kfree(rsv);
5530 }
5531
5532 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5533 {
5534 kfree(rsv);
5535 }
5536
5537 int btrfs_block_rsv_add(struct btrfs_root *root,
5538 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5539 enum btrfs_reserve_flush_enum flush)
5540 {
5541 int ret;
5542
5543 if (num_bytes == 0)
5544 return 0;
5545
5546 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5547 if (!ret) {
5548 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5549 return 0;
5550 }
5551
5552 return ret;
5553 }
5554
5555 int btrfs_block_rsv_check(struct btrfs_root *root,
5556 struct btrfs_block_rsv *block_rsv, int min_factor)
5557 {
5558 u64 num_bytes = 0;
5559 int ret = -ENOSPC;
5560
5561 if (!block_rsv)
5562 return 0;
5563
5564 spin_lock(&block_rsv->lock);
5565 num_bytes = div_factor(block_rsv->size, min_factor);
5566 if (block_rsv->reserved >= num_bytes)
5567 ret = 0;
5568 spin_unlock(&block_rsv->lock);
5569
5570 return ret;
5571 }
5572
5573 int btrfs_block_rsv_refill(struct btrfs_root *root,
5574 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5575 enum btrfs_reserve_flush_enum flush)
5576 {
5577 u64 num_bytes = 0;
5578 int ret = -ENOSPC;
5579
5580 if (!block_rsv)
5581 return 0;
5582
5583 spin_lock(&block_rsv->lock);
5584 num_bytes = min_reserved;
5585 if (block_rsv->reserved >= num_bytes)
5586 ret = 0;
5587 else
5588 num_bytes -= block_rsv->reserved;
5589 spin_unlock(&block_rsv->lock);
5590
5591 if (!ret)
5592 return 0;
5593
5594 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5595 if (!ret) {
5596 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5597 return 0;
5598 }
5599
5600 return ret;
5601 }
5602
5603 void btrfs_block_rsv_release(struct btrfs_root *root,
5604 struct btrfs_block_rsv *block_rsv,
5605 u64 num_bytes)
5606 {
5607 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5608 if (global_rsv == block_rsv ||
5609 block_rsv->space_info != global_rsv->space_info)
5610 global_rsv = NULL;
5611 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5612 num_bytes);
5613 }
5614
5615 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5616 {
5617 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5618 struct btrfs_space_info *sinfo = block_rsv->space_info;
5619 u64 num_bytes;
5620
5621 /*
5622 * The global block rsv is based on the size of the extent tree, the
5623 * checksum tree and the root tree. If the fs is empty we want to set
5624 * it to a minimal amount for safety.
5625 */
5626 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5627 btrfs_root_used(&fs_info->csum_root->root_item) +
5628 btrfs_root_used(&fs_info->tree_root->root_item);
5629 num_bytes = max_t(u64, num_bytes, SZ_16M);
5630
5631 spin_lock(&sinfo->lock);
5632 spin_lock(&block_rsv->lock);
5633
5634 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5635
5636 if (block_rsv->reserved < block_rsv->size) {
5637 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5638 sinfo->bytes_reserved + sinfo->bytes_readonly +
5639 sinfo->bytes_may_use;
5640 if (sinfo->total_bytes > num_bytes) {
5641 num_bytes = sinfo->total_bytes - num_bytes;
5642 num_bytes = min(num_bytes,
5643 block_rsv->size - block_rsv->reserved);
5644 block_rsv->reserved += num_bytes;
5645 sinfo->bytes_may_use += num_bytes;
5646 trace_btrfs_space_reservation(fs_info, "space_info",
5647 sinfo->flags, num_bytes,
5648 1);
5649 }
5650 } else if (block_rsv->reserved > block_rsv->size) {
5651 num_bytes = block_rsv->reserved - block_rsv->size;
5652 sinfo->bytes_may_use -= num_bytes;
5653 trace_btrfs_space_reservation(fs_info, "space_info",
5654 sinfo->flags, num_bytes, 0);
5655 block_rsv->reserved = block_rsv->size;
5656 }
5657
5658 if (block_rsv->reserved == block_rsv->size)
5659 block_rsv->full = 1;
5660 else
5661 block_rsv->full = 0;
5662
5663 spin_unlock(&block_rsv->lock);
5664 spin_unlock(&sinfo->lock);
5665 }
5666
5667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5668 {
5669 struct btrfs_space_info *space_info;
5670
5671 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5672 fs_info->chunk_block_rsv.space_info = space_info;
5673
5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5675 fs_info->global_block_rsv.space_info = space_info;
5676 fs_info->delalloc_block_rsv.space_info = space_info;
5677 fs_info->trans_block_rsv.space_info = space_info;
5678 fs_info->empty_block_rsv.space_info = space_info;
5679 fs_info->delayed_block_rsv.space_info = space_info;
5680
5681 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5682 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5683 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5684 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5685 if (fs_info->quota_root)
5686 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5688
5689 update_global_block_rsv(fs_info);
5690 }
5691
5692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5693 {
5694 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5695 (u64)-1);
5696 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5697 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5698 WARN_ON(fs_info->trans_block_rsv.size > 0);
5699 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5700 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5701 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5702 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5703 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5704 }
5705
5706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5707 struct btrfs_root *root)
5708 {
5709 if (!trans->block_rsv)
5710 return;
5711
5712 if (!trans->bytes_reserved)
5713 return;
5714
5715 trace_btrfs_space_reservation(root->fs_info, "transaction",
5716 trans->transid, trans->bytes_reserved, 0);
5717 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5718 trans->bytes_reserved = 0;
5719 }
5720
5721 /*
5722 * To be called after all the new block groups attached to the transaction
5723 * handle have been created (btrfs_create_pending_block_groups()).
5724 */
5725 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5726 {
5727 struct btrfs_fs_info *fs_info = trans->fs_info;
5728
5729 if (!trans->chunk_bytes_reserved)
5730 return;
5731
5732 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5733
5734 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5735 trans->chunk_bytes_reserved);
5736 trans->chunk_bytes_reserved = 0;
5737 }
5738
5739 /* Can only return 0 or -ENOSPC */
5740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5741 struct inode *inode)
5742 {
5743 struct btrfs_root *root = BTRFS_I(inode)->root;
5744 /*
5745 * We always use trans->block_rsv here as we will have reserved space
5746 * for our orphan when starting the transaction, using get_block_rsv()
5747 * here will sometimes make us choose the wrong block rsv as we could be
5748 * doing a reloc inode for a non refcounted root.
5749 */
5750 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5751 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5752
5753 /*
5754 * We need to hold space in order to delete our orphan item once we've
5755 * added it, so this takes the reservation so we can release it later
5756 * when we are truly done with the orphan item.
5757 */
5758 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5759 trace_btrfs_space_reservation(root->fs_info, "orphan",
5760 btrfs_ino(inode), num_bytes, 1);
5761 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5762 }
5763
5764 void btrfs_orphan_release_metadata(struct inode *inode)
5765 {
5766 struct btrfs_root *root = BTRFS_I(inode)->root;
5767 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5768 trace_btrfs_space_reservation(root->fs_info, "orphan",
5769 btrfs_ino(inode), num_bytes, 0);
5770 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5771 }
5772
5773 /*
5774 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5775 * root: the root of the parent directory
5776 * rsv: block reservation
5777 * items: the number of items that we need do reservation
5778 * qgroup_reserved: used to return the reserved size in qgroup
5779 *
5780 * This function is used to reserve the space for snapshot/subvolume
5781 * creation and deletion. Those operations are different with the
5782 * common file/directory operations, they change two fs/file trees
5783 * and root tree, the number of items that the qgroup reserves is
5784 * different with the free space reservation. So we can not use
5785 * the space reservation mechanism in start_transaction().
5786 */
5787 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5788 struct btrfs_block_rsv *rsv,
5789 int items,
5790 u64 *qgroup_reserved,
5791 bool use_global_rsv)
5792 {
5793 u64 num_bytes;
5794 int ret;
5795 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5796
5797 if (root->fs_info->quota_enabled) {
5798 /* One for parent inode, two for dir entries */
5799 num_bytes = 3 * root->nodesize;
5800 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5801 if (ret)
5802 return ret;
5803 } else {
5804 num_bytes = 0;
5805 }
5806
5807 *qgroup_reserved = num_bytes;
5808
5809 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5810 rsv->space_info = __find_space_info(root->fs_info,
5811 BTRFS_BLOCK_GROUP_METADATA);
5812 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5813 BTRFS_RESERVE_FLUSH_ALL);
5814
5815 if (ret == -ENOSPC && use_global_rsv)
5816 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5817
5818 if (ret && *qgroup_reserved)
5819 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5820
5821 return ret;
5822 }
5823
5824 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5825 struct btrfs_block_rsv *rsv,
5826 u64 qgroup_reserved)
5827 {
5828 btrfs_block_rsv_release(root, rsv, (u64)-1);
5829 }
5830
5831 /**
5832 * drop_outstanding_extent - drop an outstanding extent
5833 * @inode: the inode we're dropping the extent for
5834 * @num_bytes: the number of bytes we're releasing.
5835 *
5836 * This is called when we are freeing up an outstanding extent, either called
5837 * after an error or after an extent is written. This will return the number of
5838 * reserved extents that need to be freed. This must be called with
5839 * BTRFS_I(inode)->lock held.
5840 */
5841 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5842 {
5843 unsigned drop_inode_space = 0;
5844 unsigned dropped_extents = 0;
5845 unsigned num_extents = 0;
5846
5847 num_extents = (unsigned)div64_u64(num_bytes +
5848 BTRFS_MAX_EXTENT_SIZE - 1,
5849 BTRFS_MAX_EXTENT_SIZE);
5850 ASSERT(num_extents);
5851 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5852 BTRFS_I(inode)->outstanding_extents -= num_extents;
5853
5854 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5855 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5856 &BTRFS_I(inode)->runtime_flags))
5857 drop_inode_space = 1;
5858
5859 /*
5860 * If we have more or the same amount of outstanding extents than we have
5861 * reserved then we need to leave the reserved extents count alone.
5862 */
5863 if (BTRFS_I(inode)->outstanding_extents >=
5864 BTRFS_I(inode)->reserved_extents)
5865 return drop_inode_space;
5866
5867 dropped_extents = BTRFS_I(inode)->reserved_extents -
5868 BTRFS_I(inode)->outstanding_extents;
5869 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5870 return dropped_extents + drop_inode_space;
5871 }
5872
5873 /**
5874 * calc_csum_metadata_size - return the amount of metadata space that must be
5875 * reserved/freed for the given bytes.
5876 * @inode: the inode we're manipulating
5877 * @num_bytes: the number of bytes in question
5878 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5879 *
5880 * This adjusts the number of csum_bytes in the inode and then returns the
5881 * correct amount of metadata that must either be reserved or freed. We
5882 * calculate how many checksums we can fit into one leaf and then divide the
5883 * number of bytes that will need to be checksumed by this value to figure out
5884 * how many checksums will be required. If we are adding bytes then the number
5885 * may go up and we will return the number of additional bytes that must be
5886 * reserved. If it is going down we will return the number of bytes that must
5887 * be freed.
5888 *
5889 * This must be called with BTRFS_I(inode)->lock held.
5890 */
5891 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5892 int reserve)
5893 {
5894 struct btrfs_root *root = BTRFS_I(inode)->root;
5895 u64 old_csums, num_csums;
5896
5897 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5898 BTRFS_I(inode)->csum_bytes == 0)
5899 return 0;
5900
5901 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5902 if (reserve)
5903 BTRFS_I(inode)->csum_bytes += num_bytes;
5904 else
5905 BTRFS_I(inode)->csum_bytes -= num_bytes;
5906 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5907
5908 /* No change, no need to reserve more */
5909 if (old_csums == num_csums)
5910 return 0;
5911
5912 if (reserve)
5913 return btrfs_calc_trans_metadata_size(root,
5914 num_csums - old_csums);
5915
5916 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5917 }
5918
5919 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5920 {
5921 struct btrfs_root *root = BTRFS_I(inode)->root;
5922 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5923 u64 to_reserve = 0;
5924 u64 csum_bytes;
5925 unsigned nr_extents = 0;
5926 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5927 int ret = 0;
5928 bool delalloc_lock = true;
5929 u64 to_free = 0;
5930 unsigned dropped;
5931 bool release_extra = false;
5932
5933 /* If we are a free space inode we need to not flush since we will be in
5934 * the middle of a transaction commit. We also don't need the delalloc
5935 * mutex since we won't race with anybody. We need this mostly to make
5936 * lockdep shut its filthy mouth.
5937 *
5938 * If we have a transaction open (can happen if we call truncate_block
5939 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5940 */
5941 if (btrfs_is_free_space_inode(inode)) {
5942 flush = BTRFS_RESERVE_NO_FLUSH;
5943 delalloc_lock = false;
5944 } else if (current->journal_info) {
5945 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5946 }
5947
5948 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5949 btrfs_transaction_in_commit(root->fs_info))
5950 schedule_timeout(1);
5951
5952 if (delalloc_lock)
5953 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5954
5955 num_bytes = ALIGN(num_bytes, root->sectorsize);
5956
5957 spin_lock(&BTRFS_I(inode)->lock);
5958 nr_extents = (unsigned)div64_u64(num_bytes +
5959 BTRFS_MAX_EXTENT_SIZE - 1,
5960 BTRFS_MAX_EXTENT_SIZE);
5961 BTRFS_I(inode)->outstanding_extents += nr_extents;
5962
5963 nr_extents = 0;
5964 if (BTRFS_I(inode)->outstanding_extents >
5965 BTRFS_I(inode)->reserved_extents)
5966 nr_extents += BTRFS_I(inode)->outstanding_extents -
5967 BTRFS_I(inode)->reserved_extents;
5968
5969 /* We always want to reserve a slot for updating the inode. */
5970 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5971 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5972 csum_bytes = BTRFS_I(inode)->csum_bytes;
5973 spin_unlock(&BTRFS_I(inode)->lock);
5974
5975 if (root->fs_info->quota_enabled) {
5976 ret = btrfs_qgroup_reserve_meta(root,
5977 nr_extents * root->nodesize);
5978 if (ret)
5979 goto out_fail;
5980 }
5981
5982 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5983 if (unlikely(ret)) {
5984 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5985 goto out_fail;
5986 }
5987
5988 spin_lock(&BTRFS_I(inode)->lock);
5989 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5990 &BTRFS_I(inode)->runtime_flags)) {
5991 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5992 release_extra = true;
5993 }
5994 BTRFS_I(inode)->reserved_extents += nr_extents;
5995 spin_unlock(&BTRFS_I(inode)->lock);
5996
5997 if (delalloc_lock)
5998 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5999
6000 if (to_reserve)
6001 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6002 btrfs_ino(inode), to_reserve, 1);
6003 if (release_extra)
6004 btrfs_block_rsv_release(root, block_rsv,
6005 btrfs_calc_trans_metadata_size(root,
6006 1));
6007 return 0;
6008
6009 out_fail:
6010 spin_lock(&BTRFS_I(inode)->lock);
6011 dropped = drop_outstanding_extent(inode, num_bytes);
6012 /*
6013 * If the inodes csum_bytes is the same as the original
6014 * csum_bytes then we know we haven't raced with any free()ers
6015 * so we can just reduce our inodes csum bytes and carry on.
6016 */
6017 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6018 calc_csum_metadata_size(inode, num_bytes, 0);
6019 } else {
6020 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6021 u64 bytes;
6022
6023 /*
6024 * This is tricky, but first we need to figure out how much we
6025 * freed from any free-ers that occurred during this
6026 * reservation, so we reset ->csum_bytes to the csum_bytes
6027 * before we dropped our lock, and then call the free for the
6028 * number of bytes that were freed while we were trying our
6029 * reservation.
6030 */
6031 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6032 BTRFS_I(inode)->csum_bytes = csum_bytes;
6033 to_free = calc_csum_metadata_size(inode, bytes, 0);
6034
6035
6036 /*
6037 * Now we need to see how much we would have freed had we not
6038 * been making this reservation and our ->csum_bytes were not
6039 * artificially inflated.
6040 */
6041 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6042 bytes = csum_bytes - orig_csum_bytes;
6043 bytes = calc_csum_metadata_size(inode, bytes, 0);
6044
6045 /*
6046 * Now reset ->csum_bytes to what it should be. If bytes is
6047 * more than to_free then we would have freed more space had we
6048 * not had an artificially high ->csum_bytes, so we need to free
6049 * the remainder. If bytes is the same or less then we don't
6050 * need to do anything, the other free-ers did the correct
6051 * thing.
6052 */
6053 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6054 if (bytes > to_free)
6055 to_free = bytes - to_free;
6056 else
6057 to_free = 0;
6058 }
6059 spin_unlock(&BTRFS_I(inode)->lock);
6060 if (dropped)
6061 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6062
6063 if (to_free) {
6064 btrfs_block_rsv_release(root, block_rsv, to_free);
6065 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6066 btrfs_ino(inode), to_free, 0);
6067 }
6068 if (delalloc_lock)
6069 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6070 return ret;
6071 }
6072
6073 /**
6074 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6075 * @inode: the inode to release the reservation for
6076 * @num_bytes: the number of bytes we're releasing
6077 *
6078 * This will release the metadata reservation for an inode. This can be called
6079 * once we complete IO for a given set of bytes to release their metadata
6080 * reservations.
6081 */
6082 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6083 {
6084 struct btrfs_root *root = BTRFS_I(inode)->root;
6085 u64 to_free = 0;
6086 unsigned dropped;
6087
6088 num_bytes = ALIGN(num_bytes, root->sectorsize);
6089 spin_lock(&BTRFS_I(inode)->lock);
6090 dropped = drop_outstanding_extent(inode, num_bytes);
6091
6092 if (num_bytes)
6093 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6094 spin_unlock(&BTRFS_I(inode)->lock);
6095 if (dropped > 0)
6096 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6097
6098 if (btrfs_is_testing(root->fs_info))
6099 return;
6100
6101 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6102 btrfs_ino(inode), to_free, 0);
6103
6104 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6105 to_free);
6106 }
6107
6108 /**
6109 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6110 * delalloc
6111 * @inode: inode we're writing to
6112 * @start: start range we are writing to
6113 * @len: how long the range we are writing to
6114 *
6115 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6116 *
6117 * This will do the following things
6118 *
6119 * o reserve space in data space info for num bytes
6120 * and reserve precious corresponding qgroup space
6121 * (Done in check_data_free_space)
6122 *
6123 * o reserve space for metadata space, based on the number of outstanding
6124 * extents and how much csums will be needed
6125 * also reserve metadata space in a per root over-reserve method.
6126 * o add to the inodes->delalloc_bytes
6127 * o add it to the fs_info's delalloc inodes list.
6128 * (Above 3 all done in delalloc_reserve_metadata)
6129 *
6130 * Return 0 for success
6131 * Return <0 for error(-ENOSPC or -EQUOT)
6132 */
6133 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6134 {
6135 int ret;
6136
6137 ret = btrfs_check_data_free_space(inode, start, len);
6138 if (ret < 0)
6139 return ret;
6140 ret = btrfs_delalloc_reserve_metadata(inode, len);
6141 if (ret < 0)
6142 btrfs_free_reserved_data_space(inode, start, len);
6143 return ret;
6144 }
6145
6146 /**
6147 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6148 * @inode: inode we're releasing space for
6149 * @start: start position of the space already reserved
6150 * @len: the len of the space already reserved
6151 *
6152 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6153 * called in the case that we don't need the metadata AND data reservations
6154 * anymore. So if there is an error or we insert an inline extent.
6155 *
6156 * This function will release the metadata space that was not used and will
6157 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6158 * list if there are no delalloc bytes left.
6159 * Also it will handle the qgroup reserved space.
6160 */
6161 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6162 {
6163 btrfs_delalloc_release_metadata(inode, len);
6164 btrfs_free_reserved_data_space(inode, start, len);
6165 }
6166
6167 static int update_block_group(struct btrfs_trans_handle *trans,
6168 struct btrfs_root *root, u64 bytenr,
6169 u64 num_bytes, int alloc)
6170 {
6171 struct btrfs_block_group_cache *cache = NULL;
6172 struct btrfs_fs_info *info = root->fs_info;
6173 u64 total = num_bytes;
6174 u64 old_val;
6175 u64 byte_in_group;
6176 int factor;
6177
6178 /* block accounting for super block */
6179 spin_lock(&info->delalloc_root_lock);
6180 old_val = btrfs_super_bytes_used(info->super_copy);
6181 if (alloc)
6182 old_val += num_bytes;
6183 else
6184 old_val -= num_bytes;
6185 btrfs_set_super_bytes_used(info->super_copy, old_val);
6186 spin_unlock(&info->delalloc_root_lock);
6187
6188 while (total) {
6189 cache = btrfs_lookup_block_group(info, bytenr);
6190 if (!cache)
6191 return -ENOENT;
6192 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6193 BTRFS_BLOCK_GROUP_RAID1 |
6194 BTRFS_BLOCK_GROUP_RAID10))
6195 factor = 2;
6196 else
6197 factor = 1;
6198 /*
6199 * If this block group has free space cache written out, we
6200 * need to make sure to load it if we are removing space. This
6201 * is because we need the unpinning stage to actually add the
6202 * space back to the block group, otherwise we will leak space.
6203 */
6204 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6205 cache_block_group(cache, 1);
6206
6207 byte_in_group = bytenr - cache->key.objectid;
6208 WARN_ON(byte_in_group > cache->key.offset);
6209
6210 spin_lock(&cache->space_info->lock);
6211 spin_lock(&cache->lock);
6212
6213 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6214 cache->disk_cache_state < BTRFS_DC_CLEAR)
6215 cache->disk_cache_state = BTRFS_DC_CLEAR;
6216
6217 old_val = btrfs_block_group_used(&cache->item);
6218 num_bytes = min(total, cache->key.offset - byte_in_group);
6219 if (alloc) {
6220 old_val += num_bytes;
6221 btrfs_set_block_group_used(&cache->item, old_val);
6222 cache->reserved -= num_bytes;
6223 cache->space_info->bytes_reserved -= num_bytes;
6224 cache->space_info->bytes_used += num_bytes;
6225 cache->space_info->disk_used += num_bytes * factor;
6226 spin_unlock(&cache->lock);
6227 spin_unlock(&cache->space_info->lock);
6228 } else {
6229 old_val -= num_bytes;
6230 btrfs_set_block_group_used(&cache->item, old_val);
6231 cache->pinned += num_bytes;
6232 cache->space_info->bytes_pinned += num_bytes;
6233 cache->space_info->bytes_used -= num_bytes;
6234 cache->space_info->disk_used -= num_bytes * factor;
6235 spin_unlock(&cache->lock);
6236 spin_unlock(&cache->space_info->lock);
6237
6238 trace_btrfs_space_reservation(root->fs_info, "pinned",
6239 cache->space_info->flags,
6240 num_bytes, 1);
6241 set_extent_dirty(info->pinned_extents,
6242 bytenr, bytenr + num_bytes - 1,
6243 GFP_NOFS | __GFP_NOFAIL);
6244 }
6245
6246 spin_lock(&trans->transaction->dirty_bgs_lock);
6247 if (list_empty(&cache->dirty_list)) {
6248 list_add_tail(&cache->dirty_list,
6249 &trans->transaction->dirty_bgs);
6250 trans->transaction->num_dirty_bgs++;
6251 btrfs_get_block_group(cache);
6252 }
6253 spin_unlock(&trans->transaction->dirty_bgs_lock);
6254
6255 /*
6256 * No longer have used bytes in this block group, queue it for
6257 * deletion. We do this after adding the block group to the
6258 * dirty list to avoid races between cleaner kthread and space
6259 * cache writeout.
6260 */
6261 if (!alloc && old_val == 0) {
6262 spin_lock(&info->unused_bgs_lock);
6263 if (list_empty(&cache->bg_list)) {
6264 btrfs_get_block_group(cache);
6265 list_add_tail(&cache->bg_list,
6266 &info->unused_bgs);
6267 }
6268 spin_unlock(&info->unused_bgs_lock);
6269 }
6270
6271 btrfs_put_block_group(cache);
6272 total -= num_bytes;
6273 bytenr += num_bytes;
6274 }
6275 return 0;
6276 }
6277
6278 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6279 {
6280 struct btrfs_block_group_cache *cache;
6281 u64 bytenr;
6282
6283 spin_lock(&root->fs_info->block_group_cache_lock);
6284 bytenr = root->fs_info->first_logical_byte;
6285 spin_unlock(&root->fs_info->block_group_cache_lock);
6286
6287 if (bytenr < (u64)-1)
6288 return bytenr;
6289
6290 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6291 if (!cache)
6292 return 0;
6293
6294 bytenr = cache->key.objectid;
6295 btrfs_put_block_group(cache);
6296
6297 return bytenr;
6298 }
6299
6300 static int pin_down_extent(struct btrfs_root *root,
6301 struct btrfs_block_group_cache *cache,
6302 u64 bytenr, u64 num_bytes, int reserved)
6303 {
6304 spin_lock(&cache->space_info->lock);
6305 spin_lock(&cache->lock);
6306 cache->pinned += num_bytes;
6307 cache->space_info->bytes_pinned += num_bytes;
6308 if (reserved) {
6309 cache->reserved -= num_bytes;
6310 cache->space_info->bytes_reserved -= num_bytes;
6311 }
6312 spin_unlock(&cache->lock);
6313 spin_unlock(&cache->space_info->lock);
6314
6315 trace_btrfs_space_reservation(root->fs_info, "pinned",
6316 cache->space_info->flags, num_bytes, 1);
6317 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6318 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6319 return 0;
6320 }
6321
6322 /*
6323 * this function must be called within transaction
6324 */
6325 int btrfs_pin_extent(struct btrfs_root *root,
6326 u64 bytenr, u64 num_bytes, int reserved)
6327 {
6328 struct btrfs_block_group_cache *cache;
6329
6330 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6331 BUG_ON(!cache); /* Logic error */
6332
6333 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6334
6335 btrfs_put_block_group(cache);
6336 return 0;
6337 }
6338
6339 /*
6340 * this function must be called within transaction
6341 */
6342 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6343 u64 bytenr, u64 num_bytes)
6344 {
6345 struct btrfs_block_group_cache *cache;
6346 int ret;
6347
6348 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6349 if (!cache)
6350 return -EINVAL;
6351
6352 /*
6353 * pull in the free space cache (if any) so that our pin
6354 * removes the free space from the cache. We have load_only set
6355 * to one because the slow code to read in the free extents does check
6356 * the pinned extents.
6357 */
6358 cache_block_group(cache, 1);
6359
6360 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6361
6362 /* remove us from the free space cache (if we're there at all) */
6363 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6364 btrfs_put_block_group(cache);
6365 return ret;
6366 }
6367
6368 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6369 {
6370 int ret;
6371 struct btrfs_block_group_cache *block_group;
6372 struct btrfs_caching_control *caching_ctl;
6373
6374 block_group = btrfs_lookup_block_group(root->fs_info, start);
6375 if (!block_group)
6376 return -EINVAL;
6377
6378 cache_block_group(block_group, 0);
6379 caching_ctl = get_caching_control(block_group);
6380
6381 if (!caching_ctl) {
6382 /* Logic error */
6383 BUG_ON(!block_group_cache_done(block_group));
6384 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6385 } else {
6386 mutex_lock(&caching_ctl->mutex);
6387
6388 if (start >= caching_ctl->progress) {
6389 ret = add_excluded_extent(root, start, num_bytes);
6390 } else if (start + num_bytes <= caching_ctl->progress) {
6391 ret = btrfs_remove_free_space(block_group,
6392 start, num_bytes);
6393 } else {
6394 num_bytes = caching_ctl->progress - start;
6395 ret = btrfs_remove_free_space(block_group,
6396 start, num_bytes);
6397 if (ret)
6398 goto out_lock;
6399
6400 num_bytes = (start + num_bytes) -
6401 caching_ctl->progress;
6402 start = caching_ctl->progress;
6403 ret = add_excluded_extent(root, start, num_bytes);
6404 }
6405 out_lock:
6406 mutex_unlock(&caching_ctl->mutex);
6407 put_caching_control(caching_ctl);
6408 }
6409 btrfs_put_block_group(block_group);
6410 return ret;
6411 }
6412
6413 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6414 struct extent_buffer *eb)
6415 {
6416 struct btrfs_file_extent_item *item;
6417 struct btrfs_key key;
6418 int found_type;
6419 int i;
6420
6421 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6422 return 0;
6423
6424 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6425 btrfs_item_key_to_cpu(eb, &key, i);
6426 if (key.type != BTRFS_EXTENT_DATA_KEY)
6427 continue;
6428 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6429 found_type = btrfs_file_extent_type(eb, item);
6430 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6431 continue;
6432 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6433 continue;
6434 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6435 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6436 __exclude_logged_extent(log, key.objectid, key.offset);
6437 }
6438
6439 return 0;
6440 }
6441
6442 static void
6443 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6444 {
6445 atomic_inc(&bg->reservations);
6446 }
6447
6448 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449 const u64 start)
6450 {
6451 struct btrfs_block_group_cache *bg;
6452
6453 bg = btrfs_lookup_block_group(fs_info, start);
6454 ASSERT(bg);
6455 if (atomic_dec_and_test(&bg->reservations))
6456 wake_up_atomic_t(&bg->reservations);
6457 btrfs_put_block_group(bg);
6458 }
6459
6460 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6461 {
6462 schedule();
6463 return 0;
6464 }
6465
6466 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6467 {
6468 struct btrfs_space_info *space_info = bg->space_info;
6469
6470 ASSERT(bg->ro);
6471
6472 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6473 return;
6474
6475 /*
6476 * Our block group is read only but before we set it to read only,
6477 * some task might have had allocated an extent from it already, but it
6478 * has not yet created a respective ordered extent (and added it to a
6479 * root's list of ordered extents).
6480 * Therefore wait for any task currently allocating extents, since the
6481 * block group's reservations counter is incremented while a read lock
6482 * on the groups' semaphore is held and decremented after releasing
6483 * the read access on that semaphore and creating the ordered extent.
6484 */
6485 down_write(&space_info->groups_sem);
6486 up_write(&space_info->groups_sem);
6487
6488 wait_on_atomic_t(&bg->reservations,
6489 btrfs_wait_bg_reservations_atomic_t,
6490 TASK_UNINTERRUPTIBLE);
6491 }
6492
6493 /**
6494 * btrfs_add_reserved_bytes - update the block_group and space info counters
6495 * @cache: The cache we are manipulating
6496 * @ram_bytes: The number of bytes of file content, and will be same to
6497 * @num_bytes except for the compress path.
6498 * @num_bytes: The number of bytes in question
6499 * @delalloc: The blocks are allocated for the delalloc write
6500 *
6501 * This is called by the allocator when it reserves space. Metadata
6502 * reservations should be called with RESERVE_ALLOC so we do the proper
6503 * ENOSPC accounting. For data we handle the reservation through clearing the
6504 * delalloc bits in the io_tree. We have to do this since we could end up
6505 * allocating less disk space for the amount of data we have reserved in the
6506 * case of compression.
6507 *
6508 * If this is a reservation and the block group has become read only we cannot
6509 * make the reservation and return -EAGAIN, otherwise this function always
6510 * succeeds.
6511 */
6512 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6513 u64 ram_bytes, u64 num_bytes, int delalloc)
6514 {
6515 struct btrfs_space_info *space_info = cache->space_info;
6516 int ret = 0;
6517
6518 spin_lock(&space_info->lock);
6519 spin_lock(&cache->lock);
6520 if (cache->ro) {
6521 ret = -EAGAIN;
6522 } else {
6523 cache->reserved += num_bytes;
6524 space_info->bytes_reserved += num_bytes;
6525
6526 trace_btrfs_space_reservation(cache->fs_info,
6527 "space_info", space_info->flags,
6528 ram_bytes, 0);
6529 space_info->bytes_may_use -= ram_bytes;
6530 if (delalloc)
6531 cache->delalloc_bytes += num_bytes;
6532 }
6533 spin_unlock(&cache->lock);
6534 spin_unlock(&space_info->lock);
6535 return ret;
6536 }
6537
6538 /**
6539 * btrfs_free_reserved_bytes - update the block_group and space info counters
6540 * @cache: The cache we are manipulating
6541 * @num_bytes: The number of bytes in question
6542 * @delalloc: The blocks are allocated for the delalloc write
6543 *
6544 * This is called by somebody who is freeing space that was never actually used
6545 * on disk. For example if you reserve some space for a new leaf in transaction
6546 * A and before transaction A commits you free that leaf, you call this with
6547 * reserve set to 0 in order to clear the reservation.
6548 */
6549
6550 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6551 u64 num_bytes, int delalloc)
6552 {
6553 struct btrfs_space_info *space_info = cache->space_info;
6554 int ret = 0;
6555
6556 spin_lock(&space_info->lock);
6557 spin_lock(&cache->lock);
6558 if (cache->ro)
6559 space_info->bytes_readonly += num_bytes;
6560 cache->reserved -= num_bytes;
6561 space_info->bytes_reserved -= num_bytes;
6562
6563 if (delalloc)
6564 cache->delalloc_bytes -= num_bytes;
6565 spin_unlock(&cache->lock);
6566 spin_unlock(&space_info->lock);
6567 return ret;
6568 }
6569 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6570 struct btrfs_root *root)
6571 {
6572 struct btrfs_fs_info *fs_info = root->fs_info;
6573 struct btrfs_caching_control *next;
6574 struct btrfs_caching_control *caching_ctl;
6575 struct btrfs_block_group_cache *cache;
6576
6577 down_write(&fs_info->commit_root_sem);
6578
6579 list_for_each_entry_safe(caching_ctl, next,
6580 &fs_info->caching_block_groups, list) {
6581 cache = caching_ctl->block_group;
6582 if (block_group_cache_done(cache)) {
6583 cache->last_byte_to_unpin = (u64)-1;
6584 list_del_init(&caching_ctl->list);
6585 put_caching_control(caching_ctl);
6586 } else {
6587 cache->last_byte_to_unpin = caching_ctl->progress;
6588 }
6589 }
6590
6591 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6592 fs_info->pinned_extents = &fs_info->freed_extents[1];
6593 else
6594 fs_info->pinned_extents = &fs_info->freed_extents[0];
6595
6596 up_write(&fs_info->commit_root_sem);
6597
6598 update_global_block_rsv(fs_info);
6599 }
6600
6601 /*
6602 * Returns the free cluster for the given space info and sets empty_cluster to
6603 * what it should be based on the mount options.
6604 */
6605 static struct btrfs_free_cluster *
6606 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6607 u64 *empty_cluster)
6608 {
6609 struct btrfs_free_cluster *ret = NULL;
6610 bool ssd = btrfs_test_opt(root->fs_info, SSD);
6611
6612 *empty_cluster = 0;
6613 if (btrfs_mixed_space_info(space_info))
6614 return ret;
6615
6616 if (ssd)
6617 *empty_cluster = SZ_2M;
6618 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6619 ret = &root->fs_info->meta_alloc_cluster;
6620 if (!ssd)
6621 *empty_cluster = SZ_64K;
6622 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6623 ret = &root->fs_info->data_alloc_cluster;
6624 }
6625
6626 return ret;
6627 }
6628
6629 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6630 const bool return_free_space)
6631 {
6632 struct btrfs_fs_info *fs_info = root->fs_info;
6633 struct btrfs_block_group_cache *cache = NULL;
6634 struct btrfs_space_info *space_info;
6635 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6636 struct btrfs_free_cluster *cluster = NULL;
6637 u64 len;
6638 u64 total_unpinned = 0;
6639 u64 empty_cluster = 0;
6640 bool readonly;
6641
6642 while (start <= end) {
6643 readonly = false;
6644 if (!cache ||
6645 start >= cache->key.objectid + cache->key.offset) {
6646 if (cache)
6647 btrfs_put_block_group(cache);
6648 total_unpinned = 0;
6649 cache = btrfs_lookup_block_group(fs_info, start);
6650 BUG_ON(!cache); /* Logic error */
6651
6652 cluster = fetch_cluster_info(root,
6653 cache->space_info,
6654 &empty_cluster);
6655 empty_cluster <<= 1;
6656 }
6657
6658 len = cache->key.objectid + cache->key.offset - start;
6659 len = min(len, end + 1 - start);
6660
6661 if (start < cache->last_byte_to_unpin) {
6662 len = min(len, cache->last_byte_to_unpin - start);
6663 if (return_free_space)
6664 btrfs_add_free_space(cache, start, len);
6665 }
6666
6667 start += len;
6668 total_unpinned += len;
6669 space_info = cache->space_info;
6670
6671 /*
6672 * If this space cluster has been marked as fragmented and we've
6673 * unpinned enough in this block group to potentially allow a
6674 * cluster to be created inside of it go ahead and clear the
6675 * fragmented check.
6676 */
6677 if (cluster && cluster->fragmented &&
6678 total_unpinned > empty_cluster) {
6679 spin_lock(&cluster->lock);
6680 cluster->fragmented = 0;
6681 spin_unlock(&cluster->lock);
6682 }
6683
6684 spin_lock(&space_info->lock);
6685 spin_lock(&cache->lock);
6686 cache->pinned -= len;
6687 space_info->bytes_pinned -= len;
6688
6689 trace_btrfs_space_reservation(fs_info, "pinned",
6690 space_info->flags, len, 0);
6691 space_info->max_extent_size = 0;
6692 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6693 if (cache->ro) {
6694 space_info->bytes_readonly += len;
6695 readonly = true;
6696 }
6697 spin_unlock(&cache->lock);
6698 if (!readonly && return_free_space &&
6699 global_rsv->space_info == space_info) {
6700 u64 to_add = len;
6701 WARN_ON(!return_free_space);
6702 spin_lock(&global_rsv->lock);
6703 if (!global_rsv->full) {
6704 to_add = min(len, global_rsv->size -
6705 global_rsv->reserved);
6706 global_rsv->reserved += to_add;
6707 space_info->bytes_may_use += to_add;
6708 if (global_rsv->reserved >= global_rsv->size)
6709 global_rsv->full = 1;
6710 trace_btrfs_space_reservation(fs_info,
6711 "space_info",
6712 space_info->flags,
6713 to_add, 1);
6714 len -= to_add;
6715 }
6716 spin_unlock(&global_rsv->lock);
6717 /* Add to any tickets we may have */
6718 if (len)
6719 space_info_add_new_bytes(fs_info, space_info,
6720 len);
6721 }
6722 spin_unlock(&space_info->lock);
6723 }
6724
6725 if (cache)
6726 btrfs_put_block_group(cache);
6727 return 0;
6728 }
6729
6730 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6731 struct btrfs_root *root)
6732 {
6733 struct btrfs_fs_info *fs_info = root->fs_info;
6734 struct btrfs_block_group_cache *block_group, *tmp;
6735 struct list_head *deleted_bgs;
6736 struct extent_io_tree *unpin;
6737 u64 start;
6738 u64 end;
6739 int ret;
6740
6741 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6742 unpin = &fs_info->freed_extents[1];
6743 else
6744 unpin = &fs_info->freed_extents[0];
6745
6746 while (!trans->aborted) {
6747 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6748 ret = find_first_extent_bit(unpin, 0, &start, &end,
6749 EXTENT_DIRTY, NULL);
6750 if (ret) {
6751 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752 break;
6753 }
6754
6755 if (btrfs_test_opt(root->fs_info, DISCARD))
6756 ret = btrfs_discard_extent(root, start,
6757 end + 1 - start, NULL);
6758
6759 clear_extent_dirty(unpin, start, end);
6760 unpin_extent_range(root, start, end, true);
6761 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6762 cond_resched();
6763 }
6764
6765 /*
6766 * Transaction is finished. We don't need the lock anymore. We
6767 * do need to clean up the block groups in case of a transaction
6768 * abort.
6769 */
6770 deleted_bgs = &trans->transaction->deleted_bgs;
6771 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6772 u64 trimmed = 0;
6773
6774 ret = -EROFS;
6775 if (!trans->aborted)
6776 ret = btrfs_discard_extent(root,
6777 block_group->key.objectid,
6778 block_group->key.offset,
6779 &trimmed);
6780
6781 list_del_init(&block_group->bg_list);
6782 btrfs_put_block_group_trimming(block_group);
6783 btrfs_put_block_group(block_group);
6784
6785 if (ret) {
6786 const char *errstr = btrfs_decode_error(ret);
6787 btrfs_warn(fs_info,
6788 "Discard failed while removing blockgroup: errno=%d %s\n",
6789 ret, errstr);
6790 }
6791 }
6792
6793 return 0;
6794 }
6795
6796 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6797 u64 owner, u64 root_objectid)
6798 {
6799 struct btrfs_space_info *space_info;
6800 u64 flags;
6801
6802 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6803 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6804 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6805 else
6806 flags = BTRFS_BLOCK_GROUP_METADATA;
6807 } else {
6808 flags = BTRFS_BLOCK_GROUP_DATA;
6809 }
6810
6811 space_info = __find_space_info(fs_info, flags);
6812 BUG_ON(!space_info); /* Logic bug */
6813 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6814 }
6815
6816
6817 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6818 struct btrfs_root *root,
6819 struct btrfs_delayed_ref_node *node, u64 parent,
6820 u64 root_objectid, u64 owner_objectid,
6821 u64 owner_offset, int refs_to_drop,
6822 struct btrfs_delayed_extent_op *extent_op)
6823 {
6824 struct btrfs_key key;
6825 struct btrfs_path *path;
6826 struct btrfs_fs_info *info = root->fs_info;
6827 struct btrfs_root *extent_root = info->extent_root;
6828 struct extent_buffer *leaf;
6829 struct btrfs_extent_item *ei;
6830 struct btrfs_extent_inline_ref *iref;
6831 int ret;
6832 int is_data;
6833 int extent_slot = 0;
6834 int found_extent = 0;
6835 int num_to_del = 1;
6836 u32 item_size;
6837 u64 refs;
6838 u64 bytenr = node->bytenr;
6839 u64 num_bytes = node->num_bytes;
6840 int last_ref = 0;
6841 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6842 SKINNY_METADATA);
6843
6844 path = btrfs_alloc_path();
6845 if (!path)
6846 return -ENOMEM;
6847
6848 path->reada = READA_FORWARD;
6849 path->leave_spinning = 1;
6850
6851 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6852 BUG_ON(!is_data && refs_to_drop != 1);
6853
6854 if (is_data)
6855 skinny_metadata = 0;
6856
6857 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6858 bytenr, num_bytes, parent,
6859 root_objectid, owner_objectid,
6860 owner_offset);
6861 if (ret == 0) {
6862 extent_slot = path->slots[0];
6863 while (extent_slot >= 0) {
6864 btrfs_item_key_to_cpu(path->nodes[0], &key,
6865 extent_slot);
6866 if (key.objectid != bytenr)
6867 break;
6868 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6869 key.offset == num_bytes) {
6870 found_extent = 1;
6871 break;
6872 }
6873 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6874 key.offset == owner_objectid) {
6875 found_extent = 1;
6876 break;
6877 }
6878 if (path->slots[0] - extent_slot > 5)
6879 break;
6880 extent_slot--;
6881 }
6882 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6883 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6884 if (found_extent && item_size < sizeof(*ei))
6885 found_extent = 0;
6886 #endif
6887 if (!found_extent) {
6888 BUG_ON(iref);
6889 ret = remove_extent_backref(trans, extent_root, path,
6890 NULL, refs_to_drop,
6891 is_data, &last_ref);
6892 if (ret) {
6893 btrfs_abort_transaction(trans, ret);
6894 goto out;
6895 }
6896 btrfs_release_path(path);
6897 path->leave_spinning = 1;
6898
6899 key.objectid = bytenr;
6900 key.type = BTRFS_EXTENT_ITEM_KEY;
6901 key.offset = num_bytes;
6902
6903 if (!is_data && skinny_metadata) {
6904 key.type = BTRFS_METADATA_ITEM_KEY;
6905 key.offset = owner_objectid;
6906 }
6907
6908 ret = btrfs_search_slot(trans, extent_root,
6909 &key, path, -1, 1);
6910 if (ret > 0 && skinny_metadata && path->slots[0]) {
6911 /*
6912 * Couldn't find our skinny metadata item,
6913 * see if we have ye olde extent item.
6914 */
6915 path->slots[0]--;
6916 btrfs_item_key_to_cpu(path->nodes[0], &key,
6917 path->slots[0]);
6918 if (key.objectid == bytenr &&
6919 key.type == BTRFS_EXTENT_ITEM_KEY &&
6920 key.offset == num_bytes)
6921 ret = 0;
6922 }
6923
6924 if (ret > 0 && skinny_metadata) {
6925 skinny_metadata = false;
6926 key.objectid = bytenr;
6927 key.type = BTRFS_EXTENT_ITEM_KEY;
6928 key.offset = num_bytes;
6929 btrfs_release_path(path);
6930 ret = btrfs_search_slot(trans, extent_root,
6931 &key, path, -1, 1);
6932 }
6933
6934 if (ret) {
6935 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6936 ret, bytenr);
6937 if (ret > 0)
6938 btrfs_print_leaf(extent_root,
6939 path->nodes[0]);
6940 }
6941 if (ret < 0) {
6942 btrfs_abort_transaction(trans, ret);
6943 goto out;
6944 }
6945 extent_slot = path->slots[0];
6946 }
6947 } else if (WARN_ON(ret == -ENOENT)) {
6948 btrfs_print_leaf(extent_root, path->nodes[0]);
6949 btrfs_err(info,
6950 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6951 bytenr, parent, root_objectid, owner_objectid,
6952 owner_offset);
6953 btrfs_abort_transaction(trans, ret);
6954 goto out;
6955 } else {
6956 btrfs_abort_transaction(trans, ret);
6957 goto out;
6958 }
6959
6960 leaf = path->nodes[0];
6961 item_size = btrfs_item_size_nr(leaf, extent_slot);
6962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6963 if (item_size < sizeof(*ei)) {
6964 BUG_ON(found_extent || extent_slot != path->slots[0]);
6965 ret = convert_extent_item_v0(trans, extent_root, path,
6966 owner_objectid, 0);
6967 if (ret < 0) {
6968 btrfs_abort_transaction(trans, ret);
6969 goto out;
6970 }
6971
6972 btrfs_release_path(path);
6973 path->leave_spinning = 1;
6974
6975 key.objectid = bytenr;
6976 key.type = BTRFS_EXTENT_ITEM_KEY;
6977 key.offset = num_bytes;
6978
6979 ret = btrfs_search_slot(trans, extent_root, &key, path,
6980 -1, 1);
6981 if (ret) {
6982 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6983 ret, bytenr);
6984 btrfs_print_leaf(extent_root, path->nodes[0]);
6985 }
6986 if (ret < 0) {
6987 btrfs_abort_transaction(trans, ret);
6988 goto out;
6989 }
6990
6991 extent_slot = path->slots[0];
6992 leaf = path->nodes[0];
6993 item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 }
6995 #endif
6996 BUG_ON(item_size < sizeof(*ei));
6997 ei = btrfs_item_ptr(leaf, extent_slot,
6998 struct btrfs_extent_item);
6999 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7000 key.type == BTRFS_EXTENT_ITEM_KEY) {
7001 struct btrfs_tree_block_info *bi;
7002 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7003 bi = (struct btrfs_tree_block_info *)(ei + 1);
7004 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7005 }
7006
7007 refs = btrfs_extent_refs(leaf, ei);
7008 if (refs < refs_to_drop) {
7009 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7010 "for bytenr %Lu", refs_to_drop, refs, bytenr);
7011 ret = -EINVAL;
7012 btrfs_abort_transaction(trans, ret);
7013 goto out;
7014 }
7015 refs -= refs_to_drop;
7016
7017 if (refs > 0) {
7018 if (extent_op)
7019 __run_delayed_extent_op(extent_op, leaf, ei);
7020 /*
7021 * In the case of inline back ref, reference count will
7022 * be updated by remove_extent_backref
7023 */
7024 if (iref) {
7025 BUG_ON(!found_extent);
7026 } else {
7027 btrfs_set_extent_refs(leaf, ei, refs);
7028 btrfs_mark_buffer_dirty(leaf);
7029 }
7030 if (found_extent) {
7031 ret = remove_extent_backref(trans, extent_root, path,
7032 iref, refs_to_drop,
7033 is_data, &last_ref);
7034 if (ret) {
7035 btrfs_abort_transaction(trans, ret);
7036 goto out;
7037 }
7038 }
7039 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7040 root_objectid);
7041 } else {
7042 if (found_extent) {
7043 BUG_ON(is_data && refs_to_drop !=
7044 extent_data_ref_count(path, iref));
7045 if (iref) {
7046 BUG_ON(path->slots[0] != extent_slot);
7047 } else {
7048 BUG_ON(path->slots[0] != extent_slot + 1);
7049 path->slots[0] = extent_slot;
7050 num_to_del = 2;
7051 }
7052 }
7053
7054 last_ref = 1;
7055 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7056 num_to_del);
7057 if (ret) {
7058 btrfs_abort_transaction(trans, ret);
7059 goto out;
7060 }
7061 btrfs_release_path(path);
7062
7063 if (is_data) {
7064 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7065 if (ret) {
7066 btrfs_abort_transaction(trans, ret);
7067 goto out;
7068 }
7069 }
7070
7071 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7072 num_bytes);
7073 if (ret) {
7074 btrfs_abort_transaction(trans, ret);
7075 goto out;
7076 }
7077
7078 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7079 if (ret) {
7080 btrfs_abort_transaction(trans, ret);
7081 goto out;
7082 }
7083 }
7084 btrfs_release_path(path);
7085
7086 out:
7087 btrfs_free_path(path);
7088 return ret;
7089 }
7090
7091 /*
7092 * when we free an block, it is possible (and likely) that we free the last
7093 * delayed ref for that extent as well. This searches the delayed ref tree for
7094 * a given extent, and if there are no other delayed refs to be processed, it
7095 * removes it from the tree.
7096 */
7097 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7098 struct btrfs_root *root, u64 bytenr)
7099 {
7100 struct btrfs_delayed_ref_head *head;
7101 struct btrfs_delayed_ref_root *delayed_refs;
7102 int ret = 0;
7103
7104 delayed_refs = &trans->transaction->delayed_refs;
7105 spin_lock(&delayed_refs->lock);
7106 head = btrfs_find_delayed_ref_head(trans, bytenr);
7107 if (!head)
7108 goto out_delayed_unlock;
7109
7110 spin_lock(&head->lock);
7111 if (!list_empty(&head->ref_list))
7112 goto out;
7113
7114 if (head->extent_op) {
7115 if (!head->must_insert_reserved)
7116 goto out;
7117 btrfs_free_delayed_extent_op(head->extent_op);
7118 head->extent_op = NULL;
7119 }
7120
7121 /*
7122 * waiting for the lock here would deadlock. If someone else has it
7123 * locked they are already in the process of dropping it anyway
7124 */
7125 if (!mutex_trylock(&head->mutex))
7126 goto out;
7127
7128 /*
7129 * at this point we have a head with no other entries. Go
7130 * ahead and process it.
7131 */
7132 head->node.in_tree = 0;
7133 rb_erase(&head->href_node, &delayed_refs->href_root);
7134
7135 atomic_dec(&delayed_refs->num_entries);
7136
7137 /*
7138 * we don't take a ref on the node because we're removing it from the
7139 * tree, so we just steal the ref the tree was holding.
7140 */
7141 delayed_refs->num_heads--;
7142 if (head->processing == 0)
7143 delayed_refs->num_heads_ready--;
7144 head->processing = 0;
7145 spin_unlock(&head->lock);
7146 spin_unlock(&delayed_refs->lock);
7147
7148 BUG_ON(head->extent_op);
7149 if (head->must_insert_reserved)
7150 ret = 1;
7151
7152 mutex_unlock(&head->mutex);
7153 btrfs_put_delayed_ref(&head->node);
7154 return ret;
7155 out:
7156 spin_unlock(&head->lock);
7157
7158 out_delayed_unlock:
7159 spin_unlock(&delayed_refs->lock);
7160 return 0;
7161 }
7162
7163 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7164 struct btrfs_root *root,
7165 struct extent_buffer *buf,
7166 u64 parent, int last_ref)
7167 {
7168 int pin = 1;
7169 int ret;
7170
7171 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7172 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7173 buf->start, buf->len,
7174 parent, root->root_key.objectid,
7175 btrfs_header_level(buf),
7176 BTRFS_DROP_DELAYED_REF, NULL);
7177 BUG_ON(ret); /* -ENOMEM */
7178 }
7179
7180 if (!last_ref)
7181 return;
7182
7183 if (btrfs_header_generation(buf) == trans->transid) {
7184 struct btrfs_block_group_cache *cache;
7185
7186 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7187 ret = check_ref_cleanup(trans, root, buf->start);
7188 if (!ret)
7189 goto out;
7190 }
7191
7192 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7193
7194 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7195 pin_down_extent(root, cache, buf->start, buf->len, 1);
7196 btrfs_put_block_group(cache);
7197 goto out;
7198 }
7199
7200 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7201
7202 btrfs_add_free_space(cache, buf->start, buf->len);
7203 btrfs_free_reserved_bytes(cache, buf->len, 0);
7204 btrfs_put_block_group(cache);
7205 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7206 pin = 0;
7207 }
7208 out:
7209 if (pin)
7210 add_pinned_bytes(root->fs_info, buf->len,
7211 btrfs_header_level(buf),
7212 root->root_key.objectid);
7213
7214 /*
7215 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7216 * anymore.
7217 */
7218 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7219 }
7220
7221 /* Can return -ENOMEM */
7222 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7223 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7224 u64 owner, u64 offset)
7225 {
7226 int ret;
7227 struct btrfs_fs_info *fs_info = root->fs_info;
7228
7229 if (btrfs_is_testing(fs_info))
7230 return 0;
7231
7232 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7233
7234 /*
7235 * tree log blocks never actually go into the extent allocation
7236 * tree, just update pinning info and exit early.
7237 */
7238 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7239 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7240 /* unlocks the pinned mutex */
7241 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7242 ret = 0;
7243 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7244 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7245 num_bytes,
7246 parent, root_objectid, (int)owner,
7247 BTRFS_DROP_DELAYED_REF, NULL);
7248 } else {
7249 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7250 num_bytes,
7251 parent, root_objectid, owner,
7252 offset, 0,
7253 BTRFS_DROP_DELAYED_REF, NULL);
7254 }
7255 return ret;
7256 }
7257
7258 /*
7259 * when we wait for progress in the block group caching, its because
7260 * our allocation attempt failed at least once. So, we must sleep
7261 * and let some progress happen before we try again.
7262 *
7263 * This function will sleep at least once waiting for new free space to
7264 * show up, and then it will check the block group free space numbers
7265 * for our min num_bytes. Another option is to have it go ahead
7266 * and look in the rbtree for a free extent of a given size, but this
7267 * is a good start.
7268 *
7269 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7270 * any of the information in this block group.
7271 */
7272 static noinline void
7273 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7274 u64 num_bytes)
7275 {
7276 struct btrfs_caching_control *caching_ctl;
7277
7278 caching_ctl = get_caching_control(cache);
7279 if (!caching_ctl)
7280 return;
7281
7282 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7283 (cache->free_space_ctl->free_space >= num_bytes));
7284
7285 put_caching_control(caching_ctl);
7286 }
7287
7288 static noinline int
7289 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7290 {
7291 struct btrfs_caching_control *caching_ctl;
7292 int ret = 0;
7293
7294 caching_ctl = get_caching_control(cache);
7295 if (!caching_ctl)
7296 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7297
7298 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7299 if (cache->cached == BTRFS_CACHE_ERROR)
7300 ret = -EIO;
7301 put_caching_control(caching_ctl);
7302 return ret;
7303 }
7304
7305 int __get_raid_index(u64 flags)
7306 {
7307 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7308 return BTRFS_RAID_RAID10;
7309 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7310 return BTRFS_RAID_RAID1;
7311 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7312 return BTRFS_RAID_DUP;
7313 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7314 return BTRFS_RAID_RAID0;
7315 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7316 return BTRFS_RAID_RAID5;
7317 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7318 return BTRFS_RAID_RAID6;
7319
7320 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7321 }
7322
7323 int get_block_group_index(struct btrfs_block_group_cache *cache)
7324 {
7325 return __get_raid_index(cache->flags);
7326 }
7327
7328 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7329 [BTRFS_RAID_RAID10] = "raid10",
7330 [BTRFS_RAID_RAID1] = "raid1",
7331 [BTRFS_RAID_DUP] = "dup",
7332 [BTRFS_RAID_RAID0] = "raid0",
7333 [BTRFS_RAID_SINGLE] = "single",
7334 [BTRFS_RAID_RAID5] = "raid5",
7335 [BTRFS_RAID_RAID6] = "raid6",
7336 };
7337
7338 static const char *get_raid_name(enum btrfs_raid_types type)
7339 {
7340 if (type >= BTRFS_NR_RAID_TYPES)
7341 return NULL;
7342
7343 return btrfs_raid_type_names[type];
7344 }
7345
7346 enum btrfs_loop_type {
7347 LOOP_CACHING_NOWAIT = 0,
7348 LOOP_CACHING_WAIT = 1,
7349 LOOP_ALLOC_CHUNK = 2,
7350 LOOP_NO_EMPTY_SIZE = 3,
7351 };
7352
7353 static inline void
7354 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7355 int delalloc)
7356 {
7357 if (delalloc)
7358 down_read(&cache->data_rwsem);
7359 }
7360
7361 static inline void
7362 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7363 int delalloc)
7364 {
7365 btrfs_get_block_group(cache);
7366 if (delalloc)
7367 down_read(&cache->data_rwsem);
7368 }
7369
7370 static struct btrfs_block_group_cache *
7371 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7372 struct btrfs_free_cluster *cluster,
7373 int delalloc)
7374 {
7375 struct btrfs_block_group_cache *used_bg = NULL;
7376
7377 spin_lock(&cluster->refill_lock);
7378 while (1) {
7379 used_bg = cluster->block_group;
7380 if (!used_bg)
7381 return NULL;
7382
7383 if (used_bg == block_group)
7384 return used_bg;
7385
7386 btrfs_get_block_group(used_bg);
7387
7388 if (!delalloc)
7389 return used_bg;
7390
7391 if (down_read_trylock(&used_bg->data_rwsem))
7392 return used_bg;
7393
7394 spin_unlock(&cluster->refill_lock);
7395
7396 down_read(&used_bg->data_rwsem);
7397
7398 spin_lock(&cluster->refill_lock);
7399 if (used_bg == cluster->block_group)
7400 return used_bg;
7401
7402 up_read(&used_bg->data_rwsem);
7403 btrfs_put_block_group(used_bg);
7404 }
7405 }
7406
7407 static inline void
7408 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7409 int delalloc)
7410 {
7411 if (delalloc)
7412 up_read(&cache->data_rwsem);
7413 btrfs_put_block_group(cache);
7414 }
7415
7416 /*
7417 * walks the btree of allocated extents and find a hole of a given size.
7418 * The key ins is changed to record the hole:
7419 * ins->objectid == start position
7420 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7421 * ins->offset == the size of the hole.
7422 * Any available blocks before search_start are skipped.
7423 *
7424 * If there is no suitable free space, we will record the max size of
7425 * the free space extent currently.
7426 */
7427 static noinline int find_free_extent(struct btrfs_root *orig_root,
7428 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7429 u64 hint_byte, struct btrfs_key *ins,
7430 u64 flags, int delalloc)
7431 {
7432 int ret = 0;
7433 struct btrfs_root *root = orig_root->fs_info->extent_root;
7434 struct btrfs_free_cluster *last_ptr = NULL;
7435 struct btrfs_block_group_cache *block_group = NULL;
7436 u64 search_start = 0;
7437 u64 max_extent_size = 0;
7438 u64 empty_cluster = 0;
7439 struct btrfs_space_info *space_info;
7440 int loop = 0;
7441 int index = __get_raid_index(flags);
7442 bool failed_cluster_refill = false;
7443 bool failed_alloc = false;
7444 bool use_cluster = true;
7445 bool have_caching_bg = false;
7446 bool orig_have_caching_bg = false;
7447 bool full_search = false;
7448
7449 WARN_ON(num_bytes < root->sectorsize);
7450 ins->type = BTRFS_EXTENT_ITEM_KEY;
7451 ins->objectid = 0;
7452 ins->offset = 0;
7453
7454 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7455
7456 space_info = __find_space_info(root->fs_info, flags);
7457 if (!space_info) {
7458 btrfs_err(root->fs_info, "No space info for %llu", flags);
7459 return -ENOSPC;
7460 }
7461
7462 /*
7463 * If our free space is heavily fragmented we may not be able to make
7464 * big contiguous allocations, so instead of doing the expensive search
7465 * for free space, simply return ENOSPC with our max_extent_size so we
7466 * can go ahead and search for a more manageable chunk.
7467 *
7468 * If our max_extent_size is large enough for our allocation simply
7469 * disable clustering since we will likely not be able to find enough
7470 * space to create a cluster and induce latency trying.
7471 */
7472 if (unlikely(space_info->max_extent_size)) {
7473 spin_lock(&space_info->lock);
7474 if (space_info->max_extent_size &&
7475 num_bytes > space_info->max_extent_size) {
7476 ins->offset = space_info->max_extent_size;
7477 spin_unlock(&space_info->lock);
7478 return -ENOSPC;
7479 } else if (space_info->max_extent_size) {
7480 use_cluster = false;
7481 }
7482 spin_unlock(&space_info->lock);
7483 }
7484
7485 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7486 if (last_ptr) {
7487 spin_lock(&last_ptr->lock);
7488 if (last_ptr->block_group)
7489 hint_byte = last_ptr->window_start;
7490 if (last_ptr->fragmented) {
7491 /*
7492 * We still set window_start so we can keep track of the
7493 * last place we found an allocation to try and save
7494 * some time.
7495 */
7496 hint_byte = last_ptr->window_start;
7497 use_cluster = false;
7498 }
7499 spin_unlock(&last_ptr->lock);
7500 }
7501
7502 search_start = max(search_start, first_logical_byte(root, 0));
7503 search_start = max(search_start, hint_byte);
7504 if (search_start == hint_byte) {
7505 block_group = btrfs_lookup_block_group(root->fs_info,
7506 search_start);
7507 /*
7508 * we don't want to use the block group if it doesn't match our
7509 * allocation bits, or if its not cached.
7510 *
7511 * However if we are re-searching with an ideal block group
7512 * picked out then we don't care that the block group is cached.
7513 */
7514 if (block_group && block_group_bits(block_group, flags) &&
7515 block_group->cached != BTRFS_CACHE_NO) {
7516 down_read(&space_info->groups_sem);
7517 if (list_empty(&block_group->list) ||
7518 block_group->ro) {
7519 /*
7520 * someone is removing this block group,
7521 * we can't jump into the have_block_group
7522 * target because our list pointers are not
7523 * valid
7524 */
7525 btrfs_put_block_group(block_group);
7526 up_read(&space_info->groups_sem);
7527 } else {
7528 index = get_block_group_index(block_group);
7529 btrfs_lock_block_group(block_group, delalloc);
7530 goto have_block_group;
7531 }
7532 } else if (block_group) {
7533 btrfs_put_block_group(block_group);
7534 }
7535 }
7536 search:
7537 have_caching_bg = false;
7538 if (index == 0 || index == __get_raid_index(flags))
7539 full_search = true;
7540 down_read(&space_info->groups_sem);
7541 list_for_each_entry(block_group, &space_info->block_groups[index],
7542 list) {
7543 u64 offset;
7544 int cached;
7545
7546 btrfs_grab_block_group(block_group, delalloc);
7547 search_start = block_group->key.objectid;
7548
7549 /*
7550 * this can happen if we end up cycling through all the
7551 * raid types, but we want to make sure we only allocate
7552 * for the proper type.
7553 */
7554 if (!block_group_bits(block_group, flags)) {
7555 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7556 BTRFS_BLOCK_GROUP_RAID1 |
7557 BTRFS_BLOCK_GROUP_RAID5 |
7558 BTRFS_BLOCK_GROUP_RAID6 |
7559 BTRFS_BLOCK_GROUP_RAID10;
7560
7561 /*
7562 * if they asked for extra copies and this block group
7563 * doesn't provide them, bail. This does allow us to
7564 * fill raid0 from raid1.
7565 */
7566 if ((flags & extra) && !(block_group->flags & extra))
7567 goto loop;
7568 }
7569
7570 have_block_group:
7571 cached = block_group_cache_done(block_group);
7572 if (unlikely(!cached)) {
7573 have_caching_bg = true;
7574 ret = cache_block_group(block_group, 0);
7575 BUG_ON(ret < 0);
7576 ret = 0;
7577 }
7578
7579 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7580 goto loop;
7581 if (unlikely(block_group->ro))
7582 goto loop;
7583
7584 /*
7585 * Ok we want to try and use the cluster allocator, so
7586 * lets look there
7587 */
7588 if (last_ptr && use_cluster) {
7589 struct btrfs_block_group_cache *used_block_group;
7590 unsigned long aligned_cluster;
7591 /*
7592 * the refill lock keeps out other
7593 * people trying to start a new cluster
7594 */
7595 used_block_group = btrfs_lock_cluster(block_group,
7596 last_ptr,
7597 delalloc);
7598 if (!used_block_group)
7599 goto refill_cluster;
7600
7601 if (used_block_group != block_group &&
7602 (used_block_group->ro ||
7603 !block_group_bits(used_block_group, flags)))
7604 goto release_cluster;
7605
7606 offset = btrfs_alloc_from_cluster(used_block_group,
7607 last_ptr,
7608 num_bytes,
7609 used_block_group->key.objectid,
7610 &max_extent_size);
7611 if (offset) {
7612 /* we have a block, we're done */
7613 spin_unlock(&last_ptr->refill_lock);
7614 trace_btrfs_reserve_extent_cluster(root,
7615 used_block_group,
7616 search_start, num_bytes);
7617 if (used_block_group != block_group) {
7618 btrfs_release_block_group(block_group,
7619 delalloc);
7620 block_group = used_block_group;
7621 }
7622 goto checks;
7623 }
7624
7625 WARN_ON(last_ptr->block_group != used_block_group);
7626 release_cluster:
7627 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7628 * set up a new clusters, so lets just skip it
7629 * and let the allocator find whatever block
7630 * it can find. If we reach this point, we
7631 * will have tried the cluster allocator
7632 * plenty of times and not have found
7633 * anything, so we are likely way too
7634 * fragmented for the clustering stuff to find
7635 * anything.
7636 *
7637 * However, if the cluster is taken from the
7638 * current block group, release the cluster
7639 * first, so that we stand a better chance of
7640 * succeeding in the unclustered
7641 * allocation. */
7642 if (loop >= LOOP_NO_EMPTY_SIZE &&
7643 used_block_group != block_group) {
7644 spin_unlock(&last_ptr->refill_lock);
7645 btrfs_release_block_group(used_block_group,
7646 delalloc);
7647 goto unclustered_alloc;
7648 }
7649
7650 /*
7651 * this cluster didn't work out, free it and
7652 * start over
7653 */
7654 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7655
7656 if (used_block_group != block_group)
7657 btrfs_release_block_group(used_block_group,
7658 delalloc);
7659 refill_cluster:
7660 if (loop >= LOOP_NO_EMPTY_SIZE) {
7661 spin_unlock(&last_ptr->refill_lock);
7662 goto unclustered_alloc;
7663 }
7664
7665 aligned_cluster = max_t(unsigned long,
7666 empty_cluster + empty_size,
7667 block_group->full_stripe_len);
7668
7669 /* allocate a cluster in this block group */
7670 ret = btrfs_find_space_cluster(root, block_group,
7671 last_ptr, search_start,
7672 num_bytes,
7673 aligned_cluster);
7674 if (ret == 0) {
7675 /*
7676 * now pull our allocation out of this
7677 * cluster
7678 */
7679 offset = btrfs_alloc_from_cluster(block_group,
7680 last_ptr,
7681 num_bytes,
7682 search_start,
7683 &max_extent_size);
7684 if (offset) {
7685 /* we found one, proceed */
7686 spin_unlock(&last_ptr->refill_lock);
7687 trace_btrfs_reserve_extent_cluster(root,
7688 block_group, search_start,
7689 num_bytes);
7690 goto checks;
7691 }
7692 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7693 && !failed_cluster_refill) {
7694 spin_unlock(&last_ptr->refill_lock);
7695
7696 failed_cluster_refill = true;
7697 wait_block_group_cache_progress(block_group,
7698 num_bytes + empty_cluster + empty_size);
7699 goto have_block_group;
7700 }
7701
7702 /*
7703 * at this point we either didn't find a cluster
7704 * or we weren't able to allocate a block from our
7705 * cluster. Free the cluster we've been trying
7706 * to use, and go to the next block group
7707 */
7708 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7709 spin_unlock(&last_ptr->refill_lock);
7710 goto loop;
7711 }
7712
7713 unclustered_alloc:
7714 /*
7715 * We are doing an unclustered alloc, set the fragmented flag so
7716 * we don't bother trying to setup a cluster again until we get
7717 * more space.
7718 */
7719 if (unlikely(last_ptr)) {
7720 spin_lock(&last_ptr->lock);
7721 last_ptr->fragmented = 1;
7722 spin_unlock(&last_ptr->lock);
7723 }
7724 spin_lock(&block_group->free_space_ctl->tree_lock);
7725 if (cached &&
7726 block_group->free_space_ctl->free_space <
7727 num_bytes + empty_cluster + empty_size) {
7728 if (block_group->free_space_ctl->free_space >
7729 max_extent_size)
7730 max_extent_size =
7731 block_group->free_space_ctl->free_space;
7732 spin_unlock(&block_group->free_space_ctl->tree_lock);
7733 goto loop;
7734 }
7735 spin_unlock(&block_group->free_space_ctl->tree_lock);
7736
7737 offset = btrfs_find_space_for_alloc(block_group, search_start,
7738 num_bytes, empty_size,
7739 &max_extent_size);
7740 /*
7741 * If we didn't find a chunk, and we haven't failed on this
7742 * block group before, and this block group is in the middle of
7743 * caching and we are ok with waiting, then go ahead and wait
7744 * for progress to be made, and set failed_alloc to true.
7745 *
7746 * If failed_alloc is true then we've already waited on this
7747 * block group once and should move on to the next block group.
7748 */
7749 if (!offset && !failed_alloc && !cached &&
7750 loop > LOOP_CACHING_NOWAIT) {
7751 wait_block_group_cache_progress(block_group,
7752 num_bytes + empty_size);
7753 failed_alloc = true;
7754 goto have_block_group;
7755 } else if (!offset) {
7756 goto loop;
7757 }
7758 checks:
7759 search_start = ALIGN(offset, root->stripesize);
7760
7761 /* move on to the next group */
7762 if (search_start + num_bytes >
7763 block_group->key.objectid + block_group->key.offset) {
7764 btrfs_add_free_space(block_group, offset, num_bytes);
7765 goto loop;
7766 }
7767
7768 if (offset < search_start)
7769 btrfs_add_free_space(block_group, offset,
7770 search_start - offset);
7771 BUG_ON(offset > search_start);
7772
7773 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7774 num_bytes, delalloc);
7775 if (ret == -EAGAIN) {
7776 btrfs_add_free_space(block_group, offset, num_bytes);
7777 goto loop;
7778 }
7779 btrfs_inc_block_group_reservations(block_group);
7780
7781 /* we are all good, lets return */
7782 ins->objectid = search_start;
7783 ins->offset = num_bytes;
7784
7785 trace_btrfs_reserve_extent(orig_root, block_group,
7786 search_start, num_bytes);
7787 btrfs_release_block_group(block_group, delalloc);
7788 break;
7789 loop:
7790 failed_cluster_refill = false;
7791 failed_alloc = false;
7792 BUG_ON(index != get_block_group_index(block_group));
7793 btrfs_release_block_group(block_group, delalloc);
7794 }
7795 up_read(&space_info->groups_sem);
7796
7797 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7798 && !orig_have_caching_bg)
7799 orig_have_caching_bg = true;
7800
7801 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7802 goto search;
7803
7804 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7805 goto search;
7806
7807 /*
7808 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7809 * caching kthreads as we move along
7810 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7811 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7812 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7813 * again
7814 */
7815 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7816 index = 0;
7817 if (loop == LOOP_CACHING_NOWAIT) {
7818 /*
7819 * We want to skip the LOOP_CACHING_WAIT step if we
7820 * don't have any uncached bgs and we've already done a
7821 * full search through.
7822 */
7823 if (orig_have_caching_bg || !full_search)
7824 loop = LOOP_CACHING_WAIT;
7825 else
7826 loop = LOOP_ALLOC_CHUNK;
7827 } else {
7828 loop++;
7829 }
7830
7831 if (loop == LOOP_ALLOC_CHUNK) {
7832 struct btrfs_trans_handle *trans;
7833 int exist = 0;
7834
7835 trans = current->journal_info;
7836 if (trans)
7837 exist = 1;
7838 else
7839 trans = btrfs_join_transaction(root);
7840
7841 if (IS_ERR(trans)) {
7842 ret = PTR_ERR(trans);
7843 goto out;
7844 }
7845
7846 ret = do_chunk_alloc(trans, root, flags,
7847 CHUNK_ALLOC_FORCE);
7848
7849 /*
7850 * If we can't allocate a new chunk we've already looped
7851 * through at least once, move on to the NO_EMPTY_SIZE
7852 * case.
7853 */
7854 if (ret == -ENOSPC)
7855 loop = LOOP_NO_EMPTY_SIZE;
7856
7857 /*
7858 * Do not bail out on ENOSPC since we
7859 * can do more things.
7860 */
7861 if (ret < 0 && ret != -ENOSPC)
7862 btrfs_abort_transaction(trans, ret);
7863 else
7864 ret = 0;
7865 if (!exist)
7866 btrfs_end_transaction(trans, root);
7867 if (ret)
7868 goto out;
7869 }
7870
7871 if (loop == LOOP_NO_EMPTY_SIZE) {
7872 /*
7873 * Don't loop again if we already have no empty_size and
7874 * no empty_cluster.
7875 */
7876 if (empty_size == 0 &&
7877 empty_cluster == 0) {
7878 ret = -ENOSPC;
7879 goto out;
7880 }
7881 empty_size = 0;
7882 empty_cluster = 0;
7883 }
7884
7885 goto search;
7886 } else if (!ins->objectid) {
7887 ret = -ENOSPC;
7888 } else if (ins->objectid) {
7889 if (!use_cluster && last_ptr) {
7890 spin_lock(&last_ptr->lock);
7891 last_ptr->window_start = ins->objectid;
7892 spin_unlock(&last_ptr->lock);
7893 }
7894 ret = 0;
7895 }
7896 out:
7897 if (ret == -ENOSPC) {
7898 spin_lock(&space_info->lock);
7899 space_info->max_extent_size = max_extent_size;
7900 spin_unlock(&space_info->lock);
7901 ins->offset = max_extent_size;
7902 }
7903 return ret;
7904 }
7905
7906 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7907 int dump_block_groups)
7908 {
7909 struct btrfs_block_group_cache *cache;
7910 int index = 0;
7911
7912 spin_lock(&info->lock);
7913 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7914 info->flags,
7915 info->total_bytes - info->bytes_used - info->bytes_pinned -
7916 info->bytes_reserved - info->bytes_readonly -
7917 info->bytes_may_use, (info->full) ? "" : "not ");
7918 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7919 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7920 info->total_bytes, info->bytes_used, info->bytes_pinned,
7921 info->bytes_reserved, info->bytes_may_use,
7922 info->bytes_readonly);
7923 spin_unlock(&info->lock);
7924
7925 if (!dump_block_groups)
7926 return;
7927
7928 down_read(&info->groups_sem);
7929 again:
7930 list_for_each_entry(cache, &info->block_groups[index], list) {
7931 spin_lock(&cache->lock);
7932 printk(KERN_INFO "BTRFS: "
7933 "block group %llu has %llu bytes, "
7934 "%llu used %llu pinned %llu reserved %s\n",
7935 cache->key.objectid, cache->key.offset,
7936 btrfs_block_group_used(&cache->item), cache->pinned,
7937 cache->reserved, cache->ro ? "[readonly]" : "");
7938 btrfs_dump_free_space(cache, bytes);
7939 spin_unlock(&cache->lock);
7940 }
7941 if (++index < BTRFS_NR_RAID_TYPES)
7942 goto again;
7943 up_read(&info->groups_sem);
7944 }
7945
7946 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7947 u64 num_bytes, u64 min_alloc_size,
7948 u64 empty_size, u64 hint_byte,
7949 struct btrfs_key *ins, int is_data, int delalloc)
7950 {
7951 bool final_tried = num_bytes == min_alloc_size;
7952 u64 flags;
7953 int ret;
7954
7955 flags = btrfs_get_alloc_profile(root, is_data);
7956 again:
7957 WARN_ON(num_bytes < root->sectorsize);
7958 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7959 hint_byte, ins, flags, delalloc);
7960 if (!ret && !is_data) {
7961 btrfs_dec_block_group_reservations(root->fs_info,
7962 ins->objectid);
7963 } else if (ret == -ENOSPC) {
7964 if (!final_tried && ins->offset) {
7965 num_bytes = min(num_bytes >> 1, ins->offset);
7966 num_bytes = round_down(num_bytes, root->sectorsize);
7967 num_bytes = max(num_bytes, min_alloc_size);
7968 ram_bytes = num_bytes;
7969 if (num_bytes == min_alloc_size)
7970 final_tried = true;
7971 goto again;
7972 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
7973 struct btrfs_space_info *sinfo;
7974
7975 sinfo = __find_space_info(root->fs_info, flags);
7976 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7977 flags, num_bytes);
7978 if (sinfo)
7979 dump_space_info(sinfo, num_bytes, 1);
7980 }
7981 }
7982
7983 return ret;
7984 }
7985
7986 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7987 u64 start, u64 len,
7988 int pin, int delalloc)
7989 {
7990 struct btrfs_block_group_cache *cache;
7991 int ret = 0;
7992
7993 cache = btrfs_lookup_block_group(root->fs_info, start);
7994 if (!cache) {
7995 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7996 start);
7997 return -ENOSPC;
7998 }
7999
8000 if (pin)
8001 pin_down_extent(root, cache, start, len, 1);
8002 else {
8003 if (btrfs_test_opt(root->fs_info, DISCARD))
8004 ret = btrfs_discard_extent(root, start, len, NULL);
8005 btrfs_add_free_space(cache, start, len);
8006 btrfs_free_reserved_bytes(cache, len, delalloc);
8007 trace_btrfs_reserved_extent_free(root, start, len);
8008 }
8009
8010 btrfs_put_block_group(cache);
8011 return ret;
8012 }
8013
8014 int btrfs_free_reserved_extent(struct btrfs_root *root,
8015 u64 start, u64 len, int delalloc)
8016 {
8017 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8018 }
8019
8020 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8021 u64 start, u64 len)
8022 {
8023 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8024 }
8025
8026 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8027 struct btrfs_root *root,
8028 u64 parent, u64 root_objectid,
8029 u64 flags, u64 owner, u64 offset,
8030 struct btrfs_key *ins, int ref_mod)
8031 {
8032 int ret;
8033 struct btrfs_fs_info *fs_info = root->fs_info;
8034 struct btrfs_extent_item *extent_item;
8035 struct btrfs_extent_inline_ref *iref;
8036 struct btrfs_path *path;
8037 struct extent_buffer *leaf;
8038 int type;
8039 u32 size;
8040
8041 if (parent > 0)
8042 type = BTRFS_SHARED_DATA_REF_KEY;
8043 else
8044 type = BTRFS_EXTENT_DATA_REF_KEY;
8045
8046 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8047
8048 path = btrfs_alloc_path();
8049 if (!path)
8050 return -ENOMEM;
8051
8052 path->leave_spinning = 1;
8053 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8054 ins, size);
8055 if (ret) {
8056 btrfs_free_path(path);
8057 return ret;
8058 }
8059
8060 leaf = path->nodes[0];
8061 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8062 struct btrfs_extent_item);
8063 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8064 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8065 btrfs_set_extent_flags(leaf, extent_item,
8066 flags | BTRFS_EXTENT_FLAG_DATA);
8067
8068 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8069 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8070 if (parent > 0) {
8071 struct btrfs_shared_data_ref *ref;
8072 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8073 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8074 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8075 } else {
8076 struct btrfs_extent_data_ref *ref;
8077 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8078 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8079 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8080 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8081 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8082 }
8083
8084 btrfs_mark_buffer_dirty(path->nodes[0]);
8085 btrfs_free_path(path);
8086
8087 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8088 ins->offset);
8089 if (ret)
8090 return ret;
8091
8092 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8093 if (ret) { /* -ENOENT, logic error */
8094 btrfs_err(fs_info, "update block group failed for %llu %llu",
8095 ins->objectid, ins->offset);
8096 BUG();
8097 }
8098 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8099 return ret;
8100 }
8101
8102 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8103 struct btrfs_root *root,
8104 u64 parent, u64 root_objectid,
8105 u64 flags, struct btrfs_disk_key *key,
8106 int level, struct btrfs_key *ins)
8107 {
8108 int ret;
8109 struct btrfs_fs_info *fs_info = root->fs_info;
8110 struct btrfs_extent_item *extent_item;
8111 struct btrfs_tree_block_info *block_info;
8112 struct btrfs_extent_inline_ref *iref;
8113 struct btrfs_path *path;
8114 struct extent_buffer *leaf;
8115 u32 size = sizeof(*extent_item) + sizeof(*iref);
8116 u64 num_bytes = ins->offset;
8117 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8118 SKINNY_METADATA);
8119
8120 if (!skinny_metadata)
8121 size += sizeof(*block_info);
8122
8123 path = btrfs_alloc_path();
8124 if (!path) {
8125 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8126 root->nodesize);
8127 return -ENOMEM;
8128 }
8129
8130 path->leave_spinning = 1;
8131 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8132 ins, size);
8133 if (ret) {
8134 btrfs_free_path(path);
8135 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8136 root->nodesize);
8137 return ret;
8138 }
8139
8140 leaf = path->nodes[0];
8141 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8142 struct btrfs_extent_item);
8143 btrfs_set_extent_refs(leaf, extent_item, 1);
8144 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8145 btrfs_set_extent_flags(leaf, extent_item,
8146 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8147
8148 if (skinny_metadata) {
8149 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8150 num_bytes = root->nodesize;
8151 } else {
8152 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8153 btrfs_set_tree_block_key(leaf, block_info, key);
8154 btrfs_set_tree_block_level(leaf, block_info, level);
8155 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8156 }
8157
8158 if (parent > 0) {
8159 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8160 btrfs_set_extent_inline_ref_type(leaf, iref,
8161 BTRFS_SHARED_BLOCK_REF_KEY);
8162 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8163 } else {
8164 btrfs_set_extent_inline_ref_type(leaf, iref,
8165 BTRFS_TREE_BLOCK_REF_KEY);
8166 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8167 }
8168
8169 btrfs_mark_buffer_dirty(leaf);
8170 btrfs_free_path(path);
8171
8172 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8173 num_bytes);
8174 if (ret)
8175 return ret;
8176
8177 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8178 1);
8179 if (ret) { /* -ENOENT, logic error */
8180 btrfs_err(fs_info, "update block group failed for %llu %llu",
8181 ins->objectid, ins->offset);
8182 BUG();
8183 }
8184
8185 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8186 return ret;
8187 }
8188
8189 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8190 struct btrfs_root *root,
8191 u64 root_objectid, u64 owner,
8192 u64 offset, u64 ram_bytes,
8193 struct btrfs_key *ins)
8194 {
8195 int ret;
8196
8197 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8198
8199 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8200 ins->offset, 0,
8201 root_objectid, owner, offset,
8202 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8203 NULL);
8204 return ret;
8205 }
8206
8207 /*
8208 * this is used by the tree logging recovery code. It records that
8209 * an extent has been allocated and makes sure to clear the free
8210 * space cache bits as well
8211 */
8212 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8213 struct btrfs_root *root,
8214 u64 root_objectid, u64 owner, u64 offset,
8215 struct btrfs_key *ins)
8216 {
8217 int ret;
8218 struct btrfs_block_group_cache *block_group;
8219
8220 /*
8221 * Mixed block groups will exclude before processing the log so we only
8222 * need to do the exclude dance if this fs isn't mixed.
8223 */
8224 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8225 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8226 if (ret)
8227 return ret;
8228 }
8229
8230 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8231 if (!block_group)
8232 return -EINVAL;
8233
8234 ret = btrfs_add_reserved_bytes(block_group, ins->offset,
8235 ins->offset, 0);
8236 BUG_ON(ret); /* logic error */
8237 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8238 0, owner, offset, ins, 1);
8239 btrfs_put_block_group(block_group);
8240 return ret;
8241 }
8242
8243 static struct extent_buffer *
8244 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8245 u64 bytenr, int level)
8246 {
8247 struct extent_buffer *buf;
8248
8249 buf = btrfs_find_create_tree_block(root, bytenr);
8250 if (IS_ERR(buf))
8251 return buf;
8252
8253 btrfs_set_header_generation(buf, trans->transid);
8254 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8255 btrfs_tree_lock(buf);
8256 clean_tree_block(trans, root->fs_info, buf);
8257 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8258
8259 btrfs_set_lock_blocking(buf);
8260 set_extent_buffer_uptodate(buf);
8261
8262 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8263 buf->log_index = root->log_transid % 2;
8264 /*
8265 * we allow two log transactions at a time, use different
8266 * EXENT bit to differentiate dirty pages.
8267 */
8268 if (buf->log_index == 0)
8269 set_extent_dirty(&root->dirty_log_pages, buf->start,
8270 buf->start + buf->len - 1, GFP_NOFS);
8271 else
8272 set_extent_new(&root->dirty_log_pages, buf->start,
8273 buf->start + buf->len - 1);
8274 } else {
8275 buf->log_index = -1;
8276 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8277 buf->start + buf->len - 1, GFP_NOFS);
8278 }
8279 trans->dirty = true;
8280 /* this returns a buffer locked for blocking */
8281 return buf;
8282 }
8283
8284 static struct btrfs_block_rsv *
8285 use_block_rsv(struct btrfs_trans_handle *trans,
8286 struct btrfs_root *root, u32 blocksize)
8287 {
8288 struct btrfs_block_rsv *block_rsv;
8289 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8290 int ret;
8291 bool global_updated = false;
8292
8293 block_rsv = get_block_rsv(trans, root);
8294
8295 if (unlikely(block_rsv->size == 0))
8296 goto try_reserve;
8297 again:
8298 ret = block_rsv_use_bytes(block_rsv, blocksize);
8299 if (!ret)
8300 return block_rsv;
8301
8302 if (block_rsv->failfast)
8303 return ERR_PTR(ret);
8304
8305 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306 global_updated = true;
8307 update_global_block_rsv(root->fs_info);
8308 goto again;
8309 }
8310
8311 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8312 static DEFINE_RATELIMIT_STATE(_rs,
8313 DEFAULT_RATELIMIT_INTERVAL * 10,
8314 /*DEFAULT_RATELIMIT_BURST*/ 1);
8315 if (__ratelimit(&_rs))
8316 WARN(1, KERN_DEBUG
8317 "BTRFS: block rsv returned %d\n", ret);
8318 }
8319 try_reserve:
8320 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321 BTRFS_RESERVE_NO_FLUSH);
8322 if (!ret)
8323 return block_rsv;
8324 /*
8325 * If we couldn't reserve metadata bytes try and use some from
8326 * the global reserve if its space type is the same as the global
8327 * reservation.
8328 */
8329 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330 block_rsv->space_info == global_rsv->space_info) {
8331 ret = block_rsv_use_bytes(global_rsv, blocksize);
8332 if (!ret)
8333 return global_rsv;
8334 }
8335 return ERR_PTR(ret);
8336 }
8337
8338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8340 {
8341 block_rsv_add_bytes(block_rsv, blocksize, 0);
8342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8343 }
8344
8345 /*
8346 * finds a free extent and does all the dirty work required for allocation
8347 * returns the tree buffer or an ERR_PTR on error.
8348 */
8349 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8350 struct btrfs_root *root,
8351 u64 parent, u64 root_objectid,
8352 struct btrfs_disk_key *key, int level,
8353 u64 hint, u64 empty_size)
8354 {
8355 struct btrfs_key ins;
8356 struct btrfs_block_rsv *block_rsv;
8357 struct extent_buffer *buf;
8358 struct btrfs_delayed_extent_op *extent_op;
8359 u64 flags = 0;
8360 int ret;
8361 u32 blocksize = root->nodesize;
8362 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8363 SKINNY_METADATA);
8364
8365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8366 if (btrfs_is_testing(root->fs_info)) {
8367 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8368 level);
8369 if (!IS_ERR(buf))
8370 root->alloc_bytenr += blocksize;
8371 return buf;
8372 }
8373 #endif
8374
8375 block_rsv = use_block_rsv(trans, root, blocksize);
8376 if (IS_ERR(block_rsv))
8377 return ERR_CAST(block_rsv);
8378
8379 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8380 empty_size, hint, &ins, 0, 0);
8381 if (ret)
8382 goto out_unuse;
8383
8384 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8385 if (IS_ERR(buf)) {
8386 ret = PTR_ERR(buf);
8387 goto out_free_reserved;
8388 }
8389
8390 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8391 if (parent == 0)
8392 parent = ins.objectid;
8393 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8394 } else
8395 BUG_ON(parent > 0);
8396
8397 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8398 extent_op = btrfs_alloc_delayed_extent_op();
8399 if (!extent_op) {
8400 ret = -ENOMEM;
8401 goto out_free_buf;
8402 }
8403 if (key)
8404 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8405 else
8406 memset(&extent_op->key, 0, sizeof(extent_op->key));
8407 extent_op->flags_to_set = flags;
8408 extent_op->update_key = skinny_metadata ? false : true;
8409 extent_op->update_flags = true;
8410 extent_op->is_data = false;
8411 extent_op->level = level;
8412
8413 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8414 ins.objectid, ins.offset,
8415 parent, root_objectid, level,
8416 BTRFS_ADD_DELAYED_EXTENT,
8417 extent_op);
8418 if (ret)
8419 goto out_free_delayed;
8420 }
8421 return buf;
8422
8423 out_free_delayed:
8424 btrfs_free_delayed_extent_op(extent_op);
8425 out_free_buf:
8426 free_extent_buffer(buf);
8427 out_free_reserved:
8428 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8429 out_unuse:
8430 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8431 return ERR_PTR(ret);
8432 }
8433
8434 struct walk_control {
8435 u64 refs[BTRFS_MAX_LEVEL];
8436 u64 flags[BTRFS_MAX_LEVEL];
8437 struct btrfs_key update_progress;
8438 int stage;
8439 int level;
8440 int shared_level;
8441 int update_ref;
8442 int keep_locks;
8443 int reada_slot;
8444 int reada_count;
8445 int for_reloc;
8446 };
8447
8448 #define DROP_REFERENCE 1
8449 #define UPDATE_BACKREF 2
8450
8451 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8452 struct btrfs_root *root,
8453 struct walk_control *wc,
8454 struct btrfs_path *path)
8455 {
8456 u64 bytenr;
8457 u64 generation;
8458 u64 refs;
8459 u64 flags;
8460 u32 nritems;
8461 u32 blocksize;
8462 struct btrfs_key key;
8463 struct extent_buffer *eb;
8464 int ret;
8465 int slot;
8466 int nread = 0;
8467
8468 if (path->slots[wc->level] < wc->reada_slot) {
8469 wc->reada_count = wc->reada_count * 2 / 3;
8470 wc->reada_count = max(wc->reada_count, 2);
8471 } else {
8472 wc->reada_count = wc->reada_count * 3 / 2;
8473 wc->reada_count = min_t(int, wc->reada_count,
8474 BTRFS_NODEPTRS_PER_BLOCK(root));
8475 }
8476
8477 eb = path->nodes[wc->level];
8478 nritems = btrfs_header_nritems(eb);
8479 blocksize = root->nodesize;
8480
8481 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482 if (nread >= wc->reada_count)
8483 break;
8484
8485 cond_resched();
8486 bytenr = btrfs_node_blockptr(eb, slot);
8487 generation = btrfs_node_ptr_generation(eb, slot);
8488
8489 if (slot == path->slots[wc->level])
8490 goto reada;
8491
8492 if (wc->stage == UPDATE_BACKREF &&
8493 generation <= root->root_key.offset)
8494 continue;
8495
8496 /* We don't lock the tree block, it's OK to be racy here */
8497 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8498 wc->level - 1, 1, &refs,
8499 &flags);
8500 /* We don't care about errors in readahead. */
8501 if (ret < 0)
8502 continue;
8503 BUG_ON(refs == 0);
8504
8505 if (wc->stage == DROP_REFERENCE) {
8506 if (refs == 1)
8507 goto reada;
8508
8509 if (wc->level == 1 &&
8510 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511 continue;
8512 if (!wc->update_ref ||
8513 generation <= root->root_key.offset)
8514 continue;
8515 btrfs_node_key_to_cpu(eb, &key, slot);
8516 ret = btrfs_comp_cpu_keys(&key,
8517 &wc->update_progress);
8518 if (ret < 0)
8519 continue;
8520 } else {
8521 if (wc->level == 1 &&
8522 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 continue;
8524 }
8525 reada:
8526 readahead_tree_block(root, bytenr);
8527 nread++;
8528 }
8529 wc->reada_slot = slot;
8530 }
8531
8532 static int account_leaf_items(struct btrfs_trans_handle *trans,
8533 struct btrfs_root *root,
8534 struct extent_buffer *eb)
8535 {
8536 int nr = btrfs_header_nritems(eb);
8537 int i, extent_type, ret;
8538 struct btrfs_key key;
8539 struct btrfs_file_extent_item *fi;
8540 u64 bytenr, num_bytes;
8541
8542 /* We can be called directly from walk_up_proc() */
8543 if (!root->fs_info->quota_enabled)
8544 return 0;
8545
8546 for (i = 0; i < nr; i++) {
8547 btrfs_item_key_to_cpu(eb, &key, i);
8548
8549 if (key.type != BTRFS_EXTENT_DATA_KEY)
8550 continue;
8551
8552 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8553 /* filter out non qgroup-accountable extents */
8554 extent_type = btrfs_file_extent_type(eb, fi);
8555
8556 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8557 continue;
8558
8559 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8560 if (!bytenr)
8561 continue;
8562
8563 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8564
8565 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8566 bytenr, num_bytes, GFP_NOFS);
8567 if (ret)
8568 return ret;
8569 }
8570 return 0;
8571 }
8572
8573 /*
8574 * Walk up the tree from the bottom, freeing leaves and any interior
8575 * nodes which have had all slots visited. If a node (leaf or
8576 * interior) is freed, the node above it will have it's slot
8577 * incremented. The root node will never be freed.
8578 *
8579 * At the end of this function, we should have a path which has all
8580 * slots incremented to the next position for a search. If we need to
8581 * read a new node it will be NULL and the node above it will have the
8582 * correct slot selected for a later read.
8583 *
8584 * If we increment the root nodes slot counter past the number of
8585 * elements, 1 is returned to signal completion of the search.
8586 */
8587 static int adjust_slots_upwards(struct btrfs_root *root,
8588 struct btrfs_path *path, int root_level)
8589 {
8590 int level = 0;
8591 int nr, slot;
8592 struct extent_buffer *eb;
8593
8594 if (root_level == 0)
8595 return 1;
8596
8597 while (level <= root_level) {
8598 eb = path->nodes[level];
8599 nr = btrfs_header_nritems(eb);
8600 path->slots[level]++;
8601 slot = path->slots[level];
8602 if (slot >= nr || level == 0) {
8603 /*
8604 * Don't free the root - we will detect this
8605 * condition after our loop and return a
8606 * positive value for caller to stop walking the tree.
8607 */
8608 if (level != root_level) {
8609 btrfs_tree_unlock_rw(eb, path->locks[level]);
8610 path->locks[level] = 0;
8611
8612 free_extent_buffer(eb);
8613 path->nodes[level] = NULL;
8614 path->slots[level] = 0;
8615 }
8616 } else {
8617 /*
8618 * We have a valid slot to walk back down
8619 * from. Stop here so caller can process these
8620 * new nodes.
8621 */
8622 break;
8623 }
8624
8625 level++;
8626 }
8627
8628 eb = path->nodes[root_level];
8629 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8630 return 1;
8631
8632 return 0;
8633 }
8634
8635 /*
8636 * root_eb is the subtree root and is locked before this function is called.
8637 */
8638 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8639 struct btrfs_root *root,
8640 struct extent_buffer *root_eb,
8641 u64 root_gen,
8642 int root_level)
8643 {
8644 int ret = 0;
8645 int level;
8646 struct extent_buffer *eb = root_eb;
8647 struct btrfs_path *path = NULL;
8648
8649 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8650 BUG_ON(root_eb == NULL);
8651
8652 if (!root->fs_info->quota_enabled)
8653 return 0;
8654
8655 if (!extent_buffer_uptodate(root_eb)) {
8656 ret = btrfs_read_buffer(root_eb, root_gen);
8657 if (ret)
8658 goto out;
8659 }
8660
8661 if (root_level == 0) {
8662 ret = account_leaf_items(trans, root, root_eb);
8663 goto out;
8664 }
8665
8666 path = btrfs_alloc_path();
8667 if (!path)
8668 return -ENOMEM;
8669
8670 /*
8671 * Walk down the tree. Missing extent blocks are filled in as
8672 * we go. Metadata is accounted every time we read a new
8673 * extent block.
8674 *
8675 * When we reach a leaf, we account for file extent items in it,
8676 * walk back up the tree (adjusting slot pointers as we go)
8677 * and restart the search process.
8678 */
8679 extent_buffer_get(root_eb); /* For path */
8680 path->nodes[root_level] = root_eb;
8681 path->slots[root_level] = 0;
8682 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8683 walk_down:
8684 level = root_level;
8685 while (level >= 0) {
8686 if (path->nodes[level] == NULL) {
8687 int parent_slot;
8688 u64 child_gen;
8689 u64 child_bytenr;
8690
8691 /* We need to get child blockptr/gen from
8692 * parent before we can read it. */
8693 eb = path->nodes[level + 1];
8694 parent_slot = path->slots[level + 1];
8695 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8696 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8697
8698 eb = read_tree_block(root, child_bytenr, child_gen);
8699 if (IS_ERR(eb)) {
8700 ret = PTR_ERR(eb);
8701 goto out;
8702 } else if (!extent_buffer_uptodate(eb)) {
8703 free_extent_buffer(eb);
8704 ret = -EIO;
8705 goto out;
8706 }
8707
8708 path->nodes[level] = eb;
8709 path->slots[level] = 0;
8710
8711 btrfs_tree_read_lock(eb);
8712 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8713 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8714
8715 ret = btrfs_qgroup_insert_dirty_extent(trans,
8716 root->fs_info, child_bytenr,
8717 root->nodesize, GFP_NOFS);
8718 if (ret)
8719 goto out;
8720 }
8721
8722 if (level == 0) {
8723 ret = account_leaf_items(trans, root, path->nodes[level]);
8724 if (ret)
8725 goto out;
8726
8727 /* Nonzero return here means we completed our search */
8728 ret = adjust_slots_upwards(root, path, root_level);
8729 if (ret)
8730 break;
8731
8732 /* Restart search with new slots */
8733 goto walk_down;
8734 }
8735
8736 level--;
8737 }
8738
8739 ret = 0;
8740 out:
8741 btrfs_free_path(path);
8742
8743 return ret;
8744 }
8745
8746 /*
8747 * helper to process tree block while walking down the tree.
8748 *
8749 * when wc->stage == UPDATE_BACKREF, this function updates
8750 * back refs for pointers in the block.
8751 *
8752 * NOTE: return value 1 means we should stop walking down.
8753 */
8754 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8755 struct btrfs_root *root,
8756 struct btrfs_path *path,
8757 struct walk_control *wc, int lookup_info)
8758 {
8759 int level = wc->level;
8760 struct extent_buffer *eb = path->nodes[level];
8761 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8762 int ret;
8763
8764 if (wc->stage == UPDATE_BACKREF &&
8765 btrfs_header_owner(eb) != root->root_key.objectid)
8766 return 1;
8767
8768 /*
8769 * when reference count of tree block is 1, it won't increase
8770 * again. once full backref flag is set, we never clear it.
8771 */
8772 if (lookup_info &&
8773 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8774 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8775 BUG_ON(!path->locks[level]);
8776 ret = btrfs_lookup_extent_info(trans, root,
8777 eb->start, level, 1,
8778 &wc->refs[level],
8779 &wc->flags[level]);
8780 BUG_ON(ret == -ENOMEM);
8781 if (ret)
8782 return ret;
8783 BUG_ON(wc->refs[level] == 0);
8784 }
8785
8786 if (wc->stage == DROP_REFERENCE) {
8787 if (wc->refs[level] > 1)
8788 return 1;
8789
8790 if (path->locks[level] && !wc->keep_locks) {
8791 btrfs_tree_unlock_rw(eb, path->locks[level]);
8792 path->locks[level] = 0;
8793 }
8794 return 0;
8795 }
8796
8797 /* wc->stage == UPDATE_BACKREF */
8798 if (!(wc->flags[level] & flag)) {
8799 BUG_ON(!path->locks[level]);
8800 ret = btrfs_inc_ref(trans, root, eb, 1);
8801 BUG_ON(ret); /* -ENOMEM */
8802 ret = btrfs_dec_ref(trans, root, eb, 0);
8803 BUG_ON(ret); /* -ENOMEM */
8804 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8805 eb->len, flag,
8806 btrfs_header_level(eb), 0);
8807 BUG_ON(ret); /* -ENOMEM */
8808 wc->flags[level] |= flag;
8809 }
8810
8811 /*
8812 * the block is shared by multiple trees, so it's not good to
8813 * keep the tree lock
8814 */
8815 if (path->locks[level] && level > 0) {
8816 btrfs_tree_unlock_rw(eb, path->locks[level]);
8817 path->locks[level] = 0;
8818 }
8819 return 0;
8820 }
8821
8822 /*
8823 * helper to process tree block pointer.
8824 *
8825 * when wc->stage == DROP_REFERENCE, this function checks
8826 * reference count of the block pointed to. if the block
8827 * is shared and we need update back refs for the subtree
8828 * rooted at the block, this function changes wc->stage to
8829 * UPDATE_BACKREF. if the block is shared and there is no
8830 * need to update back, this function drops the reference
8831 * to the block.
8832 *
8833 * NOTE: return value 1 means we should stop walking down.
8834 */
8835 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8836 struct btrfs_root *root,
8837 struct btrfs_path *path,
8838 struct walk_control *wc, int *lookup_info)
8839 {
8840 u64 bytenr;
8841 u64 generation;
8842 u64 parent;
8843 u32 blocksize;
8844 struct btrfs_key key;
8845 struct extent_buffer *next;
8846 int level = wc->level;
8847 int reada = 0;
8848 int ret = 0;
8849 bool need_account = false;
8850
8851 generation = btrfs_node_ptr_generation(path->nodes[level],
8852 path->slots[level]);
8853 /*
8854 * if the lower level block was created before the snapshot
8855 * was created, we know there is no need to update back refs
8856 * for the subtree
8857 */
8858 if (wc->stage == UPDATE_BACKREF &&
8859 generation <= root->root_key.offset) {
8860 *lookup_info = 1;
8861 return 1;
8862 }
8863
8864 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8865 blocksize = root->nodesize;
8866
8867 next = btrfs_find_tree_block(root->fs_info, bytenr);
8868 if (!next) {
8869 next = btrfs_find_create_tree_block(root, bytenr);
8870 if (IS_ERR(next))
8871 return PTR_ERR(next);
8872
8873 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8874 level - 1);
8875 reada = 1;
8876 }
8877 btrfs_tree_lock(next);
8878 btrfs_set_lock_blocking(next);
8879
8880 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8881 &wc->refs[level - 1],
8882 &wc->flags[level - 1]);
8883 if (ret < 0) {
8884 btrfs_tree_unlock(next);
8885 return ret;
8886 }
8887
8888 if (unlikely(wc->refs[level - 1] == 0)) {
8889 btrfs_err(root->fs_info, "Missing references.");
8890 BUG();
8891 }
8892 *lookup_info = 0;
8893
8894 if (wc->stage == DROP_REFERENCE) {
8895 if (wc->refs[level - 1] > 1) {
8896 need_account = true;
8897 if (level == 1 &&
8898 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8899 goto skip;
8900
8901 if (!wc->update_ref ||
8902 generation <= root->root_key.offset)
8903 goto skip;
8904
8905 btrfs_node_key_to_cpu(path->nodes[level], &key,
8906 path->slots[level]);
8907 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8908 if (ret < 0)
8909 goto skip;
8910
8911 wc->stage = UPDATE_BACKREF;
8912 wc->shared_level = level - 1;
8913 }
8914 } else {
8915 if (level == 1 &&
8916 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8917 goto skip;
8918 }
8919
8920 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8921 btrfs_tree_unlock(next);
8922 free_extent_buffer(next);
8923 next = NULL;
8924 *lookup_info = 1;
8925 }
8926
8927 if (!next) {
8928 if (reada && level == 1)
8929 reada_walk_down(trans, root, wc, path);
8930 next = read_tree_block(root, bytenr, generation);
8931 if (IS_ERR(next)) {
8932 return PTR_ERR(next);
8933 } else if (!extent_buffer_uptodate(next)) {
8934 free_extent_buffer(next);
8935 return -EIO;
8936 }
8937 btrfs_tree_lock(next);
8938 btrfs_set_lock_blocking(next);
8939 }
8940
8941 level--;
8942 BUG_ON(level != btrfs_header_level(next));
8943 path->nodes[level] = next;
8944 path->slots[level] = 0;
8945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8946 wc->level = level;
8947 if (wc->level == 1)
8948 wc->reada_slot = 0;
8949 return 0;
8950 skip:
8951 wc->refs[level - 1] = 0;
8952 wc->flags[level - 1] = 0;
8953 if (wc->stage == DROP_REFERENCE) {
8954 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8955 parent = path->nodes[level]->start;
8956 } else {
8957 BUG_ON(root->root_key.objectid !=
8958 btrfs_header_owner(path->nodes[level]));
8959 parent = 0;
8960 }
8961
8962 if (need_account) {
8963 ret = account_shared_subtree(trans, root, next,
8964 generation, level - 1);
8965 if (ret) {
8966 btrfs_err_rl(root->fs_info,
8967 "Error "
8968 "%d accounting shared subtree. Quota "
8969 "is out of sync, rescan required.",
8970 ret);
8971 }
8972 }
8973 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8974 root->root_key.objectid, level - 1, 0);
8975 BUG_ON(ret); /* -ENOMEM */
8976 }
8977 btrfs_tree_unlock(next);
8978 free_extent_buffer(next);
8979 *lookup_info = 1;
8980 return 1;
8981 }
8982
8983 /*
8984 * helper to process tree block while walking up the tree.
8985 *
8986 * when wc->stage == DROP_REFERENCE, this function drops
8987 * reference count on the block.
8988 *
8989 * when wc->stage == UPDATE_BACKREF, this function changes
8990 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8991 * to UPDATE_BACKREF previously while processing the block.
8992 *
8993 * NOTE: return value 1 means we should stop walking up.
8994 */
8995 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8996 struct btrfs_root *root,
8997 struct btrfs_path *path,
8998 struct walk_control *wc)
8999 {
9000 int ret;
9001 int level = wc->level;
9002 struct extent_buffer *eb = path->nodes[level];
9003 u64 parent = 0;
9004
9005 if (wc->stage == UPDATE_BACKREF) {
9006 BUG_ON(wc->shared_level < level);
9007 if (level < wc->shared_level)
9008 goto out;
9009
9010 ret = find_next_key(path, level + 1, &wc->update_progress);
9011 if (ret > 0)
9012 wc->update_ref = 0;
9013
9014 wc->stage = DROP_REFERENCE;
9015 wc->shared_level = -1;
9016 path->slots[level] = 0;
9017
9018 /*
9019 * check reference count again if the block isn't locked.
9020 * we should start walking down the tree again if reference
9021 * count is one.
9022 */
9023 if (!path->locks[level]) {
9024 BUG_ON(level == 0);
9025 btrfs_tree_lock(eb);
9026 btrfs_set_lock_blocking(eb);
9027 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9028
9029 ret = btrfs_lookup_extent_info(trans, root,
9030 eb->start, level, 1,
9031 &wc->refs[level],
9032 &wc->flags[level]);
9033 if (ret < 0) {
9034 btrfs_tree_unlock_rw(eb, path->locks[level]);
9035 path->locks[level] = 0;
9036 return ret;
9037 }
9038 BUG_ON(wc->refs[level] == 0);
9039 if (wc->refs[level] == 1) {
9040 btrfs_tree_unlock_rw(eb, path->locks[level]);
9041 path->locks[level] = 0;
9042 return 1;
9043 }
9044 }
9045 }
9046
9047 /* wc->stage == DROP_REFERENCE */
9048 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9049
9050 if (wc->refs[level] == 1) {
9051 if (level == 0) {
9052 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9053 ret = btrfs_dec_ref(trans, root, eb, 1);
9054 else
9055 ret = btrfs_dec_ref(trans, root, eb, 0);
9056 BUG_ON(ret); /* -ENOMEM */
9057 ret = account_leaf_items(trans, root, eb);
9058 if (ret) {
9059 btrfs_err_rl(root->fs_info,
9060 "error "
9061 "%d accounting leaf items. Quota "
9062 "is out of sync, rescan required.",
9063 ret);
9064 }
9065 }
9066 /* make block locked assertion in clean_tree_block happy */
9067 if (!path->locks[level] &&
9068 btrfs_header_generation(eb) == trans->transid) {
9069 btrfs_tree_lock(eb);
9070 btrfs_set_lock_blocking(eb);
9071 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9072 }
9073 clean_tree_block(trans, root->fs_info, eb);
9074 }
9075
9076 if (eb == root->node) {
9077 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9078 parent = eb->start;
9079 else
9080 BUG_ON(root->root_key.objectid !=
9081 btrfs_header_owner(eb));
9082 } else {
9083 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9084 parent = path->nodes[level + 1]->start;
9085 else
9086 BUG_ON(root->root_key.objectid !=
9087 btrfs_header_owner(path->nodes[level + 1]));
9088 }
9089
9090 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9091 out:
9092 wc->refs[level] = 0;
9093 wc->flags[level] = 0;
9094 return 0;
9095 }
9096
9097 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9098 struct btrfs_root *root,
9099 struct btrfs_path *path,
9100 struct walk_control *wc)
9101 {
9102 int level = wc->level;
9103 int lookup_info = 1;
9104 int ret;
9105
9106 while (level >= 0) {
9107 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9108 if (ret > 0)
9109 break;
9110
9111 if (level == 0)
9112 break;
9113
9114 if (path->slots[level] >=
9115 btrfs_header_nritems(path->nodes[level]))
9116 break;
9117
9118 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9119 if (ret > 0) {
9120 path->slots[level]++;
9121 continue;
9122 } else if (ret < 0)
9123 return ret;
9124 level = wc->level;
9125 }
9126 return 0;
9127 }
9128
9129 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9130 struct btrfs_root *root,
9131 struct btrfs_path *path,
9132 struct walk_control *wc, int max_level)
9133 {
9134 int level = wc->level;
9135 int ret;
9136
9137 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9138 while (level < max_level && path->nodes[level]) {
9139 wc->level = level;
9140 if (path->slots[level] + 1 <
9141 btrfs_header_nritems(path->nodes[level])) {
9142 path->slots[level]++;
9143 return 0;
9144 } else {
9145 ret = walk_up_proc(trans, root, path, wc);
9146 if (ret > 0)
9147 return 0;
9148
9149 if (path->locks[level]) {
9150 btrfs_tree_unlock_rw(path->nodes[level],
9151 path->locks[level]);
9152 path->locks[level] = 0;
9153 }
9154 free_extent_buffer(path->nodes[level]);
9155 path->nodes[level] = NULL;
9156 level++;
9157 }
9158 }
9159 return 1;
9160 }
9161
9162 /*
9163 * drop a subvolume tree.
9164 *
9165 * this function traverses the tree freeing any blocks that only
9166 * referenced by the tree.
9167 *
9168 * when a shared tree block is found. this function decreases its
9169 * reference count by one. if update_ref is true, this function
9170 * also make sure backrefs for the shared block and all lower level
9171 * blocks are properly updated.
9172 *
9173 * If called with for_reloc == 0, may exit early with -EAGAIN
9174 */
9175 int btrfs_drop_snapshot(struct btrfs_root *root,
9176 struct btrfs_block_rsv *block_rsv, int update_ref,
9177 int for_reloc)
9178 {
9179 struct btrfs_path *path;
9180 struct btrfs_trans_handle *trans;
9181 struct btrfs_root *tree_root = root->fs_info->tree_root;
9182 struct btrfs_root_item *root_item = &root->root_item;
9183 struct walk_control *wc;
9184 struct btrfs_key key;
9185 int err = 0;
9186 int ret;
9187 int level;
9188 bool root_dropped = false;
9189
9190 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9191
9192 path = btrfs_alloc_path();
9193 if (!path) {
9194 err = -ENOMEM;
9195 goto out;
9196 }
9197
9198 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9199 if (!wc) {
9200 btrfs_free_path(path);
9201 err = -ENOMEM;
9202 goto out;
9203 }
9204
9205 trans = btrfs_start_transaction(tree_root, 0);
9206 if (IS_ERR(trans)) {
9207 err = PTR_ERR(trans);
9208 goto out_free;
9209 }
9210
9211 if (block_rsv)
9212 trans->block_rsv = block_rsv;
9213
9214 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9215 level = btrfs_header_level(root->node);
9216 path->nodes[level] = btrfs_lock_root_node(root);
9217 btrfs_set_lock_blocking(path->nodes[level]);
9218 path->slots[level] = 0;
9219 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9220 memset(&wc->update_progress, 0,
9221 sizeof(wc->update_progress));
9222 } else {
9223 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9224 memcpy(&wc->update_progress, &key,
9225 sizeof(wc->update_progress));
9226
9227 level = root_item->drop_level;
9228 BUG_ON(level == 0);
9229 path->lowest_level = level;
9230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9231 path->lowest_level = 0;
9232 if (ret < 0) {
9233 err = ret;
9234 goto out_end_trans;
9235 }
9236 WARN_ON(ret > 0);
9237
9238 /*
9239 * unlock our path, this is safe because only this
9240 * function is allowed to delete this snapshot
9241 */
9242 btrfs_unlock_up_safe(path, 0);
9243
9244 level = btrfs_header_level(root->node);
9245 while (1) {
9246 btrfs_tree_lock(path->nodes[level]);
9247 btrfs_set_lock_blocking(path->nodes[level]);
9248 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9249
9250 ret = btrfs_lookup_extent_info(trans, root,
9251 path->nodes[level]->start,
9252 level, 1, &wc->refs[level],
9253 &wc->flags[level]);
9254 if (ret < 0) {
9255 err = ret;
9256 goto out_end_trans;
9257 }
9258 BUG_ON(wc->refs[level] == 0);
9259
9260 if (level == root_item->drop_level)
9261 break;
9262
9263 btrfs_tree_unlock(path->nodes[level]);
9264 path->locks[level] = 0;
9265 WARN_ON(wc->refs[level] != 1);
9266 level--;
9267 }
9268 }
9269
9270 wc->level = level;
9271 wc->shared_level = -1;
9272 wc->stage = DROP_REFERENCE;
9273 wc->update_ref = update_ref;
9274 wc->keep_locks = 0;
9275 wc->for_reloc = for_reloc;
9276 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9277
9278 while (1) {
9279
9280 ret = walk_down_tree(trans, root, path, wc);
9281 if (ret < 0) {
9282 err = ret;
9283 break;
9284 }
9285
9286 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9287 if (ret < 0) {
9288 err = ret;
9289 break;
9290 }
9291
9292 if (ret > 0) {
9293 BUG_ON(wc->stage != DROP_REFERENCE);
9294 break;
9295 }
9296
9297 if (wc->stage == DROP_REFERENCE) {
9298 level = wc->level;
9299 btrfs_node_key(path->nodes[level],
9300 &root_item->drop_progress,
9301 path->slots[level]);
9302 root_item->drop_level = level;
9303 }
9304
9305 BUG_ON(wc->level == 0);
9306 if (btrfs_should_end_transaction(trans, tree_root) ||
9307 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9308 ret = btrfs_update_root(trans, tree_root,
9309 &root->root_key,
9310 root_item);
9311 if (ret) {
9312 btrfs_abort_transaction(trans, ret);
9313 err = ret;
9314 goto out_end_trans;
9315 }
9316
9317 btrfs_end_transaction_throttle(trans, tree_root);
9318 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9319 pr_debug("BTRFS: drop snapshot early exit\n");
9320 err = -EAGAIN;
9321 goto out_free;
9322 }
9323
9324 trans = btrfs_start_transaction(tree_root, 0);
9325 if (IS_ERR(trans)) {
9326 err = PTR_ERR(trans);
9327 goto out_free;
9328 }
9329 if (block_rsv)
9330 trans->block_rsv = block_rsv;
9331 }
9332 }
9333 btrfs_release_path(path);
9334 if (err)
9335 goto out_end_trans;
9336
9337 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9338 if (ret) {
9339 btrfs_abort_transaction(trans, ret);
9340 goto out_end_trans;
9341 }
9342
9343 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9344 ret = btrfs_find_root(tree_root, &root->root_key, path,
9345 NULL, NULL);
9346 if (ret < 0) {
9347 btrfs_abort_transaction(trans, ret);
9348 err = ret;
9349 goto out_end_trans;
9350 } else if (ret > 0) {
9351 /* if we fail to delete the orphan item this time
9352 * around, it'll get picked up the next time.
9353 *
9354 * The most common failure here is just -ENOENT.
9355 */
9356 btrfs_del_orphan_item(trans, tree_root,
9357 root->root_key.objectid);
9358 }
9359 }
9360
9361 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9362 btrfs_add_dropped_root(trans, root);
9363 } else {
9364 free_extent_buffer(root->node);
9365 free_extent_buffer(root->commit_root);
9366 btrfs_put_fs_root(root);
9367 }
9368 root_dropped = true;
9369 out_end_trans:
9370 btrfs_end_transaction_throttle(trans, tree_root);
9371 out_free:
9372 kfree(wc);
9373 btrfs_free_path(path);
9374 out:
9375 /*
9376 * So if we need to stop dropping the snapshot for whatever reason we
9377 * need to make sure to add it back to the dead root list so that we
9378 * keep trying to do the work later. This also cleans up roots if we
9379 * don't have it in the radix (like when we recover after a power fail
9380 * or unmount) so we don't leak memory.
9381 */
9382 if (!for_reloc && root_dropped == false)
9383 btrfs_add_dead_root(root);
9384 if (err && err != -EAGAIN)
9385 btrfs_handle_fs_error(root->fs_info, err, NULL);
9386 return err;
9387 }
9388
9389 /*
9390 * drop subtree rooted at tree block 'node'.
9391 *
9392 * NOTE: this function will unlock and release tree block 'node'
9393 * only used by relocation code
9394 */
9395 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9396 struct btrfs_root *root,
9397 struct extent_buffer *node,
9398 struct extent_buffer *parent)
9399 {
9400 struct btrfs_path *path;
9401 struct walk_control *wc;
9402 int level;
9403 int parent_level;
9404 int ret = 0;
9405 int wret;
9406
9407 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9408
9409 path = btrfs_alloc_path();
9410 if (!path)
9411 return -ENOMEM;
9412
9413 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9414 if (!wc) {
9415 btrfs_free_path(path);
9416 return -ENOMEM;
9417 }
9418
9419 btrfs_assert_tree_locked(parent);
9420 parent_level = btrfs_header_level(parent);
9421 extent_buffer_get(parent);
9422 path->nodes[parent_level] = parent;
9423 path->slots[parent_level] = btrfs_header_nritems(parent);
9424
9425 btrfs_assert_tree_locked(node);
9426 level = btrfs_header_level(node);
9427 path->nodes[level] = node;
9428 path->slots[level] = 0;
9429 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9430
9431 wc->refs[parent_level] = 1;
9432 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9433 wc->level = level;
9434 wc->shared_level = -1;
9435 wc->stage = DROP_REFERENCE;
9436 wc->update_ref = 0;
9437 wc->keep_locks = 1;
9438 wc->for_reloc = 1;
9439 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9440
9441 while (1) {
9442 wret = walk_down_tree(trans, root, path, wc);
9443 if (wret < 0) {
9444 ret = wret;
9445 break;
9446 }
9447
9448 wret = walk_up_tree(trans, root, path, wc, parent_level);
9449 if (wret < 0)
9450 ret = wret;
9451 if (wret != 0)
9452 break;
9453 }
9454
9455 kfree(wc);
9456 btrfs_free_path(path);
9457 return ret;
9458 }
9459
9460 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9461 {
9462 u64 num_devices;
9463 u64 stripped;
9464
9465 /*
9466 * if restripe for this chunk_type is on pick target profile and
9467 * return, otherwise do the usual balance
9468 */
9469 stripped = get_restripe_target(root->fs_info, flags);
9470 if (stripped)
9471 return extended_to_chunk(stripped);
9472
9473 num_devices = root->fs_info->fs_devices->rw_devices;
9474
9475 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9476 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9477 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9478
9479 if (num_devices == 1) {
9480 stripped |= BTRFS_BLOCK_GROUP_DUP;
9481 stripped = flags & ~stripped;
9482
9483 /* turn raid0 into single device chunks */
9484 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9485 return stripped;
9486
9487 /* turn mirroring into duplication */
9488 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9489 BTRFS_BLOCK_GROUP_RAID10))
9490 return stripped | BTRFS_BLOCK_GROUP_DUP;
9491 } else {
9492 /* they already had raid on here, just return */
9493 if (flags & stripped)
9494 return flags;
9495
9496 stripped |= BTRFS_BLOCK_GROUP_DUP;
9497 stripped = flags & ~stripped;
9498
9499 /* switch duplicated blocks with raid1 */
9500 if (flags & BTRFS_BLOCK_GROUP_DUP)
9501 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9502
9503 /* this is drive concat, leave it alone */
9504 }
9505
9506 return flags;
9507 }
9508
9509 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9510 {
9511 struct btrfs_space_info *sinfo = cache->space_info;
9512 u64 num_bytes;
9513 u64 min_allocable_bytes;
9514 int ret = -ENOSPC;
9515
9516 /*
9517 * We need some metadata space and system metadata space for
9518 * allocating chunks in some corner cases until we force to set
9519 * it to be readonly.
9520 */
9521 if ((sinfo->flags &
9522 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9523 !force)
9524 min_allocable_bytes = SZ_1M;
9525 else
9526 min_allocable_bytes = 0;
9527
9528 spin_lock(&sinfo->lock);
9529 spin_lock(&cache->lock);
9530
9531 if (cache->ro) {
9532 cache->ro++;
9533 ret = 0;
9534 goto out;
9535 }
9536
9537 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9538 cache->bytes_super - btrfs_block_group_used(&cache->item);
9539
9540 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9541 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9542 min_allocable_bytes <= sinfo->total_bytes) {
9543 sinfo->bytes_readonly += num_bytes;
9544 cache->ro++;
9545 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9546 ret = 0;
9547 }
9548 out:
9549 spin_unlock(&cache->lock);
9550 spin_unlock(&sinfo->lock);
9551 return ret;
9552 }
9553
9554 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9555 struct btrfs_block_group_cache *cache)
9556
9557 {
9558 struct btrfs_trans_handle *trans;
9559 u64 alloc_flags;
9560 int ret;
9561
9562 again:
9563 trans = btrfs_join_transaction(root);
9564 if (IS_ERR(trans))
9565 return PTR_ERR(trans);
9566
9567 /*
9568 * we're not allowed to set block groups readonly after the dirty
9569 * block groups cache has started writing. If it already started,
9570 * back off and let this transaction commit
9571 */
9572 mutex_lock(&root->fs_info->ro_block_group_mutex);
9573 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9574 u64 transid = trans->transid;
9575
9576 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9577 btrfs_end_transaction(trans, root);
9578
9579 ret = btrfs_wait_for_commit(root, transid);
9580 if (ret)
9581 return ret;
9582 goto again;
9583 }
9584
9585 /*
9586 * if we are changing raid levels, try to allocate a corresponding
9587 * block group with the new raid level.
9588 */
9589 alloc_flags = update_block_group_flags(root, cache->flags);
9590 if (alloc_flags != cache->flags) {
9591 ret = do_chunk_alloc(trans, root, alloc_flags,
9592 CHUNK_ALLOC_FORCE);
9593 /*
9594 * ENOSPC is allowed here, we may have enough space
9595 * already allocated at the new raid level to
9596 * carry on
9597 */
9598 if (ret == -ENOSPC)
9599 ret = 0;
9600 if (ret < 0)
9601 goto out;
9602 }
9603
9604 ret = inc_block_group_ro(cache, 0);
9605 if (!ret)
9606 goto out;
9607 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9608 ret = do_chunk_alloc(trans, root, alloc_flags,
9609 CHUNK_ALLOC_FORCE);
9610 if (ret < 0)
9611 goto out;
9612 ret = inc_block_group_ro(cache, 0);
9613 out:
9614 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9615 alloc_flags = update_block_group_flags(root, cache->flags);
9616 lock_chunks(root->fs_info->chunk_root);
9617 check_system_chunk(trans, root, alloc_flags);
9618 unlock_chunks(root->fs_info->chunk_root);
9619 }
9620 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9621
9622 btrfs_end_transaction(trans, root);
9623 return ret;
9624 }
9625
9626 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9627 struct btrfs_root *root, u64 type)
9628 {
9629 u64 alloc_flags = get_alloc_profile(root, type);
9630 return do_chunk_alloc(trans, root, alloc_flags,
9631 CHUNK_ALLOC_FORCE);
9632 }
9633
9634 /*
9635 * helper to account the unused space of all the readonly block group in the
9636 * space_info. takes mirrors into account.
9637 */
9638 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9639 {
9640 struct btrfs_block_group_cache *block_group;
9641 u64 free_bytes = 0;
9642 int factor;
9643
9644 /* It's df, we don't care if it's racy */
9645 if (list_empty(&sinfo->ro_bgs))
9646 return 0;
9647
9648 spin_lock(&sinfo->lock);
9649 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9650 spin_lock(&block_group->lock);
9651
9652 if (!block_group->ro) {
9653 spin_unlock(&block_group->lock);
9654 continue;
9655 }
9656
9657 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9658 BTRFS_BLOCK_GROUP_RAID10 |
9659 BTRFS_BLOCK_GROUP_DUP))
9660 factor = 2;
9661 else
9662 factor = 1;
9663
9664 free_bytes += (block_group->key.offset -
9665 btrfs_block_group_used(&block_group->item)) *
9666 factor;
9667
9668 spin_unlock(&block_group->lock);
9669 }
9670 spin_unlock(&sinfo->lock);
9671
9672 return free_bytes;
9673 }
9674
9675 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9676 struct btrfs_block_group_cache *cache)
9677 {
9678 struct btrfs_space_info *sinfo = cache->space_info;
9679 u64 num_bytes;
9680
9681 BUG_ON(!cache->ro);
9682
9683 spin_lock(&sinfo->lock);
9684 spin_lock(&cache->lock);
9685 if (!--cache->ro) {
9686 num_bytes = cache->key.offset - cache->reserved -
9687 cache->pinned - cache->bytes_super -
9688 btrfs_block_group_used(&cache->item);
9689 sinfo->bytes_readonly -= num_bytes;
9690 list_del_init(&cache->ro_list);
9691 }
9692 spin_unlock(&cache->lock);
9693 spin_unlock(&sinfo->lock);
9694 }
9695
9696 /*
9697 * checks to see if its even possible to relocate this block group.
9698 *
9699 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9700 * ok to go ahead and try.
9701 */
9702 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9703 {
9704 struct btrfs_block_group_cache *block_group;
9705 struct btrfs_space_info *space_info;
9706 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9707 struct btrfs_device *device;
9708 struct btrfs_trans_handle *trans;
9709 u64 min_free;
9710 u64 dev_min = 1;
9711 u64 dev_nr = 0;
9712 u64 target;
9713 int debug;
9714 int index;
9715 int full = 0;
9716 int ret = 0;
9717
9718 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9719
9720 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9721
9722 /* odd, couldn't find the block group, leave it alone */
9723 if (!block_group) {
9724 if (debug)
9725 btrfs_warn(root->fs_info,
9726 "can't find block group for bytenr %llu",
9727 bytenr);
9728 return -1;
9729 }
9730
9731 min_free = btrfs_block_group_used(&block_group->item);
9732
9733 /* no bytes used, we're good */
9734 if (!min_free)
9735 goto out;
9736
9737 space_info = block_group->space_info;
9738 spin_lock(&space_info->lock);
9739
9740 full = space_info->full;
9741
9742 /*
9743 * if this is the last block group we have in this space, we can't
9744 * relocate it unless we're able to allocate a new chunk below.
9745 *
9746 * Otherwise, we need to make sure we have room in the space to handle
9747 * all of the extents from this block group. If we can, we're good
9748 */
9749 if ((space_info->total_bytes != block_group->key.offset) &&
9750 (space_info->bytes_used + space_info->bytes_reserved +
9751 space_info->bytes_pinned + space_info->bytes_readonly +
9752 min_free < space_info->total_bytes)) {
9753 spin_unlock(&space_info->lock);
9754 goto out;
9755 }
9756 spin_unlock(&space_info->lock);
9757
9758 /*
9759 * ok we don't have enough space, but maybe we have free space on our
9760 * devices to allocate new chunks for relocation, so loop through our
9761 * alloc devices and guess if we have enough space. if this block
9762 * group is going to be restriped, run checks against the target
9763 * profile instead of the current one.
9764 */
9765 ret = -1;
9766
9767 /*
9768 * index:
9769 * 0: raid10
9770 * 1: raid1
9771 * 2: dup
9772 * 3: raid0
9773 * 4: single
9774 */
9775 target = get_restripe_target(root->fs_info, block_group->flags);
9776 if (target) {
9777 index = __get_raid_index(extended_to_chunk(target));
9778 } else {
9779 /*
9780 * this is just a balance, so if we were marked as full
9781 * we know there is no space for a new chunk
9782 */
9783 if (full) {
9784 if (debug)
9785 btrfs_warn(root->fs_info,
9786 "no space to alloc new chunk for block group %llu",
9787 block_group->key.objectid);
9788 goto out;
9789 }
9790
9791 index = get_block_group_index(block_group);
9792 }
9793
9794 if (index == BTRFS_RAID_RAID10) {
9795 dev_min = 4;
9796 /* Divide by 2 */
9797 min_free >>= 1;
9798 } else if (index == BTRFS_RAID_RAID1) {
9799 dev_min = 2;
9800 } else if (index == BTRFS_RAID_DUP) {
9801 /* Multiply by 2 */
9802 min_free <<= 1;
9803 } else if (index == BTRFS_RAID_RAID0) {
9804 dev_min = fs_devices->rw_devices;
9805 min_free = div64_u64(min_free, dev_min);
9806 }
9807
9808 /* We need to do this so that we can look at pending chunks */
9809 trans = btrfs_join_transaction(root);
9810 if (IS_ERR(trans)) {
9811 ret = PTR_ERR(trans);
9812 goto out;
9813 }
9814
9815 mutex_lock(&root->fs_info->chunk_mutex);
9816 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9817 u64 dev_offset;
9818
9819 /*
9820 * check to make sure we can actually find a chunk with enough
9821 * space to fit our block group in.
9822 */
9823 if (device->total_bytes > device->bytes_used + min_free &&
9824 !device->is_tgtdev_for_dev_replace) {
9825 ret = find_free_dev_extent(trans, device, min_free,
9826 &dev_offset, NULL);
9827 if (!ret)
9828 dev_nr++;
9829
9830 if (dev_nr >= dev_min)
9831 break;
9832
9833 ret = -1;
9834 }
9835 }
9836 if (debug && ret == -1)
9837 btrfs_warn(root->fs_info,
9838 "no space to allocate a new chunk for block group %llu",
9839 block_group->key.objectid);
9840 mutex_unlock(&root->fs_info->chunk_mutex);
9841 btrfs_end_transaction(trans, root);
9842 out:
9843 btrfs_put_block_group(block_group);
9844 return ret;
9845 }
9846
9847 static int find_first_block_group(struct btrfs_root *root,
9848 struct btrfs_path *path, struct btrfs_key *key)
9849 {
9850 int ret = 0;
9851 struct btrfs_key found_key;
9852 struct extent_buffer *leaf;
9853 int slot;
9854
9855 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9856 if (ret < 0)
9857 goto out;
9858
9859 while (1) {
9860 slot = path->slots[0];
9861 leaf = path->nodes[0];
9862 if (slot >= btrfs_header_nritems(leaf)) {
9863 ret = btrfs_next_leaf(root, path);
9864 if (ret == 0)
9865 continue;
9866 if (ret < 0)
9867 goto out;
9868 break;
9869 }
9870 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9871
9872 if (found_key.objectid >= key->objectid &&
9873 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9874 struct extent_map_tree *em_tree;
9875 struct extent_map *em;
9876
9877 em_tree = &root->fs_info->mapping_tree.map_tree;
9878 read_lock(&em_tree->lock);
9879 em = lookup_extent_mapping(em_tree, found_key.objectid,
9880 found_key.offset);
9881 read_unlock(&em_tree->lock);
9882 if (!em) {
9883 btrfs_err(root->fs_info,
9884 "logical %llu len %llu found bg but no related chunk",
9885 found_key.objectid, found_key.offset);
9886 ret = -ENOENT;
9887 } else {
9888 ret = 0;
9889 }
9890 free_extent_map(em);
9891 goto out;
9892 }
9893 path->slots[0]++;
9894 }
9895 out:
9896 return ret;
9897 }
9898
9899 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9900 {
9901 struct btrfs_block_group_cache *block_group;
9902 u64 last = 0;
9903
9904 while (1) {
9905 struct inode *inode;
9906
9907 block_group = btrfs_lookup_first_block_group(info, last);
9908 while (block_group) {
9909 spin_lock(&block_group->lock);
9910 if (block_group->iref)
9911 break;
9912 spin_unlock(&block_group->lock);
9913 block_group = next_block_group(info->tree_root,
9914 block_group);
9915 }
9916 if (!block_group) {
9917 if (last == 0)
9918 break;
9919 last = 0;
9920 continue;
9921 }
9922
9923 inode = block_group->inode;
9924 block_group->iref = 0;
9925 block_group->inode = NULL;
9926 spin_unlock(&block_group->lock);
9927 ASSERT(block_group->io_ctl.inode == NULL);
9928 iput(inode);
9929 last = block_group->key.objectid + block_group->key.offset;
9930 btrfs_put_block_group(block_group);
9931 }
9932 }
9933
9934 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9935 {
9936 struct btrfs_block_group_cache *block_group;
9937 struct btrfs_space_info *space_info;
9938 struct btrfs_caching_control *caching_ctl;
9939 struct rb_node *n;
9940
9941 down_write(&info->commit_root_sem);
9942 while (!list_empty(&info->caching_block_groups)) {
9943 caching_ctl = list_entry(info->caching_block_groups.next,
9944 struct btrfs_caching_control, list);
9945 list_del(&caching_ctl->list);
9946 put_caching_control(caching_ctl);
9947 }
9948 up_write(&info->commit_root_sem);
9949
9950 spin_lock(&info->unused_bgs_lock);
9951 while (!list_empty(&info->unused_bgs)) {
9952 block_group = list_first_entry(&info->unused_bgs,
9953 struct btrfs_block_group_cache,
9954 bg_list);
9955 list_del_init(&block_group->bg_list);
9956 btrfs_put_block_group(block_group);
9957 }
9958 spin_unlock(&info->unused_bgs_lock);
9959
9960 spin_lock(&info->block_group_cache_lock);
9961 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9962 block_group = rb_entry(n, struct btrfs_block_group_cache,
9963 cache_node);
9964 rb_erase(&block_group->cache_node,
9965 &info->block_group_cache_tree);
9966 RB_CLEAR_NODE(&block_group->cache_node);
9967 spin_unlock(&info->block_group_cache_lock);
9968
9969 down_write(&block_group->space_info->groups_sem);
9970 list_del(&block_group->list);
9971 up_write(&block_group->space_info->groups_sem);
9972
9973 if (block_group->cached == BTRFS_CACHE_STARTED)
9974 wait_block_group_cache_done(block_group);
9975
9976 /*
9977 * We haven't cached this block group, which means we could
9978 * possibly have excluded extents on this block group.
9979 */
9980 if (block_group->cached == BTRFS_CACHE_NO ||
9981 block_group->cached == BTRFS_CACHE_ERROR)
9982 free_excluded_extents(info->extent_root, block_group);
9983
9984 btrfs_remove_free_space_cache(block_group);
9985 ASSERT(list_empty(&block_group->dirty_list));
9986 ASSERT(list_empty(&block_group->io_list));
9987 ASSERT(list_empty(&block_group->bg_list));
9988 ASSERT(atomic_read(&block_group->count) == 1);
9989 btrfs_put_block_group(block_group);
9990
9991 spin_lock(&info->block_group_cache_lock);
9992 }
9993 spin_unlock(&info->block_group_cache_lock);
9994
9995 /* now that all the block groups are freed, go through and
9996 * free all the space_info structs. This is only called during
9997 * the final stages of unmount, and so we know nobody is
9998 * using them. We call synchronize_rcu() once before we start,
9999 * just to be on the safe side.
10000 */
10001 synchronize_rcu();
10002
10003 release_global_block_rsv(info);
10004
10005 while (!list_empty(&info->space_info)) {
10006 int i;
10007
10008 space_info = list_entry(info->space_info.next,
10009 struct btrfs_space_info,
10010 list);
10011
10012 /*
10013 * Do not hide this behind enospc_debug, this is actually
10014 * important and indicates a real bug if this happens.
10015 */
10016 if (WARN_ON(space_info->bytes_pinned > 0 ||
10017 space_info->bytes_reserved > 0 ||
10018 space_info->bytes_may_use > 0))
10019 dump_space_info(space_info, 0, 0);
10020 list_del(&space_info->list);
10021 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10022 struct kobject *kobj;
10023 kobj = space_info->block_group_kobjs[i];
10024 space_info->block_group_kobjs[i] = NULL;
10025 if (kobj) {
10026 kobject_del(kobj);
10027 kobject_put(kobj);
10028 }
10029 }
10030 kobject_del(&space_info->kobj);
10031 kobject_put(&space_info->kobj);
10032 }
10033 return 0;
10034 }
10035
10036 static void __link_block_group(struct btrfs_space_info *space_info,
10037 struct btrfs_block_group_cache *cache)
10038 {
10039 int index = get_block_group_index(cache);
10040 bool first = false;
10041
10042 down_write(&space_info->groups_sem);
10043 if (list_empty(&space_info->block_groups[index]))
10044 first = true;
10045 list_add_tail(&cache->list, &space_info->block_groups[index]);
10046 up_write(&space_info->groups_sem);
10047
10048 if (first) {
10049 struct raid_kobject *rkobj;
10050 int ret;
10051
10052 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10053 if (!rkobj)
10054 goto out_err;
10055 rkobj->raid_type = index;
10056 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10057 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10058 "%s", get_raid_name(index));
10059 if (ret) {
10060 kobject_put(&rkobj->kobj);
10061 goto out_err;
10062 }
10063 space_info->block_group_kobjs[index] = &rkobj->kobj;
10064 }
10065
10066 return;
10067 out_err:
10068 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10069 }
10070
10071 static struct btrfs_block_group_cache *
10072 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10073 {
10074 struct btrfs_block_group_cache *cache;
10075
10076 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10077 if (!cache)
10078 return NULL;
10079
10080 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10081 GFP_NOFS);
10082 if (!cache->free_space_ctl) {
10083 kfree(cache);
10084 return NULL;
10085 }
10086
10087 cache->key.objectid = start;
10088 cache->key.offset = size;
10089 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10090
10091 cache->sectorsize = root->sectorsize;
10092 cache->fs_info = root->fs_info;
10093 cache->full_stripe_len = btrfs_full_stripe_len(root,
10094 &root->fs_info->mapping_tree,
10095 start);
10096 set_free_space_tree_thresholds(cache);
10097
10098 atomic_set(&cache->count, 1);
10099 spin_lock_init(&cache->lock);
10100 init_rwsem(&cache->data_rwsem);
10101 INIT_LIST_HEAD(&cache->list);
10102 INIT_LIST_HEAD(&cache->cluster_list);
10103 INIT_LIST_HEAD(&cache->bg_list);
10104 INIT_LIST_HEAD(&cache->ro_list);
10105 INIT_LIST_HEAD(&cache->dirty_list);
10106 INIT_LIST_HEAD(&cache->io_list);
10107 btrfs_init_free_space_ctl(cache);
10108 atomic_set(&cache->trimming, 0);
10109 mutex_init(&cache->free_space_lock);
10110
10111 return cache;
10112 }
10113
10114 int btrfs_read_block_groups(struct btrfs_root *root)
10115 {
10116 struct btrfs_path *path;
10117 int ret;
10118 struct btrfs_block_group_cache *cache;
10119 struct btrfs_fs_info *info = root->fs_info;
10120 struct btrfs_space_info *space_info;
10121 struct btrfs_key key;
10122 struct btrfs_key found_key;
10123 struct extent_buffer *leaf;
10124 int need_clear = 0;
10125 u64 cache_gen;
10126
10127 root = info->extent_root;
10128 key.objectid = 0;
10129 key.offset = 0;
10130 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10131 path = btrfs_alloc_path();
10132 if (!path)
10133 return -ENOMEM;
10134 path->reada = READA_FORWARD;
10135
10136 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10137 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10138 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10139 need_clear = 1;
10140 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10141 need_clear = 1;
10142
10143 while (1) {
10144 ret = find_first_block_group(root, path, &key);
10145 if (ret > 0)
10146 break;
10147 if (ret != 0)
10148 goto error;
10149
10150 leaf = path->nodes[0];
10151 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10152
10153 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10154 found_key.offset);
10155 if (!cache) {
10156 ret = -ENOMEM;
10157 goto error;
10158 }
10159
10160 if (need_clear) {
10161 /*
10162 * When we mount with old space cache, we need to
10163 * set BTRFS_DC_CLEAR and set dirty flag.
10164 *
10165 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10166 * truncate the old free space cache inode and
10167 * setup a new one.
10168 * b) Setting 'dirty flag' makes sure that we flush
10169 * the new space cache info onto disk.
10170 */
10171 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10172 cache->disk_cache_state = BTRFS_DC_CLEAR;
10173 }
10174
10175 read_extent_buffer(leaf, &cache->item,
10176 btrfs_item_ptr_offset(leaf, path->slots[0]),
10177 sizeof(cache->item));
10178 cache->flags = btrfs_block_group_flags(&cache->item);
10179
10180 key.objectid = found_key.objectid + found_key.offset;
10181 btrfs_release_path(path);
10182
10183 /*
10184 * We need to exclude the super stripes now so that the space
10185 * info has super bytes accounted for, otherwise we'll think
10186 * we have more space than we actually do.
10187 */
10188 ret = exclude_super_stripes(root, cache);
10189 if (ret) {
10190 /*
10191 * We may have excluded something, so call this just in
10192 * case.
10193 */
10194 free_excluded_extents(root, cache);
10195 btrfs_put_block_group(cache);
10196 goto error;
10197 }
10198
10199 /*
10200 * check for two cases, either we are full, and therefore
10201 * don't need to bother with the caching work since we won't
10202 * find any space, or we are empty, and we can just add all
10203 * the space in and be done with it. This saves us _alot_ of
10204 * time, particularly in the full case.
10205 */
10206 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10207 cache->last_byte_to_unpin = (u64)-1;
10208 cache->cached = BTRFS_CACHE_FINISHED;
10209 free_excluded_extents(root, cache);
10210 } else if (btrfs_block_group_used(&cache->item) == 0) {
10211 cache->last_byte_to_unpin = (u64)-1;
10212 cache->cached = BTRFS_CACHE_FINISHED;
10213 add_new_free_space(cache, root->fs_info,
10214 found_key.objectid,
10215 found_key.objectid +
10216 found_key.offset);
10217 free_excluded_extents(root, cache);
10218 }
10219
10220 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10221 if (ret) {
10222 btrfs_remove_free_space_cache(cache);
10223 btrfs_put_block_group(cache);
10224 goto error;
10225 }
10226
10227 trace_btrfs_add_block_group(root->fs_info, cache, 0);
10228 ret = update_space_info(info, cache->flags, found_key.offset,
10229 btrfs_block_group_used(&cache->item),
10230 cache->bytes_super, &space_info);
10231 if (ret) {
10232 btrfs_remove_free_space_cache(cache);
10233 spin_lock(&info->block_group_cache_lock);
10234 rb_erase(&cache->cache_node,
10235 &info->block_group_cache_tree);
10236 RB_CLEAR_NODE(&cache->cache_node);
10237 spin_unlock(&info->block_group_cache_lock);
10238 btrfs_put_block_group(cache);
10239 goto error;
10240 }
10241
10242 cache->space_info = space_info;
10243
10244 __link_block_group(space_info, cache);
10245
10246 set_avail_alloc_bits(root->fs_info, cache->flags);
10247 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10248 inc_block_group_ro(cache, 1);
10249 } else if (btrfs_block_group_used(&cache->item) == 0) {
10250 spin_lock(&info->unused_bgs_lock);
10251 /* Should always be true but just in case. */
10252 if (list_empty(&cache->bg_list)) {
10253 btrfs_get_block_group(cache);
10254 list_add_tail(&cache->bg_list,
10255 &info->unused_bgs);
10256 }
10257 spin_unlock(&info->unused_bgs_lock);
10258 }
10259 }
10260
10261 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10262 if (!(get_alloc_profile(root, space_info->flags) &
10263 (BTRFS_BLOCK_GROUP_RAID10 |
10264 BTRFS_BLOCK_GROUP_RAID1 |
10265 BTRFS_BLOCK_GROUP_RAID5 |
10266 BTRFS_BLOCK_GROUP_RAID6 |
10267 BTRFS_BLOCK_GROUP_DUP)))
10268 continue;
10269 /*
10270 * avoid allocating from un-mirrored block group if there are
10271 * mirrored block groups.
10272 */
10273 list_for_each_entry(cache,
10274 &space_info->block_groups[BTRFS_RAID_RAID0],
10275 list)
10276 inc_block_group_ro(cache, 1);
10277 list_for_each_entry(cache,
10278 &space_info->block_groups[BTRFS_RAID_SINGLE],
10279 list)
10280 inc_block_group_ro(cache, 1);
10281 }
10282
10283 init_global_block_rsv(info);
10284 ret = 0;
10285 error:
10286 btrfs_free_path(path);
10287 return ret;
10288 }
10289
10290 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10291 struct btrfs_root *root)
10292 {
10293 struct btrfs_block_group_cache *block_group, *tmp;
10294 struct btrfs_root *extent_root = root->fs_info->extent_root;
10295 struct btrfs_block_group_item item;
10296 struct btrfs_key key;
10297 int ret = 0;
10298 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10299
10300 trans->can_flush_pending_bgs = false;
10301 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10302 if (ret)
10303 goto next;
10304
10305 spin_lock(&block_group->lock);
10306 memcpy(&item, &block_group->item, sizeof(item));
10307 memcpy(&key, &block_group->key, sizeof(key));
10308 spin_unlock(&block_group->lock);
10309
10310 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10311 sizeof(item));
10312 if (ret)
10313 btrfs_abort_transaction(trans, ret);
10314 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10315 key.objectid, key.offset);
10316 if (ret)
10317 btrfs_abort_transaction(trans, ret);
10318 add_block_group_free_space(trans, root->fs_info, block_group);
10319 /* already aborted the transaction if it failed. */
10320 next:
10321 list_del_init(&block_group->bg_list);
10322 }
10323 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10324 }
10325
10326 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10327 struct btrfs_root *root, u64 bytes_used,
10328 u64 type, u64 chunk_objectid, u64 chunk_offset,
10329 u64 size)
10330 {
10331 int ret;
10332 struct btrfs_root *extent_root;
10333 struct btrfs_block_group_cache *cache;
10334 extent_root = root->fs_info->extent_root;
10335
10336 btrfs_set_log_full_commit(root->fs_info, trans);
10337
10338 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10339 if (!cache)
10340 return -ENOMEM;
10341
10342 btrfs_set_block_group_used(&cache->item, bytes_used);
10343 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10344 btrfs_set_block_group_flags(&cache->item, type);
10345
10346 cache->flags = type;
10347 cache->last_byte_to_unpin = (u64)-1;
10348 cache->cached = BTRFS_CACHE_FINISHED;
10349 cache->needs_free_space = 1;
10350 ret = exclude_super_stripes(root, cache);
10351 if (ret) {
10352 /*
10353 * We may have excluded something, so call this just in
10354 * case.
10355 */
10356 free_excluded_extents(root, cache);
10357 btrfs_put_block_group(cache);
10358 return ret;
10359 }
10360
10361 add_new_free_space(cache, root->fs_info, chunk_offset,
10362 chunk_offset + size);
10363
10364 free_excluded_extents(root, cache);
10365
10366 #ifdef CONFIG_BTRFS_DEBUG
10367 if (btrfs_should_fragment_free_space(root, cache)) {
10368 u64 new_bytes_used = size - bytes_used;
10369
10370 bytes_used += new_bytes_used >> 1;
10371 fragment_free_space(root, cache);
10372 }
10373 #endif
10374 /*
10375 * Call to ensure the corresponding space_info object is created and
10376 * assigned to our block group, but don't update its counters just yet.
10377 * We want our bg to be added to the rbtree with its ->space_info set.
10378 */
10379 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10380 &cache->space_info);
10381 if (ret) {
10382 btrfs_remove_free_space_cache(cache);
10383 btrfs_put_block_group(cache);
10384 return ret;
10385 }
10386
10387 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10388 if (ret) {
10389 btrfs_remove_free_space_cache(cache);
10390 btrfs_put_block_group(cache);
10391 return ret;
10392 }
10393
10394 /*
10395 * Now that our block group has its ->space_info set and is inserted in
10396 * the rbtree, update the space info's counters.
10397 */
10398 trace_btrfs_add_block_group(root->fs_info, cache, 1);
10399 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10400 cache->bytes_super, &cache->space_info);
10401 if (ret) {
10402 btrfs_remove_free_space_cache(cache);
10403 spin_lock(&root->fs_info->block_group_cache_lock);
10404 rb_erase(&cache->cache_node,
10405 &root->fs_info->block_group_cache_tree);
10406 RB_CLEAR_NODE(&cache->cache_node);
10407 spin_unlock(&root->fs_info->block_group_cache_lock);
10408 btrfs_put_block_group(cache);
10409 return ret;
10410 }
10411 update_global_block_rsv(root->fs_info);
10412
10413 __link_block_group(cache->space_info, cache);
10414
10415 list_add_tail(&cache->bg_list, &trans->new_bgs);
10416
10417 set_avail_alloc_bits(extent_root->fs_info, type);
10418 return 0;
10419 }
10420
10421 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10422 {
10423 u64 extra_flags = chunk_to_extended(flags) &
10424 BTRFS_EXTENDED_PROFILE_MASK;
10425
10426 write_seqlock(&fs_info->profiles_lock);
10427 if (flags & BTRFS_BLOCK_GROUP_DATA)
10428 fs_info->avail_data_alloc_bits &= ~extra_flags;
10429 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10430 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10431 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10432 fs_info->avail_system_alloc_bits &= ~extra_flags;
10433 write_sequnlock(&fs_info->profiles_lock);
10434 }
10435
10436 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10437 struct btrfs_root *root, u64 group_start,
10438 struct extent_map *em)
10439 {
10440 struct btrfs_path *path;
10441 struct btrfs_block_group_cache *block_group;
10442 struct btrfs_free_cluster *cluster;
10443 struct btrfs_root *tree_root = root->fs_info->tree_root;
10444 struct btrfs_key key;
10445 struct inode *inode;
10446 struct kobject *kobj = NULL;
10447 int ret;
10448 int index;
10449 int factor;
10450 struct btrfs_caching_control *caching_ctl = NULL;
10451 bool remove_em;
10452
10453 root = root->fs_info->extent_root;
10454
10455 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10456 BUG_ON(!block_group);
10457 BUG_ON(!block_group->ro);
10458
10459 /*
10460 * Free the reserved super bytes from this block group before
10461 * remove it.
10462 */
10463 free_excluded_extents(root, block_group);
10464
10465 memcpy(&key, &block_group->key, sizeof(key));
10466 index = get_block_group_index(block_group);
10467 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10468 BTRFS_BLOCK_GROUP_RAID1 |
10469 BTRFS_BLOCK_GROUP_RAID10))
10470 factor = 2;
10471 else
10472 factor = 1;
10473
10474 /* make sure this block group isn't part of an allocation cluster */
10475 cluster = &root->fs_info->data_alloc_cluster;
10476 spin_lock(&cluster->refill_lock);
10477 btrfs_return_cluster_to_free_space(block_group, cluster);
10478 spin_unlock(&cluster->refill_lock);
10479
10480 /*
10481 * make sure this block group isn't part of a metadata
10482 * allocation cluster
10483 */
10484 cluster = &root->fs_info->meta_alloc_cluster;
10485 spin_lock(&cluster->refill_lock);
10486 btrfs_return_cluster_to_free_space(block_group, cluster);
10487 spin_unlock(&cluster->refill_lock);
10488
10489 path = btrfs_alloc_path();
10490 if (!path) {
10491 ret = -ENOMEM;
10492 goto out;
10493 }
10494
10495 /*
10496 * get the inode first so any iput calls done for the io_list
10497 * aren't the final iput (no unlinks allowed now)
10498 */
10499 inode = lookup_free_space_inode(tree_root, block_group, path);
10500
10501 mutex_lock(&trans->transaction->cache_write_mutex);
10502 /*
10503 * make sure our free spache cache IO is done before remove the
10504 * free space inode
10505 */
10506 spin_lock(&trans->transaction->dirty_bgs_lock);
10507 if (!list_empty(&block_group->io_list)) {
10508 list_del_init(&block_group->io_list);
10509
10510 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10511
10512 spin_unlock(&trans->transaction->dirty_bgs_lock);
10513 btrfs_wait_cache_io(root, trans, block_group,
10514 &block_group->io_ctl, path,
10515 block_group->key.objectid);
10516 btrfs_put_block_group(block_group);
10517 spin_lock(&trans->transaction->dirty_bgs_lock);
10518 }
10519
10520 if (!list_empty(&block_group->dirty_list)) {
10521 list_del_init(&block_group->dirty_list);
10522 btrfs_put_block_group(block_group);
10523 }
10524 spin_unlock(&trans->transaction->dirty_bgs_lock);
10525 mutex_unlock(&trans->transaction->cache_write_mutex);
10526
10527 if (!IS_ERR(inode)) {
10528 ret = btrfs_orphan_add(trans, inode);
10529 if (ret) {
10530 btrfs_add_delayed_iput(inode);
10531 goto out;
10532 }
10533 clear_nlink(inode);
10534 /* One for the block groups ref */
10535 spin_lock(&block_group->lock);
10536 if (block_group->iref) {
10537 block_group->iref = 0;
10538 block_group->inode = NULL;
10539 spin_unlock(&block_group->lock);
10540 iput(inode);
10541 } else {
10542 spin_unlock(&block_group->lock);
10543 }
10544 /* One for our lookup ref */
10545 btrfs_add_delayed_iput(inode);
10546 }
10547
10548 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10549 key.offset = block_group->key.objectid;
10550 key.type = 0;
10551
10552 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10553 if (ret < 0)
10554 goto out;
10555 if (ret > 0)
10556 btrfs_release_path(path);
10557 if (ret == 0) {
10558 ret = btrfs_del_item(trans, tree_root, path);
10559 if (ret)
10560 goto out;
10561 btrfs_release_path(path);
10562 }
10563
10564 spin_lock(&root->fs_info->block_group_cache_lock);
10565 rb_erase(&block_group->cache_node,
10566 &root->fs_info->block_group_cache_tree);
10567 RB_CLEAR_NODE(&block_group->cache_node);
10568
10569 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10570 root->fs_info->first_logical_byte = (u64)-1;
10571 spin_unlock(&root->fs_info->block_group_cache_lock);
10572
10573 down_write(&block_group->space_info->groups_sem);
10574 /*
10575 * we must use list_del_init so people can check to see if they
10576 * are still on the list after taking the semaphore
10577 */
10578 list_del_init(&block_group->list);
10579 if (list_empty(&block_group->space_info->block_groups[index])) {
10580 kobj = block_group->space_info->block_group_kobjs[index];
10581 block_group->space_info->block_group_kobjs[index] = NULL;
10582 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10583 }
10584 up_write(&block_group->space_info->groups_sem);
10585 if (kobj) {
10586 kobject_del(kobj);
10587 kobject_put(kobj);
10588 }
10589
10590 if (block_group->has_caching_ctl)
10591 caching_ctl = get_caching_control(block_group);
10592 if (block_group->cached == BTRFS_CACHE_STARTED)
10593 wait_block_group_cache_done(block_group);
10594 if (block_group->has_caching_ctl) {
10595 down_write(&root->fs_info->commit_root_sem);
10596 if (!caching_ctl) {
10597 struct btrfs_caching_control *ctl;
10598
10599 list_for_each_entry(ctl,
10600 &root->fs_info->caching_block_groups, list)
10601 if (ctl->block_group == block_group) {
10602 caching_ctl = ctl;
10603 atomic_inc(&caching_ctl->count);
10604 break;
10605 }
10606 }
10607 if (caching_ctl)
10608 list_del_init(&caching_ctl->list);
10609 up_write(&root->fs_info->commit_root_sem);
10610 if (caching_ctl) {
10611 /* Once for the caching bgs list and once for us. */
10612 put_caching_control(caching_ctl);
10613 put_caching_control(caching_ctl);
10614 }
10615 }
10616
10617 spin_lock(&trans->transaction->dirty_bgs_lock);
10618 if (!list_empty(&block_group->dirty_list)) {
10619 WARN_ON(1);
10620 }
10621 if (!list_empty(&block_group->io_list)) {
10622 WARN_ON(1);
10623 }
10624 spin_unlock(&trans->transaction->dirty_bgs_lock);
10625 btrfs_remove_free_space_cache(block_group);
10626
10627 spin_lock(&block_group->space_info->lock);
10628 list_del_init(&block_group->ro_list);
10629
10630 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10631 WARN_ON(block_group->space_info->total_bytes
10632 < block_group->key.offset);
10633 WARN_ON(block_group->space_info->bytes_readonly
10634 < block_group->key.offset);
10635 WARN_ON(block_group->space_info->disk_total
10636 < block_group->key.offset * factor);
10637 }
10638 block_group->space_info->total_bytes -= block_group->key.offset;
10639 block_group->space_info->bytes_readonly -= block_group->key.offset;
10640 block_group->space_info->disk_total -= block_group->key.offset * factor;
10641
10642 spin_unlock(&block_group->space_info->lock);
10643
10644 memcpy(&key, &block_group->key, sizeof(key));
10645
10646 lock_chunks(root);
10647 if (!list_empty(&em->list)) {
10648 /* We're in the transaction->pending_chunks list. */
10649 free_extent_map(em);
10650 }
10651 spin_lock(&block_group->lock);
10652 block_group->removed = 1;
10653 /*
10654 * At this point trimming can't start on this block group, because we
10655 * removed the block group from the tree fs_info->block_group_cache_tree
10656 * so no one can't find it anymore and even if someone already got this
10657 * block group before we removed it from the rbtree, they have already
10658 * incremented block_group->trimming - if they didn't, they won't find
10659 * any free space entries because we already removed them all when we
10660 * called btrfs_remove_free_space_cache().
10661 *
10662 * And we must not remove the extent map from the fs_info->mapping_tree
10663 * to prevent the same logical address range and physical device space
10664 * ranges from being reused for a new block group. This is because our
10665 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10666 * completely transactionless, so while it is trimming a range the
10667 * currently running transaction might finish and a new one start,
10668 * allowing for new block groups to be created that can reuse the same
10669 * physical device locations unless we take this special care.
10670 *
10671 * There may also be an implicit trim operation if the file system
10672 * is mounted with -odiscard. The same protections must remain
10673 * in place until the extents have been discarded completely when
10674 * the transaction commit has completed.
10675 */
10676 remove_em = (atomic_read(&block_group->trimming) == 0);
10677 /*
10678 * Make sure a trimmer task always sees the em in the pinned_chunks list
10679 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10680 * before checking block_group->removed).
10681 */
10682 if (!remove_em) {
10683 /*
10684 * Our em might be in trans->transaction->pending_chunks which
10685 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10686 * and so is the fs_info->pinned_chunks list.
10687 *
10688 * So at this point we must be holding the chunk_mutex to avoid
10689 * any races with chunk allocation (more specifically at
10690 * volumes.c:contains_pending_extent()), to ensure it always
10691 * sees the em, either in the pending_chunks list or in the
10692 * pinned_chunks list.
10693 */
10694 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10695 }
10696 spin_unlock(&block_group->lock);
10697
10698 if (remove_em) {
10699 struct extent_map_tree *em_tree;
10700
10701 em_tree = &root->fs_info->mapping_tree.map_tree;
10702 write_lock(&em_tree->lock);
10703 /*
10704 * The em might be in the pending_chunks list, so make sure the
10705 * chunk mutex is locked, since remove_extent_mapping() will
10706 * delete us from that list.
10707 */
10708 remove_extent_mapping(em_tree, em);
10709 write_unlock(&em_tree->lock);
10710 /* once for the tree */
10711 free_extent_map(em);
10712 }
10713
10714 unlock_chunks(root);
10715
10716 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10717 if (ret)
10718 goto out;
10719
10720 btrfs_put_block_group(block_group);
10721 btrfs_put_block_group(block_group);
10722
10723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10724 if (ret > 0)
10725 ret = -EIO;
10726 if (ret < 0)
10727 goto out;
10728
10729 ret = btrfs_del_item(trans, root, path);
10730 out:
10731 btrfs_free_path(path);
10732 return ret;
10733 }
10734
10735 struct btrfs_trans_handle *
10736 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10737 const u64 chunk_offset)
10738 {
10739 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10740 struct extent_map *em;
10741 struct map_lookup *map;
10742 unsigned int num_items;
10743
10744 read_lock(&em_tree->lock);
10745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10746 read_unlock(&em_tree->lock);
10747 ASSERT(em && em->start == chunk_offset);
10748
10749 /*
10750 * We need to reserve 3 + N units from the metadata space info in order
10751 * to remove a block group (done at btrfs_remove_chunk() and at
10752 * btrfs_remove_block_group()), which are used for:
10753 *
10754 * 1 unit for adding the free space inode's orphan (located in the tree
10755 * of tree roots).
10756 * 1 unit for deleting the block group item (located in the extent
10757 * tree).
10758 * 1 unit for deleting the free space item (located in tree of tree
10759 * roots).
10760 * N units for deleting N device extent items corresponding to each
10761 * stripe (located in the device tree).
10762 *
10763 * In order to remove a block group we also need to reserve units in the
10764 * system space info in order to update the chunk tree (update one or
10765 * more device items and remove one chunk item), but this is done at
10766 * btrfs_remove_chunk() through a call to check_system_chunk().
10767 */
10768 map = em->map_lookup;
10769 num_items = 3 + map->num_stripes;
10770 free_extent_map(em);
10771
10772 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10773 num_items, 1);
10774 }
10775
10776 /*
10777 * Process the unused_bgs list and remove any that don't have any allocated
10778 * space inside of them.
10779 */
10780 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10781 {
10782 struct btrfs_block_group_cache *block_group;
10783 struct btrfs_space_info *space_info;
10784 struct btrfs_root *root = fs_info->extent_root;
10785 struct btrfs_trans_handle *trans;
10786 int ret = 0;
10787
10788 if (!fs_info->open)
10789 return;
10790
10791 spin_lock(&fs_info->unused_bgs_lock);
10792 while (!list_empty(&fs_info->unused_bgs)) {
10793 u64 start, end;
10794 int trimming;
10795
10796 block_group = list_first_entry(&fs_info->unused_bgs,
10797 struct btrfs_block_group_cache,
10798 bg_list);
10799 list_del_init(&block_group->bg_list);
10800
10801 space_info = block_group->space_info;
10802
10803 if (ret || btrfs_mixed_space_info(space_info)) {
10804 btrfs_put_block_group(block_group);
10805 continue;
10806 }
10807 spin_unlock(&fs_info->unused_bgs_lock);
10808
10809 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10810
10811 /* Don't want to race with allocators so take the groups_sem */
10812 down_write(&space_info->groups_sem);
10813 spin_lock(&block_group->lock);
10814 if (block_group->reserved ||
10815 btrfs_block_group_used(&block_group->item) ||
10816 block_group->ro ||
10817 list_is_singular(&block_group->list)) {
10818 /*
10819 * We want to bail if we made new allocations or have
10820 * outstanding allocations in this block group. We do
10821 * the ro check in case balance is currently acting on
10822 * this block group.
10823 */
10824 spin_unlock(&block_group->lock);
10825 up_write(&space_info->groups_sem);
10826 goto next;
10827 }
10828 spin_unlock(&block_group->lock);
10829
10830 /* We don't want to force the issue, only flip if it's ok. */
10831 ret = inc_block_group_ro(block_group, 0);
10832 up_write(&space_info->groups_sem);
10833 if (ret < 0) {
10834 ret = 0;
10835 goto next;
10836 }
10837
10838 /*
10839 * Want to do this before we do anything else so we can recover
10840 * properly if we fail to join the transaction.
10841 */
10842 trans = btrfs_start_trans_remove_block_group(fs_info,
10843 block_group->key.objectid);
10844 if (IS_ERR(trans)) {
10845 btrfs_dec_block_group_ro(root, block_group);
10846 ret = PTR_ERR(trans);
10847 goto next;
10848 }
10849
10850 /*
10851 * We could have pending pinned extents for this block group,
10852 * just delete them, we don't care about them anymore.
10853 */
10854 start = block_group->key.objectid;
10855 end = start + block_group->key.offset - 1;
10856 /*
10857 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10858 * btrfs_finish_extent_commit(). If we are at transaction N,
10859 * another task might be running finish_extent_commit() for the
10860 * previous transaction N - 1, and have seen a range belonging
10861 * to the block group in freed_extents[] before we were able to
10862 * clear the whole block group range from freed_extents[]. This
10863 * means that task can lookup for the block group after we
10864 * unpinned it from freed_extents[] and removed it, leading to
10865 * a BUG_ON() at btrfs_unpin_extent_range().
10866 */
10867 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10868 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10869 EXTENT_DIRTY);
10870 if (ret) {
10871 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10872 btrfs_dec_block_group_ro(root, block_group);
10873 goto end_trans;
10874 }
10875 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10876 EXTENT_DIRTY);
10877 if (ret) {
10878 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10879 btrfs_dec_block_group_ro(root, block_group);
10880 goto end_trans;
10881 }
10882 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10883
10884 /* Reset pinned so btrfs_put_block_group doesn't complain */
10885 spin_lock(&space_info->lock);
10886 spin_lock(&block_group->lock);
10887
10888 space_info->bytes_pinned -= block_group->pinned;
10889 space_info->bytes_readonly += block_group->pinned;
10890 percpu_counter_add(&space_info->total_bytes_pinned,
10891 -block_group->pinned);
10892 block_group->pinned = 0;
10893
10894 spin_unlock(&block_group->lock);
10895 spin_unlock(&space_info->lock);
10896
10897 /* DISCARD can flip during remount */
10898 trimming = btrfs_test_opt(root->fs_info, DISCARD);
10899
10900 /* Implicit trim during transaction commit. */
10901 if (trimming)
10902 btrfs_get_block_group_trimming(block_group);
10903
10904 /*
10905 * Btrfs_remove_chunk will abort the transaction if things go
10906 * horribly wrong.
10907 */
10908 ret = btrfs_remove_chunk(trans, root,
10909 block_group->key.objectid);
10910
10911 if (ret) {
10912 if (trimming)
10913 btrfs_put_block_group_trimming(block_group);
10914 goto end_trans;
10915 }
10916
10917 /*
10918 * If we're not mounted with -odiscard, we can just forget
10919 * about this block group. Otherwise we'll need to wait
10920 * until transaction commit to do the actual discard.
10921 */
10922 if (trimming) {
10923 spin_lock(&fs_info->unused_bgs_lock);
10924 /*
10925 * A concurrent scrub might have added us to the list
10926 * fs_info->unused_bgs, so use a list_move operation
10927 * to add the block group to the deleted_bgs list.
10928 */
10929 list_move(&block_group->bg_list,
10930 &trans->transaction->deleted_bgs);
10931 spin_unlock(&fs_info->unused_bgs_lock);
10932 btrfs_get_block_group(block_group);
10933 }
10934 end_trans:
10935 btrfs_end_transaction(trans, root);
10936 next:
10937 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10938 btrfs_put_block_group(block_group);
10939 spin_lock(&fs_info->unused_bgs_lock);
10940 }
10941 spin_unlock(&fs_info->unused_bgs_lock);
10942 }
10943
10944 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10945 {
10946 struct btrfs_space_info *space_info;
10947 struct btrfs_super_block *disk_super;
10948 u64 features;
10949 u64 flags;
10950 int mixed = 0;
10951 int ret;
10952
10953 disk_super = fs_info->super_copy;
10954 if (!btrfs_super_root(disk_super))
10955 return -EINVAL;
10956
10957 features = btrfs_super_incompat_flags(disk_super);
10958 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10959 mixed = 1;
10960
10961 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10962 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10963 if (ret)
10964 goto out;
10965
10966 if (mixed) {
10967 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10968 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10969 } else {
10970 flags = BTRFS_BLOCK_GROUP_METADATA;
10971 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10972 if (ret)
10973 goto out;
10974
10975 flags = BTRFS_BLOCK_GROUP_DATA;
10976 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10977 }
10978 out:
10979 return ret;
10980 }
10981
10982 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10983 {
10984 return unpin_extent_range(root, start, end, false);
10985 }
10986
10987 /*
10988 * It used to be that old block groups would be left around forever.
10989 * Iterating over them would be enough to trim unused space. Since we
10990 * now automatically remove them, we also need to iterate over unallocated
10991 * space.
10992 *
10993 * We don't want a transaction for this since the discard may take a
10994 * substantial amount of time. We don't require that a transaction be
10995 * running, but we do need to take a running transaction into account
10996 * to ensure that we're not discarding chunks that were released in
10997 * the current transaction.
10998 *
10999 * Holding the chunks lock will prevent other threads from allocating
11000 * or releasing chunks, but it won't prevent a running transaction
11001 * from committing and releasing the memory that the pending chunks
11002 * list head uses. For that, we need to take a reference to the
11003 * transaction.
11004 */
11005 static int btrfs_trim_free_extents(struct btrfs_device *device,
11006 u64 minlen, u64 *trimmed)
11007 {
11008 u64 start = 0, len = 0;
11009 int ret;
11010
11011 *trimmed = 0;
11012
11013 /* Not writeable = nothing to do. */
11014 if (!device->writeable)
11015 return 0;
11016
11017 /* No free space = nothing to do. */
11018 if (device->total_bytes <= device->bytes_used)
11019 return 0;
11020
11021 ret = 0;
11022
11023 while (1) {
11024 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11025 struct btrfs_transaction *trans;
11026 u64 bytes;
11027
11028 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11029 if (ret)
11030 return ret;
11031
11032 down_read(&fs_info->commit_root_sem);
11033
11034 spin_lock(&fs_info->trans_lock);
11035 trans = fs_info->running_transaction;
11036 if (trans)
11037 atomic_inc(&trans->use_count);
11038 spin_unlock(&fs_info->trans_lock);
11039
11040 ret = find_free_dev_extent_start(trans, device, minlen, start,
11041 &start, &len);
11042 if (trans)
11043 btrfs_put_transaction(trans);
11044
11045 if (ret) {
11046 up_read(&fs_info->commit_root_sem);
11047 mutex_unlock(&fs_info->chunk_mutex);
11048 if (ret == -ENOSPC)
11049 ret = 0;
11050 break;
11051 }
11052
11053 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11054 up_read(&fs_info->commit_root_sem);
11055 mutex_unlock(&fs_info->chunk_mutex);
11056
11057 if (ret)
11058 break;
11059
11060 start += len;
11061 *trimmed += bytes;
11062
11063 if (fatal_signal_pending(current)) {
11064 ret = -ERESTARTSYS;
11065 break;
11066 }
11067
11068 cond_resched();
11069 }
11070
11071 return ret;
11072 }
11073
11074 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11075 {
11076 struct btrfs_fs_info *fs_info = root->fs_info;
11077 struct btrfs_block_group_cache *cache = NULL;
11078 struct btrfs_device *device;
11079 struct list_head *devices;
11080 u64 group_trimmed;
11081 u64 start;
11082 u64 end;
11083 u64 trimmed = 0;
11084 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11085 int ret = 0;
11086
11087 /*
11088 * try to trim all FS space, our block group may start from non-zero.
11089 */
11090 if (range->len == total_bytes)
11091 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11092 else
11093 cache = btrfs_lookup_block_group(fs_info, range->start);
11094
11095 while (cache) {
11096 if (cache->key.objectid >= (range->start + range->len)) {
11097 btrfs_put_block_group(cache);
11098 break;
11099 }
11100
11101 start = max(range->start, cache->key.objectid);
11102 end = min(range->start + range->len,
11103 cache->key.objectid + cache->key.offset);
11104
11105 if (end - start >= range->minlen) {
11106 if (!block_group_cache_done(cache)) {
11107 ret = cache_block_group(cache, 0);
11108 if (ret) {
11109 btrfs_put_block_group(cache);
11110 break;
11111 }
11112 ret = wait_block_group_cache_done(cache);
11113 if (ret) {
11114 btrfs_put_block_group(cache);
11115 break;
11116 }
11117 }
11118 ret = btrfs_trim_block_group(cache,
11119 &group_trimmed,
11120 start,
11121 end,
11122 range->minlen);
11123
11124 trimmed += group_trimmed;
11125 if (ret) {
11126 btrfs_put_block_group(cache);
11127 break;
11128 }
11129 }
11130
11131 cache = next_block_group(fs_info->tree_root, cache);
11132 }
11133
11134 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11135 devices = &root->fs_info->fs_devices->alloc_list;
11136 list_for_each_entry(device, devices, dev_alloc_list) {
11137 ret = btrfs_trim_free_extents(device, range->minlen,
11138 &group_trimmed);
11139 if (ret)
11140 break;
11141
11142 trimmed += group_trimmed;
11143 }
11144 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11145
11146 range->len = trimmed;
11147 return ret;
11148 }
11149
11150 /*
11151 * btrfs_{start,end}_write_no_snapshoting() are similar to
11152 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11153 * data into the page cache through nocow before the subvolume is snapshoted,
11154 * but flush the data into disk after the snapshot creation, or to prevent
11155 * operations while snapshoting is ongoing and that cause the snapshot to be
11156 * inconsistent (writes followed by expanding truncates for example).
11157 */
11158 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11159 {
11160 percpu_counter_dec(&root->subv_writers->counter);
11161 /*
11162 * Make sure counter is updated before we wake up waiters.
11163 */
11164 smp_mb();
11165 if (waitqueue_active(&root->subv_writers->wait))
11166 wake_up(&root->subv_writers->wait);
11167 }
11168
11169 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11170 {
11171 if (atomic_read(&root->will_be_snapshoted))
11172 return 0;
11173
11174 percpu_counter_inc(&root->subv_writers->counter);
11175 /*
11176 * Make sure counter is updated before we check for snapshot creation.
11177 */
11178 smp_mb();
11179 if (atomic_read(&root->will_be_snapshoted)) {
11180 btrfs_end_write_no_snapshoting(root);
11181 return 0;
11182 }
11183 return 1;
11184 }
11185
11186 static int wait_snapshoting_atomic_t(atomic_t *a)
11187 {
11188 schedule();
11189 return 0;
11190 }
11191
11192 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11193 {
11194 while (true) {
11195 int ret;
11196
11197 ret = btrfs_start_write_no_snapshoting(root);
11198 if (ret)
11199 break;
11200 wait_on_atomic_t(&root->will_be_snapshoted,
11201 wait_snapshoting_atomic_t,
11202 TASK_UNINTERRUPTIBLE);
11203 }
11204 }
This page took 0.271728 seconds and 5 git commands to generate.