lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
51 */
52 struct inode_defrag {
53 struct rb_node rb_node;
54 /* objectid */
55 u64 ino;
56 /*
57 * transid where the defrag was added, we search for
58 * extents newer than this
59 */
60 u64 transid;
61
62 /* root objectid */
63 u64 root;
64
65 /* last offset we were able to defrag */
66 u64 last_offset;
67
68 /* if we've wrapped around back to zero once already */
69 int cycled;
70 };
71
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 struct inode_defrag *defrag2)
74 {
75 if (defrag1->root > defrag2->root)
76 return 1;
77 else if (defrag1->root < defrag2->root)
78 return -1;
79 else if (defrag1->ino > defrag2->ino)
80 return 1;
81 else if (defrag1->ino < defrag2->ino)
82 return -1;
83 else
84 return 0;
85 }
86
87 /* pop a record for an inode into the defrag tree. The lock
88 * must be held already
89 *
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
92 *
93 * If an existing record is found the defrag item you
94 * pass in is freed
95 */
96 static int __btrfs_add_inode_defrag(struct inode *inode,
97 struct inode_defrag *defrag)
98 {
99 struct btrfs_root *root = BTRFS_I(inode)->root;
100 struct inode_defrag *entry;
101 struct rb_node **p;
102 struct rb_node *parent = NULL;
103 int ret;
104
105 p = &root->fs_info->defrag_inodes.rb_node;
106 while (*p) {
107 parent = *p;
108 entry = rb_entry(parent, struct inode_defrag, rb_node);
109
110 ret = __compare_inode_defrag(defrag, entry);
111 if (ret < 0)
112 p = &parent->rb_left;
113 else if (ret > 0)
114 p = &parent->rb_right;
115 else {
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
119 */
120 if (defrag->transid < entry->transid)
121 entry->transid = defrag->transid;
122 if (defrag->last_offset > entry->last_offset)
123 entry->last_offset = defrag->last_offset;
124 return -EEXIST;
125 }
126 }
127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128 rb_link_node(&defrag->rb_node, parent, p);
129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130 return 0;
131 }
132
133 static inline int __need_auto_defrag(struct btrfs_root *root)
134 {
135 if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
136 return 0;
137
138 if (btrfs_fs_closing(root->fs_info))
139 return 0;
140
141 return 1;
142 }
143
144 /*
145 * insert a defrag record for this inode if auto defrag is
146 * enabled
147 */
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct inode *inode)
150 {
151 struct btrfs_root *root = BTRFS_I(inode)->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(root))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = BTRFS_I(inode)->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&root->fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&root->fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_root *root = BTRFS_I(inode)->root;
201 int ret;
202
203 if (!__need_auto_defrag(root))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&root->fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&root->fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(inode, defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(inode, defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info->tree_root))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 /*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
492 {
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
509
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
515 }
516
517 /*
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
521 */
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
525 }
526
527 /*
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
530 */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
533 {
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
545
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
550 }
551 while (1) {
552 int no_splits = 0;
553
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
561
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
567 }
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
575 }
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
582 }
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
589
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
597
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
611 }
612
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
621 }
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
624
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
631
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
635
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
646 }
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 }
654
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
662 }
663 free_extent_map(split);
664 split = NULL;
665 }
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
670
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
675 }
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
680 }
681
682 /*
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
686 *
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
690 */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
698 {
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
718
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
724
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
739 }
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
752 }
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
767 }
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
770
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
774
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
789 }
790
791 /*
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
799 */
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
802
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
806 }
807
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
814 }
815
816 /*
817 * | - range to drop - |
818 * | -------- extent -------- |
819 */
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
825 }
826
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
834 }
835 if (ret < 0)
836 break;
837
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
852
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset);
859 BUG_ON(ret); /* -ENOMEM */
860 }
861 key.offset = start;
862 }
863 /*
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
866 */
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
871 }
872
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
885 }
886
887 search_start = extent_end;
888 /*
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
891 */
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
897 }
898
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
906
907 path->slots[0]++;
908 goto next_slot;
909 }
910
911 /*
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
914 */
915 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
923 }
924
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
940 }
941
942 if (end == extent_end)
943 break;
944
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
948 }
949
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, ret);
954 break;
955 }
956
957 del_nr = 0;
958 del_slot = 0;
959
960 btrfs_release_path(path);
961 continue;
962 }
963
964 BUG_ON(1);
965 }
966
967 if (!ret && del_nr > 0) {
968 /*
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
973 */
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, ret);
978 }
979
980 leaf = path->nodes[0];
981 /*
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
985 */
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
991
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
997
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1001 }
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1008 }
1009
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1015 }
1016
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1020 {
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1031 }
1032
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1036 {
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1040
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1043
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1047
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1056
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1060
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1064 }
1065
1066 /*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1075 {
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1104
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1110
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 BTRFS_FILE_EXTENT_PREALLOC);
1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 BUG_ON(key.offset > start || extent_end < end);
1120
1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 memcpy(&new_key, &key, sizeof(new_key));
1125
1126 if (start == key.offset && end < extent_end) {
1127 other_start = 0;
1128 other_end = start;
1129 if (extent_mergeable(leaf, path->slots[0] - 1,
1130 ino, bytenr, orig_offset,
1131 &other_start, &other_end)) {
1132 new_key.offset = end;
1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 fi = btrfs_item_ptr(leaf, path->slots[0],
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 extent_end - end);
1140 btrfs_set_file_extent_offset(leaf, fi,
1141 end - orig_offset);
1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 struct btrfs_file_extent_item);
1144 btrfs_set_file_extent_generation(leaf, fi,
1145 trans->transid);
1146 btrfs_set_file_extent_num_bytes(leaf, fi,
1147 end - other_start);
1148 btrfs_mark_buffer_dirty(leaf);
1149 goto out;
1150 }
1151 }
1152
1153 if (start > key.offset && end == extent_end) {
1154 other_start = end;
1155 other_end = 0;
1156 if (extent_mergeable(leaf, path->slots[0] + 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1159 fi = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 start - key.offset);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 path->slots[0]++;
1166 new_key.offset = start;
1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_generation(leaf, fi,
1172 trans->transid);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 other_end - start);
1175 btrfs_set_file_extent_offset(leaf, fi,
1176 start - orig_offset);
1177 btrfs_mark_buffer_dirty(leaf);
1178 goto out;
1179 }
1180 }
1181
1182 while (start > key.offset || end < extent_end) {
1183 if (key.offset == start)
1184 split = end;
1185
1186 new_key.offset = split;
1187 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 if (ret == -EAGAIN) {
1189 btrfs_release_path(path);
1190 goto again;
1191 }
1192 if (ret < 0) {
1193 btrfs_abort_transaction(trans, ret);
1194 goto out;
1195 }
1196
1197 leaf = path->nodes[0];
1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 struct btrfs_file_extent_item);
1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 split - key.offset);
1203
1204 fi = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_file_extent_item);
1206
1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 btrfs_set_file_extent_num_bytes(leaf, fi,
1210 extent_end - split);
1211 btrfs_mark_buffer_dirty(leaf);
1212
1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 root->root_key.objectid,
1215 ino, orig_offset);
1216 BUG_ON(ret); /* -ENOMEM */
1217
1218 if (split == start) {
1219 key.offset = start;
1220 } else {
1221 BUG_ON(start != key.offset);
1222 path->slots[0]--;
1223 extent_end = end;
1224 }
1225 recow = 1;
1226 }
1227
1228 other_start = end;
1229 other_end = 0;
1230 if (extent_mergeable(leaf, path->slots[0] + 1,
1231 ino, bytenr, orig_offset,
1232 &other_start, &other_end)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1236 }
1237 extent_end = other_end;
1238 del_slot = path->slots[0] + 1;
1239 del_nr++;
1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 0, root->root_key.objectid,
1242 ino, orig_offset);
1243 BUG_ON(ret); /* -ENOMEM */
1244 }
1245 other_start = 0;
1246 other_end = start;
1247 if (extent_mergeable(leaf, path->slots[0] - 1,
1248 ino, bytenr, orig_offset,
1249 &other_start, &other_end)) {
1250 if (recow) {
1251 btrfs_release_path(path);
1252 goto again;
1253 }
1254 key.offset = other_start;
1255 del_slot = path->slots[0];
1256 del_nr++;
1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 0, root->root_key.objectid,
1259 ino, orig_offset);
1260 BUG_ON(ret); /* -ENOMEM */
1261 }
1262 if (del_nr == 0) {
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_type(leaf, fi,
1266 BTRFS_FILE_EXTENT_REG);
1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 btrfs_mark_buffer_dirty(leaf);
1269 } else {
1270 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 struct btrfs_file_extent_item);
1272 btrfs_set_file_extent_type(leaf, fi,
1273 BTRFS_FILE_EXTENT_REG);
1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 btrfs_set_file_extent_num_bytes(leaf, fi,
1276 extent_end - key.offset);
1277 btrfs_mark_buffer_dirty(leaf);
1278
1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 if (ret < 0) {
1281 btrfs_abort_transaction(trans, ret);
1282 goto out;
1283 }
1284 }
1285 out:
1286 btrfs_free_path(path);
1287 return 0;
1288 }
1289
1290 /*
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1293 */
1294 static int prepare_uptodate_page(struct inode *inode,
1295 struct page *page, u64 pos,
1296 bool force_uptodate)
1297 {
1298 int ret = 0;
1299
1300 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301 !PageUptodate(page)) {
1302 ret = btrfs_readpage(NULL, page);
1303 if (ret)
1304 return ret;
1305 lock_page(page);
1306 if (!PageUptodate(page)) {
1307 unlock_page(page);
1308 return -EIO;
1309 }
1310 if (page->mapping != inode->i_mapping) {
1311 unlock_page(page);
1312 return -EAGAIN;
1313 }
1314 }
1315 return 0;
1316 }
1317
1318 /*
1319 * this just gets pages into the page cache and locks them down.
1320 */
1321 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322 size_t num_pages, loff_t pos,
1323 size_t write_bytes, bool force_uptodate)
1324 {
1325 int i;
1326 unsigned long index = pos >> PAGE_SHIFT;
1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328 int err = 0;
1329 int faili;
1330
1331 for (i = 0; i < num_pages; i++) {
1332 again:
1333 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334 mask | __GFP_WRITE);
1335 if (!pages[i]) {
1336 faili = i - 1;
1337 err = -ENOMEM;
1338 goto fail;
1339 }
1340
1341 if (i == 0)
1342 err = prepare_uptodate_page(inode, pages[i], pos,
1343 force_uptodate);
1344 if (!err && i == num_pages - 1)
1345 err = prepare_uptodate_page(inode, pages[i],
1346 pos + write_bytes, false);
1347 if (err) {
1348 put_page(pages[i]);
1349 if (err == -EAGAIN) {
1350 err = 0;
1351 goto again;
1352 }
1353 faili = i - 1;
1354 goto fail;
1355 }
1356 wait_on_page_writeback(pages[i]);
1357 }
1358
1359 return 0;
1360 fail:
1361 while (faili >= 0) {
1362 unlock_page(pages[faili]);
1363 put_page(pages[faili]);
1364 faili--;
1365 }
1366 return err;
1367
1368 }
1369
1370 /*
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1373 *
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1379 */
1380 static noinline int
1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382 size_t num_pages, loff_t pos,
1383 size_t write_bytes,
1384 u64 *lockstart, u64 *lockend,
1385 struct extent_state **cached_state)
1386 {
1387 struct btrfs_root *root = BTRFS_I(inode)->root;
1388 u64 start_pos;
1389 u64 last_pos;
1390 int i;
1391 int ret = 0;
1392
1393 start_pos = round_down(pos, root->sectorsize);
1394 last_pos = start_pos
1395 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1396
1397 if (start_pos < inode->i_size) {
1398 struct btrfs_ordered_extent *ordered;
1399 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400 start_pos, last_pos, cached_state);
1401 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402 last_pos - start_pos + 1);
1403 if (ordered &&
1404 ordered->file_offset + ordered->len > start_pos &&
1405 ordered->file_offset <= last_pos) {
1406 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407 start_pos, last_pos,
1408 cached_state, GFP_NOFS);
1409 for (i = 0; i < num_pages; i++) {
1410 unlock_page(pages[i]);
1411 put_page(pages[i]);
1412 }
1413 btrfs_start_ordered_extent(inode, ordered, 1);
1414 btrfs_put_ordered_extent(ordered);
1415 return -EAGAIN;
1416 }
1417 if (ordered)
1418 btrfs_put_ordered_extent(ordered);
1419
1420 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423 0, 0, cached_state, GFP_NOFS);
1424 *lockstart = start_pos;
1425 *lockend = last_pos;
1426 ret = 1;
1427 }
1428
1429 for (i = 0; i < num_pages; i++) {
1430 if (clear_page_dirty_for_io(pages[i]))
1431 account_page_redirty(pages[i]);
1432 set_page_extent_mapped(pages[i]);
1433 WARN_ON(!PageLocked(pages[i]));
1434 }
1435
1436 return ret;
1437 }
1438
1439 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440 size_t *write_bytes)
1441 {
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 struct btrfs_ordered_extent *ordered;
1444 u64 lockstart, lockend;
1445 u64 num_bytes;
1446 int ret;
1447
1448 ret = btrfs_start_write_no_snapshoting(root);
1449 if (!ret)
1450 return -ENOSPC;
1451
1452 lockstart = round_down(pos, root->sectorsize);
1453 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1454
1455 while (1) {
1456 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458 lockend - lockstart + 1);
1459 if (!ordered) {
1460 break;
1461 }
1462 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463 btrfs_start_ordered_extent(inode, ordered, 1);
1464 btrfs_put_ordered_extent(ordered);
1465 }
1466
1467 num_bytes = lockend - lockstart + 1;
1468 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469 if (ret <= 0) {
1470 ret = 0;
1471 btrfs_end_write_no_snapshoting(root);
1472 } else {
1473 *write_bytes = min_t(size_t, *write_bytes ,
1474 num_bytes - pos + lockstart);
1475 }
1476
1477 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1478
1479 return ret;
1480 }
1481
1482 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483 struct iov_iter *i,
1484 loff_t pos)
1485 {
1486 struct inode *inode = file_inode(file);
1487 struct btrfs_root *root = BTRFS_I(inode)->root;
1488 struct page **pages = NULL;
1489 struct extent_state *cached_state = NULL;
1490 u64 release_bytes = 0;
1491 u64 lockstart;
1492 u64 lockend;
1493 size_t num_written = 0;
1494 int nrptrs;
1495 int ret = 0;
1496 bool only_release_metadata = false;
1497 bool force_page_uptodate = false;
1498 bool need_unlock;
1499
1500 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501 PAGE_SIZE / (sizeof(struct page *)));
1502 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503 nrptrs = max(nrptrs, 8);
1504 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505 if (!pages)
1506 return -ENOMEM;
1507
1508 while (iov_iter_count(i) > 0) {
1509 size_t offset = pos & (PAGE_SIZE - 1);
1510 size_t sector_offset;
1511 size_t write_bytes = min(iov_iter_count(i),
1512 nrptrs * (size_t)PAGE_SIZE -
1513 offset);
1514 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515 PAGE_SIZE);
1516 size_t reserve_bytes;
1517 size_t dirty_pages;
1518 size_t copied;
1519 size_t dirty_sectors;
1520 size_t num_sectors;
1521
1522 WARN_ON(num_pages > nrptrs);
1523
1524 /*
1525 * Fault pages before locking them in prepare_pages
1526 * to avoid recursive lock
1527 */
1528 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529 ret = -EFAULT;
1530 break;
1531 }
1532
1533 sector_offset = pos & (root->sectorsize - 1);
1534 reserve_bytes = round_up(write_bytes + sector_offset,
1535 root->sectorsize);
1536
1537 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1538 if (ret < 0) {
1539 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1540 BTRFS_INODE_PREALLOC)) &&
1541 check_can_nocow(inode, pos, &write_bytes) > 0) {
1542 /*
1543 * For nodata cow case, no need to reserve
1544 * data space.
1545 */
1546 only_release_metadata = true;
1547 /*
1548 * our prealloc extent may be smaller than
1549 * write_bytes, so scale down.
1550 */
1551 num_pages = DIV_ROUND_UP(write_bytes + offset,
1552 PAGE_SIZE);
1553 reserve_bytes = round_up(write_bytes +
1554 sector_offset,
1555 root->sectorsize);
1556 } else {
1557 break;
1558 }
1559 }
1560
1561 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562 if (ret) {
1563 if (!only_release_metadata)
1564 btrfs_free_reserved_data_space(inode, pos,
1565 write_bytes);
1566 else
1567 btrfs_end_write_no_snapshoting(root);
1568 break;
1569 }
1570
1571 release_bytes = reserve_bytes;
1572 need_unlock = false;
1573 again:
1574 /*
1575 * This is going to setup the pages array with the number of
1576 * pages we want, so we don't really need to worry about the
1577 * contents of pages from loop to loop
1578 */
1579 ret = prepare_pages(inode, pages, num_pages,
1580 pos, write_bytes,
1581 force_page_uptodate);
1582 if (ret)
1583 break;
1584
1585 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586 pos, write_bytes, &lockstart,
1587 &lockend, &cached_state);
1588 if (ret < 0) {
1589 if (ret == -EAGAIN)
1590 goto again;
1591 break;
1592 } else if (ret > 0) {
1593 need_unlock = true;
1594 ret = 0;
1595 }
1596
1597 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
1599 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1600 reserve_bytes);
1601 dirty_sectors = round_up(copied + sector_offset,
1602 root->sectorsize);
1603 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1604 dirty_sectors);
1605
1606 /*
1607 * if we have trouble faulting in the pages, fall
1608 * back to one page at a time
1609 */
1610 if (copied < write_bytes)
1611 nrptrs = 1;
1612
1613 if (copied == 0) {
1614 force_page_uptodate = true;
1615 dirty_sectors = 0;
1616 dirty_pages = 0;
1617 } else {
1618 force_page_uptodate = false;
1619 dirty_pages = DIV_ROUND_UP(copied + offset,
1620 PAGE_SIZE);
1621 }
1622
1623 /*
1624 * If we had a short copy we need to release the excess delaloc
1625 * bytes we reserved. We need to increment outstanding_extents
1626 * because btrfs_delalloc_release_space and
1627 * btrfs_delalloc_release_metadata will decrement it, but
1628 * we still have an outstanding extent for the chunk we actually
1629 * managed to copy.
1630 */
1631 if (num_sectors > dirty_sectors) {
1632
1633 /* release everything except the sectors we dirtied */
1634 release_bytes -= dirty_sectors <<
1635 root->fs_info->sb->s_blocksize_bits;
1636
1637 if (copied > 0) {
1638 spin_lock(&BTRFS_I(inode)->lock);
1639 BTRFS_I(inode)->outstanding_extents++;
1640 spin_unlock(&BTRFS_I(inode)->lock);
1641 }
1642 if (only_release_metadata) {
1643 btrfs_delalloc_release_metadata(inode,
1644 release_bytes);
1645 } else {
1646 u64 __pos;
1647
1648 __pos = round_down(pos, root->sectorsize) +
1649 (dirty_pages << PAGE_SHIFT);
1650 btrfs_delalloc_release_space(inode, __pos,
1651 release_bytes);
1652 }
1653 }
1654
1655 release_bytes = round_up(copied + sector_offset,
1656 root->sectorsize);
1657
1658 if (copied > 0)
1659 ret = btrfs_dirty_pages(root, inode, pages,
1660 dirty_pages, pos, copied,
1661 NULL);
1662 if (need_unlock)
1663 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1664 lockstart, lockend, &cached_state,
1665 GFP_NOFS);
1666 if (ret) {
1667 btrfs_drop_pages(pages, num_pages);
1668 break;
1669 }
1670
1671 release_bytes = 0;
1672 if (only_release_metadata)
1673 btrfs_end_write_no_snapshoting(root);
1674
1675 if (only_release_metadata && copied > 0) {
1676 lockstart = round_down(pos, root->sectorsize);
1677 lockend = round_up(pos + copied, root->sectorsize) - 1;
1678
1679 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1680 lockend, EXTENT_NORESERVE, NULL,
1681 NULL, GFP_NOFS);
1682 only_release_metadata = false;
1683 }
1684
1685 btrfs_drop_pages(pages, num_pages);
1686
1687 cond_resched();
1688
1689 balance_dirty_pages_ratelimited(inode->i_mapping);
1690 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1691 btrfs_btree_balance_dirty(root);
1692
1693 pos += copied;
1694 num_written += copied;
1695 }
1696
1697 kfree(pages);
1698
1699 if (release_bytes) {
1700 if (only_release_metadata) {
1701 btrfs_end_write_no_snapshoting(root);
1702 btrfs_delalloc_release_metadata(inode, release_bytes);
1703 } else {
1704 btrfs_delalloc_release_space(inode,
1705 round_down(pos, root->sectorsize),
1706 release_bytes);
1707 }
1708 }
1709
1710 return num_written ? num_written : ret;
1711 }
1712
1713 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1714 {
1715 struct file *file = iocb->ki_filp;
1716 struct inode *inode = file_inode(file);
1717 loff_t pos = iocb->ki_pos;
1718 ssize_t written;
1719 ssize_t written_buffered;
1720 loff_t endbyte;
1721 int err;
1722
1723 written = generic_file_direct_write(iocb, from);
1724
1725 if (written < 0 || !iov_iter_count(from))
1726 return written;
1727
1728 pos += written;
1729 written_buffered = __btrfs_buffered_write(file, from, pos);
1730 if (written_buffered < 0) {
1731 err = written_buffered;
1732 goto out;
1733 }
1734 /*
1735 * Ensure all data is persisted. We want the next direct IO read to be
1736 * able to read what was just written.
1737 */
1738 endbyte = pos + written_buffered - 1;
1739 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1740 if (err)
1741 goto out;
1742 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1743 if (err)
1744 goto out;
1745 written += written_buffered;
1746 iocb->ki_pos = pos + written_buffered;
1747 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1748 endbyte >> PAGE_SHIFT);
1749 out:
1750 return written ? written : err;
1751 }
1752
1753 static void update_time_for_write(struct inode *inode)
1754 {
1755 struct timespec now;
1756
1757 if (IS_NOCMTIME(inode))
1758 return;
1759
1760 now = current_fs_time(inode->i_sb);
1761 if (!timespec_equal(&inode->i_mtime, &now))
1762 inode->i_mtime = now;
1763
1764 if (!timespec_equal(&inode->i_ctime, &now))
1765 inode->i_ctime = now;
1766
1767 if (IS_I_VERSION(inode))
1768 inode_inc_iversion(inode);
1769 }
1770
1771 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1772 struct iov_iter *from)
1773 {
1774 struct file *file = iocb->ki_filp;
1775 struct inode *inode = file_inode(file);
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
1777 u64 start_pos;
1778 u64 end_pos;
1779 ssize_t num_written = 0;
1780 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1781 ssize_t err;
1782 loff_t pos;
1783 size_t count;
1784 loff_t oldsize;
1785 int clean_page = 0;
1786
1787 inode_lock(inode);
1788 err = generic_write_checks(iocb, from);
1789 if (err <= 0) {
1790 inode_unlock(inode);
1791 return err;
1792 }
1793
1794 current->backing_dev_info = inode_to_bdi(inode);
1795 err = file_remove_privs(file);
1796 if (err) {
1797 inode_unlock(inode);
1798 goto out;
1799 }
1800
1801 /*
1802 * If BTRFS flips readonly due to some impossible error
1803 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1804 * although we have opened a file as writable, we have
1805 * to stop this write operation to ensure FS consistency.
1806 */
1807 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1808 inode_unlock(inode);
1809 err = -EROFS;
1810 goto out;
1811 }
1812
1813 /*
1814 * We reserve space for updating the inode when we reserve space for the
1815 * extent we are going to write, so we will enospc out there. We don't
1816 * need to start yet another transaction to update the inode as we will
1817 * update the inode when we finish writing whatever data we write.
1818 */
1819 update_time_for_write(inode);
1820
1821 pos = iocb->ki_pos;
1822 count = iov_iter_count(from);
1823 start_pos = round_down(pos, root->sectorsize);
1824 oldsize = i_size_read(inode);
1825 if (start_pos > oldsize) {
1826 /* Expand hole size to cover write data, preventing empty gap */
1827 end_pos = round_up(pos + count, root->sectorsize);
1828 err = btrfs_cont_expand(inode, oldsize, end_pos);
1829 if (err) {
1830 inode_unlock(inode);
1831 goto out;
1832 }
1833 if (start_pos > round_up(oldsize, root->sectorsize))
1834 clean_page = 1;
1835 }
1836
1837 if (sync)
1838 atomic_inc(&BTRFS_I(inode)->sync_writers);
1839
1840 if (iocb->ki_flags & IOCB_DIRECT) {
1841 num_written = __btrfs_direct_write(iocb, from);
1842 } else {
1843 num_written = __btrfs_buffered_write(file, from, pos);
1844 if (num_written > 0)
1845 iocb->ki_pos = pos + num_written;
1846 if (clean_page)
1847 pagecache_isize_extended(inode, oldsize,
1848 i_size_read(inode));
1849 }
1850
1851 inode_unlock(inode);
1852
1853 /*
1854 * We also have to set last_sub_trans to the current log transid,
1855 * otherwise subsequent syncs to a file that's been synced in this
1856 * transaction will appear to have already occurred.
1857 */
1858 spin_lock(&BTRFS_I(inode)->lock);
1859 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1860 spin_unlock(&BTRFS_I(inode)->lock);
1861 if (num_written > 0)
1862 num_written = generic_write_sync(iocb, num_written);
1863
1864 if (sync)
1865 atomic_dec(&BTRFS_I(inode)->sync_writers);
1866 out:
1867 current->backing_dev_info = NULL;
1868 return num_written ? num_written : err;
1869 }
1870
1871 int btrfs_release_file(struct inode *inode, struct file *filp)
1872 {
1873 if (filp->private_data)
1874 btrfs_ioctl_trans_end(filp);
1875 /*
1876 * ordered_data_close is set by settattr when we are about to truncate
1877 * a file from a non-zero size to a zero size. This tries to
1878 * flush down new bytes that may have been written if the
1879 * application were using truncate to replace a file in place.
1880 */
1881 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1882 &BTRFS_I(inode)->runtime_flags))
1883 filemap_flush(inode->i_mapping);
1884 return 0;
1885 }
1886
1887 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1888 {
1889 int ret;
1890
1891 atomic_inc(&BTRFS_I(inode)->sync_writers);
1892 ret = btrfs_fdatawrite_range(inode, start, end);
1893 atomic_dec(&BTRFS_I(inode)->sync_writers);
1894
1895 return ret;
1896 }
1897
1898 /*
1899 * fsync call for both files and directories. This logs the inode into
1900 * the tree log instead of forcing full commits whenever possible.
1901 *
1902 * It needs to call filemap_fdatawait so that all ordered extent updates are
1903 * in the metadata btree are up to date for copying to the log.
1904 *
1905 * It drops the inode mutex before doing the tree log commit. This is an
1906 * important optimization for directories because holding the mutex prevents
1907 * new operations on the dir while we write to disk.
1908 */
1909 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1910 {
1911 struct dentry *dentry = file_dentry(file);
1912 struct inode *inode = d_inode(dentry);
1913 struct btrfs_root *root = BTRFS_I(inode)->root;
1914 struct btrfs_trans_handle *trans;
1915 struct btrfs_log_ctx ctx;
1916 int ret = 0;
1917 bool full_sync = 0;
1918 u64 len;
1919
1920 /*
1921 * The range length can be represented by u64, we have to do the typecasts
1922 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1923 */
1924 len = (u64)end - (u64)start + 1;
1925 trace_btrfs_sync_file(file, datasync);
1926
1927 /*
1928 * We write the dirty pages in the range and wait until they complete
1929 * out of the ->i_mutex. If so, we can flush the dirty pages by
1930 * multi-task, and make the performance up. See
1931 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1932 */
1933 ret = start_ordered_ops(inode, start, end);
1934 if (ret)
1935 return ret;
1936
1937 inode_lock(inode);
1938 atomic_inc(&root->log_batch);
1939 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1940 &BTRFS_I(inode)->runtime_flags);
1941 /*
1942 * We might have have had more pages made dirty after calling
1943 * start_ordered_ops and before acquiring the inode's i_mutex.
1944 */
1945 if (full_sync) {
1946 /*
1947 * For a full sync, we need to make sure any ordered operations
1948 * start and finish before we start logging the inode, so that
1949 * all extents are persisted and the respective file extent
1950 * items are in the fs/subvol btree.
1951 */
1952 ret = btrfs_wait_ordered_range(inode, start, len);
1953 } else {
1954 /*
1955 * Start any new ordered operations before starting to log the
1956 * inode. We will wait for them to finish in btrfs_sync_log().
1957 *
1958 * Right before acquiring the inode's mutex, we might have new
1959 * writes dirtying pages, which won't immediately start the
1960 * respective ordered operations - that is done through the
1961 * fill_delalloc callbacks invoked from the writepage and
1962 * writepages address space operations. So make sure we start
1963 * all ordered operations before starting to log our inode. Not
1964 * doing this means that while logging the inode, writeback
1965 * could start and invoke writepage/writepages, which would call
1966 * the fill_delalloc callbacks (cow_file_range,
1967 * submit_compressed_extents). These callbacks add first an
1968 * extent map to the modified list of extents and then create
1969 * the respective ordered operation, which means in
1970 * tree-log.c:btrfs_log_inode() we might capture all existing
1971 * ordered operations (with btrfs_get_logged_extents()) before
1972 * the fill_delalloc callback adds its ordered operation, and by
1973 * the time we visit the modified list of extent maps (with
1974 * btrfs_log_changed_extents()), we see and process the extent
1975 * map they created. We then use the extent map to construct a
1976 * file extent item for logging without waiting for the
1977 * respective ordered operation to finish - this file extent
1978 * item points to a disk location that might not have yet been
1979 * written to, containing random data - so after a crash a log
1980 * replay will make our inode have file extent items that point
1981 * to disk locations containing invalid data, as we returned
1982 * success to userspace without waiting for the respective
1983 * ordered operation to finish, because it wasn't captured by
1984 * btrfs_get_logged_extents().
1985 */
1986 ret = start_ordered_ops(inode, start, end);
1987 }
1988 if (ret) {
1989 inode_unlock(inode);
1990 goto out;
1991 }
1992 atomic_inc(&root->log_batch);
1993
1994 /*
1995 * If the last transaction that changed this file was before the current
1996 * transaction and we have the full sync flag set in our inode, we can
1997 * bail out now without any syncing.
1998 *
1999 * Note that we can't bail out if the full sync flag isn't set. This is
2000 * because when the full sync flag is set we start all ordered extents
2001 * and wait for them to fully complete - when they complete they update
2002 * the inode's last_trans field through:
2003 *
2004 * btrfs_finish_ordered_io() ->
2005 * btrfs_update_inode_fallback() ->
2006 * btrfs_update_inode() ->
2007 * btrfs_set_inode_last_trans()
2008 *
2009 * So we are sure that last_trans is up to date and can do this check to
2010 * bail out safely. For the fast path, when the full sync flag is not
2011 * set in our inode, we can not do it because we start only our ordered
2012 * extents and don't wait for them to complete (that is when
2013 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2014 * value might be less than or equals to fs_info->last_trans_committed,
2015 * and setting a speculative last_trans for an inode when a buffered
2016 * write is made (such as fs_info->generation + 1 for example) would not
2017 * be reliable since after setting the value and before fsync is called
2018 * any number of transactions can start and commit (transaction kthread
2019 * commits the current transaction periodically), and a transaction
2020 * commit does not start nor waits for ordered extents to complete.
2021 */
2022 smp_mb();
2023 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2024 (full_sync && BTRFS_I(inode)->last_trans <=
2025 root->fs_info->last_trans_committed) ||
2026 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2027 BTRFS_I(inode)->last_trans
2028 <= root->fs_info->last_trans_committed)) {
2029 /*
2030 * We've had everything committed since the last time we were
2031 * modified so clear this flag in case it was set for whatever
2032 * reason, it's no longer relevant.
2033 */
2034 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2035 &BTRFS_I(inode)->runtime_flags);
2036 /*
2037 * An ordered extent might have started before and completed
2038 * already with io errors, in which case the inode was not
2039 * updated and we end up here. So check the inode's mapping
2040 * flags for any errors that might have happened while doing
2041 * writeback of file data.
2042 */
2043 ret = btrfs_inode_check_errors(inode);
2044 inode_unlock(inode);
2045 goto out;
2046 }
2047
2048 /*
2049 * ok we haven't committed the transaction yet, lets do a commit
2050 */
2051 if (file->private_data)
2052 btrfs_ioctl_trans_end(file);
2053
2054 /*
2055 * We use start here because we will need to wait on the IO to complete
2056 * in btrfs_sync_log, which could require joining a transaction (for
2057 * example checking cross references in the nocow path). If we use join
2058 * here we could get into a situation where we're waiting on IO to
2059 * happen that is blocked on a transaction trying to commit. With start
2060 * we inc the extwriter counter, so we wait for all extwriters to exit
2061 * before we start blocking join'ers. This comment is to keep somebody
2062 * from thinking they are super smart and changing this to
2063 * btrfs_join_transaction *cough*Josef*cough*.
2064 */
2065 trans = btrfs_start_transaction(root, 0);
2066 if (IS_ERR(trans)) {
2067 ret = PTR_ERR(trans);
2068 inode_unlock(inode);
2069 goto out;
2070 }
2071 trans->sync = true;
2072
2073 btrfs_init_log_ctx(&ctx, inode);
2074
2075 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2076 if (ret < 0) {
2077 /* Fallthrough and commit/free transaction. */
2078 ret = 1;
2079 }
2080
2081 /* we've logged all the items and now have a consistent
2082 * version of the file in the log. It is possible that
2083 * someone will come in and modify the file, but that's
2084 * fine because the log is consistent on disk, and we
2085 * have references to all of the file's extents
2086 *
2087 * It is possible that someone will come in and log the
2088 * file again, but that will end up using the synchronization
2089 * inside btrfs_sync_log to keep things safe.
2090 */
2091 inode_unlock(inode);
2092
2093 /*
2094 * If any of the ordered extents had an error, just return it to user
2095 * space, so that the application knows some writes didn't succeed and
2096 * can take proper action (retry for e.g.). Blindly committing the
2097 * transaction in this case, would fool userspace that everything was
2098 * successful. And we also want to make sure our log doesn't contain
2099 * file extent items pointing to extents that weren't fully written to -
2100 * just like in the non fast fsync path, where we check for the ordered
2101 * operation's error flag before writing to the log tree and return -EIO
2102 * if any of them had this flag set (btrfs_wait_ordered_range) -
2103 * therefore we need to check for errors in the ordered operations,
2104 * which are indicated by ctx.io_err.
2105 */
2106 if (ctx.io_err) {
2107 btrfs_end_transaction(trans, root);
2108 ret = ctx.io_err;
2109 goto out;
2110 }
2111
2112 if (ret != BTRFS_NO_LOG_SYNC) {
2113 if (!ret) {
2114 ret = btrfs_sync_log(trans, root, &ctx);
2115 if (!ret) {
2116 ret = btrfs_end_transaction(trans, root);
2117 goto out;
2118 }
2119 }
2120 if (!full_sync) {
2121 ret = btrfs_wait_ordered_range(inode, start, len);
2122 if (ret) {
2123 btrfs_end_transaction(trans, root);
2124 goto out;
2125 }
2126 }
2127 ret = btrfs_commit_transaction(trans, root);
2128 } else {
2129 ret = btrfs_end_transaction(trans, root);
2130 }
2131 out:
2132 return ret > 0 ? -EIO : ret;
2133 }
2134
2135 static const struct vm_operations_struct btrfs_file_vm_ops = {
2136 .fault = filemap_fault,
2137 .map_pages = filemap_map_pages,
2138 .page_mkwrite = btrfs_page_mkwrite,
2139 };
2140
2141 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2142 {
2143 struct address_space *mapping = filp->f_mapping;
2144
2145 if (!mapping->a_ops->readpage)
2146 return -ENOEXEC;
2147
2148 file_accessed(filp);
2149 vma->vm_ops = &btrfs_file_vm_ops;
2150
2151 return 0;
2152 }
2153
2154 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2155 int slot, u64 start, u64 end)
2156 {
2157 struct btrfs_file_extent_item *fi;
2158 struct btrfs_key key;
2159
2160 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2161 return 0;
2162
2163 btrfs_item_key_to_cpu(leaf, &key, slot);
2164 if (key.objectid != btrfs_ino(inode) ||
2165 key.type != BTRFS_EXTENT_DATA_KEY)
2166 return 0;
2167
2168 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2169
2170 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2171 return 0;
2172
2173 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2174 return 0;
2175
2176 if (key.offset == end)
2177 return 1;
2178 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2179 return 1;
2180 return 0;
2181 }
2182
2183 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2184 struct btrfs_path *path, u64 offset, u64 end)
2185 {
2186 struct btrfs_root *root = BTRFS_I(inode)->root;
2187 struct extent_buffer *leaf;
2188 struct btrfs_file_extent_item *fi;
2189 struct extent_map *hole_em;
2190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2191 struct btrfs_key key;
2192 int ret;
2193
2194 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2195 goto out;
2196
2197 key.objectid = btrfs_ino(inode);
2198 key.type = BTRFS_EXTENT_DATA_KEY;
2199 key.offset = offset;
2200
2201 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2202 if (ret < 0)
2203 return ret;
2204 BUG_ON(!ret);
2205
2206 leaf = path->nodes[0];
2207 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2208 u64 num_bytes;
2209
2210 path->slots[0]--;
2211 fi = btrfs_item_ptr(leaf, path->slots[0],
2212 struct btrfs_file_extent_item);
2213 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2214 end - offset;
2215 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2216 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2217 btrfs_set_file_extent_offset(leaf, fi, 0);
2218 btrfs_mark_buffer_dirty(leaf);
2219 goto out;
2220 }
2221
2222 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2223 u64 num_bytes;
2224
2225 key.offset = offset;
2226 btrfs_set_item_key_safe(root->fs_info, path, &key);
2227 fi = btrfs_item_ptr(leaf, path->slots[0],
2228 struct btrfs_file_extent_item);
2229 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2230 offset;
2231 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2232 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2233 btrfs_set_file_extent_offset(leaf, fi, 0);
2234 btrfs_mark_buffer_dirty(leaf);
2235 goto out;
2236 }
2237 btrfs_release_path(path);
2238
2239 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2240 0, 0, end - offset, 0, end - offset,
2241 0, 0, 0);
2242 if (ret)
2243 return ret;
2244
2245 out:
2246 btrfs_release_path(path);
2247
2248 hole_em = alloc_extent_map();
2249 if (!hole_em) {
2250 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2251 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2252 &BTRFS_I(inode)->runtime_flags);
2253 } else {
2254 hole_em->start = offset;
2255 hole_em->len = end - offset;
2256 hole_em->ram_bytes = hole_em->len;
2257 hole_em->orig_start = offset;
2258
2259 hole_em->block_start = EXTENT_MAP_HOLE;
2260 hole_em->block_len = 0;
2261 hole_em->orig_block_len = 0;
2262 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2263 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2264 hole_em->generation = trans->transid;
2265
2266 do {
2267 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2268 write_lock(&em_tree->lock);
2269 ret = add_extent_mapping(em_tree, hole_em, 1);
2270 write_unlock(&em_tree->lock);
2271 } while (ret == -EEXIST);
2272 free_extent_map(hole_em);
2273 if (ret)
2274 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2275 &BTRFS_I(inode)->runtime_flags);
2276 }
2277
2278 return 0;
2279 }
2280
2281 /*
2282 * Find a hole extent on given inode and change start/len to the end of hole
2283 * extent.(hole/vacuum extent whose em->start <= start &&
2284 * em->start + em->len > start)
2285 * When a hole extent is found, return 1 and modify start/len.
2286 */
2287 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2288 {
2289 struct extent_map *em;
2290 int ret = 0;
2291
2292 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2293 if (IS_ERR_OR_NULL(em)) {
2294 if (!em)
2295 ret = -ENOMEM;
2296 else
2297 ret = PTR_ERR(em);
2298 return ret;
2299 }
2300
2301 /* Hole or vacuum extent(only exists in no-hole mode) */
2302 if (em->block_start == EXTENT_MAP_HOLE) {
2303 ret = 1;
2304 *len = em->start + em->len > *start + *len ?
2305 0 : *start + *len - em->start - em->len;
2306 *start = em->start + em->len;
2307 }
2308 free_extent_map(em);
2309 return ret;
2310 }
2311
2312 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2313 {
2314 struct btrfs_root *root = BTRFS_I(inode)->root;
2315 struct extent_state *cached_state = NULL;
2316 struct btrfs_path *path;
2317 struct btrfs_block_rsv *rsv;
2318 struct btrfs_trans_handle *trans;
2319 u64 lockstart;
2320 u64 lockend;
2321 u64 tail_start;
2322 u64 tail_len;
2323 u64 orig_start = offset;
2324 u64 cur_offset;
2325 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2326 u64 drop_end;
2327 int ret = 0;
2328 int err = 0;
2329 unsigned int rsv_count;
2330 bool same_block;
2331 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2332 u64 ino_size;
2333 bool truncated_block = false;
2334 bool updated_inode = false;
2335
2336 ret = btrfs_wait_ordered_range(inode, offset, len);
2337 if (ret)
2338 return ret;
2339
2340 inode_lock(inode);
2341 ino_size = round_up(inode->i_size, root->sectorsize);
2342 ret = find_first_non_hole(inode, &offset, &len);
2343 if (ret < 0)
2344 goto out_only_mutex;
2345 if (ret && !len) {
2346 /* Already in a large hole */
2347 ret = 0;
2348 goto out_only_mutex;
2349 }
2350
2351 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2352 lockend = round_down(offset + len,
2353 BTRFS_I(inode)->root->sectorsize) - 1;
2354 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2355 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2356 /*
2357 * We needn't truncate any block which is beyond the end of the file
2358 * because we are sure there is no data there.
2359 */
2360 /*
2361 * Only do this if we are in the same block and we aren't doing the
2362 * entire block.
2363 */
2364 if (same_block && len < root->sectorsize) {
2365 if (offset < ino_size) {
2366 truncated_block = true;
2367 ret = btrfs_truncate_block(inode, offset, len, 0);
2368 } else {
2369 ret = 0;
2370 }
2371 goto out_only_mutex;
2372 }
2373
2374 /* zero back part of the first block */
2375 if (offset < ino_size) {
2376 truncated_block = true;
2377 ret = btrfs_truncate_block(inode, offset, 0, 0);
2378 if (ret) {
2379 inode_unlock(inode);
2380 return ret;
2381 }
2382 }
2383
2384 /* Check the aligned pages after the first unaligned page,
2385 * if offset != orig_start, which means the first unaligned page
2386 * including several following pages are already in holes,
2387 * the extra check can be skipped */
2388 if (offset == orig_start) {
2389 /* after truncate page, check hole again */
2390 len = offset + len - lockstart;
2391 offset = lockstart;
2392 ret = find_first_non_hole(inode, &offset, &len);
2393 if (ret < 0)
2394 goto out_only_mutex;
2395 if (ret && !len) {
2396 ret = 0;
2397 goto out_only_mutex;
2398 }
2399 lockstart = offset;
2400 }
2401
2402 /* Check the tail unaligned part is in a hole */
2403 tail_start = lockend + 1;
2404 tail_len = offset + len - tail_start;
2405 if (tail_len) {
2406 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2407 if (unlikely(ret < 0))
2408 goto out_only_mutex;
2409 if (!ret) {
2410 /* zero the front end of the last page */
2411 if (tail_start + tail_len < ino_size) {
2412 truncated_block = true;
2413 ret = btrfs_truncate_block(inode,
2414 tail_start + tail_len,
2415 0, 1);
2416 if (ret)
2417 goto out_only_mutex;
2418 }
2419 }
2420 }
2421
2422 if (lockend < lockstart) {
2423 ret = 0;
2424 goto out_only_mutex;
2425 }
2426
2427 while (1) {
2428 struct btrfs_ordered_extent *ordered;
2429
2430 truncate_pagecache_range(inode, lockstart, lockend);
2431
2432 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2433 &cached_state);
2434 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2435
2436 /*
2437 * We need to make sure we have no ordered extents in this range
2438 * and nobody raced in and read a page in this range, if we did
2439 * we need to try again.
2440 */
2441 if ((!ordered ||
2442 (ordered->file_offset + ordered->len <= lockstart ||
2443 ordered->file_offset > lockend)) &&
2444 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2445 if (ordered)
2446 btrfs_put_ordered_extent(ordered);
2447 break;
2448 }
2449 if (ordered)
2450 btrfs_put_ordered_extent(ordered);
2451 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2452 lockend, &cached_state, GFP_NOFS);
2453 ret = btrfs_wait_ordered_range(inode, lockstart,
2454 lockend - lockstart + 1);
2455 if (ret) {
2456 inode_unlock(inode);
2457 return ret;
2458 }
2459 }
2460
2461 path = btrfs_alloc_path();
2462 if (!path) {
2463 ret = -ENOMEM;
2464 goto out;
2465 }
2466
2467 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2468 if (!rsv) {
2469 ret = -ENOMEM;
2470 goto out_free;
2471 }
2472 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2473 rsv->failfast = 1;
2474
2475 /*
2476 * 1 - update the inode
2477 * 1 - removing the extents in the range
2478 * 1 - adding the hole extent if no_holes isn't set
2479 */
2480 rsv_count = no_holes ? 2 : 3;
2481 trans = btrfs_start_transaction(root, rsv_count);
2482 if (IS_ERR(trans)) {
2483 err = PTR_ERR(trans);
2484 goto out_free;
2485 }
2486
2487 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2488 min_size, 0);
2489 BUG_ON(ret);
2490 trans->block_rsv = rsv;
2491
2492 cur_offset = lockstart;
2493 len = lockend - cur_offset;
2494 while (cur_offset < lockend) {
2495 ret = __btrfs_drop_extents(trans, root, inode, path,
2496 cur_offset, lockend + 1,
2497 &drop_end, 1, 0, 0, NULL);
2498 if (ret != -ENOSPC)
2499 break;
2500
2501 trans->block_rsv = &root->fs_info->trans_block_rsv;
2502
2503 if (cur_offset < ino_size) {
2504 ret = fill_holes(trans, inode, path, cur_offset,
2505 drop_end);
2506 if (ret) {
2507 err = ret;
2508 break;
2509 }
2510 }
2511
2512 cur_offset = drop_end;
2513
2514 ret = btrfs_update_inode(trans, root, inode);
2515 if (ret) {
2516 err = ret;
2517 break;
2518 }
2519
2520 btrfs_end_transaction(trans, root);
2521 btrfs_btree_balance_dirty(root);
2522
2523 trans = btrfs_start_transaction(root, rsv_count);
2524 if (IS_ERR(trans)) {
2525 ret = PTR_ERR(trans);
2526 trans = NULL;
2527 break;
2528 }
2529
2530 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2531 rsv, min_size, 0);
2532 BUG_ON(ret); /* shouldn't happen */
2533 trans->block_rsv = rsv;
2534
2535 ret = find_first_non_hole(inode, &cur_offset, &len);
2536 if (unlikely(ret < 0))
2537 break;
2538 if (ret && !len) {
2539 ret = 0;
2540 break;
2541 }
2542 }
2543
2544 if (ret) {
2545 err = ret;
2546 goto out_trans;
2547 }
2548
2549 trans->block_rsv = &root->fs_info->trans_block_rsv;
2550 /*
2551 * If we are using the NO_HOLES feature we might have had already an
2552 * hole that overlaps a part of the region [lockstart, lockend] and
2553 * ends at (or beyond) lockend. Since we have no file extent items to
2554 * represent holes, drop_end can be less than lockend and so we must
2555 * make sure we have an extent map representing the existing hole (the
2556 * call to __btrfs_drop_extents() might have dropped the existing extent
2557 * map representing the existing hole), otherwise the fast fsync path
2558 * will not record the existence of the hole region
2559 * [existing_hole_start, lockend].
2560 */
2561 if (drop_end <= lockend)
2562 drop_end = lockend + 1;
2563 /*
2564 * Don't insert file hole extent item if it's for a range beyond eof
2565 * (because it's useless) or if it represents a 0 bytes range (when
2566 * cur_offset == drop_end).
2567 */
2568 if (cur_offset < ino_size && cur_offset < drop_end) {
2569 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2570 if (ret) {
2571 err = ret;
2572 goto out_trans;
2573 }
2574 }
2575
2576 out_trans:
2577 if (!trans)
2578 goto out_free;
2579
2580 inode_inc_iversion(inode);
2581 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2582
2583 trans->block_rsv = &root->fs_info->trans_block_rsv;
2584 ret = btrfs_update_inode(trans, root, inode);
2585 updated_inode = true;
2586 btrfs_end_transaction(trans, root);
2587 btrfs_btree_balance_dirty(root);
2588 out_free:
2589 btrfs_free_path(path);
2590 btrfs_free_block_rsv(root, rsv);
2591 out:
2592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2593 &cached_state, GFP_NOFS);
2594 out_only_mutex:
2595 if (!updated_inode && truncated_block && !ret && !err) {
2596 /*
2597 * If we only end up zeroing part of a page, we still need to
2598 * update the inode item, so that all the time fields are
2599 * updated as well as the necessary btrfs inode in memory fields
2600 * for detecting, at fsync time, if the inode isn't yet in the
2601 * log tree or it's there but not up to date.
2602 */
2603 trans = btrfs_start_transaction(root, 1);
2604 if (IS_ERR(trans)) {
2605 err = PTR_ERR(trans);
2606 } else {
2607 err = btrfs_update_inode(trans, root, inode);
2608 ret = btrfs_end_transaction(trans, root);
2609 }
2610 }
2611 inode_unlock(inode);
2612 if (ret && !err)
2613 err = ret;
2614 return err;
2615 }
2616
2617 /* Helper structure to record which range is already reserved */
2618 struct falloc_range {
2619 struct list_head list;
2620 u64 start;
2621 u64 len;
2622 };
2623
2624 /*
2625 * Helper function to add falloc range
2626 *
2627 * Caller should have locked the larger range of extent containing
2628 * [start, len)
2629 */
2630 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2631 {
2632 struct falloc_range *prev = NULL;
2633 struct falloc_range *range = NULL;
2634
2635 if (list_empty(head))
2636 goto insert;
2637
2638 /*
2639 * As fallocate iterate by bytenr order, we only need to check
2640 * the last range.
2641 */
2642 prev = list_entry(head->prev, struct falloc_range, list);
2643 if (prev->start + prev->len == start) {
2644 prev->len += len;
2645 return 0;
2646 }
2647 insert:
2648 range = kmalloc(sizeof(*range), GFP_KERNEL);
2649 if (!range)
2650 return -ENOMEM;
2651 range->start = start;
2652 range->len = len;
2653 list_add_tail(&range->list, head);
2654 return 0;
2655 }
2656
2657 static long btrfs_fallocate(struct file *file, int mode,
2658 loff_t offset, loff_t len)
2659 {
2660 struct inode *inode = file_inode(file);
2661 struct extent_state *cached_state = NULL;
2662 struct falloc_range *range;
2663 struct falloc_range *tmp;
2664 struct list_head reserve_list;
2665 u64 cur_offset;
2666 u64 last_byte;
2667 u64 alloc_start;
2668 u64 alloc_end;
2669 u64 alloc_hint = 0;
2670 u64 locked_end;
2671 u64 actual_end = 0;
2672 struct extent_map *em;
2673 int blocksize = BTRFS_I(inode)->root->sectorsize;
2674 int ret;
2675
2676 alloc_start = round_down(offset, blocksize);
2677 alloc_end = round_up(offset + len, blocksize);
2678 cur_offset = alloc_start;
2679
2680 /* Make sure we aren't being give some crap mode */
2681 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2682 return -EOPNOTSUPP;
2683
2684 if (mode & FALLOC_FL_PUNCH_HOLE)
2685 return btrfs_punch_hole(inode, offset, len);
2686
2687 /*
2688 * Only trigger disk allocation, don't trigger qgroup reserve
2689 *
2690 * For qgroup space, it will be checked later.
2691 */
2692 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2693 if (ret < 0)
2694 return ret;
2695
2696 inode_lock(inode);
2697
2698 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2699 ret = inode_newsize_ok(inode, offset + len);
2700 if (ret)
2701 goto out;
2702 }
2703
2704 /*
2705 * TODO: Move these two operations after we have checked
2706 * accurate reserved space, or fallocate can still fail but
2707 * with page truncated or size expanded.
2708 *
2709 * But that's a minor problem and won't do much harm BTW.
2710 */
2711 if (alloc_start > inode->i_size) {
2712 ret = btrfs_cont_expand(inode, i_size_read(inode),
2713 alloc_start);
2714 if (ret)
2715 goto out;
2716 } else if (offset + len > inode->i_size) {
2717 /*
2718 * If we are fallocating from the end of the file onward we
2719 * need to zero out the end of the block if i_size lands in the
2720 * middle of a block.
2721 */
2722 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2723 if (ret)
2724 goto out;
2725 }
2726
2727 /*
2728 * wait for ordered IO before we have any locks. We'll loop again
2729 * below with the locks held.
2730 */
2731 ret = btrfs_wait_ordered_range(inode, alloc_start,
2732 alloc_end - alloc_start);
2733 if (ret)
2734 goto out;
2735
2736 locked_end = alloc_end - 1;
2737 while (1) {
2738 struct btrfs_ordered_extent *ordered;
2739
2740 /* the extent lock is ordered inside the running
2741 * transaction
2742 */
2743 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2744 locked_end, &cached_state);
2745 ordered = btrfs_lookup_first_ordered_extent(inode,
2746 alloc_end - 1);
2747 if (ordered &&
2748 ordered->file_offset + ordered->len > alloc_start &&
2749 ordered->file_offset < alloc_end) {
2750 btrfs_put_ordered_extent(ordered);
2751 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2752 alloc_start, locked_end,
2753 &cached_state, GFP_KERNEL);
2754 /*
2755 * we can't wait on the range with the transaction
2756 * running or with the extent lock held
2757 */
2758 ret = btrfs_wait_ordered_range(inode, alloc_start,
2759 alloc_end - alloc_start);
2760 if (ret)
2761 goto out;
2762 } else {
2763 if (ordered)
2764 btrfs_put_ordered_extent(ordered);
2765 break;
2766 }
2767 }
2768
2769 /* First, check if we exceed the qgroup limit */
2770 INIT_LIST_HEAD(&reserve_list);
2771 while (1) {
2772 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2773 alloc_end - cur_offset, 0);
2774 if (IS_ERR_OR_NULL(em)) {
2775 if (!em)
2776 ret = -ENOMEM;
2777 else
2778 ret = PTR_ERR(em);
2779 break;
2780 }
2781 last_byte = min(extent_map_end(em), alloc_end);
2782 actual_end = min_t(u64, extent_map_end(em), offset + len);
2783 last_byte = ALIGN(last_byte, blocksize);
2784 if (em->block_start == EXTENT_MAP_HOLE ||
2785 (cur_offset >= inode->i_size &&
2786 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2787 ret = add_falloc_range(&reserve_list, cur_offset,
2788 last_byte - cur_offset);
2789 if (ret < 0) {
2790 free_extent_map(em);
2791 break;
2792 }
2793 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2794 last_byte - cur_offset);
2795 if (ret < 0)
2796 break;
2797 } else {
2798 /*
2799 * Do not need to reserve unwritten extent for this
2800 * range, free reserved data space first, otherwise
2801 * it'll result in false ENOSPC error.
2802 */
2803 btrfs_free_reserved_data_space(inode, cur_offset,
2804 last_byte - cur_offset);
2805 }
2806 free_extent_map(em);
2807 cur_offset = last_byte;
2808 if (cur_offset >= alloc_end)
2809 break;
2810 }
2811
2812 /*
2813 * If ret is still 0, means we're OK to fallocate.
2814 * Or just cleanup the list and exit.
2815 */
2816 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2817 if (!ret)
2818 ret = btrfs_prealloc_file_range(inode, mode,
2819 range->start,
2820 range->len, 1 << inode->i_blkbits,
2821 offset + len, &alloc_hint);
2822 else
2823 btrfs_free_reserved_data_space(inode, range->start,
2824 range->len);
2825 list_del(&range->list);
2826 kfree(range);
2827 }
2828 if (ret < 0)
2829 goto out_unlock;
2830
2831 if (actual_end > inode->i_size &&
2832 !(mode & FALLOC_FL_KEEP_SIZE)) {
2833 struct btrfs_trans_handle *trans;
2834 struct btrfs_root *root = BTRFS_I(inode)->root;
2835
2836 /*
2837 * We didn't need to allocate any more space, but we
2838 * still extended the size of the file so we need to
2839 * update i_size and the inode item.
2840 */
2841 trans = btrfs_start_transaction(root, 1);
2842 if (IS_ERR(trans)) {
2843 ret = PTR_ERR(trans);
2844 } else {
2845 inode->i_ctime = current_fs_time(inode->i_sb);
2846 i_size_write(inode, actual_end);
2847 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2848 ret = btrfs_update_inode(trans, root, inode);
2849 if (ret)
2850 btrfs_end_transaction(trans, root);
2851 else
2852 ret = btrfs_end_transaction(trans, root);
2853 }
2854 }
2855 out_unlock:
2856 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2857 &cached_state, GFP_KERNEL);
2858 out:
2859 inode_unlock(inode);
2860 /* Let go of our reservation. */
2861 if (ret != 0)
2862 btrfs_free_reserved_data_space(inode, alloc_start,
2863 alloc_end - cur_offset);
2864 return ret;
2865 }
2866
2867 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2868 {
2869 struct btrfs_root *root = BTRFS_I(inode)->root;
2870 struct extent_map *em = NULL;
2871 struct extent_state *cached_state = NULL;
2872 u64 lockstart;
2873 u64 lockend;
2874 u64 start;
2875 u64 len;
2876 int ret = 0;
2877
2878 if (inode->i_size == 0)
2879 return -ENXIO;
2880
2881 /*
2882 * *offset can be negative, in this case we start finding DATA/HOLE from
2883 * the very start of the file.
2884 */
2885 start = max_t(loff_t, 0, *offset);
2886
2887 lockstart = round_down(start, root->sectorsize);
2888 lockend = round_up(i_size_read(inode), root->sectorsize);
2889 if (lockend <= lockstart)
2890 lockend = lockstart + root->sectorsize;
2891 lockend--;
2892 len = lockend - lockstart + 1;
2893
2894 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2895 &cached_state);
2896
2897 while (start < inode->i_size) {
2898 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2899 if (IS_ERR(em)) {
2900 ret = PTR_ERR(em);
2901 em = NULL;
2902 break;
2903 }
2904
2905 if (whence == SEEK_HOLE &&
2906 (em->block_start == EXTENT_MAP_HOLE ||
2907 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2908 break;
2909 else if (whence == SEEK_DATA &&
2910 (em->block_start != EXTENT_MAP_HOLE &&
2911 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2912 break;
2913
2914 start = em->start + em->len;
2915 free_extent_map(em);
2916 em = NULL;
2917 cond_resched();
2918 }
2919 free_extent_map(em);
2920 if (!ret) {
2921 if (whence == SEEK_DATA && start >= inode->i_size)
2922 ret = -ENXIO;
2923 else
2924 *offset = min_t(loff_t, start, inode->i_size);
2925 }
2926 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2927 &cached_state, GFP_NOFS);
2928 return ret;
2929 }
2930
2931 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2932 {
2933 struct inode *inode = file->f_mapping->host;
2934 int ret;
2935
2936 inode_lock(inode);
2937 switch (whence) {
2938 case SEEK_END:
2939 case SEEK_CUR:
2940 offset = generic_file_llseek(file, offset, whence);
2941 goto out;
2942 case SEEK_DATA:
2943 case SEEK_HOLE:
2944 if (offset >= i_size_read(inode)) {
2945 inode_unlock(inode);
2946 return -ENXIO;
2947 }
2948
2949 ret = find_desired_extent(inode, &offset, whence);
2950 if (ret) {
2951 inode_unlock(inode);
2952 return ret;
2953 }
2954 }
2955
2956 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2957 out:
2958 inode_unlock(inode);
2959 return offset;
2960 }
2961
2962 const struct file_operations btrfs_file_operations = {
2963 .llseek = btrfs_file_llseek,
2964 .read_iter = generic_file_read_iter,
2965 .splice_read = generic_file_splice_read,
2966 .write_iter = btrfs_file_write_iter,
2967 .mmap = btrfs_file_mmap,
2968 .open = generic_file_open,
2969 .release = btrfs_release_file,
2970 .fsync = btrfs_sync_file,
2971 .fallocate = btrfs_fallocate,
2972 .unlocked_ioctl = btrfs_ioctl,
2973 #ifdef CONFIG_COMPAT
2974 .compat_ioctl = btrfs_compat_ioctl,
2975 #endif
2976 .copy_file_range = btrfs_copy_file_range,
2977 .clone_file_range = btrfs_clone_file_range,
2978 .dedupe_file_range = btrfs_dedupe_file_range,
2979 };
2980
2981 void btrfs_auto_defrag_exit(void)
2982 {
2983 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2984 }
2985
2986 int btrfs_auto_defrag_init(void)
2987 {
2988 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2989 sizeof(struct inode_defrag), 0,
2990 SLAB_MEM_SPREAD,
2991 NULL);
2992 if (!btrfs_inode_defrag_cachep)
2993 return -ENOMEM;
2994
2995 return 0;
2996 }
2997
2998 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2999 {
3000 int ret;
3001
3002 /*
3003 * So with compression we will find and lock a dirty page and clear the
3004 * first one as dirty, setup an async extent, and immediately return
3005 * with the entire range locked but with nobody actually marked with
3006 * writeback. So we can't just filemap_write_and_wait_range() and
3007 * expect it to work since it will just kick off a thread to do the
3008 * actual work. So we need to call filemap_fdatawrite_range _again_
3009 * since it will wait on the page lock, which won't be unlocked until
3010 * after the pages have been marked as writeback and so we're good to go
3011 * from there. We have to do this otherwise we'll miss the ordered
3012 * extents and that results in badness. Please Josef, do not think you
3013 * know better and pull this out at some point in the future, it is
3014 * right and you are wrong.
3015 */
3016 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3017 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3018 &BTRFS_I(inode)->runtime_flags))
3019 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3020
3021 return ret;
3022 }
This page took 0.182038 seconds and 5 git commands to generate.