Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / fs / btrfs / inode-map.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
22
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
28
29 static int caching_kthread(void *data)
30 {
31 struct btrfs_root *root = data;
32 struct btrfs_fs_info *fs_info = root->fs_info;
33 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34 struct btrfs_key key;
35 struct btrfs_path *path;
36 struct extent_buffer *leaf;
37 u64 last = (u64)-1;
38 int slot;
39 int ret;
40
41 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
42 return 0;
43
44 path = btrfs_alloc_path();
45 if (!path)
46 return -ENOMEM;
47
48 /* Since the commit root is read-only, we can safely skip locking. */
49 path->skip_locking = 1;
50 path->search_commit_root = 1;
51 path->reada = READA_FORWARD;
52
53 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54 key.offset = 0;
55 key.type = BTRFS_INODE_ITEM_KEY;
56 again:
57 /* need to make sure the commit_root doesn't disappear */
58 down_read(&fs_info->commit_root_sem);
59
60 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61 if (ret < 0)
62 goto out;
63
64 while (1) {
65 if (btrfs_fs_closing(fs_info))
66 goto out;
67
68 leaf = path->nodes[0];
69 slot = path->slots[0];
70 if (slot >= btrfs_header_nritems(leaf)) {
71 ret = btrfs_next_leaf(root, path);
72 if (ret < 0)
73 goto out;
74 else if (ret > 0)
75 break;
76
77 if (need_resched() ||
78 btrfs_transaction_in_commit(fs_info)) {
79 leaf = path->nodes[0];
80
81 if (WARN_ON(btrfs_header_nritems(leaf) == 0))
82 break;
83
84 /*
85 * Save the key so we can advances forward
86 * in the next search.
87 */
88 btrfs_item_key_to_cpu(leaf, &key, 0);
89 btrfs_release_path(path);
90 root->ino_cache_progress = last;
91 up_read(&fs_info->commit_root_sem);
92 schedule_timeout(1);
93 goto again;
94 } else
95 continue;
96 }
97
98 btrfs_item_key_to_cpu(leaf, &key, slot);
99
100 if (key.type != BTRFS_INODE_ITEM_KEY)
101 goto next;
102
103 if (key.objectid >= root->highest_objectid)
104 break;
105
106 if (last != (u64)-1 && last + 1 != key.objectid) {
107 __btrfs_add_free_space(ctl, last + 1,
108 key.objectid - last - 1);
109 wake_up(&root->ino_cache_wait);
110 }
111
112 last = key.objectid;
113 next:
114 path->slots[0]++;
115 }
116
117 if (last < root->highest_objectid - 1) {
118 __btrfs_add_free_space(ctl, last + 1,
119 root->highest_objectid - last - 1);
120 }
121
122 spin_lock(&root->ino_cache_lock);
123 root->ino_cache_state = BTRFS_CACHE_FINISHED;
124 spin_unlock(&root->ino_cache_lock);
125
126 root->ino_cache_progress = (u64)-1;
127 btrfs_unpin_free_ino(root);
128 out:
129 wake_up(&root->ino_cache_wait);
130 up_read(&fs_info->commit_root_sem);
131
132 btrfs_free_path(path);
133
134 return ret;
135 }
136
137 static void start_caching(struct btrfs_root *root)
138 {
139 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
140 struct task_struct *tsk;
141 int ret;
142 u64 objectid;
143
144 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
145 return;
146
147 spin_lock(&root->ino_cache_lock);
148 if (root->ino_cache_state != BTRFS_CACHE_NO) {
149 spin_unlock(&root->ino_cache_lock);
150 return;
151 }
152
153 root->ino_cache_state = BTRFS_CACHE_STARTED;
154 spin_unlock(&root->ino_cache_lock);
155
156 ret = load_free_ino_cache(root->fs_info, root);
157 if (ret == 1) {
158 spin_lock(&root->ino_cache_lock);
159 root->ino_cache_state = BTRFS_CACHE_FINISHED;
160 spin_unlock(&root->ino_cache_lock);
161 return;
162 }
163
164 /*
165 * It can be quite time-consuming to fill the cache by searching
166 * through the extent tree, and this can keep ino allocation path
167 * waiting. Therefore at start we quickly find out the highest
168 * inode number and we know we can use inode numbers which fall in
169 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
170 */
171 ret = btrfs_find_free_objectid(root, &objectid);
172 if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
173 __btrfs_add_free_space(ctl, objectid,
174 BTRFS_LAST_FREE_OBJECTID - objectid + 1);
175 }
176
177 tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
178 root->root_key.objectid);
179 if (IS_ERR(tsk)) {
180 btrfs_warn(root->fs_info, "failed to start inode caching task");
181 btrfs_clear_pending_and_info(root->fs_info, INODE_MAP_CACHE,
182 "disabling inode map caching");
183 }
184 }
185
186 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
187 {
188 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
189 return btrfs_find_free_objectid(root, objectid);
190
191 again:
192 *objectid = btrfs_find_ino_for_alloc(root);
193
194 if (*objectid != 0)
195 return 0;
196
197 start_caching(root);
198
199 wait_event(root->ino_cache_wait,
200 root->ino_cache_state == BTRFS_CACHE_FINISHED ||
201 root->free_ino_ctl->free_space > 0);
202
203 if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
204 root->free_ino_ctl->free_space == 0)
205 return -ENOSPC;
206 else
207 goto again;
208 }
209
210 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
211 {
212 struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
213
214 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
215 return;
216 again:
217 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
218 __btrfs_add_free_space(pinned, objectid, 1);
219 } else {
220 down_write(&root->fs_info->commit_root_sem);
221 spin_lock(&root->ino_cache_lock);
222 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
223 spin_unlock(&root->ino_cache_lock);
224 up_write(&root->fs_info->commit_root_sem);
225 goto again;
226 }
227 spin_unlock(&root->ino_cache_lock);
228
229 start_caching(root);
230
231 __btrfs_add_free_space(pinned, objectid, 1);
232
233 up_write(&root->fs_info->commit_root_sem);
234 }
235 }
236
237 /*
238 * When a transaction is committed, we'll move those inode numbers which are
239 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
240 * others will just be dropped, because the commit root we were searching has
241 * changed.
242 *
243 * Must be called with root->fs_info->commit_root_sem held
244 */
245 void btrfs_unpin_free_ino(struct btrfs_root *root)
246 {
247 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
248 struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
249 spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
250 struct btrfs_free_space *info;
251 struct rb_node *n;
252 u64 count;
253
254 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
255 return;
256
257 while (1) {
258 bool add_to_ctl = true;
259
260 spin_lock(rbroot_lock);
261 n = rb_first(rbroot);
262 if (!n) {
263 spin_unlock(rbroot_lock);
264 break;
265 }
266
267 info = rb_entry(n, struct btrfs_free_space, offset_index);
268 BUG_ON(info->bitmap); /* Logic error */
269
270 if (info->offset > root->ino_cache_progress)
271 add_to_ctl = false;
272 else if (info->offset + info->bytes > root->ino_cache_progress)
273 count = root->ino_cache_progress - info->offset + 1;
274 else
275 count = info->bytes;
276
277 rb_erase(&info->offset_index, rbroot);
278 spin_unlock(rbroot_lock);
279 if (add_to_ctl)
280 __btrfs_add_free_space(ctl, info->offset, count);
281 kmem_cache_free(btrfs_free_space_cachep, info);
282 }
283 }
284
285 #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
286 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
287
288 /*
289 * The goal is to keep the memory used by the free_ino tree won't
290 * exceed the memory if we use bitmaps only.
291 */
292 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
293 {
294 struct btrfs_free_space *info;
295 struct rb_node *n;
296 int max_ino;
297 int max_bitmaps;
298
299 n = rb_last(&ctl->free_space_offset);
300 if (!n) {
301 ctl->extents_thresh = INIT_THRESHOLD;
302 return;
303 }
304 info = rb_entry(n, struct btrfs_free_space, offset_index);
305
306 /*
307 * Find the maximum inode number in the filesystem. Note we
308 * ignore the fact that this can be a bitmap, because we are
309 * not doing precise calculation.
310 */
311 max_ino = info->bytes - 1;
312
313 max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
314 if (max_bitmaps <= ctl->total_bitmaps) {
315 ctl->extents_thresh = 0;
316 return;
317 }
318
319 ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
320 PAGE_SIZE / sizeof(*info);
321 }
322
323 /*
324 * We don't fall back to bitmap, if we are below the extents threshold
325 * or this chunk of inode numbers is a big one.
326 */
327 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
328 struct btrfs_free_space *info)
329 {
330 if (ctl->free_extents < ctl->extents_thresh ||
331 info->bytes > INODES_PER_BITMAP / 10)
332 return false;
333
334 return true;
335 }
336
337 static const struct btrfs_free_space_op free_ino_op = {
338 .recalc_thresholds = recalculate_thresholds,
339 .use_bitmap = use_bitmap,
340 };
341
342 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
343 {
344 }
345
346 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
347 struct btrfs_free_space *info)
348 {
349 /*
350 * We always use extents for two reasons:
351 *
352 * - The pinned tree is only used during the process of caching
353 * work.
354 * - Make code simpler. See btrfs_unpin_free_ino().
355 */
356 return false;
357 }
358
359 static const struct btrfs_free_space_op pinned_free_ino_op = {
360 .recalc_thresholds = pinned_recalc_thresholds,
361 .use_bitmap = pinned_use_bitmap,
362 };
363
364 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
365 {
366 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
367 struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
368
369 spin_lock_init(&ctl->tree_lock);
370 ctl->unit = 1;
371 ctl->start = 0;
372 ctl->private = NULL;
373 ctl->op = &free_ino_op;
374 INIT_LIST_HEAD(&ctl->trimming_ranges);
375 mutex_init(&ctl->cache_writeout_mutex);
376
377 /*
378 * Initially we allow to use 16K of ram to cache chunks of
379 * inode numbers before we resort to bitmaps. This is somewhat
380 * arbitrary, but it will be adjusted in runtime.
381 */
382 ctl->extents_thresh = INIT_THRESHOLD;
383
384 spin_lock_init(&pinned->tree_lock);
385 pinned->unit = 1;
386 pinned->start = 0;
387 pinned->private = NULL;
388 pinned->extents_thresh = 0;
389 pinned->op = &pinned_free_ino_op;
390 }
391
392 int btrfs_save_ino_cache(struct btrfs_root *root,
393 struct btrfs_trans_handle *trans)
394 {
395 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
396 struct btrfs_path *path;
397 struct inode *inode;
398 struct btrfs_block_rsv *rsv;
399 u64 num_bytes;
400 u64 alloc_hint = 0;
401 int ret;
402 int prealloc;
403 bool retry = false;
404
405 /* only fs tree and subvol/snap needs ino cache */
406 if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
407 (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
408 root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
409 return 0;
410
411 /* Don't save inode cache if we are deleting this root */
412 if (btrfs_root_refs(&root->root_item) == 0)
413 return 0;
414
415 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
416 return 0;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 return -ENOMEM;
421
422 rsv = trans->block_rsv;
423 trans->block_rsv = &root->fs_info->trans_block_rsv;
424
425 num_bytes = trans->bytes_reserved;
426 /*
427 * 1 item for inode item insertion if need
428 * 4 items for inode item update (in the worst case)
429 * 1 items for slack space if we need do truncation
430 * 1 item for free space object
431 * 3 items for pre-allocation
432 */
433 trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
434 ret = btrfs_block_rsv_add(root, trans->block_rsv,
435 trans->bytes_reserved,
436 BTRFS_RESERVE_NO_FLUSH);
437 if (ret)
438 goto out;
439 trace_btrfs_space_reservation(root->fs_info, "ino_cache",
440 trans->transid, trans->bytes_reserved, 1);
441 again:
442 inode = lookup_free_ino_inode(root, path);
443 if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
444 ret = PTR_ERR(inode);
445 goto out_release;
446 }
447
448 if (IS_ERR(inode)) {
449 BUG_ON(retry); /* Logic error */
450 retry = true;
451
452 ret = create_free_ino_inode(root, trans, path);
453 if (ret)
454 goto out_release;
455 goto again;
456 }
457
458 BTRFS_I(inode)->generation = 0;
459 ret = btrfs_update_inode(trans, root, inode);
460 if (ret) {
461 btrfs_abort_transaction(trans, ret);
462 goto out_put;
463 }
464
465 if (i_size_read(inode) > 0) {
466 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
467 if (ret) {
468 if (ret != -ENOSPC)
469 btrfs_abort_transaction(trans, ret);
470 goto out_put;
471 }
472 }
473
474 spin_lock(&root->ino_cache_lock);
475 if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
476 ret = -1;
477 spin_unlock(&root->ino_cache_lock);
478 goto out_put;
479 }
480 spin_unlock(&root->ino_cache_lock);
481
482 spin_lock(&ctl->tree_lock);
483 prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
484 prealloc = ALIGN(prealloc, PAGE_SIZE);
485 prealloc += ctl->total_bitmaps * PAGE_SIZE;
486 spin_unlock(&ctl->tree_lock);
487
488 /* Just to make sure we have enough space */
489 prealloc += 8 * PAGE_SIZE;
490
491 ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
492 if (ret)
493 goto out_put;
494
495 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
496 prealloc, prealloc, &alloc_hint);
497 if (ret) {
498 btrfs_delalloc_release_metadata(inode, prealloc);
499 goto out_put;
500 }
501
502 ret = btrfs_write_out_ino_cache(root, trans, path, inode);
503 out_put:
504 iput(inode);
505 out_release:
506 trace_btrfs_space_reservation(root->fs_info, "ino_cache",
507 trans->transid, trans->bytes_reserved, 0);
508 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
509 out:
510 trans->block_rsv = rsv;
511 trans->bytes_reserved = num_bytes;
512
513 btrfs_free_path(path);
514 return ret;
515 }
516
517 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
518 {
519 struct btrfs_path *path;
520 int ret;
521 struct extent_buffer *l;
522 struct btrfs_key search_key;
523 struct btrfs_key found_key;
524 int slot;
525
526 path = btrfs_alloc_path();
527 if (!path)
528 return -ENOMEM;
529
530 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
531 search_key.type = -1;
532 search_key.offset = (u64)-1;
533 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
534 if (ret < 0)
535 goto error;
536 BUG_ON(ret == 0); /* Corruption */
537 if (path->slots[0] > 0) {
538 slot = path->slots[0] - 1;
539 l = path->nodes[0];
540 btrfs_item_key_to_cpu(l, &found_key, slot);
541 *objectid = max_t(u64, found_key.objectid,
542 BTRFS_FIRST_FREE_OBJECTID - 1);
543 } else {
544 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
545 }
546 ret = 0;
547 error:
548 btrfs_free_path(path);
549 return ret;
550 }
551
552 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
553 {
554 int ret;
555 mutex_lock(&root->objectid_mutex);
556
557 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
558 btrfs_warn(root->fs_info,
559 "the objectid of root %llu reaches its highest value",
560 root->root_key.objectid);
561 ret = -ENOSPC;
562 goto out;
563 }
564
565 *objectid = ++root->highest_objectid;
566 ret = 0;
567 out:
568 mutex_unlock(&root->objectid_mutex);
569 return ret;
570 }
This page took 0.042809 seconds and 5 git commands to generate.