b2a2da5893af5273313b3fc45765801831ce5d91
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105
106 /*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130 else if (flags & BTRFS_INODE_COMPRESS)
131 iflags |= FS_COMPR_FL;
132
133 return iflags;
134 }
135
136 /*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158 }
159
160 /*
161 * Inherit flags from the parent inode.
162 *
163 * Currently only the compression flags and the cow flags are inherited.
164 */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 unsigned int flags;
168
169 if (!dir)
170 return;
171
172 flags = BTRFS_I(dir)->flags;
173
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 }
181
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 }
187
188 btrfs_update_iflags(inode);
189 }
190
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195
196 if (copy_to_user(arg, &flags, sizeof(flags)))
197 return -EFAULT;
198 return 0;
199 }
200
201 static int check_flags(unsigned int flags)
202 {
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
207 FS_NOCOW_FL))
208 return -EOPNOTSUPP;
209
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 return 0;
214 }
215
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assumptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_fs_time(inode->i_sb);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans, root);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366 }
367
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373 }
374
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
382 u64 num_devices = 0;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 int ret;
385
386 if (!capable(CAP_SYS_ADMIN))
387 return -EPERM;
388
389 rcu_read_lock();
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 dev_list) {
392 if (!device->bdev)
393 continue;
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
396 num_devices++;
397 minlen = min((u64)q->limits.discard_granularity,
398 minlen);
399 }
400 }
401 rcu_read_unlock();
402
403 if (!num_devices)
404 return -EOPNOTSUPP;
405 if (copy_from_user(&range, arg, sizeof(range)))
406 return -EFAULT;
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
409 return -EINVAL;
410
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 if (ret < 0)
415 return ret;
416
417 if (copy_to_user(arg, &range, sizeof(range)))
418 return -EFAULT;
419
420 return 0;
421 }
422
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 int i;
426
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 if (uuid[i])
429 return 0;
430 }
431 return 1;
432 }
433
434 static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
437 u64 *async_transid,
438 struct btrfs_qgroup_inherit *inherit)
439 {
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item *root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_fs_time(dir->i_sb);
449 struct inode *inode;
450 int ret;
451 int err;
452 u64 objectid;
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 u64 index = 0;
455 u64 qgroup_reserved;
456 uuid_le new_uuid;
457
458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
459 if (!root_item)
460 return -ENOMEM;
461
462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
463 if (ret)
464 goto fail_free;
465
466 /*
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
469 */
470 if (btrfs_qgroup_level(objectid)) {
471 ret = -ENOSPC;
472 goto fail_free;
473 }
474
475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
476 /*
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
479 */
480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 8, &qgroup_reserved, false);
482 if (ret)
483 goto fail_free;
484
485 trans = btrfs_start_transaction(root, 0);
486 if (IS_ERR(trans)) {
487 ret = PTR_ERR(trans);
488 btrfs_subvolume_release_metadata(root, &block_rsv,
489 qgroup_reserved);
490 goto fail_free;
491 }
492 trans->block_rsv = &block_rsv;
493 trans->bytes_reserved = block_rsv.size;
494
495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
496 if (ret)
497 goto fail;
498
499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
500 if (IS_ERR(leaf)) {
501 ret = PTR_ERR(leaf);
502 goto fail;
503 }
504
505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 btrfs_set_header_bytenr(leaf, leaf->start);
507 btrfs_set_header_generation(leaf, trans->transid);
508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 btrfs_set_header_owner(leaf, objectid);
510
511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
512 BTRFS_FSID_SIZE);
513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 btrfs_header_chunk_tree_uuid(leaf),
515 BTRFS_UUID_SIZE);
516 btrfs_mark_buffer_dirty(leaf);
517
518 inode_item = &root_item->inode;
519 btrfs_set_stack_inode_generation(inode_item, 1);
520 btrfs_set_stack_inode_size(inode_item, 3);
521 btrfs_set_stack_inode_nlink(inode_item, 1);
522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524
525 btrfs_set_root_flags(root_item, 0);
526 btrfs_set_root_limit(root_item, 0);
527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528
529 btrfs_set_root_bytenr(root_item, leaf->start);
530 btrfs_set_root_generation(root_item, trans->transid);
531 btrfs_set_root_level(root_item, 0);
532 btrfs_set_root_refs(root_item, 1);
533 btrfs_set_root_used(root_item, leaf->len);
534 btrfs_set_root_last_snapshot(root_item, 0);
535
536 btrfs_set_root_generation_v2(root_item,
537 btrfs_root_generation(root_item));
538 uuid_le_gen(&new_uuid);
539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 root_item->ctime = root_item->otime;
543 btrfs_set_root_ctransid(root_item, trans->transid);
544 btrfs_set_root_otransid(root_item, trans->transid);
545
546 btrfs_tree_unlock(leaf);
547 free_extent_buffer(leaf);
548 leaf = NULL;
549
550 btrfs_set_root_dirid(root_item, new_dirid);
551
552 key.objectid = objectid;
553 key.offset = 0;
554 key.type = BTRFS_ROOT_ITEM_KEY;
555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
556 root_item);
557 if (ret)
558 goto fail;
559
560 key.offset = (u64)-1;
561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 if (IS_ERR(new_root)) {
563 ret = PTR_ERR(new_root);
564 btrfs_abort_transaction(trans, ret);
565 goto fail;
566 }
567
568 btrfs_record_root_in_trans(trans, new_root);
569
570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 if (ret) {
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans, ret);
574 goto fail;
575 }
576
577 mutex_lock(&new_root->objectid_mutex);
578 new_root->highest_objectid = new_dirid;
579 mutex_unlock(&new_root->objectid_mutex);
580
581 /*
582 * insert the directory item
583 */
584 ret = btrfs_set_inode_index(dir, &index);
585 if (ret) {
586 btrfs_abort_transaction(trans, ret);
587 goto fail;
588 }
589
590 ret = btrfs_insert_dir_item(trans, root,
591 name, namelen, dir, &key,
592 BTRFS_FT_DIR, index);
593 if (ret) {
594 btrfs_abort_transaction(trans, ret);
595 goto fail;
596 }
597
598 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 ret = btrfs_update_inode(trans, root, dir);
600 BUG_ON(ret);
601
602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 objectid, root->root_key.objectid,
604 btrfs_ino(dir), index, name, namelen);
605 BUG_ON(ret);
606
607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
609 objectid);
610 if (ret)
611 btrfs_abort_transaction(trans, ret);
612
613 fail:
614 kfree(root_item);
615 trans->block_rsv = NULL;
616 trans->bytes_reserved = 0;
617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
618
619 if (async_transid) {
620 *async_transid = trans->transid;
621 err = btrfs_commit_transaction_async(trans, root, 1);
622 if (err)
623 err = btrfs_commit_transaction(trans, root);
624 } else {
625 err = btrfs_commit_transaction(trans, root);
626 }
627 if (err && !ret)
628 ret = err;
629
630 if (!ret) {
631 inode = btrfs_lookup_dentry(dir, dentry);
632 if (IS_ERR(inode))
633 return PTR_ERR(inode);
634 d_instantiate(dentry, inode);
635 }
636 return ret;
637
638 fail_free:
639 kfree(root_item);
640 return ret;
641 }
642
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
644 {
645 s64 writers;
646 DEFINE_WAIT(wait);
647
648 do {
649 prepare_to_wait(&root->subv_writers->wait, &wait,
650 TASK_UNINTERRUPTIBLE);
651
652 writers = percpu_counter_sum(&root->subv_writers->counter);
653 if (writers)
654 schedule();
655
656 finish_wait(&root->subv_writers->wait, &wait);
657 } while (writers);
658 }
659
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 struct dentry *dentry, char *name, int namelen,
662 u64 *async_transid, bool readonly,
663 struct btrfs_qgroup_inherit *inherit)
664 {
665 struct inode *inode;
666 struct btrfs_pending_snapshot *pending_snapshot;
667 struct btrfs_trans_handle *trans;
668 int ret;
669
670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 return -EINVAL;
672
673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 if (!pending_snapshot)
675 return -ENOMEM;
676
677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 GFP_NOFS);
679 pending_snapshot->path = btrfs_alloc_path();
680 if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 ret = -ENOMEM;
682 goto free_pending;
683 }
684
685 atomic_inc(&root->will_be_snapshoted);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root);
688
689 ret = btrfs_start_delalloc_inodes(root, 0);
690 if (ret)
691 goto dec_and_free;
692
693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694
695 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 BTRFS_BLOCK_RSV_TEMP);
697 /*
698 * 1 - parent dir inode
699 * 2 - dir entries
700 * 1 - root item
701 * 2 - root ref/backref
702 * 1 - root of snapshot
703 * 1 - UUID item
704 */
705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 &pending_snapshot->block_rsv, 8,
707 &pending_snapshot->qgroup_reserved,
708 false);
709 if (ret)
710 goto dec_and_free;
711
712 pending_snapshot->dentry = dentry;
713 pending_snapshot->root = root;
714 pending_snapshot->readonly = readonly;
715 pending_snapshot->dir = dir;
716 pending_snapshot->inherit = inherit;
717
718 trans = btrfs_start_transaction(root, 0);
719 if (IS_ERR(trans)) {
720 ret = PTR_ERR(trans);
721 goto fail;
722 }
723
724 spin_lock(&root->fs_info->trans_lock);
725 list_add(&pending_snapshot->list,
726 &trans->transaction->pending_snapshots);
727 spin_unlock(&root->fs_info->trans_lock);
728 if (async_transid) {
729 *async_transid = trans->transid;
730 ret = btrfs_commit_transaction_async(trans,
731 root->fs_info->extent_root, 1);
732 if (ret)
733 ret = btrfs_commit_transaction(trans, root);
734 } else {
735 ret = btrfs_commit_transaction(trans,
736 root->fs_info->extent_root);
737 }
738 if (ret)
739 goto fail;
740
741 ret = pending_snapshot->error;
742 if (ret)
743 goto fail;
744
745 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 if (ret)
747 goto fail;
748
749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
750 if (IS_ERR(inode)) {
751 ret = PTR_ERR(inode);
752 goto fail;
753 }
754
755 d_instantiate(dentry, inode);
756 ret = 0;
757 fail:
758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 &pending_snapshot->block_rsv,
760 pending_snapshot->qgroup_reserved);
761 dec_and_free:
762 if (atomic_dec_and_test(&root->will_be_snapshoted))
763 wake_up_atomic_t(&root->will_be_snapshoted);
764 free_pending:
765 kfree(pending_snapshot->root_item);
766 btrfs_free_path(pending_snapshot->path);
767 kfree(pending_snapshot);
768
769 return ret;
770 }
771
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
790 */
791
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
793 {
794 int error;
795
796 if (d_really_is_negative(victim))
797 return -ENOENT;
798
799 BUG_ON(d_inode(victim->d_parent) != dir);
800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
801
802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
803 if (error)
804 return error;
805 if (IS_APPEND(dir))
806 return -EPERM;
807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 return -EPERM;
810 if (isdir) {
811 if (!d_is_dir(victim))
812 return -ENOTDIR;
813 if (IS_ROOT(victim))
814 return -EBUSY;
815 } else if (d_is_dir(victim))
816 return -EISDIR;
817 if (IS_DEADDIR(dir))
818 return -ENOENT;
819 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
820 return -EBUSY;
821 return 0;
822 }
823
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
826 {
827 if (d_really_is_positive(child))
828 return -EEXIST;
829 if (IS_DEADDIR(dir))
830 return -ENOENT;
831 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
832 }
833
834 /*
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
838 */
839 static noinline int btrfs_mksubvol(struct path *parent,
840 char *name, int namelen,
841 struct btrfs_root *snap_src,
842 u64 *async_transid, bool readonly,
843 struct btrfs_qgroup_inherit *inherit)
844 {
845 struct inode *dir = d_inode(parent->dentry);
846 struct dentry *dentry;
847 int error;
848
849 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
850 if (error == -EINTR)
851 return error;
852
853 dentry = lookup_one_len(name, parent->dentry, namelen);
854 error = PTR_ERR(dentry);
855 if (IS_ERR(dentry))
856 goto out_unlock;
857
858 error = btrfs_may_create(dir, dentry);
859 if (error)
860 goto out_dput;
861
862 /*
863 * even if this name doesn't exist, we may get hash collisions.
864 * check for them now when we can safely fail
865 */
866 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
867 dir->i_ino, name,
868 namelen);
869 if (error)
870 goto out_dput;
871
872 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
873
874 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
875 goto out_up_read;
876
877 if (snap_src) {
878 error = create_snapshot(snap_src, dir, dentry, name, namelen,
879 async_transid, readonly, inherit);
880 } else {
881 error = create_subvol(dir, dentry, name, namelen,
882 async_transid, inherit);
883 }
884 if (!error)
885 fsnotify_mkdir(dir, dentry);
886 out_up_read:
887 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
888 out_dput:
889 dput(dentry);
890 out_unlock:
891 inode_unlock(dir);
892 return error;
893 }
894
895 /*
896 * When we're defragging a range, we don't want to kick it off again
897 * if it is really just waiting for delalloc to send it down.
898 * If we find a nice big extent or delalloc range for the bytes in the
899 * file you want to defrag, we return 0 to let you know to skip this
900 * part of the file
901 */
902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
903 {
904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 struct extent_map *em = NULL;
906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 u64 end;
908
909 read_lock(&em_tree->lock);
910 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
911 read_unlock(&em_tree->lock);
912
913 if (em) {
914 end = extent_map_end(em);
915 free_extent_map(em);
916 if (end - offset > thresh)
917 return 0;
918 }
919 /* if we already have a nice delalloc here, just stop */
920 thresh /= 2;
921 end = count_range_bits(io_tree, &offset, offset + thresh,
922 thresh, EXTENT_DELALLOC, 1);
923 if (end >= thresh)
924 return 0;
925 return 1;
926 }
927
928 /*
929 * helper function to walk through a file and find extents
930 * newer than a specific transid, and smaller than thresh.
931 *
932 * This is used by the defragging code to find new and small
933 * extents
934 */
935 static int find_new_extents(struct btrfs_root *root,
936 struct inode *inode, u64 newer_than,
937 u64 *off, u32 thresh)
938 {
939 struct btrfs_path *path;
940 struct btrfs_key min_key;
941 struct extent_buffer *leaf;
942 struct btrfs_file_extent_item *extent;
943 int type;
944 int ret;
945 u64 ino = btrfs_ino(inode);
946
947 path = btrfs_alloc_path();
948 if (!path)
949 return -ENOMEM;
950
951 min_key.objectid = ino;
952 min_key.type = BTRFS_EXTENT_DATA_KEY;
953 min_key.offset = *off;
954
955 while (1) {
956 ret = btrfs_search_forward(root, &min_key, path, newer_than);
957 if (ret != 0)
958 goto none;
959 process_slot:
960 if (min_key.objectid != ino)
961 goto none;
962 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
963 goto none;
964
965 leaf = path->nodes[0];
966 extent = btrfs_item_ptr(leaf, path->slots[0],
967 struct btrfs_file_extent_item);
968
969 type = btrfs_file_extent_type(leaf, extent);
970 if (type == BTRFS_FILE_EXTENT_REG &&
971 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
972 check_defrag_in_cache(inode, min_key.offset, thresh)) {
973 *off = min_key.offset;
974 btrfs_free_path(path);
975 return 0;
976 }
977
978 path->slots[0]++;
979 if (path->slots[0] < btrfs_header_nritems(leaf)) {
980 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
981 goto process_slot;
982 }
983
984 if (min_key.offset == (u64)-1)
985 goto none;
986
987 min_key.offset++;
988 btrfs_release_path(path);
989 }
990 none:
991 btrfs_free_path(path);
992 return -ENOENT;
993 }
994
995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
996 {
997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
999 struct extent_map *em;
1000 u64 len = PAGE_SIZE;
1001
1002 /*
1003 * hopefully we have this extent in the tree already, try without
1004 * the full extent lock
1005 */
1006 read_lock(&em_tree->lock);
1007 em = lookup_extent_mapping(em_tree, start, len);
1008 read_unlock(&em_tree->lock);
1009
1010 if (!em) {
1011 struct extent_state *cached = NULL;
1012 u64 end = start + len - 1;
1013
1014 /* get the big lock and read metadata off disk */
1015 lock_extent_bits(io_tree, start, end, &cached);
1016 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1017 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1018
1019 if (IS_ERR(em))
1020 return NULL;
1021 }
1022
1023 return em;
1024 }
1025
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1027 {
1028 struct extent_map *next;
1029 bool ret = true;
1030
1031 /* this is the last extent */
1032 if (em->start + em->len >= i_size_read(inode))
1033 return false;
1034
1035 next = defrag_lookup_extent(inode, em->start + em->len);
1036 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1037 ret = false;
1038 else if ((em->block_start + em->block_len == next->block_start) &&
1039 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1040 ret = false;
1041
1042 free_extent_map(next);
1043 return ret;
1044 }
1045
1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1047 u64 *last_len, u64 *skip, u64 *defrag_end,
1048 int compress)
1049 {
1050 struct extent_map *em;
1051 int ret = 1;
1052 bool next_mergeable = true;
1053 bool prev_mergeable = true;
1054
1055 /*
1056 * make sure that once we start defragging an extent, we keep on
1057 * defragging it
1058 */
1059 if (start < *defrag_end)
1060 return 1;
1061
1062 *skip = 0;
1063
1064 em = defrag_lookup_extent(inode, start);
1065 if (!em)
1066 return 0;
1067
1068 /* this will cover holes, and inline extents */
1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1070 ret = 0;
1071 goto out;
1072 }
1073
1074 if (!*defrag_end)
1075 prev_mergeable = false;
1076
1077 next_mergeable = defrag_check_next_extent(inode, em);
1078 /*
1079 * we hit a real extent, if it is big or the next extent is not a
1080 * real extent, don't bother defragging it
1081 */
1082 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1083 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1084 ret = 0;
1085 out:
1086 /*
1087 * last_len ends up being a counter of how many bytes we've defragged.
1088 * every time we choose not to defrag an extent, we reset *last_len
1089 * so that the next tiny extent will force a defrag.
1090 *
1091 * The end result of this is that tiny extents before a single big
1092 * extent will force at least part of that big extent to be defragged.
1093 */
1094 if (ret) {
1095 *defrag_end = extent_map_end(em);
1096 } else {
1097 *last_len = 0;
1098 *skip = extent_map_end(em);
1099 *defrag_end = 0;
1100 }
1101
1102 free_extent_map(em);
1103 return ret;
1104 }
1105
1106 /*
1107 * it doesn't do much good to defrag one or two pages
1108 * at a time. This pulls in a nice chunk of pages
1109 * to COW and defrag.
1110 *
1111 * It also makes sure the delalloc code has enough
1112 * dirty data to avoid making new small extents as part
1113 * of the defrag
1114 *
1115 * It's a good idea to start RA on this range
1116 * before calling this.
1117 */
1118 static int cluster_pages_for_defrag(struct inode *inode,
1119 struct page **pages,
1120 unsigned long start_index,
1121 unsigned long num_pages)
1122 {
1123 unsigned long file_end;
1124 u64 isize = i_size_read(inode);
1125 u64 page_start;
1126 u64 page_end;
1127 u64 page_cnt;
1128 int ret;
1129 int i;
1130 int i_done;
1131 struct btrfs_ordered_extent *ordered;
1132 struct extent_state *cached_state = NULL;
1133 struct extent_io_tree *tree;
1134 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1135
1136 file_end = (isize - 1) >> PAGE_SHIFT;
1137 if (!isize || start_index > file_end)
1138 return 0;
1139
1140 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1141
1142 ret = btrfs_delalloc_reserve_space(inode,
1143 start_index << PAGE_SHIFT,
1144 page_cnt << PAGE_SHIFT);
1145 if (ret)
1146 return ret;
1147 i_done = 0;
1148 tree = &BTRFS_I(inode)->io_tree;
1149
1150 /* step one, lock all the pages */
1151 for (i = 0; i < page_cnt; i++) {
1152 struct page *page;
1153 again:
1154 page = find_or_create_page(inode->i_mapping,
1155 start_index + i, mask);
1156 if (!page)
1157 break;
1158
1159 page_start = page_offset(page);
1160 page_end = page_start + PAGE_SIZE - 1;
1161 while (1) {
1162 lock_extent_bits(tree, page_start, page_end,
1163 &cached_state);
1164 ordered = btrfs_lookup_ordered_extent(inode,
1165 page_start);
1166 unlock_extent_cached(tree, page_start, page_end,
1167 &cached_state, GFP_NOFS);
1168 if (!ordered)
1169 break;
1170
1171 unlock_page(page);
1172 btrfs_start_ordered_extent(inode, ordered, 1);
1173 btrfs_put_ordered_extent(ordered);
1174 lock_page(page);
1175 /*
1176 * we unlocked the page above, so we need check if
1177 * it was released or not.
1178 */
1179 if (page->mapping != inode->i_mapping) {
1180 unlock_page(page);
1181 put_page(page);
1182 goto again;
1183 }
1184 }
1185
1186 if (!PageUptodate(page)) {
1187 btrfs_readpage(NULL, page);
1188 lock_page(page);
1189 if (!PageUptodate(page)) {
1190 unlock_page(page);
1191 put_page(page);
1192 ret = -EIO;
1193 break;
1194 }
1195 }
1196
1197 if (page->mapping != inode->i_mapping) {
1198 unlock_page(page);
1199 put_page(page);
1200 goto again;
1201 }
1202
1203 pages[i] = page;
1204 i_done++;
1205 }
1206 if (!i_done || ret)
1207 goto out;
1208
1209 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1210 goto out;
1211
1212 /*
1213 * so now we have a nice long stream of locked
1214 * and up to date pages, lets wait on them
1215 */
1216 for (i = 0; i < i_done; i++)
1217 wait_on_page_writeback(pages[i]);
1218
1219 page_start = page_offset(pages[0]);
1220 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1221
1222 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1223 page_start, page_end - 1, &cached_state);
1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1225 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1226 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1227 &cached_state, GFP_NOFS);
1228
1229 if (i_done != page_cnt) {
1230 spin_lock(&BTRFS_I(inode)->lock);
1231 BTRFS_I(inode)->outstanding_extents++;
1232 spin_unlock(&BTRFS_I(inode)->lock);
1233 btrfs_delalloc_release_space(inode,
1234 start_index << PAGE_SHIFT,
1235 (page_cnt - i_done) << PAGE_SHIFT);
1236 }
1237
1238
1239 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1240 &cached_state);
1241
1242 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1243 page_start, page_end - 1, &cached_state,
1244 GFP_NOFS);
1245
1246 for (i = 0; i < i_done; i++) {
1247 clear_page_dirty_for_io(pages[i]);
1248 ClearPageChecked(pages[i]);
1249 set_page_extent_mapped(pages[i]);
1250 set_page_dirty(pages[i]);
1251 unlock_page(pages[i]);
1252 put_page(pages[i]);
1253 }
1254 return i_done;
1255 out:
1256 for (i = 0; i < i_done; i++) {
1257 unlock_page(pages[i]);
1258 put_page(pages[i]);
1259 }
1260 btrfs_delalloc_release_space(inode,
1261 start_index << PAGE_SHIFT,
1262 page_cnt << PAGE_SHIFT);
1263 return ret;
1264
1265 }
1266
1267 int btrfs_defrag_file(struct inode *inode, struct file *file,
1268 struct btrfs_ioctl_defrag_range_args *range,
1269 u64 newer_than, unsigned long max_to_defrag)
1270 {
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct file_ra_state *ra = NULL;
1273 unsigned long last_index;
1274 u64 isize = i_size_read(inode);
1275 u64 last_len = 0;
1276 u64 skip = 0;
1277 u64 defrag_end = 0;
1278 u64 newer_off = range->start;
1279 unsigned long i;
1280 unsigned long ra_index = 0;
1281 int ret;
1282 int defrag_count = 0;
1283 int compress_type = BTRFS_COMPRESS_ZLIB;
1284 u32 extent_thresh = range->extent_thresh;
1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 unsigned long cluster = max_cluster;
1287 u64 new_align = ~((u64)SZ_128K - 1);
1288 struct page **pages = NULL;
1289
1290 if (isize == 0)
1291 return 0;
1292
1293 if (range->start >= isize)
1294 return -EINVAL;
1295
1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 return -EINVAL;
1299 if (range->compress_type)
1300 compress_type = range->compress_type;
1301 }
1302
1303 if (extent_thresh == 0)
1304 extent_thresh = SZ_256K;
1305
1306 /*
1307 * if we were not given a file, allocate a readahead
1308 * context
1309 */
1310 if (!file) {
1311 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 if (!ra)
1313 return -ENOMEM;
1314 file_ra_state_init(ra, inode->i_mapping);
1315 } else {
1316 ra = &file->f_ra;
1317 }
1318
1319 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 GFP_NOFS);
1321 if (!pages) {
1322 ret = -ENOMEM;
1323 goto out_ra;
1324 }
1325
1326 /* find the last page to defrag */
1327 if (range->start + range->len > range->start) {
1328 last_index = min_t(u64, isize - 1,
1329 range->start + range->len - 1) >> PAGE_SHIFT;
1330 } else {
1331 last_index = (isize - 1) >> PAGE_SHIFT;
1332 }
1333
1334 if (newer_than) {
1335 ret = find_new_extents(root, inode, newer_than,
1336 &newer_off, SZ_64K);
1337 if (!ret) {
1338 range->start = newer_off;
1339 /*
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1342 */
1343 i = (newer_off & new_align) >> PAGE_SHIFT;
1344 } else
1345 goto out_ra;
1346 } else {
1347 i = range->start >> PAGE_SHIFT;
1348 }
1349 if (!max_to_defrag)
1350 max_to_defrag = last_index - i + 1;
1351
1352 /*
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1355 */
1356 if (i < inode->i_mapping->writeback_index)
1357 inode->i_mapping->writeback_index = i;
1358
1359 while (i <= last_index && defrag_count < max_to_defrag &&
1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 /*
1362 * make sure we stop running if someone unmounts
1363 * the FS
1364 */
1365 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 break;
1367
1368 if (btrfs_defrag_cancelled(root->fs_info)) {
1369 btrfs_debug(root->fs_info, "defrag_file cancelled");
1370 ret = -EAGAIN;
1371 break;
1372 }
1373
1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 extent_thresh, &last_len, &skip,
1376 &defrag_end, range->flags &
1377 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 unsigned long next;
1379 /*
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1382 */
1383 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 i = max(i + 1, next);
1385 continue;
1386 }
1387
1388 if (!newer_than) {
1389 cluster = (PAGE_ALIGN(defrag_end) >>
1390 PAGE_SHIFT) - i;
1391 cluster = min(cluster, max_cluster);
1392 } else {
1393 cluster = max_cluster;
1394 }
1395
1396 if (i + cluster > ra_index) {
1397 ra_index = max(i, ra_index);
1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 cluster);
1400 ra_index += cluster;
1401 }
1402
1403 inode_lock(inode);
1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 BTRFS_I(inode)->force_compress = compress_type;
1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 if (ret < 0) {
1408 inode_unlock(inode);
1409 goto out_ra;
1410 }
1411
1412 defrag_count += ret;
1413 balance_dirty_pages_ratelimited(inode->i_mapping);
1414 inode_unlock(inode);
1415
1416 if (newer_than) {
1417 if (newer_off == (u64)-1)
1418 break;
1419
1420 if (ret > 0)
1421 i += ret;
1422
1423 newer_off = max(newer_off + 1,
1424 (u64)i << PAGE_SHIFT);
1425
1426 ret = find_new_extents(root, inode, newer_than,
1427 &newer_off, SZ_64K);
1428 if (!ret) {
1429 range->start = newer_off;
1430 i = (newer_off & new_align) >> PAGE_SHIFT;
1431 } else {
1432 break;
1433 }
1434 } else {
1435 if (ret > 0) {
1436 i += ret;
1437 last_len += ret << PAGE_SHIFT;
1438 } else {
1439 i++;
1440 last_len = 0;
1441 }
1442 }
1443 }
1444
1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 filemap_flush(inode->i_mapping);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 &BTRFS_I(inode)->runtime_flags))
1449 filemap_flush(inode->i_mapping);
1450 }
1451
1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1456 */
1457 atomic_inc(&root->fs_info->async_submit_draining);
1458 while (atomic_read(&root->fs_info->nr_async_submits) ||
1459 atomic_read(&root->fs_info->async_delalloc_pages)) {
1460 wait_event(root->fs_info->async_submit_wait,
1461 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1462 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1463 }
1464 atomic_dec(&root->fs_info->async_submit_draining);
1465 }
1466
1467 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1469 }
1470
1471 ret = defrag_count;
1472
1473 out_ra:
1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 inode_lock(inode);
1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 inode_unlock(inode);
1478 }
1479 if (!file)
1480 kfree(ra);
1481 kfree(pages);
1482 return ret;
1483 }
1484
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1486 void __user *arg)
1487 {
1488 u64 new_size;
1489 u64 old_size;
1490 u64 devid = 1;
1491 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1492 struct btrfs_ioctl_vol_args *vol_args;
1493 struct btrfs_trans_handle *trans;
1494 struct btrfs_device *device = NULL;
1495 char *sizestr;
1496 char *retptr;
1497 char *devstr = NULL;
1498 int ret = 0;
1499 int mod = 0;
1500
1501 if (!capable(CAP_SYS_ADMIN))
1502 return -EPERM;
1503
1504 ret = mnt_want_write_file(file);
1505 if (ret)
1506 return ret;
1507
1508 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1509 1)) {
1510 mnt_drop_write_file(file);
1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1512 }
1513
1514 mutex_lock(&root->fs_info->volume_mutex);
1515 vol_args = memdup_user(arg, sizeof(*vol_args));
1516 if (IS_ERR(vol_args)) {
1517 ret = PTR_ERR(vol_args);
1518 goto out;
1519 }
1520
1521 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1522
1523 sizestr = vol_args->name;
1524 devstr = strchr(sizestr, ':');
1525 if (devstr) {
1526 sizestr = devstr + 1;
1527 *devstr = '\0';
1528 devstr = vol_args->name;
1529 ret = kstrtoull(devstr, 10, &devid);
1530 if (ret)
1531 goto out_free;
1532 if (!devid) {
1533 ret = -EINVAL;
1534 goto out_free;
1535 }
1536 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1537 }
1538
1539 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1540 if (!device) {
1541 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1542 devid);
1543 ret = -ENODEV;
1544 goto out_free;
1545 }
1546
1547 if (!device->writeable) {
1548 btrfs_info(root->fs_info,
1549 "resizer unable to apply on readonly device %llu",
1550 devid);
1551 ret = -EPERM;
1552 goto out_free;
1553 }
1554
1555 if (!strcmp(sizestr, "max"))
1556 new_size = device->bdev->bd_inode->i_size;
1557 else {
1558 if (sizestr[0] == '-') {
1559 mod = -1;
1560 sizestr++;
1561 } else if (sizestr[0] == '+') {
1562 mod = 1;
1563 sizestr++;
1564 }
1565 new_size = memparse(sizestr, &retptr);
1566 if (*retptr != '\0' || new_size == 0) {
1567 ret = -EINVAL;
1568 goto out_free;
1569 }
1570 }
1571
1572 if (device->is_tgtdev_for_dev_replace) {
1573 ret = -EPERM;
1574 goto out_free;
1575 }
1576
1577 old_size = btrfs_device_get_total_bytes(device);
1578
1579 if (mod < 0) {
1580 if (new_size > old_size) {
1581 ret = -EINVAL;
1582 goto out_free;
1583 }
1584 new_size = old_size - new_size;
1585 } else if (mod > 0) {
1586 if (new_size > ULLONG_MAX - old_size) {
1587 ret = -ERANGE;
1588 goto out_free;
1589 }
1590 new_size = old_size + new_size;
1591 }
1592
1593 if (new_size < SZ_256M) {
1594 ret = -EINVAL;
1595 goto out_free;
1596 }
1597 if (new_size > device->bdev->bd_inode->i_size) {
1598 ret = -EFBIG;
1599 goto out_free;
1600 }
1601
1602 new_size = div_u64(new_size, root->sectorsize);
1603 new_size *= root->sectorsize;
1604
1605 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1606 rcu_str_deref(device->name), new_size);
1607
1608 if (new_size > old_size) {
1609 trans = btrfs_start_transaction(root, 0);
1610 if (IS_ERR(trans)) {
1611 ret = PTR_ERR(trans);
1612 goto out_free;
1613 }
1614 ret = btrfs_grow_device(trans, device, new_size);
1615 btrfs_commit_transaction(trans, root);
1616 } else if (new_size < old_size) {
1617 ret = btrfs_shrink_device(device, new_size);
1618 } /* equal, nothing need to do */
1619
1620 out_free:
1621 kfree(vol_args);
1622 out:
1623 mutex_unlock(&root->fs_info->volume_mutex);
1624 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1625 mnt_drop_write_file(file);
1626 return ret;
1627 }
1628
1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1630 char *name, unsigned long fd, int subvol,
1631 u64 *transid, bool readonly,
1632 struct btrfs_qgroup_inherit *inherit)
1633 {
1634 int namelen;
1635 int ret = 0;
1636
1637 ret = mnt_want_write_file(file);
1638 if (ret)
1639 goto out;
1640
1641 namelen = strlen(name);
1642 if (strchr(name, '/')) {
1643 ret = -EINVAL;
1644 goto out_drop_write;
1645 }
1646
1647 if (name[0] == '.' &&
1648 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1649 ret = -EEXIST;
1650 goto out_drop_write;
1651 }
1652
1653 if (subvol) {
1654 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655 NULL, transid, readonly, inherit);
1656 } else {
1657 struct fd src = fdget(fd);
1658 struct inode *src_inode;
1659 if (!src.file) {
1660 ret = -EINVAL;
1661 goto out_drop_write;
1662 }
1663
1664 src_inode = file_inode(src.file);
1665 if (src_inode->i_sb != file_inode(file)->i_sb) {
1666 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1667 "Snapshot src from another FS");
1668 ret = -EXDEV;
1669 } else if (!inode_owner_or_capable(src_inode)) {
1670 /*
1671 * Subvolume creation is not restricted, but snapshots
1672 * are limited to own subvolumes only
1673 */
1674 ret = -EPERM;
1675 } else {
1676 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1677 BTRFS_I(src_inode)->root,
1678 transid, readonly, inherit);
1679 }
1680 fdput(src);
1681 }
1682 out_drop_write:
1683 mnt_drop_write_file(file);
1684 out:
1685 return ret;
1686 }
1687
1688 static noinline int btrfs_ioctl_snap_create(struct file *file,
1689 void __user *arg, int subvol)
1690 {
1691 struct btrfs_ioctl_vol_args *vol_args;
1692 int ret;
1693
1694 vol_args = memdup_user(arg, sizeof(*vol_args));
1695 if (IS_ERR(vol_args))
1696 return PTR_ERR(vol_args);
1697 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1698
1699 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1700 vol_args->fd, subvol,
1701 NULL, false, NULL);
1702
1703 kfree(vol_args);
1704 return ret;
1705 }
1706
1707 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1708 void __user *arg, int subvol)
1709 {
1710 struct btrfs_ioctl_vol_args_v2 *vol_args;
1711 int ret;
1712 u64 transid = 0;
1713 u64 *ptr = NULL;
1714 bool readonly = false;
1715 struct btrfs_qgroup_inherit *inherit = NULL;
1716
1717 vol_args = memdup_user(arg, sizeof(*vol_args));
1718 if (IS_ERR(vol_args))
1719 return PTR_ERR(vol_args);
1720 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1721
1722 if (vol_args->flags &
1723 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1724 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1725 ret = -EOPNOTSUPP;
1726 goto free_args;
1727 }
1728
1729 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1730 ptr = &transid;
1731 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1732 readonly = true;
1733 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1734 if (vol_args->size > PAGE_SIZE) {
1735 ret = -EINVAL;
1736 goto free_args;
1737 }
1738 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1739 if (IS_ERR(inherit)) {
1740 ret = PTR_ERR(inherit);
1741 goto free_args;
1742 }
1743 }
1744
1745 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1746 vol_args->fd, subvol, ptr,
1747 readonly, inherit);
1748 if (ret)
1749 goto free_inherit;
1750
1751 if (ptr && copy_to_user(arg +
1752 offsetof(struct btrfs_ioctl_vol_args_v2,
1753 transid),
1754 ptr, sizeof(*ptr)))
1755 ret = -EFAULT;
1756
1757 free_inherit:
1758 kfree(inherit);
1759 free_args:
1760 kfree(vol_args);
1761 return ret;
1762 }
1763
1764 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1765 void __user *arg)
1766 {
1767 struct inode *inode = file_inode(file);
1768 struct btrfs_root *root = BTRFS_I(inode)->root;
1769 int ret = 0;
1770 u64 flags = 0;
1771
1772 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1773 return -EINVAL;
1774
1775 down_read(&root->fs_info->subvol_sem);
1776 if (btrfs_root_readonly(root))
1777 flags |= BTRFS_SUBVOL_RDONLY;
1778 up_read(&root->fs_info->subvol_sem);
1779
1780 if (copy_to_user(arg, &flags, sizeof(flags)))
1781 ret = -EFAULT;
1782
1783 return ret;
1784 }
1785
1786 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1787 void __user *arg)
1788 {
1789 struct inode *inode = file_inode(file);
1790 struct btrfs_root *root = BTRFS_I(inode)->root;
1791 struct btrfs_trans_handle *trans;
1792 u64 root_flags;
1793 u64 flags;
1794 int ret = 0;
1795
1796 if (!inode_owner_or_capable(inode))
1797 return -EPERM;
1798
1799 ret = mnt_want_write_file(file);
1800 if (ret)
1801 goto out;
1802
1803 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = -EINVAL;
1805 goto out_drop_write;
1806 }
1807
1808 if (copy_from_user(&flags, arg, sizeof(flags))) {
1809 ret = -EFAULT;
1810 goto out_drop_write;
1811 }
1812
1813 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1814 ret = -EINVAL;
1815 goto out_drop_write;
1816 }
1817
1818 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1819 ret = -EOPNOTSUPP;
1820 goto out_drop_write;
1821 }
1822
1823 down_write(&root->fs_info->subvol_sem);
1824
1825 /* nothing to do */
1826 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1827 goto out_drop_sem;
1828
1829 root_flags = btrfs_root_flags(&root->root_item);
1830 if (flags & BTRFS_SUBVOL_RDONLY) {
1831 btrfs_set_root_flags(&root->root_item,
1832 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1833 } else {
1834 /*
1835 * Block RO -> RW transition if this subvolume is involved in
1836 * send
1837 */
1838 spin_lock(&root->root_item_lock);
1839 if (root->send_in_progress == 0) {
1840 btrfs_set_root_flags(&root->root_item,
1841 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1842 spin_unlock(&root->root_item_lock);
1843 } else {
1844 spin_unlock(&root->root_item_lock);
1845 btrfs_warn(root->fs_info,
1846 "Attempt to set subvolume %llu read-write during send",
1847 root->root_key.objectid);
1848 ret = -EPERM;
1849 goto out_drop_sem;
1850 }
1851 }
1852
1853 trans = btrfs_start_transaction(root, 1);
1854 if (IS_ERR(trans)) {
1855 ret = PTR_ERR(trans);
1856 goto out_reset;
1857 }
1858
1859 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1860 &root->root_key, &root->root_item);
1861
1862 btrfs_commit_transaction(trans, root);
1863 out_reset:
1864 if (ret)
1865 btrfs_set_root_flags(&root->root_item, root_flags);
1866 out_drop_sem:
1867 up_write(&root->fs_info->subvol_sem);
1868 out_drop_write:
1869 mnt_drop_write_file(file);
1870 out:
1871 return ret;
1872 }
1873
1874 /*
1875 * helper to check if the subvolume references other subvolumes
1876 */
1877 static noinline int may_destroy_subvol(struct btrfs_root *root)
1878 {
1879 struct btrfs_path *path;
1880 struct btrfs_dir_item *di;
1881 struct btrfs_key key;
1882 u64 dir_id;
1883 int ret;
1884
1885 path = btrfs_alloc_path();
1886 if (!path)
1887 return -ENOMEM;
1888
1889 /* Make sure this root isn't set as the default subvol */
1890 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1891 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1892 dir_id, "default", 7, 0);
1893 if (di && !IS_ERR(di)) {
1894 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1895 if (key.objectid == root->root_key.objectid) {
1896 ret = -EPERM;
1897 btrfs_err(root->fs_info, "deleting default subvolume "
1898 "%llu is not allowed", key.objectid);
1899 goto out;
1900 }
1901 btrfs_release_path(path);
1902 }
1903
1904 key.objectid = root->root_key.objectid;
1905 key.type = BTRFS_ROOT_REF_KEY;
1906 key.offset = (u64)-1;
1907
1908 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1909 &key, path, 0, 0);
1910 if (ret < 0)
1911 goto out;
1912 BUG_ON(ret == 0);
1913
1914 ret = 0;
1915 if (path->slots[0] > 0) {
1916 path->slots[0]--;
1917 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1918 if (key.objectid == root->root_key.objectid &&
1919 key.type == BTRFS_ROOT_REF_KEY)
1920 ret = -ENOTEMPTY;
1921 }
1922 out:
1923 btrfs_free_path(path);
1924 return ret;
1925 }
1926
1927 static noinline int key_in_sk(struct btrfs_key *key,
1928 struct btrfs_ioctl_search_key *sk)
1929 {
1930 struct btrfs_key test;
1931 int ret;
1932
1933 test.objectid = sk->min_objectid;
1934 test.type = sk->min_type;
1935 test.offset = sk->min_offset;
1936
1937 ret = btrfs_comp_cpu_keys(key, &test);
1938 if (ret < 0)
1939 return 0;
1940
1941 test.objectid = sk->max_objectid;
1942 test.type = sk->max_type;
1943 test.offset = sk->max_offset;
1944
1945 ret = btrfs_comp_cpu_keys(key, &test);
1946 if (ret > 0)
1947 return 0;
1948 return 1;
1949 }
1950
1951 static noinline int copy_to_sk(struct btrfs_path *path,
1952 struct btrfs_key *key,
1953 struct btrfs_ioctl_search_key *sk,
1954 size_t *buf_size,
1955 char __user *ubuf,
1956 unsigned long *sk_offset,
1957 int *num_found)
1958 {
1959 u64 found_transid;
1960 struct extent_buffer *leaf;
1961 struct btrfs_ioctl_search_header sh;
1962 struct btrfs_key test;
1963 unsigned long item_off;
1964 unsigned long item_len;
1965 int nritems;
1966 int i;
1967 int slot;
1968 int ret = 0;
1969
1970 leaf = path->nodes[0];
1971 slot = path->slots[0];
1972 nritems = btrfs_header_nritems(leaf);
1973
1974 if (btrfs_header_generation(leaf) > sk->max_transid) {
1975 i = nritems;
1976 goto advance_key;
1977 }
1978 found_transid = btrfs_header_generation(leaf);
1979
1980 for (i = slot; i < nritems; i++) {
1981 item_off = btrfs_item_ptr_offset(leaf, i);
1982 item_len = btrfs_item_size_nr(leaf, i);
1983
1984 btrfs_item_key_to_cpu(leaf, key, i);
1985 if (!key_in_sk(key, sk))
1986 continue;
1987
1988 if (sizeof(sh) + item_len > *buf_size) {
1989 if (*num_found) {
1990 ret = 1;
1991 goto out;
1992 }
1993
1994 /*
1995 * return one empty item back for v1, which does not
1996 * handle -EOVERFLOW
1997 */
1998
1999 *buf_size = sizeof(sh) + item_len;
2000 item_len = 0;
2001 ret = -EOVERFLOW;
2002 }
2003
2004 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2005 ret = 1;
2006 goto out;
2007 }
2008
2009 sh.objectid = key->objectid;
2010 sh.offset = key->offset;
2011 sh.type = key->type;
2012 sh.len = item_len;
2013 sh.transid = found_transid;
2014
2015 /* copy search result header */
2016 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2017 ret = -EFAULT;
2018 goto out;
2019 }
2020
2021 *sk_offset += sizeof(sh);
2022
2023 if (item_len) {
2024 char __user *up = ubuf + *sk_offset;
2025 /* copy the item */
2026 if (read_extent_buffer_to_user(leaf, up,
2027 item_off, item_len)) {
2028 ret = -EFAULT;
2029 goto out;
2030 }
2031
2032 *sk_offset += item_len;
2033 }
2034 (*num_found)++;
2035
2036 if (ret) /* -EOVERFLOW from above */
2037 goto out;
2038
2039 if (*num_found >= sk->nr_items) {
2040 ret = 1;
2041 goto out;
2042 }
2043 }
2044 advance_key:
2045 ret = 0;
2046 test.objectid = sk->max_objectid;
2047 test.type = sk->max_type;
2048 test.offset = sk->max_offset;
2049 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2050 ret = 1;
2051 else if (key->offset < (u64)-1)
2052 key->offset++;
2053 else if (key->type < (u8)-1) {
2054 key->offset = 0;
2055 key->type++;
2056 } else if (key->objectid < (u64)-1) {
2057 key->offset = 0;
2058 key->type = 0;
2059 key->objectid++;
2060 } else
2061 ret = 1;
2062 out:
2063 /*
2064 * 0: all items from this leaf copied, continue with next
2065 * 1: * more items can be copied, but unused buffer is too small
2066 * * all items were found
2067 * Either way, it will stops the loop which iterates to the next
2068 * leaf
2069 * -EOVERFLOW: item was to large for buffer
2070 * -EFAULT: could not copy extent buffer back to userspace
2071 */
2072 return ret;
2073 }
2074
2075 static noinline int search_ioctl(struct inode *inode,
2076 struct btrfs_ioctl_search_key *sk,
2077 size_t *buf_size,
2078 char __user *ubuf)
2079 {
2080 struct btrfs_root *root;
2081 struct btrfs_key key;
2082 struct btrfs_path *path;
2083 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2084 int ret;
2085 int num_found = 0;
2086 unsigned long sk_offset = 0;
2087
2088 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2089 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2090 return -EOVERFLOW;
2091 }
2092
2093 path = btrfs_alloc_path();
2094 if (!path)
2095 return -ENOMEM;
2096
2097 if (sk->tree_id == 0) {
2098 /* search the root of the inode that was passed */
2099 root = BTRFS_I(inode)->root;
2100 } else {
2101 key.objectid = sk->tree_id;
2102 key.type = BTRFS_ROOT_ITEM_KEY;
2103 key.offset = (u64)-1;
2104 root = btrfs_read_fs_root_no_name(info, &key);
2105 if (IS_ERR(root)) {
2106 btrfs_free_path(path);
2107 return -ENOENT;
2108 }
2109 }
2110
2111 key.objectid = sk->min_objectid;
2112 key.type = sk->min_type;
2113 key.offset = sk->min_offset;
2114
2115 while (1) {
2116 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2117 if (ret != 0) {
2118 if (ret > 0)
2119 ret = 0;
2120 goto err;
2121 }
2122 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2123 &sk_offset, &num_found);
2124 btrfs_release_path(path);
2125 if (ret)
2126 break;
2127
2128 }
2129 if (ret > 0)
2130 ret = 0;
2131 err:
2132 sk->nr_items = num_found;
2133 btrfs_free_path(path);
2134 return ret;
2135 }
2136
2137 static noinline int btrfs_ioctl_tree_search(struct file *file,
2138 void __user *argp)
2139 {
2140 struct btrfs_ioctl_search_args __user *uargs;
2141 struct btrfs_ioctl_search_key sk;
2142 struct inode *inode;
2143 int ret;
2144 size_t buf_size;
2145
2146 if (!capable(CAP_SYS_ADMIN))
2147 return -EPERM;
2148
2149 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2150
2151 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2152 return -EFAULT;
2153
2154 buf_size = sizeof(uargs->buf);
2155
2156 inode = file_inode(file);
2157 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2158
2159 /*
2160 * In the origin implementation an overflow is handled by returning a
2161 * search header with a len of zero, so reset ret.
2162 */
2163 if (ret == -EOVERFLOW)
2164 ret = 0;
2165
2166 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2167 ret = -EFAULT;
2168 return ret;
2169 }
2170
2171 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2172 void __user *argp)
2173 {
2174 struct btrfs_ioctl_search_args_v2 __user *uarg;
2175 struct btrfs_ioctl_search_args_v2 args;
2176 struct inode *inode;
2177 int ret;
2178 size_t buf_size;
2179 const size_t buf_limit = SZ_16M;
2180
2181 if (!capable(CAP_SYS_ADMIN))
2182 return -EPERM;
2183
2184 /* copy search header and buffer size */
2185 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2186 if (copy_from_user(&args, uarg, sizeof(args)))
2187 return -EFAULT;
2188
2189 buf_size = args.buf_size;
2190
2191 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2192 return -EOVERFLOW;
2193
2194 /* limit result size to 16MB */
2195 if (buf_size > buf_limit)
2196 buf_size = buf_limit;
2197
2198 inode = file_inode(file);
2199 ret = search_ioctl(inode, &args.key, &buf_size,
2200 (char *)(&uarg->buf[0]));
2201 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2202 ret = -EFAULT;
2203 else if (ret == -EOVERFLOW &&
2204 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2205 ret = -EFAULT;
2206
2207 return ret;
2208 }
2209
2210 /*
2211 * Search INODE_REFs to identify path name of 'dirid' directory
2212 * in a 'tree_id' tree. and sets path name to 'name'.
2213 */
2214 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2215 u64 tree_id, u64 dirid, char *name)
2216 {
2217 struct btrfs_root *root;
2218 struct btrfs_key key;
2219 char *ptr;
2220 int ret = -1;
2221 int slot;
2222 int len;
2223 int total_len = 0;
2224 struct btrfs_inode_ref *iref;
2225 struct extent_buffer *l;
2226 struct btrfs_path *path;
2227
2228 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2229 name[0]='\0';
2230 return 0;
2231 }
2232
2233 path = btrfs_alloc_path();
2234 if (!path)
2235 return -ENOMEM;
2236
2237 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2238
2239 key.objectid = tree_id;
2240 key.type = BTRFS_ROOT_ITEM_KEY;
2241 key.offset = (u64)-1;
2242 root = btrfs_read_fs_root_no_name(info, &key);
2243 if (IS_ERR(root)) {
2244 btrfs_err(info, "could not find root %llu", tree_id);
2245 ret = -ENOENT;
2246 goto out;
2247 }
2248
2249 key.objectid = dirid;
2250 key.type = BTRFS_INODE_REF_KEY;
2251 key.offset = (u64)-1;
2252
2253 while (1) {
2254 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2255 if (ret < 0)
2256 goto out;
2257 else if (ret > 0) {
2258 ret = btrfs_previous_item(root, path, dirid,
2259 BTRFS_INODE_REF_KEY);
2260 if (ret < 0)
2261 goto out;
2262 else if (ret > 0) {
2263 ret = -ENOENT;
2264 goto out;
2265 }
2266 }
2267
2268 l = path->nodes[0];
2269 slot = path->slots[0];
2270 btrfs_item_key_to_cpu(l, &key, slot);
2271
2272 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2273 len = btrfs_inode_ref_name_len(l, iref);
2274 ptr -= len + 1;
2275 total_len += len + 1;
2276 if (ptr < name) {
2277 ret = -ENAMETOOLONG;
2278 goto out;
2279 }
2280
2281 *(ptr + len) = '/';
2282 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2283
2284 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2285 break;
2286
2287 btrfs_release_path(path);
2288 key.objectid = key.offset;
2289 key.offset = (u64)-1;
2290 dirid = key.objectid;
2291 }
2292 memmove(name, ptr, total_len);
2293 name[total_len] = '\0';
2294 ret = 0;
2295 out:
2296 btrfs_free_path(path);
2297 return ret;
2298 }
2299
2300 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2301 void __user *argp)
2302 {
2303 struct btrfs_ioctl_ino_lookup_args *args;
2304 struct inode *inode;
2305 int ret = 0;
2306
2307 args = memdup_user(argp, sizeof(*args));
2308 if (IS_ERR(args))
2309 return PTR_ERR(args);
2310
2311 inode = file_inode(file);
2312
2313 /*
2314 * Unprivileged query to obtain the containing subvolume root id. The
2315 * path is reset so it's consistent with btrfs_search_path_in_tree.
2316 */
2317 if (args->treeid == 0)
2318 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2319
2320 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2321 args->name[0] = 0;
2322 goto out;
2323 }
2324
2325 if (!capable(CAP_SYS_ADMIN)) {
2326 ret = -EPERM;
2327 goto out;
2328 }
2329
2330 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2331 args->treeid, args->objectid,
2332 args->name);
2333
2334 out:
2335 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2336 ret = -EFAULT;
2337
2338 kfree(args);
2339 return ret;
2340 }
2341
2342 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2343 void __user *arg)
2344 {
2345 struct dentry *parent = file->f_path.dentry;
2346 struct dentry *dentry;
2347 struct inode *dir = d_inode(parent);
2348 struct inode *inode;
2349 struct btrfs_root *root = BTRFS_I(dir)->root;
2350 struct btrfs_root *dest = NULL;
2351 struct btrfs_ioctl_vol_args *vol_args;
2352 struct btrfs_trans_handle *trans;
2353 struct btrfs_block_rsv block_rsv;
2354 u64 root_flags;
2355 u64 qgroup_reserved;
2356 int namelen;
2357 int ret;
2358 int err = 0;
2359
2360 vol_args = memdup_user(arg, sizeof(*vol_args));
2361 if (IS_ERR(vol_args))
2362 return PTR_ERR(vol_args);
2363
2364 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2365 namelen = strlen(vol_args->name);
2366 if (strchr(vol_args->name, '/') ||
2367 strncmp(vol_args->name, "..", namelen) == 0) {
2368 err = -EINVAL;
2369 goto out;
2370 }
2371
2372 err = mnt_want_write_file(file);
2373 if (err)
2374 goto out;
2375
2376
2377 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2378 if (err == -EINTR)
2379 goto out_drop_write;
2380 dentry = lookup_one_len(vol_args->name, parent, namelen);
2381 if (IS_ERR(dentry)) {
2382 err = PTR_ERR(dentry);
2383 goto out_unlock_dir;
2384 }
2385
2386 if (d_really_is_negative(dentry)) {
2387 err = -ENOENT;
2388 goto out_dput;
2389 }
2390
2391 inode = d_inode(dentry);
2392 dest = BTRFS_I(inode)->root;
2393 if (!capable(CAP_SYS_ADMIN)) {
2394 /*
2395 * Regular user. Only allow this with a special mount
2396 * option, when the user has write+exec access to the
2397 * subvol root, and when rmdir(2) would have been
2398 * allowed.
2399 *
2400 * Note that this is _not_ check that the subvol is
2401 * empty or doesn't contain data that we wouldn't
2402 * otherwise be able to delete.
2403 *
2404 * Users who want to delete empty subvols should try
2405 * rmdir(2).
2406 */
2407 err = -EPERM;
2408 if (!btrfs_test_opt(root->fs_info, USER_SUBVOL_RM_ALLOWED))
2409 goto out_dput;
2410
2411 /*
2412 * Do not allow deletion if the parent dir is the same
2413 * as the dir to be deleted. That means the ioctl
2414 * must be called on the dentry referencing the root
2415 * of the subvol, not a random directory contained
2416 * within it.
2417 */
2418 err = -EINVAL;
2419 if (root == dest)
2420 goto out_dput;
2421
2422 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2423 if (err)
2424 goto out_dput;
2425 }
2426
2427 /* check if subvolume may be deleted by a user */
2428 err = btrfs_may_delete(dir, dentry, 1);
2429 if (err)
2430 goto out_dput;
2431
2432 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2433 err = -EINVAL;
2434 goto out_dput;
2435 }
2436
2437 inode_lock(inode);
2438
2439 /*
2440 * Don't allow to delete a subvolume with send in progress. This is
2441 * inside the i_mutex so the error handling that has to drop the bit
2442 * again is not run concurrently.
2443 */
2444 spin_lock(&dest->root_item_lock);
2445 root_flags = btrfs_root_flags(&dest->root_item);
2446 if (dest->send_in_progress == 0) {
2447 btrfs_set_root_flags(&dest->root_item,
2448 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2449 spin_unlock(&dest->root_item_lock);
2450 } else {
2451 spin_unlock(&dest->root_item_lock);
2452 btrfs_warn(root->fs_info,
2453 "Attempt to delete subvolume %llu during send",
2454 dest->root_key.objectid);
2455 err = -EPERM;
2456 goto out_unlock_inode;
2457 }
2458
2459 down_write(&root->fs_info->subvol_sem);
2460
2461 err = may_destroy_subvol(dest);
2462 if (err)
2463 goto out_up_write;
2464
2465 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2466 /*
2467 * One for dir inode, two for dir entries, two for root
2468 * ref/backref.
2469 */
2470 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2471 5, &qgroup_reserved, true);
2472 if (err)
2473 goto out_up_write;
2474
2475 trans = btrfs_start_transaction(root, 0);
2476 if (IS_ERR(trans)) {
2477 err = PTR_ERR(trans);
2478 goto out_release;
2479 }
2480 trans->block_rsv = &block_rsv;
2481 trans->bytes_reserved = block_rsv.size;
2482
2483 btrfs_record_snapshot_destroy(trans, dir);
2484
2485 ret = btrfs_unlink_subvol(trans, root, dir,
2486 dest->root_key.objectid,
2487 dentry->d_name.name,
2488 dentry->d_name.len);
2489 if (ret) {
2490 err = ret;
2491 btrfs_abort_transaction(trans, ret);
2492 goto out_end_trans;
2493 }
2494
2495 btrfs_record_root_in_trans(trans, dest);
2496
2497 memset(&dest->root_item.drop_progress, 0,
2498 sizeof(dest->root_item.drop_progress));
2499 dest->root_item.drop_level = 0;
2500 btrfs_set_root_refs(&dest->root_item, 0);
2501
2502 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2503 ret = btrfs_insert_orphan_item(trans,
2504 root->fs_info->tree_root,
2505 dest->root_key.objectid);
2506 if (ret) {
2507 btrfs_abort_transaction(trans, ret);
2508 err = ret;
2509 goto out_end_trans;
2510 }
2511 }
2512
2513 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2514 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2515 dest->root_key.objectid);
2516 if (ret && ret != -ENOENT) {
2517 btrfs_abort_transaction(trans, ret);
2518 err = ret;
2519 goto out_end_trans;
2520 }
2521 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2522 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2523 dest->root_item.received_uuid,
2524 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2525 dest->root_key.objectid);
2526 if (ret && ret != -ENOENT) {
2527 btrfs_abort_transaction(trans, ret);
2528 err = ret;
2529 goto out_end_trans;
2530 }
2531 }
2532
2533 out_end_trans:
2534 trans->block_rsv = NULL;
2535 trans->bytes_reserved = 0;
2536 ret = btrfs_end_transaction(trans, root);
2537 if (ret && !err)
2538 err = ret;
2539 inode->i_flags |= S_DEAD;
2540 out_release:
2541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2542 out_up_write:
2543 up_write(&root->fs_info->subvol_sem);
2544 if (err) {
2545 spin_lock(&dest->root_item_lock);
2546 root_flags = btrfs_root_flags(&dest->root_item);
2547 btrfs_set_root_flags(&dest->root_item,
2548 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2549 spin_unlock(&dest->root_item_lock);
2550 }
2551 out_unlock_inode:
2552 inode_unlock(inode);
2553 if (!err) {
2554 d_invalidate(dentry);
2555 btrfs_invalidate_inodes(dest);
2556 d_delete(dentry);
2557 ASSERT(dest->send_in_progress == 0);
2558
2559 /* the last ref */
2560 if (dest->ino_cache_inode) {
2561 iput(dest->ino_cache_inode);
2562 dest->ino_cache_inode = NULL;
2563 }
2564 }
2565 out_dput:
2566 dput(dentry);
2567 out_unlock_dir:
2568 inode_unlock(dir);
2569 out_drop_write:
2570 mnt_drop_write_file(file);
2571 out:
2572 kfree(vol_args);
2573 return err;
2574 }
2575
2576 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2577 {
2578 struct inode *inode = file_inode(file);
2579 struct btrfs_root *root = BTRFS_I(inode)->root;
2580 struct btrfs_ioctl_defrag_range_args *range;
2581 int ret;
2582
2583 ret = mnt_want_write_file(file);
2584 if (ret)
2585 return ret;
2586
2587 if (btrfs_root_readonly(root)) {
2588 ret = -EROFS;
2589 goto out;
2590 }
2591
2592 switch (inode->i_mode & S_IFMT) {
2593 case S_IFDIR:
2594 if (!capable(CAP_SYS_ADMIN)) {
2595 ret = -EPERM;
2596 goto out;
2597 }
2598 ret = btrfs_defrag_root(root);
2599 if (ret)
2600 goto out;
2601 ret = btrfs_defrag_root(root->fs_info->extent_root);
2602 break;
2603 case S_IFREG:
2604 if (!(file->f_mode & FMODE_WRITE)) {
2605 ret = -EINVAL;
2606 goto out;
2607 }
2608
2609 range = kzalloc(sizeof(*range), GFP_KERNEL);
2610 if (!range) {
2611 ret = -ENOMEM;
2612 goto out;
2613 }
2614
2615 if (argp) {
2616 if (copy_from_user(range, argp,
2617 sizeof(*range))) {
2618 ret = -EFAULT;
2619 kfree(range);
2620 goto out;
2621 }
2622 /* compression requires us to start the IO */
2623 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2624 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2625 range->extent_thresh = (u32)-1;
2626 }
2627 } else {
2628 /* the rest are all set to zero by kzalloc */
2629 range->len = (u64)-1;
2630 }
2631 ret = btrfs_defrag_file(file_inode(file), file,
2632 range, 0, 0);
2633 if (ret > 0)
2634 ret = 0;
2635 kfree(range);
2636 break;
2637 default:
2638 ret = -EINVAL;
2639 }
2640 out:
2641 mnt_drop_write_file(file);
2642 return ret;
2643 }
2644
2645 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2646 {
2647 struct btrfs_ioctl_vol_args *vol_args;
2648 int ret;
2649
2650 if (!capable(CAP_SYS_ADMIN))
2651 return -EPERM;
2652
2653 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2654 1)) {
2655 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2656 }
2657
2658 mutex_lock(&root->fs_info->volume_mutex);
2659 vol_args = memdup_user(arg, sizeof(*vol_args));
2660 if (IS_ERR(vol_args)) {
2661 ret = PTR_ERR(vol_args);
2662 goto out;
2663 }
2664
2665 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2666 ret = btrfs_init_new_device(root, vol_args->name);
2667
2668 if (!ret)
2669 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2670
2671 kfree(vol_args);
2672 out:
2673 mutex_unlock(&root->fs_info->volume_mutex);
2674 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2675 return ret;
2676 }
2677
2678 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2679 {
2680 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2681 struct btrfs_ioctl_vol_args_v2 *vol_args;
2682 int ret;
2683
2684 if (!capable(CAP_SYS_ADMIN))
2685 return -EPERM;
2686
2687 ret = mnt_want_write_file(file);
2688 if (ret)
2689 return ret;
2690
2691 vol_args = memdup_user(arg, sizeof(*vol_args));
2692 if (IS_ERR(vol_args)) {
2693 ret = PTR_ERR(vol_args);
2694 goto err_drop;
2695 }
2696
2697 /* Check for compatibility reject unknown flags */
2698 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2699 return -EOPNOTSUPP;
2700
2701 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2702 1)) {
2703 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2704 goto out;
2705 }
2706
2707 mutex_lock(&root->fs_info->volume_mutex);
2708 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2709 ret = btrfs_rm_device(root, NULL, vol_args->devid);
2710 } else {
2711 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2712 ret = btrfs_rm_device(root, vol_args->name, 0);
2713 }
2714 mutex_unlock(&root->fs_info->volume_mutex);
2715 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2716
2717 if (!ret) {
2718 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2719 btrfs_info(root->fs_info, "device deleted: id %llu",
2720 vol_args->devid);
2721 else
2722 btrfs_info(root->fs_info, "device deleted: %s",
2723 vol_args->name);
2724 }
2725 out:
2726 kfree(vol_args);
2727 err_drop:
2728 mnt_drop_write_file(file);
2729 return ret;
2730 }
2731
2732 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2733 {
2734 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2735 struct btrfs_ioctl_vol_args *vol_args;
2736 int ret;
2737
2738 if (!capable(CAP_SYS_ADMIN))
2739 return -EPERM;
2740
2741 ret = mnt_want_write_file(file);
2742 if (ret)
2743 return ret;
2744
2745 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2746 1)) {
2747 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2748 goto out_drop_write;
2749 }
2750
2751 vol_args = memdup_user(arg, sizeof(*vol_args));
2752 if (IS_ERR(vol_args)) {
2753 ret = PTR_ERR(vol_args);
2754 goto out;
2755 }
2756
2757 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2758 mutex_lock(&root->fs_info->volume_mutex);
2759 ret = btrfs_rm_device(root, vol_args->name, 0);
2760 mutex_unlock(&root->fs_info->volume_mutex);
2761
2762 if (!ret)
2763 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2764 kfree(vol_args);
2765 out:
2766 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2767 out_drop_write:
2768 mnt_drop_write_file(file);
2769
2770 return ret;
2771 }
2772
2773 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2774 {
2775 struct btrfs_ioctl_fs_info_args *fi_args;
2776 struct btrfs_device *device;
2777 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2778 int ret = 0;
2779
2780 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2781 if (!fi_args)
2782 return -ENOMEM;
2783
2784 mutex_lock(&fs_devices->device_list_mutex);
2785 fi_args->num_devices = fs_devices->num_devices;
2786 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2787
2788 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2789 if (device->devid > fi_args->max_id)
2790 fi_args->max_id = device->devid;
2791 }
2792 mutex_unlock(&fs_devices->device_list_mutex);
2793
2794 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2795 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2796 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2797
2798 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2799 ret = -EFAULT;
2800
2801 kfree(fi_args);
2802 return ret;
2803 }
2804
2805 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2806 {
2807 struct btrfs_ioctl_dev_info_args *di_args;
2808 struct btrfs_device *dev;
2809 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2810 int ret = 0;
2811 char *s_uuid = NULL;
2812
2813 di_args = memdup_user(arg, sizeof(*di_args));
2814 if (IS_ERR(di_args))
2815 return PTR_ERR(di_args);
2816
2817 if (!btrfs_is_empty_uuid(di_args->uuid))
2818 s_uuid = di_args->uuid;
2819
2820 mutex_lock(&fs_devices->device_list_mutex);
2821 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2822
2823 if (!dev) {
2824 ret = -ENODEV;
2825 goto out;
2826 }
2827
2828 di_args->devid = dev->devid;
2829 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2830 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2831 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2832 if (dev->name) {
2833 struct rcu_string *name;
2834
2835 rcu_read_lock();
2836 name = rcu_dereference(dev->name);
2837 strncpy(di_args->path, name->str, sizeof(di_args->path));
2838 rcu_read_unlock();
2839 di_args->path[sizeof(di_args->path) - 1] = 0;
2840 } else {
2841 di_args->path[0] = '\0';
2842 }
2843
2844 out:
2845 mutex_unlock(&fs_devices->device_list_mutex);
2846 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2847 ret = -EFAULT;
2848
2849 kfree(di_args);
2850 return ret;
2851 }
2852
2853 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2854 {
2855 struct page *page;
2856
2857 page = grab_cache_page(inode->i_mapping, index);
2858 if (!page)
2859 return ERR_PTR(-ENOMEM);
2860
2861 if (!PageUptodate(page)) {
2862 int ret;
2863
2864 ret = btrfs_readpage(NULL, page);
2865 if (ret)
2866 return ERR_PTR(ret);
2867 lock_page(page);
2868 if (!PageUptodate(page)) {
2869 unlock_page(page);
2870 put_page(page);
2871 return ERR_PTR(-EIO);
2872 }
2873 if (page->mapping != inode->i_mapping) {
2874 unlock_page(page);
2875 put_page(page);
2876 return ERR_PTR(-EAGAIN);
2877 }
2878 }
2879
2880 return page;
2881 }
2882
2883 static int gather_extent_pages(struct inode *inode, struct page **pages,
2884 int num_pages, u64 off)
2885 {
2886 int i;
2887 pgoff_t index = off >> PAGE_SHIFT;
2888
2889 for (i = 0; i < num_pages; i++) {
2890 again:
2891 pages[i] = extent_same_get_page(inode, index + i);
2892 if (IS_ERR(pages[i])) {
2893 int err = PTR_ERR(pages[i]);
2894
2895 if (err == -EAGAIN)
2896 goto again;
2897 pages[i] = NULL;
2898 return err;
2899 }
2900 }
2901 return 0;
2902 }
2903
2904 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2905 bool retry_range_locking)
2906 {
2907 /*
2908 * Do any pending delalloc/csum calculations on inode, one way or
2909 * another, and lock file content.
2910 * The locking order is:
2911 *
2912 * 1) pages
2913 * 2) range in the inode's io tree
2914 */
2915 while (1) {
2916 struct btrfs_ordered_extent *ordered;
2917 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2918 ordered = btrfs_lookup_first_ordered_extent(inode,
2919 off + len - 1);
2920 if ((!ordered ||
2921 ordered->file_offset + ordered->len <= off ||
2922 ordered->file_offset >= off + len) &&
2923 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2924 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2925 if (ordered)
2926 btrfs_put_ordered_extent(ordered);
2927 break;
2928 }
2929 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2930 if (ordered)
2931 btrfs_put_ordered_extent(ordered);
2932 if (!retry_range_locking)
2933 return -EAGAIN;
2934 btrfs_wait_ordered_range(inode, off, len);
2935 }
2936 return 0;
2937 }
2938
2939 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2940 {
2941 inode_unlock(inode1);
2942 inode_unlock(inode2);
2943 }
2944
2945 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2946 {
2947 if (inode1 < inode2)
2948 swap(inode1, inode2);
2949
2950 inode_lock_nested(inode1, I_MUTEX_PARENT);
2951 inode_lock_nested(inode2, I_MUTEX_CHILD);
2952 }
2953
2954 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2955 struct inode *inode2, u64 loff2, u64 len)
2956 {
2957 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2958 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2959 }
2960
2961 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2962 struct inode *inode2, u64 loff2, u64 len,
2963 bool retry_range_locking)
2964 {
2965 int ret;
2966
2967 if (inode1 < inode2) {
2968 swap(inode1, inode2);
2969 swap(loff1, loff2);
2970 }
2971 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2972 if (ret)
2973 return ret;
2974 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2975 if (ret)
2976 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2977 loff1 + len - 1);
2978 return ret;
2979 }
2980
2981 struct cmp_pages {
2982 int num_pages;
2983 struct page **src_pages;
2984 struct page **dst_pages;
2985 };
2986
2987 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2988 {
2989 int i;
2990 struct page *pg;
2991
2992 for (i = 0; i < cmp->num_pages; i++) {
2993 pg = cmp->src_pages[i];
2994 if (pg) {
2995 unlock_page(pg);
2996 put_page(pg);
2997 }
2998 pg = cmp->dst_pages[i];
2999 if (pg) {
3000 unlock_page(pg);
3001 put_page(pg);
3002 }
3003 }
3004 kfree(cmp->src_pages);
3005 kfree(cmp->dst_pages);
3006 }
3007
3008 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3009 struct inode *dst, u64 dst_loff,
3010 u64 len, struct cmp_pages *cmp)
3011 {
3012 int ret;
3013 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3014 struct page **src_pgarr, **dst_pgarr;
3015
3016 /*
3017 * We must gather up all the pages before we initiate our
3018 * extent locking. We use an array for the page pointers. Size
3019 * of the array is bounded by len, which is in turn bounded by
3020 * BTRFS_MAX_DEDUPE_LEN.
3021 */
3022 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3023 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3024 if (!src_pgarr || !dst_pgarr) {
3025 kfree(src_pgarr);
3026 kfree(dst_pgarr);
3027 return -ENOMEM;
3028 }
3029 cmp->num_pages = num_pages;
3030 cmp->src_pages = src_pgarr;
3031 cmp->dst_pages = dst_pgarr;
3032
3033 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3034 if (ret)
3035 goto out;
3036
3037 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3038
3039 out:
3040 if (ret)
3041 btrfs_cmp_data_free(cmp);
3042 return 0;
3043 }
3044
3045 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3046 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3047 {
3048 int ret = 0;
3049 int i;
3050 struct page *src_page, *dst_page;
3051 unsigned int cmp_len = PAGE_SIZE;
3052 void *addr, *dst_addr;
3053
3054 i = 0;
3055 while (len) {
3056 if (len < PAGE_SIZE)
3057 cmp_len = len;
3058
3059 BUG_ON(i >= cmp->num_pages);
3060
3061 src_page = cmp->src_pages[i];
3062 dst_page = cmp->dst_pages[i];
3063 ASSERT(PageLocked(src_page));
3064 ASSERT(PageLocked(dst_page));
3065
3066 addr = kmap_atomic(src_page);
3067 dst_addr = kmap_atomic(dst_page);
3068
3069 flush_dcache_page(src_page);
3070 flush_dcache_page(dst_page);
3071
3072 if (memcmp(addr, dst_addr, cmp_len))
3073 ret = -EBADE;
3074
3075 kunmap_atomic(addr);
3076 kunmap_atomic(dst_addr);
3077
3078 if (ret)
3079 break;
3080
3081 len -= cmp_len;
3082 i++;
3083 }
3084
3085 return ret;
3086 }
3087
3088 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3089 u64 olen)
3090 {
3091 u64 len = *plen;
3092 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3093
3094 if (off + olen > inode->i_size || off + olen < off)
3095 return -EINVAL;
3096
3097 /* if we extend to eof, continue to block boundary */
3098 if (off + len == inode->i_size)
3099 *plen = len = ALIGN(inode->i_size, bs) - off;
3100
3101 /* Check that we are block aligned - btrfs_clone() requires this */
3102 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3103 return -EINVAL;
3104
3105 return 0;
3106 }
3107
3108 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3109 struct inode *dst, u64 dst_loff)
3110 {
3111 int ret;
3112 u64 len = olen;
3113 struct cmp_pages cmp;
3114 int same_inode = 0;
3115 u64 same_lock_start = 0;
3116 u64 same_lock_len = 0;
3117
3118 if (src == dst)
3119 same_inode = 1;
3120
3121 if (len == 0)
3122 return 0;
3123
3124 if (same_inode) {
3125 inode_lock(src);
3126
3127 ret = extent_same_check_offsets(src, loff, &len, olen);
3128 if (ret)
3129 goto out_unlock;
3130 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3131 if (ret)
3132 goto out_unlock;
3133
3134 /*
3135 * Single inode case wants the same checks, except we
3136 * don't want our length pushed out past i_size as
3137 * comparing that data range makes no sense.
3138 *
3139 * extent_same_check_offsets() will do this for an
3140 * unaligned length at i_size, so catch it here and
3141 * reject the request.
3142 *
3143 * This effectively means we require aligned extents
3144 * for the single-inode case, whereas the other cases
3145 * allow an unaligned length so long as it ends at
3146 * i_size.
3147 */
3148 if (len != olen) {
3149 ret = -EINVAL;
3150 goto out_unlock;
3151 }
3152
3153 /* Check for overlapping ranges */
3154 if (dst_loff + len > loff && dst_loff < loff + len) {
3155 ret = -EINVAL;
3156 goto out_unlock;
3157 }
3158
3159 same_lock_start = min_t(u64, loff, dst_loff);
3160 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3161 } else {
3162 btrfs_double_inode_lock(src, dst);
3163
3164 ret = extent_same_check_offsets(src, loff, &len, olen);
3165 if (ret)
3166 goto out_unlock;
3167
3168 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3169 if (ret)
3170 goto out_unlock;
3171 }
3172
3173 /* don't make the dst file partly checksummed */
3174 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3175 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3176 ret = -EINVAL;
3177 goto out_unlock;
3178 }
3179
3180 again:
3181 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3182 if (ret)
3183 goto out_unlock;
3184
3185 if (same_inode)
3186 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3187 false);
3188 else
3189 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3190 false);
3191 /*
3192 * If one of the inodes has dirty pages in the respective range or
3193 * ordered extents, we need to flush dellaloc and wait for all ordered
3194 * extents in the range. We must unlock the pages and the ranges in the
3195 * io trees to avoid deadlocks when flushing delalloc (requires locking
3196 * pages) and when waiting for ordered extents to complete (they require
3197 * range locking).
3198 */
3199 if (ret == -EAGAIN) {
3200 /*
3201 * Ranges in the io trees already unlocked. Now unlock all
3202 * pages before waiting for all IO to complete.
3203 */
3204 btrfs_cmp_data_free(&cmp);
3205 if (same_inode) {
3206 btrfs_wait_ordered_range(src, same_lock_start,
3207 same_lock_len);
3208 } else {
3209 btrfs_wait_ordered_range(src, loff, len);
3210 btrfs_wait_ordered_range(dst, dst_loff, len);
3211 }
3212 goto again;
3213 }
3214 ASSERT(ret == 0);
3215 if (WARN_ON(ret)) {
3216 /* ranges in the io trees already unlocked */
3217 btrfs_cmp_data_free(&cmp);
3218 return ret;
3219 }
3220
3221 /* pass original length for comparison so we stay within i_size */
3222 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3223 if (ret == 0)
3224 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3225
3226 if (same_inode)
3227 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3228 same_lock_start + same_lock_len - 1);
3229 else
3230 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3231
3232 btrfs_cmp_data_free(&cmp);
3233 out_unlock:
3234 if (same_inode)
3235 inode_unlock(src);
3236 else
3237 btrfs_double_inode_unlock(src, dst);
3238
3239 return ret;
3240 }
3241
3242 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3243
3244 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3245 struct file *dst_file, u64 dst_loff)
3246 {
3247 struct inode *src = file_inode(src_file);
3248 struct inode *dst = file_inode(dst_file);
3249 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3250 ssize_t res;
3251
3252 if (olen > BTRFS_MAX_DEDUPE_LEN)
3253 olen = BTRFS_MAX_DEDUPE_LEN;
3254
3255 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3256 /*
3257 * Btrfs does not support blocksize < page_size. As a
3258 * result, btrfs_cmp_data() won't correctly handle
3259 * this situation without an update.
3260 */
3261 return -EINVAL;
3262 }
3263
3264 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3265 if (res)
3266 return res;
3267 return olen;
3268 }
3269
3270 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3271 struct inode *inode,
3272 u64 endoff,
3273 const u64 destoff,
3274 const u64 olen,
3275 int no_time_update)
3276 {
3277 struct btrfs_root *root = BTRFS_I(inode)->root;
3278 int ret;
3279
3280 inode_inc_iversion(inode);
3281 if (!no_time_update)
3282 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3283 /*
3284 * We round up to the block size at eof when determining which
3285 * extents to clone above, but shouldn't round up the file size.
3286 */
3287 if (endoff > destoff + olen)
3288 endoff = destoff + olen;
3289 if (endoff > inode->i_size)
3290 btrfs_i_size_write(inode, endoff);
3291
3292 ret = btrfs_update_inode(trans, root, inode);
3293 if (ret) {
3294 btrfs_abort_transaction(trans, ret);
3295 btrfs_end_transaction(trans, root);
3296 goto out;
3297 }
3298 ret = btrfs_end_transaction(trans, root);
3299 out:
3300 return ret;
3301 }
3302
3303 static void clone_update_extent_map(struct inode *inode,
3304 const struct btrfs_trans_handle *trans,
3305 const struct btrfs_path *path,
3306 const u64 hole_offset,
3307 const u64 hole_len)
3308 {
3309 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3310 struct extent_map *em;
3311 int ret;
3312
3313 em = alloc_extent_map();
3314 if (!em) {
3315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3316 &BTRFS_I(inode)->runtime_flags);
3317 return;
3318 }
3319
3320 if (path) {
3321 struct btrfs_file_extent_item *fi;
3322
3323 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3324 struct btrfs_file_extent_item);
3325 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3326 em->generation = -1;
3327 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3328 BTRFS_FILE_EXTENT_INLINE)
3329 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3330 &BTRFS_I(inode)->runtime_flags);
3331 } else {
3332 em->start = hole_offset;
3333 em->len = hole_len;
3334 em->ram_bytes = em->len;
3335 em->orig_start = hole_offset;
3336 em->block_start = EXTENT_MAP_HOLE;
3337 em->block_len = 0;
3338 em->orig_block_len = 0;
3339 em->compress_type = BTRFS_COMPRESS_NONE;
3340 em->generation = trans->transid;
3341 }
3342
3343 while (1) {
3344 write_lock(&em_tree->lock);
3345 ret = add_extent_mapping(em_tree, em, 1);
3346 write_unlock(&em_tree->lock);
3347 if (ret != -EEXIST) {
3348 free_extent_map(em);
3349 break;
3350 }
3351 btrfs_drop_extent_cache(inode, em->start,
3352 em->start + em->len - 1, 0);
3353 }
3354
3355 if (ret)
3356 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3357 &BTRFS_I(inode)->runtime_flags);
3358 }
3359
3360 /*
3361 * Make sure we do not end up inserting an inline extent into a file that has
3362 * already other (non-inline) extents. If a file has an inline extent it can
3363 * not have any other extents and the (single) inline extent must start at the
3364 * file offset 0. Failing to respect these rules will lead to file corruption,
3365 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3366 *
3367 * We can have extents that have been already written to disk or we can have
3368 * dirty ranges still in delalloc, in which case the extent maps and items are
3369 * created only when we run delalloc, and the delalloc ranges might fall outside
3370 * the range we are currently locking in the inode's io tree. So we check the
3371 * inode's i_size because of that (i_size updates are done while holding the
3372 * i_mutex, which we are holding here).
3373 * We also check to see if the inode has a size not greater than "datal" but has
3374 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3375 * protected against such concurrent fallocate calls by the i_mutex).
3376 *
3377 * If the file has no extents but a size greater than datal, do not allow the
3378 * copy because we would need turn the inline extent into a non-inline one (even
3379 * with NO_HOLES enabled). If we find our destination inode only has one inline
3380 * extent, just overwrite it with the source inline extent if its size is less
3381 * than the source extent's size, or we could copy the source inline extent's
3382 * data into the destination inode's inline extent if the later is greater then
3383 * the former.
3384 */
3385 static int clone_copy_inline_extent(struct inode *src,
3386 struct inode *dst,
3387 struct btrfs_trans_handle *trans,
3388 struct btrfs_path *path,
3389 struct btrfs_key *new_key,
3390 const u64 drop_start,
3391 const u64 datal,
3392 const u64 skip,
3393 const u64 size,
3394 char *inline_data)
3395 {
3396 struct btrfs_root *root = BTRFS_I(dst)->root;
3397 const u64 aligned_end = ALIGN(new_key->offset + datal,
3398 root->sectorsize);
3399 int ret;
3400 struct btrfs_key key;
3401
3402 if (new_key->offset > 0)
3403 return -EOPNOTSUPP;
3404
3405 key.objectid = btrfs_ino(dst);
3406 key.type = BTRFS_EXTENT_DATA_KEY;
3407 key.offset = 0;
3408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3409 if (ret < 0) {
3410 return ret;
3411 } else if (ret > 0) {
3412 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3413 ret = btrfs_next_leaf(root, path);
3414 if (ret < 0)
3415 return ret;
3416 else if (ret > 0)
3417 goto copy_inline_extent;
3418 }
3419 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3420 if (key.objectid == btrfs_ino(dst) &&
3421 key.type == BTRFS_EXTENT_DATA_KEY) {
3422 ASSERT(key.offset > 0);
3423 return -EOPNOTSUPP;
3424 }
3425 } else if (i_size_read(dst) <= datal) {
3426 struct btrfs_file_extent_item *ei;
3427 u64 ext_len;
3428
3429 /*
3430 * If the file size is <= datal, make sure there are no other
3431 * extents following (can happen do to an fallocate call with
3432 * the flag FALLOC_FL_KEEP_SIZE).
3433 */
3434 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3435 struct btrfs_file_extent_item);
3436 /*
3437 * If it's an inline extent, it can not have other extents
3438 * following it.
3439 */
3440 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3441 BTRFS_FILE_EXTENT_INLINE)
3442 goto copy_inline_extent;
3443
3444 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3445 if (ext_len > aligned_end)
3446 return -EOPNOTSUPP;
3447
3448 ret = btrfs_next_item(root, path);
3449 if (ret < 0) {
3450 return ret;
3451 } else if (ret == 0) {
3452 btrfs_item_key_to_cpu(path->nodes[0], &key,
3453 path->slots[0]);
3454 if (key.objectid == btrfs_ino(dst) &&
3455 key.type == BTRFS_EXTENT_DATA_KEY)
3456 return -EOPNOTSUPP;
3457 }
3458 }
3459
3460 copy_inline_extent:
3461 /*
3462 * We have no extent items, or we have an extent at offset 0 which may
3463 * or may not be inlined. All these cases are dealt the same way.
3464 */
3465 if (i_size_read(dst) > datal) {
3466 /*
3467 * If the destination inode has an inline extent...
3468 * This would require copying the data from the source inline
3469 * extent into the beginning of the destination's inline extent.
3470 * But this is really complex, both extents can be compressed
3471 * or just one of them, which would require decompressing and
3472 * re-compressing data (which could increase the new compressed
3473 * size, not allowing the compressed data to fit anymore in an
3474 * inline extent).
3475 * So just don't support this case for now (it should be rare,
3476 * we are not really saving space when cloning inline extents).
3477 */
3478 return -EOPNOTSUPP;
3479 }
3480
3481 btrfs_release_path(path);
3482 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3483 if (ret)
3484 return ret;
3485 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3486 if (ret)
3487 return ret;
3488
3489 if (skip) {
3490 const u32 start = btrfs_file_extent_calc_inline_size(0);
3491
3492 memmove(inline_data + start, inline_data + start + skip, datal);
3493 }
3494
3495 write_extent_buffer(path->nodes[0], inline_data,
3496 btrfs_item_ptr_offset(path->nodes[0],
3497 path->slots[0]),
3498 size);
3499 inode_add_bytes(dst, datal);
3500
3501 return 0;
3502 }
3503
3504 /**
3505 * btrfs_clone() - clone a range from inode file to another
3506 *
3507 * @src: Inode to clone from
3508 * @inode: Inode to clone to
3509 * @off: Offset within source to start clone from
3510 * @olen: Original length, passed by user, of range to clone
3511 * @olen_aligned: Block-aligned value of olen
3512 * @destoff: Offset within @inode to start clone
3513 * @no_time_update: Whether to update mtime/ctime on the target inode
3514 */
3515 static int btrfs_clone(struct inode *src, struct inode *inode,
3516 const u64 off, const u64 olen, const u64 olen_aligned,
3517 const u64 destoff, int no_time_update)
3518 {
3519 struct btrfs_root *root = BTRFS_I(inode)->root;
3520 struct btrfs_path *path = NULL;
3521 struct extent_buffer *leaf;
3522 struct btrfs_trans_handle *trans;
3523 char *buf = NULL;
3524 struct btrfs_key key;
3525 u32 nritems;
3526 int slot;
3527 int ret;
3528 const u64 len = olen_aligned;
3529 u64 last_dest_end = destoff;
3530
3531 ret = -ENOMEM;
3532 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3533 if (!buf) {
3534 buf = vmalloc(root->nodesize);
3535 if (!buf)
3536 return ret;
3537 }
3538
3539 path = btrfs_alloc_path();
3540 if (!path) {
3541 kvfree(buf);
3542 return ret;
3543 }
3544
3545 path->reada = READA_FORWARD;
3546 /* clone data */
3547 key.objectid = btrfs_ino(src);
3548 key.type = BTRFS_EXTENT_DATA_KEY;
3549 key.offset = off;
3550
3551 while (1) {
3552 u64 next_key_min_offset = key.offset + 1;
3553
3554 /*
3555 * note the key will change type as we walk through the
3556 * tree.
3557 */
3558 path->leave_spinning = 1;
3559 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3560 0, 0);
3561 if (ret < 0)
3562 goto out;
3563 /*
3564 * First search, if no extent item that starts at offset off was
3565 * found but the previous item is an extent item, it's possible
3566 * it might overlap our target range, therefore process it.
3567 */
3568 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3569 btrfs_item_key_to_cpu(path->nodes[0], &key,
3570 path->slots[0] - 1);
3571 if (key.type == BTRFS_EXTENT_DATA_KEY)
3572 path->slots[0]--;
3573 }
3574
3575 nritems = btrfs_header_nritems(path->nodes[0]);
3576 process_slot:
3577 if (path->slots[0] >= nritems) {
3578 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3579 if (ret < 0)
3580 goto out;
3581 if (ret > 0)
3582 break;
3583 nritems = btrfs_header_nritems(path->nodes[0]);
3584 }
3585 leaf = path->nodes[0];
3586 slot = path->slots[0];
3587
3588 btrfs_item_key_to_cpu(leaf, &key, slot);
3589 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3590 key.objectid != btrfs_ino(src))
3591 break;
3592
3593 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3594 struct btrfs_file_extent_item *extent;
3595 int type;
3596 u32 size;
3597 struct btrfs_key new_key;
3598 u64 disko = 0, diskl = 0;
3599 u64 datao = 0, datal = 0;
3600 u8 comp;
3601 u64 drop_start;
3602
3603 extent = btrfs_item_ptr(leaf, slot,
3604 struct btrfs_file_extent_item);
3605 comp = btrfs_file_extent_compression(leaf, extent);
3606 type = btrfs_file_extent_type(leaf, extent);
3607 if (type == BTRFS_FILE_EXTENT_REG ||
3608 type == BTRFS_FILE_EXTENT_PREALLOC) {
3609 disko = btrfs_file_extent_disk_bytenr(leaf,
3610 extent);
3611 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3612 extent);
3613 datao = btrfs_file_extent_offset(leaf, extent);
3614 datal = btrfs_file_extent_num_bytes(leaf,
3615 extent);
3616 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3617 /* take upper bound, may be compressed */
3618 datal = btrfs_file_extent_ram_bytes(leaf,
3619 extent);
3620 }
3621
3622 /*
3623 * The first search might have left us at an extent
3624 * item that ends before our target range's start, can
3625 * happen if we have holes and NO_HOLES feature enabled.
3626 */
3627 if (key.offset + datal <= off) {
3628 path->slots[0]++;
3629 goto process_slot;
3630 } else if (key.offset >= off + len) {
3631 break;
3632 }
3633 next_key_min_offset = key.offset + datal;
3634 size = btrfs_item_size_nr(leaf, slot);
3635 read_extent_buffer(leaf, buf,
3636 btrfs_item_ptr_offset(leaf, slot),
3637 size);
3638
3639 btrfs_release_path(path);
3640 path->leave_spinning = 0;
3641
3642 memcpy(&new_key, &key, sizeof(new_key));
3643 new_key.objectid = btrfs_ino(inode);
3644 if (off <= key.offset)
3645 new_key.offset = key.offset + destoff - off;
3646 else
3647 new_key.offset = destoff;
3648
3649 /*
3650 * Deal with a hole that doesn't have an extent item
3651 * that represents it (NO_HOLES feature enabled).
3652 * This hole is either in the middle of the cloning
3653 * range or at the beginning (fully overlaps it or
3654 * partially overlaps it).
3655 */
3656 if (new_key.offset != last_dest_end)
3657 drop_start = last_dest_end;
3658 else
3659 drop_start = new_key.offset;
3660
3661 /*
3662 * 1 - adjusting old extent (we may have to split it)
3663 * 1 - add new extent
3664 * 1 - inode update
3665 */
3666 trans = btrfs_start_transaction(root, 3);
3667 if (IS_ERR(trans)) {
3668 ret = PTR_ERR(trans);
3669 goto out;
3670 }
3671
3672 if (type == BTRFS_FILE_EXTENT_REG ||
3673 type == BTRFS_FILE_EXTENT_PREALLOC) {
3674 /*
3675 * a | --- range to clone ---| b
3676 * | ------------- extent ------------- |
3677 */
3678
3679 /* subtract range b */
3680 if (key.offset + datal > off + len)
3681 datal = off + len - key.offset;
3682
3683 /* subtract range a */
3684 if (off > key.offset) {
3685 datao += off - key.offset;
3686 datal -= off - key.offset;
3687 }
3688
3689 ret = btrfs_drop_extents(trans, root, inode,
3690 drop_start,
3691 new_key.offset + datal,
3692 1);
3693 if (ret) {
3694 if (ret != -EOPNOTSUPP)
3695 btrfs_abort_transaction(trans,
3696 ret);
3697 btrfs_end_transaction(trans, root);
3698 goto out;
3699 }
3700
3701 ret = btrfs_insert_empty_item(trans, root, path,
3702 &new_key, size);
3703 if (ret) {
3704 btrfs_abort_transaction(trans, ret);
3705 btrfs_end_transaction(trans, root);
3706 goto out;
3707 }
3708
3709 leaf = path->nodes[0];
3710 slot = path->slots[0];
3711 write_extent_buffer(leaf, buf,
3712 btrfs_item_ptr_offset(leaf, slot),
3713 size);
3714
3715 extent = btrfs_item_ptr(leaf, slot,
3716 struct btrfs_file_extent_item);
3717
3718 /* disko == 0 means it's a hole */
3719 if (!disko)
3720 datao = 0;
3721
3722 btrfs_set_file_extent_offset(leaf, extent,
3723 datao);
3724 btrfs_set_file_extent_num_bytes(leaf, extent,
3725 datal);
3726
3727 if (disko) {
3728 inode_add_bytes(inode, datal);
3729 ret = btrfs_inc_extent_ref(trans, root,
3730 disko, diskl, 0,
3731 root->root_key.objectid,
3732 btrfs_ino(inode),
3733 new_key.offset - datao);
3734 if (ret) {
3735 btrfs_abort_transaction(trans,
3736 ret);
3737 btrfs_end_transaction(trans,
3738 root);
3739 goto out;
3740
3741 }
3742 }
3743 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3744 u64 skip = 0;
3745 u64 trim = 0;
3746
3747 if (off > key.offset) {
3748 skip = off - key.offset;
3749 new_key.offset += skip;
3750 }
3751
3752 if (key.offset + datal > off + len)
3753 trim = key.offset + datal - (off + len);
3754
3755 if (comp && (skip || trim)) {
3756 ret = -EINVAL;
3757 btrfs_end_transaction(trans, root);
3758 goto out;
3759 }
3760 size -= skip + trim;
3761 datal -= skip + trim;
3762
3763 ret = clone_copy_inline_extent(src, inode,
3764 trans, path,
3765 &new_key,
3766 drop_start,
3767 datal,
3768 skip, size, buf);
3769 if (ret) {
3770 if (ret != -EOPNOTSUPP)
3771 btrfs_abort_transaction(trans,
3772 ret);
3773 btrfs_end_transaction(trans, root);
3774 goto out;
3775 }
3776 leaf = path->nodes[0];
3777 slot = path->slots[0];
3778 }
3779
3780 /* If we have an implicit hole (NO_HOLES feature). */
3781 if (drop_start < new_key.offset)
3782 clone_update_extent_map(inode, trans,
3783 NULL, drop_start,
3784 new_key.offset - drop_start);
3785
3786 clone_update_extent_map(inode, trans, path, 0, 0);
3787
3788 btrfs_mark_buffer_dirty(leaf);
3789 btrfs_release_path(path);
3790
3791 last_dest_end = ALIGN(new_key.offset + datal,
3792 root->sectorsize);
3793 ret = clone_finish_inode_update(trans, inode,
3794 last_dest_end,
3795 destoff, olen,
3796 no_time_update);
3797 if (ret)
3798 goto out;
3799 if (new_key.offset + datal >= destoff + len)
3800 break;
3801 }
3802 btrfs_release_path(path);
3803 key.offset = next_key_min_offset;
3804 }
3805 ret = 0;
3806
3807 if (last_dest_end < destoff + len) {
3808 /*
3809 * We have an implicit hole (NO_HOLES feature is enabled) that
3810 * fully or partially overlaps our cloning range at its end.
3811 */
3812 btrfs_release_path(path);
3813
3814 /*
3815 * 1 - remove extent(s)
3816 * 1 - inode update
3817 */
3818 trans = btrfs_start_transaction(root, 2);
3819 if (IS_ERR(trans)) {
3820 ret = PTR_ERR(trans);
3821 goto out;
3822 }
3823 ret = btrfs_drop_extents(trans, root, inode,
3824 last_dest_end, destoff + len, 1);
3825 if (ret) {
3826 if (ret != -EOPNOTSUPP)
3827 btrfs_abort_transaction(trans, ret);
3828 btrfs_end_transaction(trans, root);
3829 goto out;
3830 }
3831 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3832 destoff + len - last_dest_end);
3833 ret = clone_finish_inode_update(trans, inode, destoff + len,
3834 destoff, olen, no_time_update);
3835 }
3836
3837 out:
3838 btrfs_free_path(path);
3839 kvfree(buf);
3840 return ret;
3841 }
3842
3843 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3844 u64 off, u64 olen, u64 destoff)
3845 {
3846 struct inode *inode = file_inode(file);
3847 struct inode *src = file_inode(file_src);
3848 struct btrfs_root *root = BTRFS_I(inode)->root;
3849 int ret;
3850 u64 len = olen;
3851 u64 bs = root->fs_info->sb->s_blocksize;
3852 int same_inode = src == inode;
3853
3854 /*
3855 * TODO:
3856 * - split compressed inline extents. annoying: we need to
3857 * decompress into destination's address_space (the file offset
3858 * may change, so source mapping won't do), then recompress (or
3859 * otherwise reinsert) a subrange.
3860 *
3861 * - split destination inode's inline extents. The inline extents can
3862 * be either compressed or non-compressed.
3863 */
3864
3865 if (btrfs_root_readonly(root))
3866 return -EROFS;
3867
3868 if (file_src->f_path.mnt != file->f_path.mnt ||
3869 src->i_sb != inode->i_sb)
3870 return -EXDEV;
3871
3872 /* don't make the dst file partly checksummed */
3873 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3874 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3875 return -EINVAL;
3876
3877 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3878 return -EISDIR;
3879
3880 if (!same_inode) {
3881 btrfs_double_inode_lock(src, inode);
3882 } else {
3883 inode_lock(src);
3884 }
3885
3886 /* determine range to clone */
3887 ret = -EINVAL;
3888 if (off + len > src->i_size || off + len < off)
3889 goto out_unlock;
3890 if (len == 0)
3891 olen = len = src->i_size - off;
3892 /* if we extend to eof, continue to block boundary */
3893 if (off + len == src->i_size)
3894 len = ALIGN(src->i_size, bs) - off;
3895
3896 if (len == 0) {
3897 ret = 0;
3898 goto out_unlock;
3899 }
3900
3901 /* verify the end result is block aligned */
3902 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3903 !IS_ALIGNED(destoff, bs))
3904 goto out_unlock;
3905
3906 /* verify if ranges are overlapped within the same file */
3907 if (same_inode) {
3908 if (destoff + len > off && destoff < off + len)
3909 goto out_unlock;
3910 }
3911
3912 if (destoff > inode->i_size) {
3913 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3914 if (ret)
3915 goto out_unlock;
3916 }
3917
3918 /*
3919 * Lock the target range too. Right after we replace the file extent
3920 * items in the fs tree (which now point to the cloned data), we might
3921 * have a worker replace them with extent items relative to a write
3922 * operation that was issued before this clone operation (i.e. confront
3923 * with inode.c:btrfs_finish_ordered_io).
3924 */
3925 if (same_inode) {
3926 u64 lock_start = min_t(u64, off, destoff);
3927 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3928
3929 ret = lock_extent_range(src, lock_start, lock_len, true);
3930 } else {
3931 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3932 true);
3933 }
3934 ASSERT(ret == 0);
3935 if (WARN_ON(ret)) {
3936 /* ranges in the io trees already unlocked */
3937 goto out_unlock;
3938 }
3939
3940 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3941
3942 if (same_inode) {
3943 u64 lock_start = min_t(u64, off, destoff);
3944 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3945
3946 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3947 } else {
3948 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3949 }
3950 /*
3951 * Truncate page cache pages so that future reads will see the cloned
3952 * data immediately and not the previous data.
3953 */
3954 truncate_inode_pages_range(&inode->i_data,
3955 round_down(destoff, PAGE_SIZE),
3956 round_up(destoff + len, PAGE_SIZE) - 1);
3957 out_unlock:
3958 if (!same_inode)
3959 btrfs_double_inode_unlock(src, inode);
3960 else
3961 inode_unlock(src);
3962 return ret;
3963 }
3964
3965 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3966 struct file *file_out, loff_t pos_out,
3967 size_t len, unsigned int flags)
3968 {
3969 ssize_t ret;
3970
3971 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3972 if (ret == 0)
3973 ret = len;
3974 return ret;
3975 }
3976
3977 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3978 struct file *dst_file, loff_t destoff, u64 len)
3979 {
3980 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3981 }
3982
3983 /*
3984 * there are many ways the trans_start and trans_end ioctls can lead
3985 * to deadlocks. They should only be used by applications that
3986 * basically own the machine, and have a very in depth understanding
3987 * of all the possible deadlocks and enospc problems.
3988 */
3989 static long btrfs_ioctl_trans_start(struct file *file)
3990 {
3991 struct inode *inode = file_inode(file);
3992 struct btrfs_root *root = BTRFS_I(inode)->root;
3993 struct btrfs_trans_handle *trans;
3994 int ret;
3995
3996 ret = -EPERM;
3997 if (!capable(CAP_SYS_ADMIN))
3998 goto out;
3999
4000 ret = -EINPROGRESS;
4001 if (file->private_data)
4002 goto out;
4003
4004 ret = -EROFS;
4005 if (btrfs_root_readonly(root))
4006 goto out;
4007
4008 ret = mnt_want_write_file(file);
4009 if (ret)
4010 goto out;
4011
4012 atomic_inc(&root->fs_info->open_ioctl_trans);
4013
4014 ret = -ENOMEM;
4015 trans = btrfs_start_ioctl_transaction(root);
4016 if (IS_ERR(trans))
4017 goto out_drop;
4018
4019 file->private_data = trans;
4020 return 0;
4021
4022 out_drop:
4023 atomic_dec(&root->fs_info->open_ioctl_trans);
4024 mnt_drop_write_file(file);
4025 out:
4026 return ret;
4027 }
4028
4029 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4030 {
4031 struct inode *inode = file_inode(file);
4032 struct btrfs_root *root = BTRFS_I(inode)->root;
4033 struct btrfs_root *new_root;
4034 struct btrfs_dir_item *di;
4035 struct btrfs_trans_handle *trans;
4036 struct btrfs_path *path;
4037 struct btrfs_key location;
4038 struct btrfs_disk_key disk_key;
4039 u64 objectid = 0;
4040 u64 dir_id;
4041 int ret;
4042
4043 if (!capable(CAP_SYS_ADMIN))
4044 return -EPERM;
4045
4046 ret = mnt_want_write_file(file);
4047 if (ret)
4048 return ret;
4049
4050 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4051 ret = -EFAULT;
4052 goto out;
4053 }
4054
4055 if (!objectid)
4056 objectid = BTRFS_FS_TREE_OBJECTID;
4057
4058 location.objectid = objectid;
4059 location.type = BTRFS_ROOT_ITEM_KEY;
4060 location.offset = (u64)-1;
4061
4062 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4063 if (IS_ERR(new_root)) {
4064 ret = PTR_ERR(new_root);
4065 goto out;
4066 }
4067
4068 path = btrfs_alloc_path();
4069 if (!path) {
4070 ret = -ENOMEM;
4071 goto out;
4072 }
4073 path->leave_spinning = 1;
4074
4075 trans = btrfs_start_transaction(root, 1);
4076 if (IS_ERR(trans)) {
4077 btrfs_free_path(path);
4078 ret = PTR_ERR(trans);
4079 goto out;
4080 }
4081
4082 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4083 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4084 dir_id, "default", 7, 1);
4085 if (IS_ERR_OR_NULL(di)) {
4086 btrfs_free_path(path);
4087 btrfs_end_transaction(trans, root);
4088 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4089 "item, this isn't going to work");
4090 ret = -ENOENT;
4091 goto out;
4092 }
4093
4094 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4095 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4096 btrfs_mark_buffer_dirty(path->nodes[0]);
4097 btrfs_free_path(path);
4098
4099 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4100 btrfs_end_transaction(trans, root);
4101 out:
4102 mnt_drop_write_file(file);
4103 return ret;
4104 }
4105
4106 void btrfs_get_block_group_info(struct list_head *groups_list,
4107 struct btrfs_ioctl_space_info *space)
4108 {
4109 struct btrfs_block_group_cache *block_group;
4110
4111 space->total_bytes = 0;
4112 space->used_bytes = 0;
4113 space->flags = 0;
4114 list_for_each_entry(block_group, groups_list, list) {
4115 space->flags = block_group->flags;
4116 space->total_bytes += block_group->key.offset;
4117 space->used_bytes +=
4118 btrfs_block_group_used(&block_group->item);
4119 }
4120 }
4121
4122 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4123 {
4124 struct btrfs_ioctl_space_args space_args;
4125 struct btrfs_ioctl_space_info space;
4126 struct btrfs_ioctl_space_info *dest;
4127 struct btrfs_ioctl_space_info *dest_orig;
4128 struct btrfs_ioctl_space_info __user *user_dest;
4129 struct btrfs_space_info *info;
4130 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4131 BTRFS_BLOCK_GROUP_SYSTEM,
4132 BTRFS_BLOCK_GROUP_METADATA,
4133 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4134 int num_types = 4;
4135 int alloc_size;
4136 int ret = 0;
4137 u64 slot_count = 0;
4138 int i, c;
4139
4140 if (copy_from_user(&space_args,
4141 (struct btrfs_ioctl_space_args __user *)arg,
4142 sizeof(space_args)))
4143 return -EFAULT;
4144
4145 for (i = 0; i < num_types; i++) {
4146 struct btrfs_space_info *tmp;
4147
4148 info = NULL;
4149 rcu_read_lock();
4150 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4151 list) {
4152 if (tmp->flags == types[i]) {
4153 info = tmp;
4154 break;
4155 }
4156 }
4157 rcu_read_unlock();
4158
4159 if (!info)
4160 continue;
4161
4162 down_read(&info->groups_sem);
4163 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4164 if (!list_empty(&info->block_groups[c]))
4165 slot_count++;
4166 }
4167 up_read(&info->groups_sem);
4168 }
4169
4170 /*
4171 * Global block reserve, exported as a space_info
4172 */
4173 slot_count++;
4174
4175 /* space_slots == 0 means they are asking for a count */
4176 if (space_args.space_slots == 0) {
4177 space_args.total_spaces = slot_count;
4178 goto out;
4179 }
4180
4181 slot_count = min_t(u64, space_args.space_slots, slot_count);
4182
4183 alloc_size = sizeof(*dest) * slot_count;
4184
4185 /* we generally have at most 6 or so space infos, one for each raid
4186 * level. So, a whole page should be more than enough for everyone
4187 */
4188 if (alloc_size > PAGE_SIZE)
4189 return -ENOMEM;
4190
4191 space_args.total_spaces = 0;
4192 dest = kmalloc(alloc_size, GFP_KERNEL);
4193 if (!dest)
4194 return -ENOMEM;
4195 dest_orig = dest;
4196
4197 /* now we have a buffer to copy into */
4198 for (i = 0; i < num_types; i++) {
4199 struct btrfs_space_info *tmp;
4200
4201 if (!slot_count)
4202 break;
4203
4204 info = NULL;
4205 rcu_read_lock();
4206 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4207 list) {
4208 if (tmp->flags == types[i]) {
4209 info = tmp;
4210 break;
4211 }
4212 }
4213 rcu_read_unlock();
4214
4215 if (!info)
4216 continue;
4217 down_read(&info->groups_sem);
4218 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4219 if (!list_empty(&info->block_groups[c])) {
4220 btrfs_get_block_group_info(
4221 &info->block_groups[c], &space);
4222 memcpy(dest, &space, sizeof(space));
4223 dest++;
4224 space_args.total_spaces++;
4225 slot_count--;
4226 }
4227 if (!slot_count)
4228 break;
4229 }
4230 up_read(&info->groups_sem);
4231 }
4232
4233 /*
4234 * Add global block reserve
4235 */
4236 if (slot_count) {
4237 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4238
4239 spin_lock(&block_rsv->lock);
4240 space.total_bytes = block_rsv->size;
4241 space.used_bytes = block_rsv->size - block_rsv->reserved;
4242 spin_unlock(&block_rsv->lock);
4243 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4244 memcpy(dest, &space, sizeof(space));
4245 space_args.total_spaces++;
4246 }
4247
4248 user_dest = (struct btrfs_ioctl_space_info __user *)
4249 (arg + sizeof(struct btrfs_ioctl_space_args));
4250
4251 if (copy_to_user(user_dest, dest_orig, alloc_size))
4252 ret = -EFAULT;
4253
4254 kfree(dest_orig);
4255 out:
4256 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4257 ret = -EFAULT;
4258
4259 return ret;
4260 }
4261
4262 /*
4263 * there are many ways the trans_start and trans_end ioctls can lead
4264 * to deadlocks. They should only be used by applications that
4265 * basically own the machine, and have a very in depth understanding
4266 * of all the possible deadlocks and enospc problems.
4267 */
4268 long btrfs_ioctl_trans_end(struct file *file)
4269 {
4270 struct inode *inode = file_inode(file);
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272 struct btrfs_trans_handle *trans;
4273
4274 trans = file->private_data;
4275 if (!trans)
4276 return -EINVAL;
4277 file->private_data = NULL;
4278
4279 btrfs_end_transaction(trans, root);
4280
4281 atomic_dec(&root->fs_info->open_ioctl_trans);
4282
4283 mnt_drop_write_file(file);
4284 return 0;
4285 }
4286
4287 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4288 void __user *argp)
4289 {
4290 struct btrfs_trans_handle *trans;
4291 u64 transid;
4292 int ret;
4293
4294 trans = btrfs_attach_transaction_barrier(root);
4295 if (IS_ERR(trans)) {
4296 if (PTR_ERR(trans) != -ENOENT)
4297 return PTR_ERR(trans);
4298
4299 /* No running transaction, don't bother */
4300 transid = root->fs_info->last_trans_committed;
4301 goto out;
4302 }
4303 transid = trans->transid;
4304 ret = btrfs_commit_transaction_async(trans, root, 0);
4305 if (ret) {
4306 btrfs_end_transaction(trans, root);
4307 return ret;
4308 }
4309 out:
4310 if (argp)
4311 if (copy_to_user(argp, &transid, sizeof(transid)))
4312 return -EFAULT;
4313 return 0;
4314 }
4315
4316 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4317 void __user *argp)
4318 {
4319 u64 transid;
4320
4321 if (argp) {
4322 if (copy_from_user(&transid, argp, sizeof(transid)))
4323 return -EFAULT;
4324 } else {
4325 transid = 0; /* current trans */
4326 }
4327 return btrfs_wait_for_commit(root, transid);
4328 }
4329
4330 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4331 {
4332 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4333 struct btrfs_ioctl_scrub_args *sa;
4334 int ret;
4335
4336 if (!capable(CAP_SYS_ADMIN))
4337 return -EPERM;
4338
4339 sa = memdup_user(arg, sizeof(*sa));
4340 if (IS_ERR(sa))
4341 return PTR_ERR(sa);
4342
4343 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4344 ret = mnt_want_write_file(file);
4345 if (ret)
4346 goto out;
4347 }
4348
4349 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4350 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4351 0);
4352
4353 if (copy_to_user(arg, sa, sizeof(*sa)))
4354 ret = -EFAULT;
4355
4356 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4357 mnt_drop_write_file(file);
4358 out:
4359 kfree(sa);
4360 return ret;
4361 }
4362
4363 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4364 {
4365 if (!capable(CAP_SYS_ADMIN))
4366 return -EPERM;
4367
4368 return btrfs_scrub_cancel(root->fs_info);
4369 }
4370
4371 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4372 void __user *arg)
4373 {
4374 struct btrfs_ioctl_scrub_args *sa;
4375 int ret;
4376
4377 if (!capable(CAP_SYS_ADMIN))
4378 return -EPERM;
4379
4380 sa = memdup_user(arg, sizeof(*sa));
4381 if (IS_ERR(sa))
4382 return PTR_ERR(sa);
4383
4384 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4385
4386 if (copy_to_user(arg, sa, sizeof(*sa)))
4387 ret = -EFAULT;
4388
4389 kfree(sa);
4390 return ret;
4391 }
4392
4393 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4394 void __user *arg)
4395 {
4396 struct btrfs_ioctl_get_dev_stats *sa;
4397 int ret;
4398
4399 sa = memdup_user(arg, sizeof(*sa));
4400 if (IS_ERR(sa))
4401 return PTR_ERR(sa);
4402
4403 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4404 kfree(sa);
4405 return -EPERM;
4406 }
4407
4408 ret = btrfs_get_dev_stats(root, sa);
4409
4410 if (copy_to_user(arg, sa, sizeof(*sa)))
4411 ret = -EFAULT;
4412
4413 kfree(sa);
4414 return ret;
4415 }
4416
4417 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4418 {
4419 struct btrfs_ioctl_dev_replace_args *p;
4420 int ret;
4421
4422 if (!capable(CAP_SYS_ADMIN))
4423 return -EPERM;
4424
4425 p = memdup_user(arg, sizeof(*p));
4426 if (IS_ERR(p))
4427 return PTR_ERR(p);
4428
4429 switch (p->cmd) {
4430 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4431 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4432 ret = -EROFS;
4433 goto out;
4434 }
4435 if (atomic_xchg(
4436 &root->fs_info->mutually_exclusive_operation_running,
4437 1)) {
4438 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4439 } else {
4440 ret = btrfs_dev_replace_by_ioctl(root, p);
4441 atomic_set(
4442 &root->fs_info->mutually_exclusive_operation_running,
4443 0);
4444 }
4445 break;
4446 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4447 btrfs_dev_replace_status(root->fs_info, p);
4448 ret = 0;
4449 break;
4450 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4451 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4452 break;
4453 default:
4454 ret = -EINVAL;
4455 break;
4456 }
4457
4458 if (copy_to_user(arg, p, sizeof(*p)))
4459 ret = -EFAULT;
4460 out:
4461 kfree(p);
4462 return ret;
4463 }
4464
4465 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4466 {
4467 int ret = 0;
4468 int i;
4469 u64 rel_ptr;
4470 int size;
4471 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4472 struct inode_fs_paths *ipath = NULL;
4473 struct btrfs_path *path;
4474
4475 if (!capable(CAP_DAC_READ_SEARCH))
4476 return -EPERM;
4477
4478 path = btrfs_alloc_path();
4479 if (!path) {
4480 ret = -ENOMEM;
4481 goto out;
4482 }
4483
4484 ipa = memdup_user(arg, sizeof(*ipa));
4485 if (IS_ERR(ipa)) {
4486 ret = PTR_ERR(ipa);
4487 ipa = NULL;
4488 goto out;
4489 }
4490
4491 size = min_t(u32, ipa->size, 4096);
4492 ipath = init_ipath(size, root, path);
4493 if (IS_ERR(ipath)) {
4494 ret = PTR_ERR(ipath);
4495 ipath = NULL;
4496 goto out;
4497 }
4498
4499 ret = paths_from_inode(ipa->inum, ipath);
4500 if (ret < 0)
4501 goto out;
4502
4503 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4504 rel_ptr = ipath->fspath->val[i] -
4505 (u64)(unsigned long)ipath->fspath->val;
4506 ipath->fspath->val[i] = rel_ptr;
4507 }
4508
4509 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4510 (void *)(unsigned long)ipath->fspath, size);
4511 if (ret) {
4512 ret = -EFAULT;
4513 goto out;
4514 }
4515
4516 out:
4517 btrfs_free_path(path);
4518 free_ipath(ipath);
4519 kfree(ipa);
4520
4521 return ret;
4522 }
4523
4524 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4525 {
4526 struct btrfs_data_container *inodes = ctx;
4527 const size_t c = 3 * sizeof(u64);
4528
4529 if (inodes->bytes_left >= c) {
4530 inodes->bytes_left -= c;
4531 inodes->val[inodes->elem_cnt] = inum;
4532 inodes->val[inodes->elem_cnt + 1] = offset;
4533 inodes->val[inodes->elem_cnt + 2] = root;
4534 inodes->elem_cnt += 3;
4535 } else {
4536 inodes->bytes_missing += c - inodes->bytes_left;
4537 inodes->bytes_left = 0;
4538 inodes->elem_missed += 3;
4539 }
4540
4541 return 0;
4542 }
4543
4544 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4545 void __user *arg)
4546 {
4547 int ret = 0;
4548 int size;
4549 struct btrfs_ioctl_logical_ino_args *loi;
4550 struct btrfs_data_container *inodes = NULL;
4551 struct btrfs_path *path = NULL;
4552
4553 if (!capable(CAP_SYS_ADMIN))
4554 return -EPERM;
4555
4556 loi = memdup_user(arg, sizeof(*loi));
4557 if (IS_ERR(loi)) {
4558 ret = PTR_ERR(loi);
4559 loi = NULL;
4560 goto out;
4561 }
4562
4563 path = btrfs_alloc_path();
4564 if (!path) {
4565 ret = -ENOMEM;
4566 goto out;
4567 }
4568
4569 size = min_t(u32, loi->size, SZ_64K);
4570 inodes = init_data_container(size);
4571 if (IS_ERR(inodes)) {
4572 ret = PTR_ERR(inodes);
4573 inodes = NULL;
4574 goto out;
4575 }
4576
4577 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4578 build_ino_list, inodes);
4579 if (ret == -EINVAL)
4580 ret = -ENOENT;
4581 if (ret < 0)
4582 goto out;
4583
4584 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4585 (void *)(unsigned long)inodes, size);
4586 if (ret)
4587 ret = -EFAULT;
4588
4589 out:
4590 btrfs_free_path(path);
4591 vfree(inodes);
4592 kfree(loi);
4593
4594 return ret;
4595 }
4596
4597 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4598 struct btrfs_ioctl_balance_args *bargs)
4599 {
4600 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4601
4602 bargs->flags = bctl->flags;
4603
4604 if (atomic_read(&fs_info->balance_running))
4605 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4606 if (atomic_read(&fs_info->balance_pause_req))
4607 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4608 if (atomic_read(&fs_info->balance_cancel_req))
4609 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4610
4611 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4612 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4613 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4614
4615 if (lock) {
4616 spin_lock(&fs_info->balance_lock);
4617 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4618 spin_unlock(&fs_info->balance_lock);
4619 } else {
4620 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4621 }
4622 }
4623
4624 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4625 {
4626 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4627 struct btrfs_fs_info *fs_info = root->fs_info;
4628 struct btrfs_ioctl_balance_args *bargs;
4629 struct btrfs_balance_control *bctl;
4630 bool need_unlock; /* for mut. excl. ops lock */
4631 int ret;
4632
4633 if (!capable(CAP_SYS_ADMIN))
4634 return -EPERM;
4635
4636 ret = mnt_want_write_file(file);
4637 if (ret)
4638 return ret;
4639
4640 again:
4641 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4642 mutex_lock(&fs_info->volume_mutex);
4643 mutex_lock(&fs_info->balance_mutex);
4644 need_unlock = true;
4645 goto locked;
4646 }
4647
4648 /*
4649 * mut. excl. ops lock is locked. Three possibilities:
4650 * (1) some other op is running
4651 * (2) balance is running
4652 * (3) balance is paused -- special case (think resume)
4653 */
4654 mutex_lock(&fs_info->balance_mutex);
4655 if (fs_info->balance_ctl) {
4656 /* this is either (2) or (3) */
4657 if (!atomic_read(&fs_info->balance_running)) {
4658 mutex_unlock(&fs_info->balance_mutex);
4659 if (!mutex_trylock(&fs_info->volume_mutex))
4660 goto again;
4661 mutex_lock(&fs_info->balance_mutex);
4662
4663 if (fs_info->balance_ctl &&
4664 !atomic_read(&fs_info->balance_running)) {
4665 /* this is (3) */
4666 need_unlock = false;
4667 goto locked;
4668 }
4669
4670 mutex_unlock(&fs_info->balance_mutex);
4671 mutex_unlock(&fs_info->volume_mutex);
4672 goto again;
4673 } else {
4674 /* this is (2) */
4675 mutex_unlock(&fs_info->balance_mutex);
4676 ret = -EINPROGRESS;
4677 goto out;
4678 }
4679 } else {
4680 /* this is (1) */
4681 mutex_unlock(&fs_info->balance_mutex);
4682 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4683 goto out;
4684 }
4685
4686 locked:
4687 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4688
4689 if (arg) {
4690 bargs = memdup_user(arg, sizeof(*bargs));
4691 if (IS_ERR(bargs)) {
4692 ret = PTR_ERR(bargs);
4693 goto out_unlock;
4694 }
4695
4696 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4697 if (!fs_info->balance_ctl) {
4698 ret = -ENOTCONN;
4699 goto out_bargs;
4700 }
4701
4702 bctl = fs_info->balance_ctl;
4703 spin_lock(&fs_info->balance_lock);
4704 bctl->flags |= BTRFS_BALANCE_RESUME;
4705 spin_unlock(&fs_info->balance_lock);
4706
4707 goto do_balance;
4708 }
4709 } else {
4710 bargs = NULL;
4711 }
4712
4713 if (fs_info->balance_ctl) {
4714 ret = -EINPROGRESS;
4715 goto out_bargs;
4716 }
4717
4718 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4719 if (!bctl) {
4720 ret = -ENOMEM;
4721 goto out_bargs;
4722 }
4723
4724 bctl->fs_info = fs_info;
4725 if (arg) {
4726 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4727 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4728 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4729
4730 bctl->flags = bargs->flags;
4731 } else {
4732 /* balance everything - no filters */
4733 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4734 }
4735
4736 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4737 ret = -EINVAL;
4738 goto out_bctl;
4739 }
4740
4741 do_balance:
4742 /*
4743 * Ownership of bctl and mutually_exclusive_operation_running
4744 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4745 * or, if restriper was paused all the way until unmount, in
4746 * free_fs_info. mutually_exclusive_operation_running is
4747 * cleared in __cancel_balance.
4748 */
4749 need_unlock = false;
4750
4751 ret = btrfs_balance(bctl, bargs);
4752 bctl = NULL;
4753
4754 if (arg) {
4755 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4756 ret = -EFAULT;
4757 }
4758
4759 out_bctl:
4760 kfree(bctl);
4761 out_bargs:
4762 kfree(bargs);
4763 out_unlock:
4764 mutex_unlock(&fs_info->balance_mutex);
4765 mutex_unlock(&fs_info->volume_mutex);
4766 if (need_unlock)
4767 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4768 out:
4769 mnt_drop_write_file(file);
4770 return ret;
4771 }
4772
4773 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4774 {
4775 if (!capable(CAP_SYS_ADMIN))
4776 return -EPERM;
4777
4778 switch (cmd) {
4779 case BTRFS_BALANCE_CTL_PAUSE:
4780 return btrfs_pause_balance(root->fs_info);
4781 case BTRFS_BALANCE_CTL_CANCEL:
4782 return btrfs_cancel_balance(root->fs_info);
4783 }
4784
4785 return -EINVAL;
4786 }
4787
4788 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4789 void __user *arg)
4790 {
4791 struct btrfs_fs_info *fs_info = root->fs_info;
4792 struct btrfs_ioctl_balance_args *bargs;
4793 int ret = 0;
4794
4795 if (!capable(CAP_SYS_ADMIN))
4796 return -EPERM;
4797
4798 mutex_lock(&fs_info->balance_mutex);
4799 if (!fs_info->balance_ctl) {
4800 ret = -ENOTCONN;
4801 goto out;
4802 }
4803
4804 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4805 if (!bargs) {
4806 ret = -ENOMEM;
4807 goto out;
4808 }
4809
4810 update_ioctl_balance_args(fs_info, 1, bargs);
4811
4812 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4813 ret = -EFAULT;
4814
4815 kfree(bargs);
4816 out:
4817 mutex_unlock(&fs_info->balance_mutex);
4818 return ret;
4819 }
4820
4821 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4822 {
4823 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4824 struct btrfs_ioctl_quota_ctl_args *sa;
4825 struct btrfs_trans_handle *trans = NULL;
4826 int ret;
4827 int err;
4828
4829 if (!capable(CAP_SYS_ADMIN))
4830 return -EPERM;
4831
4832 ret = mnt_want_write_file(file);
4833 if (ret)
4834 return ret;
4835
4836 sa = memdup_user(arg, sizeof(*sa));
4837 if (IS_ERR(sa)) {
4838 ret = PTR_ERR(sa);
4839 goto drop_write;
4840 }
4841
4842 down_write(&root->fs_info->subvol_sem);
4843 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4844 if (IS_ERR(trans)) {
4845 ret = PTR_ERR(trans);
4846 goto out;
4847 }
4848
4849 switch (sa->cmd) {
4850 case BTRFS_QUOTA_CTL_ENABLE:
4851 ret = btrfs_quota_enable(trans, root->fs_info);
4852 break;
4853 case BTRFS_QUOTA_CTL_DISABLE:
4854 ret = btrfs_quota_disable(trans, root->fs_info);
4855 break;
4856 default:
4857 ret = -EINVAL;
4858 break;
4859 }
4860
4861 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4862 if (err && !ret)
4863 ret = err;
4864 out:
4865 kfree(sa);
4866 up_write(&root->fs_info->subvol_sem);
4867 drop_write:
4868 mnt_drop_write_file(file);
4869 return ret;
4870 }
4871
4872 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4873 {
4874 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4875 struct btrfs_ioctl_qgroup_assign_args *sa;
4876 struct btrfs_trans_handle *trans;
4877 int ret;
4878 int err;
4879
4880 if (!capable(CAP_SYS_ADMIN))
4881 return -EPERM;
4882
4883 ret = mnt_want_write_file(file);
4884 if (ret)
4885 return ret;
4886
4887 sa = memdup_user(arg, sizeof(*sa));
4888 if (IS_ERR(sa)) {
4889 ret = PTR_ERR(sa);
4890 goto drop_write;
4891 }
4892
4893 trans = btrfs_join_transaction(root);
4894 if (IS_ERR(trans)) {
4895 ret = PTR_ERR(trans);
4896 goto out;
4897 }
4898
4899 /* FIXME: check if the IDs really exist */
4900 if (sa->assign) {
4901 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4902 sa->src, sa->dst);
4903 } else {
4904 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4905 sa->src, sa->dst);
4906 }
4907
4908 /* update qgroup status and info */
4909 err = btrfs_run_qgroups(trans, root->fs_info);
4910 if (err < 0)
4911 btrfs_handle_fs_error(root->fs_info, err,
4912 "failed to update qgroup status and info");
4913 err = btrfs_end_transaction(trans, root);
4914 if (err && !ret)
4915 ret = err;
4916
4917 out:
4918 kfree(sa);
4919 drop_write:
4920 mnt_drop_write_file(file);
4921 return ret;
4922 }
4923
4924 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4925 {
4926 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4927 struct btrfs_ioctl_qgroup_create_args *sa;
4928 struct btrfs_trans_handle *trans;
4929 int ret;
4930 int err;
4931
4932 if (!capable(CAP_SYS_ADMIN))
4933 return -EPERM;
4934
4935 ret = mnt_want_write_file(file);
4936 if (ret)
4937 return ret;
4938
4939 sa = memdup_user(arg, sizeof(*sa));
4940 if (IS_ERR(sa)) {
4941 ret = PTR_ERR(sa);
4942 goto drop_write;
4943 }
4944
4945 if (!sa->qgroupid) {
4946 ret = -EINVAL;
4947 goto out;
4948 }
4949
4950 trans = btrfs_join_transaction(root);
4951 if (IS_ERR(trans)) {
4952 ret = PTR_ERR(trans);
4953 goto out;
4954 }
4955
4956 /* FIXME: check if the IDs really exist */
4957 if (sa->create) {
4958 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4959 } else {
4960 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4961 }
4962
4963 err = btrfs_end_transaction(trans, root);
4964 if (err && !ret)
4965 ret = err;
4966
4967 out:
4968 kfree(sa);
4969 drop_write:
4970 mnt_drop_write_file(file);
4971 return ret;
4972 }
4973
4974 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4975 {
4976 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4977 struct btrfs_ioctl_qgroup_limit_args *sa;
4978 struct btrfs_trans_handle *trans;
4979 int ret;
4980 int err;
4981 u64 qgroupid;
4982
4983 if (!capable(CAP_SYS_ADMIN))
4984 return -EPERM;
4985
4986 ret = mnt_want_write_file(file);
4987 if (ret)
4988 return ret;
4989
4990 sa = memdup_user(arg, sizeof(*sa));
4991 if (IS_ERR(sa)) {
4992 ret = PTR_ERR(sa);
4993 goto drop_write;
4994 }
4995
4996 trans = btrfs_join_transaction(root);
4997 if (IS_ERR(trans)) {
4998 ret = PTR_ERR(trans);
4999 goto out;
5000 }
5001
5002 qgroupid = sa->qgroupid;
5003 if (!qgroupid) {
5004 /* take the current subvol as qgroup */
5005 qgroupid = root->root_key.objectid;
5006 }
5007
5008 /* FIXME: check if the IDs really exist */
5009 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5010
5011 err = btrfs_end_transaction(trans, root);
5012 if (err && !ret)
5013 ret = err;
5014
5015 out:
5016 kfree(sa);
5017 drop_write:
5018 mnt_drop_write_file(file);
5019 return ret;
5020 }
5021
5022 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5023 {
5024 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5025 struct btrfs_ioctl_quota_rescan_args *qsa;
5026 int ret;
5027
5028 if (!capable(CAP_SYS_ADMIN))
5029 return -EPERM;
5030
5031 ret = mnt_want_write_file(file);
5032 if (ret)
5033 return ret;
5034
5035 qsa = memdup_user(arg, sizeof(*qsa));
5036 if (IS_ERR(qsa)) {
5037 ret = PTR_ERR(qsa);
5038 goto drop_write;
5039 }
5040
5041 if (qsa->flags) {
5042 ret = -EINVAL;
5043 goto out;
5044 }
5045
5046 ret = btrfs_qgroup_rescan(root->fs_info);
5047
5048 out:
5049 kfree(qsa);
5050 drop_write:
5051 mnt_drop_write_file(file);
5052 return ret;
5053 }
5054
5055 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5056 {
5057 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5058 struct btrfs_ioctl_quota_rescan_args *qsa;
5059 int ret = 0;
5060
5061 if (!capable(CAP_SYS_ADMIN))
5062 return -EPERM;
5063
5064 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5065 if (!qsa)
5066 return -ENOMEM;
5067
5068 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5069 qsa->flags = 1;
5070 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5071 }
5072
5073 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5074 ret = -EFAULT;
5075
5076 kfree(qsa);
5077 return ret;
5078 }
5079
5080 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5081 {
5082 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5083
5084 if (!capable(CAP_SYS_ADMIN))
5085 return -EPERM;
5086
5087 return btrfs_qgroup_wait_for_completion(root->fs_info, true);
5088 }
5089
5090 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5091 struct btrfs_ioctl_received_subvol_args *sa)
5092 {
5093 struct inode *inode = file_inode(file);
5094 struct btrfs_root *root = BTRFS_I(inode)->root;
5095 struct btrfs_root_item *root_item = &root->root_item;
5096 struct btrfs_trans_handle *trans;
5097 struct timespec ct = current_fs_time(inode->i_sb);
5098 int ret = 0;
5099 int received_uuid_changed;
5100
5101 if (!inode_owner_or_capable(inode))
5102 return -EPERM;
5103
5104 ret = mnt_want_write_file(file);
5105 if (ret < 0)
5106 return ret;
5107
5108 down_write(&root->fs_info->subvol_sem);
5109
5110 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5111 ret = -EINVAL;
5112 goto out;
5113 }
5114
5115 if (btrfs_root_readonly(root)) {
5116 ret = -EROFS;
5117 goto out;
5118 }
5119
5120 /*
5121 * 1 - root item
5122 * 2 - uuid items (received uuid + subvol uuid)
5123 */
5124 trans = btrfs_start_transaction(root, 3);
5125 if (IS_ERR(trans)) {
5126 ret = PTR_ERR(trans);
5127 trans = NULL;
5128 goto out;
5129 }
5130
5131 sa->rtransid = trans->transid;
5132 sa->rtime.sec = ct.tv_sec;
5133 sa->rtime.nsec = ct.tv_nsec;
5134
5135 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5136 BTRFS_UUID_SIZE);
5137 if (received_uuid_changed &&
5138 !btrfs_is_empty_uuid(root_item->received_uuid))
5139 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5140 root_item->received_uuid,
5141 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5142 root->root_key.objectid);
5143 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5144 btrfs_set_root_stransid(root_item, sa->stransid);
5145 btrfs_set_root_rtransid(root_item, sa->rtransid);
5146 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5147 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5148 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5149 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5150
5151 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5152 &root->root_key, &root->root_item);
5153 if (ret < 0) {
5154 btrfs_end_transaction(trans, root);
5155 goto out;
5156 }
5157 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5158 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5159 sa->uuid,
5160 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5161 root->root_key.objectid);
5162 if (ret < 0 && ret != -EEXIST) {
5163 btrfs_abort_transaction(trans, ret);
5164 goto out;
5165 }
5166 }
5167 ret = btrfs_commit_transaction(trans, root);
5168 if (ret < 0) {
5169 btrfs_abort_transaction(trans, ret);
5170 goto out;
5171 }
5172
5173 out:
5174 up_write(&root->fs_info->subvol_sem);
5175 mnt_drop_write_file(file);
5176 return ret;
5177 }
5178
5179 #ifdef CONFIG_64BIT
5180 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5181 void __user *arg)
5182 {
5183 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5184 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5185 int ret = 0;
5186
5187 args32 = memdup_user(arg, sizeof(*args32));
5188 if (IS_ERR(args32)) {
5189 ret = PTR_ERR(args32);
5190 args32 = NULL;
5191 goto out;
5192 }
5193
5194 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5195 if (!args64) {
5196 ret = -ENOMEM;
5197 goto out;
5198 }
5199
5200 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5201 args64->stransid = args32->stransid;
5202 args64->rtransid = args32->rtransid;
5203 args64->stime.sec = args32->stime.sec;
5204 args64->stime.nsec = args32->stime.nsec;
5205 args64->rtime.sec = args32->rtime.sec;
5206 args64->rtime.nsec = args32->rtime.nsec;
5207 args64->flags = args32->flags;
5208
5209 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5210 if (ret)
5211 goto out;
5212
5213 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5214 args32->stransid = args64->stransid;
5215 args32->rtransid = args64->rtransid;
5216 args32->stime.sec = args64->stime.sec;
5217 args32->stime.nsec = args64->stime.nsec;
5218 args32->rtime.sec = args64->rtime.sec;
5219 args32->rtime.nsec = args64->rtime.nsec;
5220 args32->flags = args64->flags;
5221
5222 ret = copy_to_user(arg, args32, sizeof(*args32));
5223 if (ret)
5224 ret = -EFAULT;
5225
5226 out:
5227 kfree(args32);
5228 kfree(args64);
5229 return ret;
5230 }
5231 #endif
5232
5233 static long btrfs_ioctl_set_received_subvol(struct file *file,
5234 void __user *arg)
5235 {
5236 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5237 int ret = 0;
5238
5239 sa = memdup_user(arg, sizeof(*sa));
5240 if (IS_ERR(sa)) {
5241 ret = PTR_ERR(sa);
5242 sa = NULL;
5243 goto out;
5244 }
5245
5246 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5247
5248 if (ret)
5249 goto out;
5250
5251 ret = copy_to_user(arg, sa, sizeof(*sa));
5252 if (ret)
5253 ret = -EFAULT;
5254
5255 out:
5256 kfree(sa);
5257 return ret;
5258 }
5259
5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5261 {
5262 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5263 size_t len;
5264 int ret;
5265 char label[BTRFS_LABEL_SIZE];
5266
5267 spin_lock(&root->fs_info->super_lock);
5268 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5269 spin_unlock(&root->fs_info->super_lock);
5270
5271 len = strnlen(label, BTRFS_LABEL_SIZE);
5272
5273 if (len == BTRFS_LABEL_SIZE) {
5274 btrfs_warn(root->fs_info,
5275 "label is too long, return the first %zu bytes", --len);
5276 }
5277
5278 ret = copy_to_user(arg, label, len);
5279
5280 return ret ? -EFAULT : 0;
5281 }
5282
5283 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5284 {
5285 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5286 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5287 struct btrfs_trans_handle *trans;
5288 char label[BTRFS_LABEL_SIZE];
5289 int ret;
5290
5291 if (!capable(CAP_SYS_ADMIN))
5292 return -EPERM;
5293
5294 if (copy_from_user(label, arg, sizeof(label)))
5295 return -EFAULT;
5296
5297 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5298 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5299 BTRFS_LABEL_SIZE - 1);
5300 return -EINVAL;
5301 }
5302
5303 ret = mnt_want_write_file(file);
5304 if (ret)
5305 return ret;
5306
5307 trans = btrfs_start_transaction(root, 0);
5308 if (IS_ERR(trans)) {
5309 ret = PTR_ERR(trans);
5310 goto out_unlock;
5311 }
5312
5313 spin_lock(&root->fs_info->super_lock);
5314 strcpy(super_block->label, label);
5315 spin_unlock(&root->fs_info->super_lock);
5316 ret = btrfs_commit_transaction(trans, root);
5317
5318 out_unlock:
5319 mnt_drop_write_file(file);
5320 return ret;
5321 }
5322
5323 #define INIT_FEATURE_FLAGS(suffix) \
5324 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5325 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5326 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5327
5328 int btrfs_ioctl_get_supported_features(void __user *arg)
5329 {
5330 static const struct btrfs_ioctl_feature_flags features[3] = {
5331 INIT_FEATURE_FLAGS(SUPP),
5332 INIT_FEATURE_FLAGS(SAFE_SET),
5333 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5334 };
5335
5336 if (copy_to_user(arg, &features, sizeof(features)))
5337 return -EFAULT;
5338
5339 return 0;
5340 }
5341
5342 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5343 {
5344 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5345 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5346 struct btrfs_ioctl_feature_flags features;
5347
5348 features.compat_flags = btrfs_super_compat_flags(super_block);
5349 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5350 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5351
5352 if (copy_to_user(arg, &features, sizeof(features)))
5353 return -EFAULT;
5354
5355 return 0;
5356 }
5357
5358 static int check_feature_bits(struct btrfs_root *root,
5359 enum btrfs_feature_set set,
5360 u64 change_mask, u64 flags, u64 supported_flags,
5361 u64 safe_set, u64 safe_clear)
5362 {
5363 const char *type = btrfs_feature_set_names[set];
5364 char *names;
5365 u64 disallowed, unsupported;
5366 u64 set_mask = flags & change_mask;
5367 u64 clear_mask = ~flags & change_mask;
5368
5369 unsupported = set_mask & ~supported_flags;
5370 if (unsupported) {
5371 names = btrfs_printable_features(set, unsupported);
5372 if (names) {
5373 btrfs_warn(root->fs_info,
5374 "this kernel does not support the %s feature bit%s",
5375 names, strchr(names, ',') ? "s" : "");
5376 kfree(names);
5377 } else
5378 btrfs_warn(root->fs_info,
5379 "this kernel does not support %s bits 0x%llx",
5380 type, unsupported);
5381 return -EOPNOTSUPP;
5382 }
5383
5384 disallowed = set_mask & ~safe_set;
5385 if (disallowed) {
5386 names = btrfs_printable_features(set, disallowed);
5387 if (names) {
5388 btrfs_warn(root->fs_info,
5389 "can't set the %s feature bit%s while mounted",
5390 names, strchr(names, ',') ? "s" : "");
5391 kfree(names);
5392 } else
5393 btrfs_warn(root->fs_info,
5394 "can't set %s bits 0x%llx while mounted",
5395 type, disallowed);
5396 return -EPERM;
5397 }
5398
5399 disallowed = clear_mask & ~safe_clear;
5400 if (disallowed) {
5401 names = btrfs_printable_features(set, disallowed);
5402 if (names) {
5403 btrfs_warn(root->fs_info,
5404 "can't clear the %s feature bit%s while mounted",
5405 names, strchr(names, ',') ? "s" : "");
5406 kfree(names);
5407 } else
5408 btrfs_warn(root->fs_info,
5409 "can't clear %s bits 0x%llx while mounted",
5410 type, disallowed);
5411 return -EPERM;
5412 }
5413
5414 return 0;
5415 }
5416
5417 #define check_feature(root, change_mask, flags, mask_base) \
5418 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5419 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5420 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5421 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5422
5423 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5424 {
5425 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5426 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5427 struct btrfs_ioctl_feature_flags flags[2];
5428 struct btrfs_trans_handle *trans;
5429 u64 newflags;
5430 int ret;
5431
5432 if (!capable(CAP_SYS_ADMIN))
5433 return -EPERM;
5434
5435 if (copy_from_user(flags, arg, sizeof(flags)))
5436 return -EFAULT;
5437
5438 /* Nothing to do */
5439 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5440 !flags[0].incompat_flags)
5441 return 0;
5442
5443 ret = check_feature(root, flags[0].compat_flags,
5444 flags[1].compat_flags, COMPAT);
5445 if (ret)
5446 return ret;
5447
5448 ret = check_feature(root, flags[0].compat_ro_flags,
5449 flags[1].compat_ro_flags, COMPAT_RO);
5450 if (ret)
5451 return ret;
5452
5453 ret = check_feature(root, flags[0].incompat_flags,
5454 flags[1].incompat_flags, INCOMPAT);
5455 if (ret)
5456 return ret;
5457
5458 ret = mnt_want_write_file(file);
5459 if (ret)
5460 return ret;
5461
5462 trans = btrfs_start_transaction(root, 0);
5463 if (IS_ERR(trans)) {
5464 ret = PTR_ERR(trans);
5465 goto out_drop_write;
5466 }
5467
5468 spin_lock(&root->fs_info->super_lock);
5469 newflags = btrfs_super_compat_flags(super_block);
5470 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5471 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5472 btrfs_set_super_compat_flags(super_block, newflags);
5473
5474 newflags = btrfs_super_compat_ro_flags(super_block);
5475 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5476 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5477 btrfs_set_super_compat_ro_flags(super_block, newflags);
5478
5479 newflags = btrfs_super_incompat_flags(super_block);
5480 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5481 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5482 btrfs_set_super_incompat_flags(super_block, newflags);
5483 spin_unlock(&root->fs_info->super_lock);
5484
5485 ret = btrfs_commit_transaction(trans, root);
5486 out_drop_write:
5487 mnt_drop_write_file(file);
5488
5489 return ret;
5490 }
5491
5492 long btrfs_ioctl(struct file *file, unsigned int
5493 cmd, unsigned long arg)
5494 {
5495 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5496 void __user *argp = (void __user *)arg;
5497
5498 switch (cmd) {
5499 case FS_IOC_GETFLAGS:
5500 return btrfs_ioctl_getflags(file, argp);
5501 case FS_IOC_SETFLAGS:
5502 return btrfs_ioctl_setflags(file, argp);
5503 case FS_IOC_GETVERSION:
5504 return btrfs_ioctl_getversion(file, argp);
5505 case FITRIM:
5506 return btrfs_ioctl_fitrim(file, argp);
5507 case BTRFS_IOC_SNAP_CREATE:
5508 return btrfs_ioctl_snap_create(file, argp, 0);
5509 case BTRFS_IOC_SNAP_CREATE_V2:
5510 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5511 case BTRFS_IOC_SUBVOL_CREATE:
5512 return btrfs_ioctl_snap_create(file, argp, 1);
5513 case BTRFS_IOC_SUBVOL_CREATE_V2:
5514 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5515 case BTRFS_IOC_SNAP_DESTROY:
5516 return btrfs_ioctl_snap_destroy(file, argp);
5517 case BTRFS_IOC_SUBVOL_GETFLAGS:
5518 return btrfs_ioctl_subvol_getflags(file, argp);
5519 case BTRFS_IOC_SUBVOL_SETFLAGS:
5520 return btrfs_ioctl_subvol_setflags(file, argp);
5521 case BTRFS_IOC_DEFAULT_SUBVOL:
5522 return btrfs_ioctl_default_subvol(file, argp);
5523 case BTRFS_IOC_DEFRAG:
5524 return btrfs_ioctl_defrag(file, NULL);
5525 case BTRFS_IOC_DEFRAG_RANGE:
5526 return btrfs_ioctl_defrag(file, argp);
5527 case BTRFS_IOC_RESIZE:
5528 return btrfs_ioctl_resize(file, argp);
5529 case BTRFS_IOC_ADD_DEV:
5530 return btrfs_ioctl_add_dev(root, argp);
5531 case BTRFS_IOC_RM_DEV:
5532 return btrfs_ioctl_rm_dev(file, argp);
5533 case BTRFS_IOC_RM_DEV_V2:
5534 return btrfs_ioctl_rm_dev_v2(file, argp);
5535 case BTRFS_IOC_FS_INFO:
5536 return btrfs_ioctl_fs_info(root, argp);
5537 case BTRFS_IOC_DEV_INFO:
5538 return btrfs_ioctl_dev_info(root, argp);
5539 case BTRFS_IOC_BALANCE:
5540 return btrfs_ioctl_balance(file, NULL);
5541 case BTRFS_IOC_TRANS_START:
5542 return btrfs_ioctl_trans_start(file);
5543 case BTRFS_IOC_TRANS_END:
5544 return btrfs_ioctl_trans_end(file);
5545 case BTRFS_IOC_TREE_SEARCH:
5546 return btrfs_ioctl_tree_search(file, argp);
5547 case BTRFS_IOC_TREE_SEARCH_V2:
5548 return btrfs_ioctl_tree_search_v2(file, argp);
5549 case BTRFS_IOC_INO_LOOKUP:
5550 return btrfs_ioctl_ino_lookup(file, argp);
5551 case BTRFS_IOC_INO_PATHS:
5552 return btrfs_ioctl_ino_to_path(root, argp);
5553 case BTRFS_IOC_LOGICAL_INO:
5554 return btrfs_ioctl_logical_to_ino(root, argp);
5555 case BTRFS_IOC_SPACE_INFO:
5556 return btrfs_ioctl_space_info(root, argp);
5557 case BTRFS_IOC_SYNC: {
5558 int ret;
5559
5560 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5561 if (ret)
5562 return ret;
5563 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5564 /*
5565 * The transaction thread may want to do more work,
5566 * namely it pokes the cleaner kthread that will start
5567 * processing uncleaned subvols.
5568 */
5569 wake_up_process(root->fs_info->transaction_kthread);
5570 return ret;
5571 }
5572 case BTRFS_IOC_START_SYNC:
5573 return btrfs_ioctl_start_sync(root, argp);
5574 case BTRFS_IOC_WAIT_SYNC:
5575 return btrfs_ioctl_wait_sync(root, argp);
5576 case BTRFS_IOC_SCRUB:
5577 return btrfs_ioctl_scrub(file, argp);
5578 case BTRFS_IOC_SCRUB_CANCEL:
5579 return btrfs_ioctl_scrub_cancel(root, argp);
5580 case BTRFS_IOC_SCRUB_PROGRESS:
5581 return btrfs_ioctl_scrub_progress(root, argp);
5582 case BTRFS_IOC_BALANCE_V2:
5583 return btrfs_ioctl_balance(file, argp);
5584 case BTRFS_IOC_BALANCE_CTL:
5585 return btrfs_ioctl_balance_ctl(root, arg);
5586 case BTRFS_IOC_BALANCE_PROGRESS:
5587 return btrfs_ioctl_balance_progress(root, argp);
5588 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5589 return btrfs_ioctl_set_received_subvol(file, argp);
5590 #ifdef CONFIG_64BIT
5591 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5592 return btrfs_ioctl_set_received_subvol_32(file, argp);
5593 #endif
5594 case BTRFS_IOC_SEND:
5595 return btrfs_ioctl_send(file, argp);
5596 case BTRFS_IOC_GET_DEV_STATS:
5597 return btrfs_ioctl_get_dev_stats(root, argp);
5598 case BTRFS_IOC_QUOTA_CTL:
5599 return btrfs_ioctl_quota_ctl(file, argp);
5600 case BTRFS_IOC_QGROUP_ASSIGN:
5601 return btrfs_ioctl_qgroup_assign(file, argp);
5602 case BTRFS_IOC_QGROUP_CREATE:
5603 return btrfs_ioctl_qgroup_create(file, argp);
5604 case BTRFS_IOC_QGROUP_LIMIT:
5605 return btrfs_ioctl_qgroup_limit(file, argp);
5606 case BTRFS_IOC_QUOTA_RESCAN:
5607 return btrfs_ioctl_quota_rescan(file, argp);
5608 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5609 return btrfs_ioctl_quota_rescan_status(file, argp);
5610 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5611 return btrfs_ioctl_quota_rescan_wait(file, argp);
5612 case BTRFS_IOC_DEV_REPLACE:
5613 return btrfs_ioctl_dev_replace(root, argp);
5614 case BTRFS_IOC_GET_FSLABEL:
5615 return btrfs_ioctl_get_fslabel(file, argp);
5616 case BTRFS_IOC_SET_FSLABEL:
5617 return btrfs_ioctl_set_fslabel(file, argp);
5618 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5619 return btrfs_ioctl_get_supported_features(argp);
5620 case BTRFS_IOC_GET_FEATURES:
5621 return btrfs_ioctl_get_features(file, argp);
5622 case BTRFS_IOC_SET_FEATURES:
5623 return btrfs_ioctl_set_features(file, argp);
5624 }
5625
5626 return -ENOTTY;
5627 }
5628
5629 #ifdef CONFIG_COMPAT
5630 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5631 {
5632 switch (cmd) {
5633 case FS_IOC32_GETFLAGS:
5634 cmd = FS_IOC_GETFLAGS;
5635 break;
5636 case FS_IOC32_SETFLAGS:
5637 cmd = FS_IOC_SETFLAGS;
5638 break;
5639 case FS_IOC32_GETVERSION:
5640 cmd = FS_IOC_GETVERSION;
5641 break;
5642 default:
5643 return -ENOIOCTLCMD;
5644 }
5645
5646 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5647 }
5648 #endif
This page took 0.189172 seconds and 4 git commands to generate.