Merge remote-tracking branch 'ftrace/for-next'
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "compression.h"
30 #include "qgroup.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only,
101 const loff_t start,
102 const loff_t end,
103 struct btrfs_log_ctx *ctx);
104 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_path *path, u64 objectid);
107 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_root *log,
110 struct btrfs_path *path,
111 u64 dirid, int del_all);
112
113 /*
114 * tree logging is a special write ahead log used to make sure that
115 * fsyncs and O_SYNCs can happen without doing full tree commits.
116 *
117 * Full tree commits are expensive because they require commonly
118 * modified blocks to be recowed, creating many dirty pages in the
119 * extent tree an 4x-6x higher write load than ext3.
120 *
121 * Instead of doing a tree commit on every fsync, we use the
122 * key ranges and transaction ids to find items for a given file or directory
123 * that have changed in this transaction. Those items are copied into
124 * a special tree (one per subvolume root), that tree is written to disk
125 * and then the fsync is considered complete.
126 *
127 * After a crash, items are copied out of the log-tree back into the
128 * subvolume tree. Any file data extents found are recorded in the extent
129 * allocation tree, and the log-tree freed.
130 *
131 * The log tree is read three times, once to pin down all the extents it is
132 * using in ram and once, once to create all the inodes logged in the tree
133 * and once to do all the other items.
134 */
135
136 /*
137 * start a sub transaction and setup the log tree
138 * this increments the log tree writer count to make the people
139 * syncing the tree wait for us to finish
140 */
141 static int start_log_trans(struct btrfs_trans_handle *trans,
142 struct btrfs_root *root,
143 struct btrfs_log_ctx *ctx)
144 {
145 int ret = 0;
146
147 mutex_lock(&root->log_mutex);
148
149 if (root->log_root) {
150 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
151 ret = -EAGAIN;
152 goto out;
153 }
154
155 if (!root->log_start_pid) {
156 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 root->log_start_pid = current->pid;
158 } else if (root->log_start_pid != current->pid) {
159 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
160 }
161 } else {
162 mutex_lock(&root->fs_info->tree_log_mutex);
163 if (!root->fs_info->log_root_tree)
164 ret = btrfs_init_log_root_tree(trans, root->fs_info);
165 mutex_unlock(&root->fs_info->tree_log_mutex);
166 if (ret)
167 goto out;
168
169 ret = btrfs_add_log_tree(trans, root);
170 if (ret)
171 goto out;
172
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 root->log_start_pid = current->pid;
175 }
176
177 atomic_inc(&root->log_batch);
178 atomic_inc(&root->log_writers);
179 if (ctx) {
180 int index = root->log_transid % 2;
181 list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 ctx->log_transid = root->log_transid;
183 }
184
185 out:
186 mutex_unlock(&root->log_mutex);
187 return ret;
188 }
189
190 /*
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
193 * in progress
194 */
195 static int join_running_log_trans(struct btrfs_root *root)
196 {
197 int ret = -ENOENT;
198
199 smp_mb();
200 if (!root->log_root)
201 return -ENOENT;
202
203 mutex_lock(&root->log_mutex);
204 if (root->log_root) {
205 ret = 0;
206 atomic_inc(&root->log_writers);
207 }
208 mutex_unlock(&root->log_mutex);
209 return ret;
210 }
211
212 /*
213 * This either makes the current running log transaction wait
214 * until you call btrfs_end_log_trans() or it makes any future
215 * log transactions wait until you call btrfs_end_log_trans()
216 */
217 int btrfs_pin_log_trans(struct btrfs_root *root)
218 {
219 int ret = -ENOENT;
220
221 mutex_lock(&root->log_mutex);
222 atomic_inc(&root->log_writers);
223 mutex_unlock(&root->log_mutex);
224 return ret;
225 }
226
227 /*
228 * indicate we're done making changes to the log tree
229 * and wake up anyone waiting to do a sync
230 */
231 void btrfs_end_log_trans(struct btrfs_root *root)
232 {
233 if (atomic_dec_and_test(&root->log_writers)) {
234 /*
235 * Implicit memory barrier after atomic_dec_and_test
236 */
237 if (waitqueue_active(&root->log_writer_wait))
238 wake_up(&root->log_writer_wait);
239 }
240 }
241
242
243 /*
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
248 */
249 struct walk_control {
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
252 */
253 int free;
254
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
257 */
258 int write;
259
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
262 */
263 int wait;
264
265 /* pin only walk, we record which extents on disk belong to the
266 * log trees
267 */
268 int pin;
269
270 /* what stage of the replay code we're currently in */
271 int stage;
272
273 /* the root we are currently replaying */
274 struct btrfs_root *replay_dest;
275
276 /* the trans handle for the current replay */
277 struct btrfs_trans_handle *trans;
278
279 /* the function that gets used to process blocks we find in the
280 * tree. Note the extent_buffer might not be up to date when it is
281 * passed in, and it must be checked or read if you need the data
282 * inside it
283 */
284 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
285 struct walk_control *wc, u64 gen);
286 };
287
288 /*
289 * process_func used to pin down extents, write them or wait on them
290 */
291 static int process_one_buffer(struct btrfs_root *log,
292 struct extent_buffer *eb,
293 struct walk_control *wc, u64 gen)
294 {
295 int ret = 0;
296
297 /*
298 * If this fs is mixed then we need to be able to process the leaves to
299 * pin down any logged extents, so we have to read the block.
300 */
301 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
302 ret = btrfs_read_buffer(eb, gen);
303 if (ret)
304 return ret;
305 }
306
307 if (wc->pin)
308 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
309 eb->start, eb->len);
310
311 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
312 if (wc->pin && btrfs_header_level(eb) == 0)
313 ret = btrfs_exclude_logged_extents(log, eb);
314 if (wc->write)
315 btrfs_write_tree_block(eb);
316 if (wc->wait)
317 btrfs_wait_tree_block_writeback(eb);
318 }
319 return ret;
320 }
321
322 /*
323 * Item overwrite used by replay and tree logging. eb, slot and key all refer
324 * to the src data we are copying out.
325 *
326 * root is the tree we are copying into, and path is a scratch
327 * path for use in this function (it should be released on entry and
328 * will be released on exit).
329 *
330 * If the key is already in the destination tree the existing item is
331 * overwritten. If the existing item isn't big enough, it is extended.
332 * If it is too large, it is truncated.
333 *
334 * If the key isn't in the destination yet, a new item is inserted.
335 */
336 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
337 struct btrfs_root *root,
338 struct btrfs_path *path,
339 struct extent_buffer *eb, int slot,
340 struct btrfs_key *key)
341 {
342 int ret;
343 u32 item_size;
344 u64 saved_i_size = 0;
345 int save_old_i_size = 0;
346 unsigned long src_ptr;
347 unsigned long dst_ptr;
348 int overwrite_root = 0;
349 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
350
351 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
352 overwrite_root = 1;
353
354 item_size = btrfs_item_size_nr(eb, slot);
355 src_ptr = btrfs_item_ptr_offset(eb, slot);
356
357 /* look for the key in the destination tree */
358 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
359 if (ret < 0)
360 return ret;
361
362 if (ret == 0) {
363 char *src_copy;
364 char *dst_copy;
365 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
366 path->slots[0]);
367 if (dst_size != item_size)
368 goto insert;
369
370 if (item_size == 0) {
371 btrfs_release_path(path);
372 return 0;
373 }
374 dst_copy = kmalloc(item_size, GFP_NOFS);
375 src_copy = kmalloc(item_size, GFP_NOFS);
376 if (!dst_copy || !src_copy) {
377 btrfs_release_path(path);
378 kfree(dst_copy);
379 kfree(src_copy);
380 return -ENOMEM;
381 }
382
383 read_extent_buffer(eb, src_copy, src_ptr, item_size);
384
385 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
386 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
387 item_size);
388 ret = memcmp(dst_copy, src_copy, item_size);
389
390 kfree(dst_copy);
391 kfree(src_copy);
392 /*
393 * they have the same contents, just return, this saves
394 * us from cowing blocks in the destination tree and doing
395 * extra writes that may not have been done by a previous
396 * sync
397 */
398 if (ret == 0) {
399 btrfs_release_path(path);
400 return 0;
401 }
402
403 /*
404 * We need to load the old nbytes into the inode so when we
405 * replay the extents we've logged we get the right nbytes.
406 */
407 if (inode_item) {
408 struct btrfs_inode_item *item;
409 u64 nbytes;
410 u32 mode;
411
412 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
413 struct btrfs_inode_item);
414 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
415 item = btrfs_item_ptr(eb, slot,
416 struct btrfs_inode_item);
417 btrfs_set_inode_nbytes(eb, item, nbytes);
418
419 /*
420 * If this is a directory we need to reset the i_size to
421 * 0 so that we can set it up properly when replaying
422 * the rest of the items in this log.
423 */
424 mode = btrfs_inode_mode(eb, item);
425 if (S_ISDIR(mode))
426 btrfs_set_inode_size(eb, item, 0);
427 }
428 } else if (inode_item) {
429 struct btrfs_inode_item *item;
430 u32 mode;
431
432 /*
433 * New inode, set nbytes to 0 so that the nbytes comes out
434 * properly when we replay the extents.
435 */
436 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
437 btrfs_set_inode_nbytes(eb, item, 0);
438
439 /*
440 * If this is a directory we need to reset the i_size to 0 so
441 * that we can set it up properly when replaying the rest of
442 * the items in this log.
443 */
444 mode = btrfs_inode_mode(eb, item);
445 if (S_ISDIR(mode))
446 btrfs_set_inode_size(eb, item, 0);
447 }
448 insert:
449 btrfs_release_path(path);
450 /* try to insert the key into the destination tree */
451 path->skip_release_on_error = 1;
452 ret = btrfs_insert_empty_item(trans, root, path,
453 key, item_size);
454 path->skip_release_on_error = 0;
455
456 /* make sure any existing item is the correct size */
457 if (ret == -EEXIST || ret == -EOVERFLOW) {
458 u32 found_size;
459 found_size = btrfs_item_size_nr(path->nodes[0],
460 path->slots[0]);
461 if (found_size > item_size)
462 btrfs_truncate_item(root, path, item_size, 1);
463 else if (found_size < item_size)
464 btrfs_extend_item(root, path,
465 item_size - found_size);
466 } else if (ret) {
467 return ret;
468 }
469 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
470 path->slots[0]);
471
472 /* don't overwrite an existing inode if the generation number
473 * was logged as zero. This is done when the tree logging code
474 * is just logging an inode to make sure it exists after recovery.
475 *
476 * Also, don't overwrite i_size on directories during replay.
477 * log replay inserts and removes directory items based on the
478 * state of the tree found in the subvolume, and i_size is modified
479 * as it goes
480 */
481 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
482 struct btrfs_inode_item *src_item;
483 struct btrfs_inode_item *dst_item;
484
485 src_item = (struct btrfs_inode_item *)src_ptr;
486 dst_item = (struct btrfs_inode_item *)dst_ptr;
487
488 if (btrfs_inode_generation(eb, src_item) == 0) {
489 struct extent_buffer *dst_eb = path->nodes[0];
490 const u64 ino_size = btrfs_inode_size(eb, src_item);
491
492 /*
493 * For regular files an ino_size == 0 is used only when
494 * logging that an inode exists, as part of a directory
495 * fsync, and the inode wasn't fsynced before. In this
496 * case don't set the size of the inode in the fs/subvol
497 * tree, otherwise we would be throwing valid data away.
498 */
499 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
500 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
501 ino_size != 0) {
502 struct btrfs_map_token token;
503
504 btrfs_init_map_token(&token);
505 btrfs_set_token_inode_size(dst_eb, dst_item,
506 ino_size, &token);
507 }
508 goto no_copy;
509 }
510
511 if (overwrite_root &&
512 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
513 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
514 save_old_i_size = 1;
515 saved_i_size = btrfs_inode_size(path->nodes[0],
516 dst_item);
517 }
518 }
519
520 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
521 src_ptr, item_size);
522
523 if (save_old_i_size) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
527 }
528
529 /* make sure the generation is filled in */
530 if (key->type == BTRFS_INODE_ITEM_KEY) {
531 struct btrfs_inode_item *dst_item;
532 dst_item = (struct btrfs_inode_item *)dst_ptr;
533 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
534 btrfs_set_inode_generation(path->nodes[0], dst_item,
535 trans->transid);
536 }
537 }
538 no_copy:
539 btrfs_mark_buffer_dirty(path->nodes[0]);
540 btrfs_release_path(path);
541 return 0;
542 }
543
544 /*
545 * simple helper to read an inode off the disk from a given root
546 * This can only be called for subvolume roots and not for the log
547 */
548 static noinline struct inode *read_one_inode(struct btrfs_root *root,
549 u64 objectid)
550 {
551 struct btrfs_key key;
552 struct inode *inode;
553
554 key.objectid = objectid;
555 key.type = BTRFS_INODE_ITEM_KEY;
556 key.offset = 0;
557 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
558 if (IS_ERR(inode)) {
559 inode = NULL;
560 } else if (is_bad_inode(inode)) {
561 iput(inode);
562 inode = NULL;
563 }
564 return inode;
565 }
566
567 /* replays a single extent in 'eb' at 'slot' with 'key' into the
568 * subvolume 'root'. path is released on entry and should be released
569 * on exit.
570 *
571 * extents in the log tree have not been allocated out of the extent
572 * tree yet. So, this completes the allocation, taking a reference
573 * as required if the extent already exists or creating a new extent
574 * if it isn't in the extent allocation tree yet.
575 *
576 * The extent is inserted into the file, dropping any existing extents
577 * from the file that overlap the new one.
578 */
579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 struct extent_buffer *eb, int slot,
583 struct btrfs_key *key)
584 {
585 int found_type;
586 u64 extent_end;
587 u64 start = key->offset;
588 u64 nbytes = 0;
589 struct btrfs_file_extent_item *item;
590 struct inode *inode = NULL;
591 unsigned long size;
592 int ret = 0;
593
594 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
595 found_type = btrfs_file_extent_type(eb, item);
596
597 if (found_type == BTRFS_FILE_EXTENT_REG ||
598 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
599 nbytes = btrfs_file_extent_num_bytes(eb, item);
600 extent_end = start + nbytes;
601
602 /*
603 * We don't add to the inodes nbytes if we are prealloc or a
604 * hole.
605 */
606 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
607 nbytes = 0;
608 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
609 size = btrfs_file_extent_inline_len(eb, slot, item);
610 nbytes = btrfs_file_extent_ram_bytes(eb, item);
611 extent_end = ALIGN(start + size, root->sectorsize);
612 } else {
613 ret = 0;
614 goto out;
615 }
616
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
621 }
622
623 /*
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
627 */
628 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
629 start, 0);
630
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
638
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
647
648 /*
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
651 */
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 btrfs_release_path(path);
654 goto out;
655 }
656 }
657 btrfs_release_path(path);
658
659 /* drop any overlapping extents */
660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 if (ret)
662 goto out;
663
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 u64 offset;
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
670 ret = btrfs_insert_empty_item(trans, root, path, key,
671 sizeof(*item));
672 if (ret)
673 goto out;
674 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 path->slots[0]);
676 copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 (unsigned long)item, sizeof(*item));
678
679 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 ins.type = BTRFS_EXTENT_ITEM_KEY;
682 offset = key->offset - btrfs_file_extent_offset(eb, item);
683
684 /*
685 * Manually record dirty extent, as here we did a shallow
686 * file extent item copy and skip normal backref update,
687 * but modifying extent tree all by ourselves.
688 * So need to manually record dirty extent for qgroup,
689 * as the owner of the file extent changed from log tree
690 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 */
692 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
693 btrfs_file_extent_disk_bytenr(eb, item),
694 btrfs_file_extent_disk_num_bytes(eb, item),
695 GFP_NOFS);
696 if (ret < 0)
697 goto out;
698
699 if (ins.objectid > 0) {
700 u64 csum_start;
701 u64 csum_end;
702 LIST_HEAD(ordered_sums);
703 /*
704 * is this extent already allocated in the extent
705 * allocation tree? If so, just add a reference
706 */
707 ret = btrfs_lookup_data_extent(root, ins.objectid,
708 ins.offset);
709 if (ret == 0) {
710 ret = btrfs_inc_extent_ref(trans, root,
711 ins.objectid, ins.offset,
712 0, root->root_key.objectid,
713 key->objectid, offset);
714 if (ret)
715 goto out;
716 } else {
717 /*
718 * insert the extent pointer in the extent
719 * allocation tree
720 */
721 ret = btrfs_alloc_logged_file_extent(trans,
722 root, root->root_key.objectid,
723 key->objectid, offset, &ins);
724 if (ret)
725 goto out;
726 }
727 btrfs_release_path(path);
728
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
732 } else {
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
737 }
738
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
741 &ordered_sums, 0);
742 if (ret)
743 goto out;
744 /*
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
756 *
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
760 *
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
764 *
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
768 * of the extent:
769 *
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 *
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
774 *
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 *
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
792 */
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
797 list);
798 if (!ret)
799 ret = btrfs_del_csums(trans,
800 root->fs_info->csum_root,
801 sums->bytenr,
802 sums->len);
803 if (!ret)
804 ret = btrfs_csum_file_blocks(trans,
805 root->fs_info->csum_root,
806 sums);
807 list_del(&sums->list);
808 kfree(sums);
809 }
810 if (ret)
811 goto out;
812 } else {
813 btrfs_release_path(path);
814 }
815 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
816 /* inline extents are easy, we just overwrite them */
817 ret = overwrite_item(trans, root, path, eb, slot, key);
818 if (ret)
819 goto out;
820 }
821
822 inode_add_bytes(inode, nbytes);
823 ret = btrfs_update_inode(trans, root, inode);
824 out:
825 if (inode)
826 iput(inode);
827 return ret;
828 }
829
830 /*
831 * when cleaning up conflicts between the directory names in the
832 * subvolume, directory names in the log and directory names in the
833 * inode back references, we may have to unlink inodes from directories.
834 *
835 * This is a helper function to do the unlink of a specific directory
836 * item
837 */
838 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
839 struct btrfs_root *root,
840 struct btrfs_path *path,
841 struct inode *dir,
842 struct btrfs_dir_item *di)
843 {
844 struct inode *inode;
845 char *name;
846 int name_len;
847 struct extent_buffer *leaf;
848 struct btrfs_key location;
849 int ret;
850
851 leaf = path->nodes[0];
852
853 btrfs_dir_item_key_to_cpu(leaf, di, &location);
854 name_len = btrfs_dir_name_len(leaf, di);
855 name = kmalloc(name_len, GFP_NOFS);
856 if (!name)
857 return -ENOMEM;
858
859 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
860 btrfs_release_path(path);
861
862 inode = read_one_inode(root, location.objectid);
863 if (!inode) {
864 ret = -EIO;
865 goto out;
866 }
867
868 ret = link_to_fixup_dir(trans, root, path, location.objectid);
869 if (ret)
870 goto out;
871
872 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
873 if (ret)
874 goto out;
875 else
876 ret = btrfs_run_delayed_items(trans, root);
877 out:
878 kfree(name);
879 iput(inode);
880 return ret;
881 }
882
883 /*
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
887 */
888 static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
892 {
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
896
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
905 btrfs_release_path(path);
906
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915 out:
916 btrfs_release_path(path);
917 return match;
918 }
919
920 /*
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
924 *
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
929 */
930 static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
932 u64 ref_objectid,
933 const char *name, int namelen)
934 {
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
948
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
952
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
957 name, namelen, NULL))
958 match = 1;
959
960 goto out;
961 }
962
963 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
964 ptr_end = ptr + item_size;
965 while (ptr < ptr_end) {
966 ref = (struct btrfs_inode_ref *)ptr;
967 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
968 if (found_name_len == namelen) {
969 name_ptr = (unsigned long)(ref + 1);
970 ret = memcmp_extent_buffer(path->nodes[0], name,
971 name_ptr, namelen);
972 if (ret == 0) {
973 match = 1;
974 goto out;
975 }
976 }
977 ptr = (unsigned long)(ref + 1) + found_name_len;
978 }
979 out:
980 btrfs_free_path(path);
981 return match;
982 }
983
984 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
985 struct btrfs_root *root,
986 struct btrfs_path *path,
987 struct btrfs_root *log_root,
988 struct inode *dir, struct inode *inode,
989 struct extent_buffer *eb,
990 u64 inode_objectid, u64 parent_objectid,
991 u64 ref_index, char *name, int namelen,
992 int *search_done)
993 {
994 int ret;
995 char *victim_name;
996 int victim_name_len;
997 struct extent_buffer *leaf;
998 struct btrfs_dir_item *di;
999 struct btrfs_key search_key;
1000 struct btrfs_inode_extref *extref;
1001
1002 again:
1003 /* Search old style refs */
1004 search_key.objectid = inode_objectid;
1005 search_key.type = BTRFS_INODE_REF_KEY;
1006 search_key.offset = parent_objectid;
1007 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1008 if (ret == 0) {
1009 struct btrfs_inode_ref *victim_ref;
1010 unsigned long ptr;
1011 unsigned long ptr_end;
1012
1013 leaf = path->nodes[0];
1014
1015 /* are we trying to overwrite a back ref for the root directory
1016 * if so, just jump out, we're done
1017 */
1018 if (search_key.objectid == search_key.offset)
1019 return 1;
1020
1021 /* check all the names in this back reference to see
1022 * if they are in the log. if so, we allow them to stay
1023 * otherwise they must be unlinked as a conflict
1024 */
1025 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1026 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1027 while (ptr < ptr_end) {
1028 victim_ref = (struct btrfs_inode_ref *)ptr;
1029 victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 victim_ref);
1031 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1032 if (!victim_name)
1033 return -ENOMEM;
1034
1035 read_extent_buffer(leaf, victim_name,
1036 (unsigned long)(victim_ref + 1),
1037 victim_name_len);
1038
1039 if (!backref_in_log(log_root, &search_key,
1040 parent_objectid,
1041 victim_name,
1042 victim_name_len)) {
1043 inc_nlink(inode);
1044 btrfs_release_path(path);
1045
1046 ret = btrfs_unlink_inode(trans, root, dir,
1047 inode, victim_name,
1048 victim_name_len);
1049 kfree(victim_name);
1050 if (ret)
1051 return ret;
1052 ret = btrfs_run_delayed_items(trans, root);
1053 if (ret)
1054 return ret;
1055 *search_done = 1;
1056 goto again;
1057 }
1058 kfree(victim_name);
1059
1060 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1061 }
1062
1063 /*
1064 * NOTE: we have searched root tree and checked the
1065 * corresponding ref, it does not need to check again.
1066 */
1067 *search_done = 1;
1068 }
1069 btrfs_release_path(path);
1070
1071 /* Same search but for extended refs */
1072 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1073 inode_objectid, parent_objectid, 0,
1074 0);
1075 if (!IS_ERR_OR_NULL(extref)) {
1076 u32 item_size;
1077 u32 cur_offset = 0;
1078 unsigned long base;
1079 struct inode *victim_parent;
1080
1081 leaf = path->nodes[0];
1082
1083 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1084 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1085
1086 while (cur_offset < item_size) {
1087 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1088
1089 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1090
1091 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1092 goto next;
1093
1094 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1095 if (!victim_name)
1096 return -ENOMEM;
1097 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1098 victim_name_len);
1099
1100 search_key.objectid = inode_objectid;
1101 search_key.type = BTRFS_INODE_EXTREF_KEY;
1102 search_key.offset = btrfs_extref_hash(parent_objectid,
1103 victim_name,
1104 victim_name_len);
1105 ret = 0;
1106 if (!backref_in_log(log_root, &search_key,
1107 parent_objectid, victim_name,
1108 victim_name_len)) {
1109 ret = -ENOENT;
1110 victim_parent = read_one_inode(root,
1111 parent_objectid);
1112 if (victim_parent) {
1113 inc_nlink(inode);
1114 btrfs_release_path(path);
1115
1116 ret = btrfs_unlink_inode(trans, root,
1117 victim_parent,
1118 inode,
1119 victim_name,
1120 victim_name_len);
1121 if (!ret)
1122 ret = btrfs_run_delayed_items(
1123 trans, root);
1124 }
1125 iput(victim_parent);
1126 kfree(victim_name);
1127 if (ret)
1128 return ret;
1129 *search_done = 1;
1130 goto again;
1131 }
1132 kfree(victim_name);
1133 if (ret)
1134 return ret;
1135 next:
1136 cur_offset += victim_name_len + sizeof(*extref);
1137 }
1138 *search_done = 1;
1139 }
1140 btrfs_release_path(path);
1141
1142 /* look for a conflicting sequence number */
1143 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1144 ref_index, name, namelen, 0);
1145 if (di && !IS_ERR(di)) {
1146 ret = drop_one_dir_item(trans, root, path, dir, di);
1147 if (ret)
1148 return ret;
1149 }
1150 btrfs_release_path(path);
1151
1152 /* look for a conflicing name */
1153 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1154 name, namelen, 0);
1155 if (di && !IS_ERR(di)) {
1156 ret = drop_one_dir_item(trans, root, path, dir, di);
1157 if (ret)
1158 return ret;
1159 }
1160 btrfs_release_path(path);
1161
1162 return 0;
1163 }
1164
1165 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1166 u32 *namelen, char **name, u64 *index,
1167 u64 *parent_objectid)
1168 {
1169 struct btrfs_inode_extref *extref;
1170
1171 extref = (struct btrfs_inode_extref *)ref_ptr;
1172
1173 *namelen = btrfs_inode_extref_name_len(eb, extref);
1174 *name = kmalloc(*namelen, GFP_NOFS);
1175 if (*name == NULL)
1176 return -ENOMEM;
1177
1178 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1179 *namelen);
1180
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185 return 0;
1186 }
1187
1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1190 {
1191 struct btrfs_inode_ref *ref;
1192
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1199
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1202 *index = btrfs_inode_ref_index(eb, ref);
1203
1204 return 0;
1205 }
1206
1207 /*
1208 * replay one inode back reference item found in the log tree.
1209 * eb, slot and key refer to the buffer and key found in the log tree.
1210 * root is the destination we are replaying into, and path is for temp
1211 * use by this function. (it should be released on return).
1212 */
1213 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_root *log,
1216 struct btrfs_path *path,
1217 struct extent_buffer *eb, int slot,
1218 struct btrfs_key *key)
1219 {
1220 struct inode *dir = NULL;
1221 struct inode *inode = NULL;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 char *name = NULL;
1225 int namelen;
1226 int ret;
1227 int search_done = 0;
1228 int log_ref_ver = 0;
1229 u64 parent_objectid;
1230 u64 inode_objectid;
1231 u64 ref_index = 0;
1232 int ref_struct_size;
1233
1234 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1235 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1236
1237 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1238 struct btrfs_inode_extref *r;
1239
1240 ref_struct_size = sizeof(struct btrfs_inode_extref);
1241 log_ref_ver = 1;
1242 r = (struct btrfs_inode_extref *)ref_ptr;
1243 parent_objectid = btrfs_inode_extref_parent(eb, r);
1244 } else {
1245 ref_struct_size = sizeof(struct btrfs_inode_ref);
1246 parent_objectid = key->offset;
1247 }
1248 inode_objectid = key->objectid;
1249
1250 /*
1251 * it is possible that we didn't log all the parent directories
1252 * for a given inode. If we don't find the dir, just don't
1253 * copy the back ref in. The link count fixup code will take
1254 * care of the rest
1255 */
1256 dir = read_one_inode(root, parent_objectid);
1257 if (!dir) {
1258 ret = -ENOENT;
1259 goto out;
1260 }
1261
1262 inode = read_one_inode(root, inode_objectid);
1263 if (!inode) {
1264 ret = -EIO;
1265 goto out;
1266 }
1267
1268 while (ref_ptr < ref_end) {
1269 if (log_ref_ver) {
1270 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1271 &ref_index, &parent_objectid);
1272 /*
1273 * parent object can change from one array
1274 * item to another.
1275 */
1276 if (!dir)
1277 dir = read_one_inode(root, parent_objectid);
1278 if (!dir) {
1279 ret = -ENOENT;
1280 goto out;
1281 }
1282 } else {
1283 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1284 &ref_index);
1285 }
1286 if (ret)
1287 goto out;
1288
1289 /* if we already have a perfect match, we're done */
1290 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1291 ref_index, name, namelen)) {
1292 /*
1293 * look for a conflicting back reference in the
1294 * metadata. if we find one we have to unlink that name
1295 * of the file before we add our new link. Later on, we
1296 * overwrite any existing back reference, and we don't
1297 * want to create dangling pointers in the directory.
1298 */
1299
1300 if (!search_done) {
1301 ret = __add_inode_ref(trans, root, path, log,
1302 dir, inode, eb,
1303 inode_objectid,
1304 parent_objectid,
1305 ref_index, name, namelen,
1306 &search_done);
1307 if (ret) {
1308 if (ret == 1)
1309 ret = 0;
1310 goto out;
1311 }
1312 }
1313
1314 /* insert our name */
1315 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1316 0, ref_index);
1317 if (ret)
1318 goto out;
1319
1320 btrfs_update_inode(trans, root, inode);
1321 }
1322
1323 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1324 kfree(name);
1325 name = NULL;
1326 if (log_ref_ver) {
1327 iput(dir);
1328 dir = NULL;
1329 }
1330 }
1331
1332 /* finally write the back reference in the inode */
1333 ret = overwrite_item(trans, root, path, eb, slot, key);
1334 out:
1335 btrfs_release_path(path);
1336 kfree(name);
1337 iput(dir);
1338 iput(inode);
1339 return ret;
1340 }
1341
1342 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1343 struct btrfs_root *root, u64 ino)
1344 {
1345 int ret;
1346
1347 ret = btrfs_insert_orphan_item(trans, root, ino);
1348 if (ret == -EEXIST)
1349 ret = 0;
1350
1351 return ret;
1352 }
1353
1354 static int count_inode_extrefs(struct btrfs_root *root,
1355 struct inode *inode, struct btrfs_path *path)
1356 {
1357 int ret = 0;
1358 int name_len;
1359 unsigned int nlink = 0;
1360 u32 item_size;
1361 u32 cur_offset = 0;
1362 u64 inode_objectid = btrfs_ino(inode);
1363 u64 offset = 0;
1364 unsigned long ptr;
1365 struct btrfs_inode_extref *extref;
1366 struct extent_buffer *leaf;
1367
1368 while (1) {
1369 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1370 &extref, &offset);
1371 if (ret)
1372 break;
1373
1374 leaf = path->nodes[0];
1375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1376 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1377 cur_offset = 0;
1378
1379 while (cur_offset < item_size) {
1380 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1381 name_len = btrfs_inode_extref_name_len(leaf, extref);
1382
1383 nlink++;
1384
1385 cur_offset += name_len + sizeof(*extref);
1386 }
1387
1388 offset++;
1389 btrfs_release_path(path);
1390 }
1391 btrfs_release_path(path);
1392
1393 if (ret < 0 && ret != -ENOENT)
1394 return ret;
1395 return nlink;
1396 }
1397
1398 static int count_inode_refs(struct btrfs_root *root,
1399 struct inode *inode, struct btrfs_path *path)
1400 {
1401 int ret;
1402 struct btrfs_key key;
1403 unsigned int nlink = 0;
1404 unsigned long ptr;
1405 unsigned long ptr_end;
1406 int name_len;
1407 u64 ino = btrfs_ino(inode);
1408
1409 key.objectid = ino;
1410 key.type = BTRFS_INODE_REF_KEY;
1411 key.offset = (u64)-1;
1412
1413 while (1) {
1414 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1415 if (ret < 0)
1416 break;
1417 if (ret > 0) {
1418 if (path->slots[0] == 0)
1419 break;
1420 path->slots[0]--;
1421 }
1422 process_slot:
1423 btrfs_item_key_to_cpu(path->nodes[0], &key,
1424 path->slots[0]);
1425 if (key.objectid != ino ||
1426 key.type != BTRFS_INODE_REF_KEY)
1427 break;
1428 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1429 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1430 path->slots[0]);
1431 while (ptr < ptr_end) {
1432 struct btrfs_inode_ref *ref;
1433
1434 ref = (struct btrfs_inode_ref *)ptr;
1435 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1436 ref);
1437 ptr = (unsigned long)(ref + 1) + name_len;
1438 nlink++;
1439 }
1440
1441 if (key.offset == 0)
1442 break;
1443 if (path->slots[0] > 0) {
1444 path->slots[0]--;
1445 goto process_slot;
1446 }
1447 key.offset--;
1448 btrfs_release_path(path);
1449 }
1450 btrfs_release_path(path);
1451
1452 return nlink;
1453 }
1454
1455 /*
1456 * There are a few corners where the link count of the file can't
1457 * be properly maintained during replay. So, instead of adding
1458 * lots of complexity to the log code, we just scan the backrefs
1459 * for any file that has been through replay.
1460 *
1461 * The scan will update the link count on the inode to reflect the
1462 * number of back refs found. If it goes down to zero, the iput
1463 * will free the inode.
1464 */
1465 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1466 struct btrfs_root *root,
1467 struct inode *inode)
1468 {
1469 struct btrfs_path *path;
1470 int ret;
1471 u64 nlink = 0;
1472 u64 ino = btrfs_ino(inode);
1473
1474 path = btrfs_alloc_path();
1475 if (!path)
1476 return -ENOMEM;
1477
1478 ret = count_inode_refs(root, inode, path);
1479 if (ret < 0)
1480 goto out;
1481
1482 nlink = ret;
1483
1484 ret = count_inode_extrefs(root, inode, path);
1485 if (ret < 0)
1486 goto out;
1487
1488 nlink += ret;
1489
1490 ret = 0;
1491
1492 if (nlink != inode->i_nlink) {
1493 set_nlink(inode, nlink);
1494 btrfs_update_inode(trans, root, inode);
1495 }
1496 BTRFS_I(inode)->index_cnt = (u64)-1;
1497
1498 if (inode->i_nlink == 0) {
1499 if (S_ISDIR(inode->i_mode)) {
1500 ret = replay_dir_deletes(trans, root, NULL, path,
1501 ino, 1);
1502 if (ret)
1503 goto out;
1504 }
1505 ret = insert_orphan_item(trans, root, ino);
1506 }
1507
1508 out:
1509 btrfs_free_path(path);
1510 return ret;
1511 }
1512
1513 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root,
1515 struct btrfs_path *path)
1516 {
1517 int ret;
1518 struct btrfs_key key;
1519 struct inode *inode;
1520
1521 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1522 key.type = BTRFS_ORPHAN_ITEM_KEY;
1523 key.offset = (u64)-1;
1524 while (1) {
1525 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1526 if (ret < 0)
1527 break;
1528
1529 if (ret == 1) {
1530 if (path->slots[0] == 0)
1531 break;
1532 path->slots[0]--;
1533 }
1534
1535 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1536 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1537 key.type != BTRFS_ORPHAN_ITEM_KEY)
1538 break;
1539
1540 ret = btrfs_del_item(trans, root, path);
1541 if (ret)
1542 goto out;
1543
1544 btrfs_release_path(path);
1545 inode = read_one_inode(root, key.offset);
1546 if (!inode)
1547 return -EIO;
1548
1549 ret = fixup_inode_link_count(trans, root, inode);
1550 iput(inode);
1551 if (ret)
1552 goto out;
1553
1554 /*
1555 * fixup on a directory may create new entries,
1556 * make sure we always look for the highset possible
1557 * offset
1558 */
1559 key.offset = (u64)-1;
1560 }
1561 ret = 0;
1562 out:
1563 btrfs_release_path(path);
1564 return ret;
1565 }
1566
1567
1568 /*
1569 * record a given inode in the fixup dir so we can check its link
1570 * count when replay is done. The link count is incremented here
1571 * so the inode won't go away until we check it
1572 */
1573 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1574 struct btrfs_root *root,
1575 struct btrfs_path *path,
1576 u64 objectid)
1577 {
1578 struct btrfs_key key;
1579 int ret = 0;
1580 struct inode *inode;
1581
1582 inode = read_one_inode(root, objectid);
1583 if (!inode)
1584 return -EIO;
1585
1586 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 key.offset = objectid;
1589
1590 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1591
1592 btrfs_release_path(path);
1593 if (ret == 0) {
1594 if (!inode->i_nlink)
1595 set_nlink(inode, 1);
1596 else
1597 inc_nlink(inode);
1598 ret = btrfs_update_inode(trans, root, inode);
1599 } else if (ret == -EEXIST) {
1600 ret = 0;
1601 } else {
1602 BUG(); /* Logic Error */
1603 }
1604 iput(inode);
1605
1606 return ret;
1607 }
1608
1609 /*
1610 * when replaying the log for a directory, we only insert names
1611 * for inodes that actually exist. This means an fsync on a directory
1612 * does not implicitly fsync all the new files in it
1613 */
1614 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1615 struct btrfs_root *root,
1616 u64 dirid, u64 index,
1617 char *name, int name_len,
1618 struct btrfs_key *location)
1619 {
1620 struct inode *inode;
1621 struct inode *dir;
1622 int ret;
1623
1624 inode = read_one_inode(root, location->objectid);
1625 if (!inode)
1626 return -ENOENT;
1627
1628 dir = read_one_inode(root, dirid);
1629 if (!dir) {
1630 iput(inode);
1631 return -EIO;
1632 }
1633
1634 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1635
1636 /* FIXME, put inode into FIXUP list */
1637
1638 iput(inode);
1639 iput(dir);
1640 return ret;
1641 }
1642
1643 /*
1644 * Return true if an inode reference exists in the log for the given name,
1645 * inode and parent inode.
1646 */
1647 static bool name_in_log_ref(struct btrfs_root *log_root,
1648 const char *name, const int name_len,
1649 const u64 dirid, const u64 ino)
1650 {
1651 struct btrfs_key search_key;
1652
1653 search_key.objectid = ino;
1654 search_key.type = BTRFS_INODE_REF_KEY;
1655 search_key.offset = dirid;
1656 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1657 return true;
1658
1659 search_key.type = BTRFS_INODE_EXTREF_KEY;
1660 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1661 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1662 return true;
1663
1664 return false;
1665 }
1666
1667 /*
1668 * take a single entry in a log directory item and replay it into
1669 * the subvolume.
1670 *
1671 * if a conflicting item exists in the subdirectory already,
1672 * the inode it points to is unlinked and put into the link count
1673 * fix up tree.
1674 *
1675 * If a name from the log points to a file or directory that does
1676 * not exist in the FS, it is skipped. fsyncs on directories
1677 * do not force down inodes inside that directory, just changes to the
1678 * names or unlinks in a directory.
1679 *
1680 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1681 * non-existing inode) and 1 if the name was replayed.
1682 */
1683 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1684 struct btrfs_root *root,
1685 struct btrfs_path *path,
1686 struct extent_buffer *eb,
1687 struct btrfs_dir_item *di,
1688 struct btrfs_key *key)
1689 {
1690 char *name;
1691 int name_len;
1692 struct btrfs_dir_item *dst_di;
1693 struct btrfs_key found_key;
1694 struct btrfs_key log_key;
1695 struct inode *dir;
1696 u8 log_type;
1697 int exists;
1698 int ret = 0;
1699 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1700 bool name_added = false;
1701
1702 dir = read_one_inode(root, key->objectid);
1703 if (!dir)
1704 return -EIO;
1705
1706 name_len = btrfs_dir_name_len(eb, di);
1707 name = kmalloc(name_len, GFP_NOFS);
1708 if (!name) {
1709 ret = -ENOMEM;
1710 goto out;
1711 }
1712
1713 log_type = btrfs_dir_type(eb, di);
1714 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1715 name_len);
1716
1717 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1718 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1719 if (exists == 0)
1720 exists = 1;
1721 else
1722 exists = 0;
1723 btrfs_release_path(path);
1724
1725 if (key->type == BTRFS_DIR_ITEM_KEY) {
1726 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1727 name, name_len, 1);
1728 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1729 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1730 key->objectid,
1731 key->offset, name,
1732 name_len, 1);
1733 } else {
1734 /* Corruption */
1735 ret = -EINVAL;
1736 goto out;
1737 }
1738 if (IS_ERR_OR_NULL(dst_di)) {
1739 /* we need a sequence number to insert, so we only
1740 * do inserts for the BTRFS_DIR_INDEX_KEY types
1741 */
1742 if (key->type != BTRFS_DIR_INDEX_KEY)
1743 goto out;
1744 goto insert;
1745 }
1746
1747 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1748 /* the existing item matches the logged item */
1749 if (found_key.objectid == log_key.objectid &&
1750 found_key.type == log_key.type &&
1751 found_key.offset == log_key.offset &&
1752 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1753 update_size = false;
1754 goto out;
1755 }
1756
1757 /*
1758 * don't drop the conflicting directory entry if the inode
1759 * for the new entry doesn't exist
1760 */
1761 if (!exists)
1762 goto out;
1763
1764 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1765 if (ret)
1766 goto out;
1767
1768 if (key->type == BTRFS_DIR_INDEX_KEY)
1769 goto insert;
1770 out:
1771 btrfs_release_path(path);
1772 if (!ret && update_size) {
1773 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1774 ret = btrfs_update_inode(trans, root, dir);
1775 }
1776 kfree(name);
1777 iput(dir);
1778 if (!ret && name_added)
1779 ret = 1;
1780 return ret;
1781
1782 insert:
1783 if (name_in_log_ref(root->log_root, name, name_len,
1784 key->objectid, log_key.objectid)) {
1785 /* The dentry will be added later. */
1786 ret = 0;
1787 update_size = false;
1788 goto out;
1789 }
1790 btrfs_release_path(path);
1791 ret = insert_one_name(trans, root, key->objectid, key->offset,
1792 name, name_len, &log_key);
1793 if (ret && ret != -ENOENT && ret != -EEXIST)
1794 goto out;
1795 if (!ret)
1796 name_added = true;
1797 update_size = false;
1798 ret = 0;
1799 goto out;
1800 }
1801
1802 /*
1803 * find all the names in a directory item and reconcile them into
1804 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1805 * one name in a directory item, but the same code gets used for
1806 * both directory index types
1807 */
1808 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1809 struct btrfs_root *root,
1810 struct btrfs_path *path,
1811 struct extent_buffer *eb, int slot,
1812 struct btrfs_key *key)
1813 {
1814 int ret = 0;
1815 u32 item_size = btrfs_item_size_nr(eb, slot);
1816 struct btrfs_dir_item *di;
1817 int name_len;
1818 unsigned long ptr;
1819 unsigned long ptr_end;
1820 struct btrfs_path *fixup_path = NULL;
1821
1822 ptr = btrfs_item_ptr_offset(eb, slot);
1823 ptr_end = ptr + item_size;
1824 while (ptr < ptr_end) {
1825 di = (struct btrfs_dir_item *)ptr;
1826 if (verify_dir_item(root, eb, di))
1827 return -EIO;
1828 name_len = btrfs_dir_name_len(eb, di);
1829 ret = replay_one_name(trans, root, path, eb, di, key);
1830 if (ret < 0)
1831 break;
1832 ptr = (unsigned long)(di + 1);
1833 ptr += name_len;
1834
1835 /*
1836 * If this entry refers to a non-directory (directories can not
1837 * have a link count > 1) and it was added in the transaction
1838 * that was not committed, make sure we fixup the link count of
1839 * the inode it the entry points to. Otherwise something like
1840 * the following would result in a directory pointing to an
1841 * inode with a wrong link that does not account for this dir
1842 * entry:
1843 *
1844 * mkdir testdir
1845 * touch testdir/foo
1846 * touch testdir/bar
1847 * sync
1848 *
1849 * ln testdir/bar testdir/bar_link
1850 * ln testdir/foo testdir/foo_link
1851 * xfs_io -c "fsync" testdir/bar
1852 *
1853 * <power failure>
1854 *
1855 * mount fs, log replay happens
1856 *
1857 * File foo would remain with a link count of 1 when it has two
1858 * entries pointing to it in the directory testdir. This would
1859 * make it impossible to ever delete the parent directory has
1860 * it would result in stale dentries that can never be deleted.
1861 */
1862 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1863 struct btrfs_key di_key;
1864
1865 if (!fixup_path) {
1866 fixup_path = btrfs_alloc_path();
1867 if (!fixup_path) {
1868 ret = -ENOMEM;
1869 break;
1870 }
1871 }
1872
1873 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1874 ret = link_to_fixup_dir(trans, root, fixup_path,
1875 di_key.objectid);
1876 if (ret)
1877 break;
1878 }
1879 ret = 0;
1880 }
1881 btrfs_free_path(fixup_path);
1882 return ret;
1883 }
1884
1885 /*
1886 * directory replay has two parts. There are the standard directory
1887 * items in the log copied from the subvolume, and range items
1888 * created in the log while the subvolume was logged.
1889 *
1890 * The range items tell us which parts of the key space the log
1891 * is authoritative for. During replay, if a key in the subvolume
1892 * directory is in a logged range item, but not actually in the log
1893 * that means it was deleted from the directory before the fsync
1894 * and should be removed.
1895 */
1896 static noinline int find_dir_range(struct btrfs_root *root,
1897 struct btrfs_path *path,
1898 u64 dirid, int key_type,
1899 u64 *start_ret, u64 *end_ret)
1900 {
1901 struct btrfs_key key;
1902 u64 found_end;
1903 struct btrfs_dir_log_item *item;
1904 int ret;
1905 int nritems;
1906
1907 if (*start_ret == (u64)-1)
1908 return 1;
1909
1910 key.objectid = dirid;
1911 key.type = key_type;
1912 key.offset = *start_ret;
1913
1914 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1915 if (ret < 0)
1916 goto out;
1917 if (ret > 0) {
1918 if (path->slots[0] == 0)
1919 goto out;
1920 path->slots[0]--;
1921 }
1922 if (ret != 0)
1923 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1924
1925 if (key.type != key_type || key.objectid != dirid) {
1926 ret = 1;
1927 goto next;
1928 }
1929 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1930 struct btrfs_dir_log_item);
1931 found_end = btrfs_dir_log_end(path->nodes[0], item);
1932
1933 if (*start_ret >= key.offset && *start_ret <= found_end) {
1934 ret = 0;
1935 *start_ret = key.offset;
1936 *end_ret = found_end;
1937 goto out;
1938 }
1939 ret = 1;
1940 next:
1941 /* check the next slot in the tree to see if it is a valid item */
1942 nritems = btrfs_header_nritems(path->nodes[0]);
1943 if (path->slots[0] >= nritems) {
1944 ret = btrfs_next_leaf(root, path);
1945 if (ret)
1946 goto out;
1947 } else {
1948 path->slots[0]++;
1949 }
1950
1951 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1952
1953 if (key.type != key_type || key.objectid != dirid) {
1954 ret = 1;
1955 goto out;
1956 }
1957 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1958 struct btrfs_dir_log_item);
1959 found_end = btrfs_dir_log_end(path->nodes[0], item);
1960 *start_ret = key.offset;
1961 *end_ret = found_end;
1962 ret = 0;
1963 out:
1964 btrfs_release_path(path);
1965 return ret;
1966 }
1967
1968 /*
1969 * this looks for a given directory item in the log. If the directory
1970 * item is not in the log, the item is removed and the inode it points
1971 * to is unlinked
1972 */
1973 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1974 struct btrfs_root *root,
1975 struct btrfs_root *log,
1976 struct btrfs_path *path,
1977 struct btrfs_path *log_path,
1978 struct inode *dir,
1979 struct btrfs_key *dir_key)
1980 {
1981 int ret;
1982 struct extent_buffer *eb;
1983 int slot;
1984 u32 item_size;
1985 struct btrfs_dir_item *di;
1986 struct btrfs_dir_item *log_di;
1987 int name_len;
1988 unsigned long ptr;
1989 unsigned long ptr_end;
1990 char *name;
1991 struct inode *inode;
1992 struct btrfs_key location;
1993
1994 again:
1995 eb = path->nodes[0];
1996 slot = path->slots[0];
1997 item_size = btrfs_item_size_nr(eb, slot);
1998 ptr = btrfs_item_ptr_offset(eb, slot);
1999 ptr_end = ptr + item_size;
2000 while (ptr < ptr_end) {
2001 di = (struct btrfs_dir_item *)ptr;
2002 if (verify_dir_item(root, eb, di)) {
2003 ret = -EIO;
2004 goto out;
2005 }
2006
2007 name_len = btrfs_dir_name_len(eb, di);
2008 name = kmalloc(name_len, GFP_NOFS);
2009 if (!name) {
2010 ret = -ENOMEM;
2011 goto out;
2012 }
2013 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2014 name_len);
2015 log_di = NULL;
2016 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2017 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2018 dir_key->objectid,
2019 name, name_len, 0);
2020 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2021 log_di = btrfs_lookup_dir_index_item(trans, log,
2022 log_path,
2023 dir_key->objectid,
2024 dir_key->offset,
2025 name, name_len, 0);
2026 }
2027 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2028 btrfs_dir_item_key_to_cpu(eb, di, &location);
2029 btrfs_release_path(path);
2030 btrfs_release_path(log_path);
2031 inode = read_one_inode(root, location.objectid);
2032 if (!inode) {
2033 kfree(name);
2034 return -EIO;
2035 }
2036
2037 ret = link_to_fixup_dir(trans, root,
2038 path, location.objectid);
2039 if (ret) {
2040 kfree(name);
2041 iput(inode);
2042 goto out;
2043 }
2044
2045 inc_nlink(inode);
2046 ret = btrfs_unlink_inode(trans, root, dir, inode,
2047 name, name_len);
2048 if (!ret)
2049 ret = btrfs_run_delayed_items(trans, root);
2050 kfree(name);
2051 iput(inode);
2052 if (ret)
2053 goto out;
2054
2055 /* there might still be more names under this key
2056 * check and repeat if required
2057 */
2058 ret = btrfs_search_slot(NULL, root, dir_key, path,
2059 0, 0);
2060 if (ret == 0)
2061 goto again;
2062 ret = 0;
2063 goto out;
2064 } else if (IS_ERR(log_di)) {
2065 kfree(name);
2066 return PTR_ERR(log_di);
2067 }
2068 btrfs_release_path(log_path);
2069 kfree(name);
2070
2071 ptr = (unsigned long)(di + 1);
2072 ptr += name_len;
2073 }
2074 ret = 0;
2075 out:
2076 btrfs_release_path(path);
2077 btrfs_release_path(log_path);
2078 return ret;
2079 }
2080
2081 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2082 struct btrfs_root *root,
2083 struct btrfs_root *log,
2084 struct btrfs_path *path,
2085 const u64 ino)
2086 {
2087 struct btrfs_key search_key;
2088 struct btrfs_path *log_path;
2089 int i;
2090 int nritems;
2091 int ret;
2092
2093 log_path = btrfs_alloc_path();
2094 if (!log_path)
2095 return -ENOMEM;
2096
2097 search_key.objectid = ino;
2098 search_key.type = BTRFS_XATTR_ITEM_KEY;
2099 search_key.offset = 0;
2100 again:
2101 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2102 if (ret < 0)
2103 goto out;
2104 process_leaf:
2105 nritems = btrfs_header_nritems(path->nodes[0]);
2106 for (i = path->slots[0]; i < nritems; i++) {
2107 struct btrfs_key key;
2108 struct btrfs_dir_item *di;
2109 struct btrfs_dir_item *log_di;
2110 u32 total_size;
2111 u32 cur;
2112
2113 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2114 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2115 ret = 0;
2116 goto out;
2117 }
2118
2119 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2120 total_size = btrfs_item_size_nr(path->nodes[0], i);
2121 cur = 0;
2122 while (cur < total_size) {
2123 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2124 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2125 u32 this_len = sizeof(*di) + name_len + data_len;
2126 char *name;
2127
2128 name = kmalloc(name_len, GFP_NOFS);
2129 if (!name) {
2130 ret = -ENOMEM;
2131 goto out;
2132 }
2133 read_extent_buffer(path->nodes[0], name,
2134 (unsigned long)(di + 1), name_len);
2135
2136 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2137 name, name_len, 0);
2138 btrfs_release_path(log_path);
2139 if (!log_di) {
2140 /* Doesn't exist in log tree, so delete it. */
2141 btrfs_release_path(path);
2142 di = btrfs_lookup_xattr(trans, root, path, ino,
2143 name, name_len, -1);
2144 kfree(name);
2145 if (IS_ERR(di)) {
2146 ret = PTR_ERR(di);
2147 goto out;
2148 }
2149 ASSERT(di);
2150 ret = btrfs_delete_one_dir_name(trans, root,
2151 path, di);
2152 if (ret)
2153 goto out;
2154 btrfs_release_path(path);
2155 search_key = key;
2156 goto again;
2157 }
2158 kfree(name);
2159 if (IS_ERR(log_di)) {
2160 ret = PTR_ERR(log_di);
2161 goto out;
2162 }
2163 cur += this_len;
2164 di = (struct btrfs_dir_item *)((char *)di + this_len);
2165 }
2166 }
2167 ret = btrfs_next_leaf(root, path);
2168 if (ret > 0)
2169 ret = 0;
2170 else if (ret == 0)
2171 goto process_leaf;
2172 out:
2173 btrfs_free_path(log_path);
2174 btrfs_release_path(path);
2175 return ret;
2176 }
2177
2178
2179 /*
2180 * deletion replay happens before we copy any new directory items
2181 * out of the log or out of backreferences from inodes. It
2182 * scans the log to find ranges of keys that log is authoritative for,
2183 * and then scans the directory to find items in those ranges that are
2184 * not present in the log.
2185 *
2186 * Anything we don't find in the log is unlinked and removed from the
2187 * directory.
2188 */
2189 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_root *log,
2192 struct btrfs_path *path,
2193 u64 dirid, int del_all)
2194 {
2195 u64 range_start;
2196 u64 range_end;
2197 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2198 int ret = 0;
2199 struct btrfs_key dir_key;
2200 struct btrfs_key found_key;
2201 struct btrfs_path *log_path;
2202 struct inode *dir;
2203
2204 dir_key.objectid = dirid;
2205 dir_key.type = BTRFS_DIR_ITEM_KEY;
2206 log_path = btrfs_alloc_path();
2207 if (!log_path)
2208 return -ENOMEM;
2209
2210 dir = read_one_inode(root, dirid);
2211 /* it isn't an error if the inode isn't there, that can happen
2212 * because we replay the deletes before we copy in the inode item
2213 * from the log
2214 */
2215 if (!dir) {
2216 btrfs_free_path(log_path);
2217 return 0;
2218 }
2219 again:
2220 range_start = 0;
2221 range_end = 0;
2222 while (1) {
2223 if (del_all)
2224 range_end = (u64)-1;
2225 else {
2226 ret = find_dir_range(log, path, dirid, key_type,
2227 &range_start, &range_end);
2228 if (ret != 0)
2229 break;
2230 }
2231
2232 dir_key.offset = range_start;
2233 while (1) {
2234 int nritems;
2235 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2236 0, 0);
2237 if (ret < 0)
2238 goto out;
2239
2240 nritems = btrfs_header_nritems(path->nodes[0]);
2241 if (path->slots[0] >= nritems) {
2242 ret = btrfs_next_leaf(root, path);
2243 if (ret)
2244 break;
2245 }
2246 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2247 path->slots[0]);
2248 if (found_key.objectid != dirid ||
2249 found_key.type != dir_key.type)
2250 goto next_type;
2251
2252 if (found_key.offset > range_end)
2253 break;
2254
2255 ret = check_item_in_log(trans, root, log, path,
2256 log_path, dir,
2257 &found_key);
2258 if (ret)
2259 goto out;
2260 if (found_key.offset == (u64)-1)
2261 break;
2262 dir_key.offset = found_key.offset + 1;
2263 }
2264 btrfs_release_path(path);
2265 if (range_end == (u64)-1)
2266 break;
2267 range_start = range_end + 1;
2268 }
2269
2270 next_type:
2271 ret = 0;
2272 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2273 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2274 dir_key.type = BTRFS_DIR_INDEX_KEY;
2275 btrfs_release_path(path);
2276 goto again;
2277 }
2278 out:
2279 btrfs_release_path(path);
2280 btrfs_free_path(log_path);
2281 iput(dir);
2282 return ret;
2283 }
2284
2285 /*
2286 * the process_func used to replay items from the log tree. This
2287 * gets called in two different stages. The first stage just looks
2288 * for inodes and makes sure they are all copied into the subvolume.
2289 *
2290 * The second stage copies all the other item types from the log into
2291 * the subvolume. The two stage approach is slower, but gets rid of
2292 * lots of complexity around inodes referencing other inodes that exist
2293 * only in the log (references come from either directory items or inode
2294 * back refs).
2295 */
2296 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2297 struct walk_control *wc, u64 gen)
2298 {
2299 int nritems;
2300 struct btrfs_path *path;
2301 struct btrfs_root *root = wc->replay_dest;
2302 struct btrfs_key key;
2303 int level;
2304 int i;
2305 int ret;
2306
2307 ret = btrfs_read_buffer(eb, gen);
2308 if (ret)
2309 return ret;
2310
2311 level = btrfs_header_level(eb);
2312
2313 if (level != 0)
2314 return 0;
2315
2316 path = btrfs_alloc_path();
2317 if (!path)
2318 return -ENOMEM;
2319
2320 nritems = btrfs_header_nritems(eb);
2321 for (i = 0; i < nritems; i++) {
2322 btrfs_item_key_to_cpu(eb, &key, i);
2323
2324 /* inode keys are done during the first stage */
2325 if (key.type == BTRFS_INODE_ITEM_KEY &&
2326 wc->stage == LOG_WALK_REPLAY_INODES) {
2327 struct btrfs_inode_item *inode_item;
2328 u32 mode;
2329
2330 inode_item = btrfs_item_ptr(eb, i,
2331 struct btrfs_inode_item);
2332 ret = replay_xattr_deletes(wc->trans, root, log,
2333 path, key.objectid);
2334 if (ret)
2335 break;
2336 mode = btrfs_inode_mode(eb, inode_item);
2337 if (S_ISDIR(mode)) {
2338 ret = replay_dir_deletes(wc->trans,
2339 root, log, path, key.objectid, 0);
2340 if (ret)
2341 break;
2342 }
2343 ret = overwrite_item(wc->trans, root, path,
2344 eb, i, &key);
2345 if (ret)
2346 break;
2347
2348 /* for regular files, make sure corresponding
2349 * orphan item exist. extents past the new EOF
2350 * will be truncated later by orphan cleanup.
2351 */
2352 if (S_ISREG(mode)) {
2353 ret = insert_orphan_item(wc->trans, root,
2354 key.objectid);
2355 if (ret)
2356 break;
2357 }
2358
2359 ret = link_to_fixup_dir(wc->trans, root,
2360 path, key.objectid);
2361 if (ret)
2362 break;
2363 }
2364
2365 if (key.type == BTRFS_DIR_INDEX_KEY &&
2366 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2367 ret = replay_one_dir_item(wc->trans, root, path,
2368 eb, i, &key);
2369 if (ret)
2370 break;
2371 }
2372
2373 if (wc->stage < LOG_WALK_REPLAY_ALL)
2374 continue;
2375
2376 /* these keys are simply copied */
2377 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2378 ret = overwrite_item(wc->trans, root, path,
2379 eb, i, &key);
2380 if (ret)
2381 break;
2382 } else if (key.type == BTRFS_INODE_REF_KEY ||
2383 key.type == BTRFS_INODE_EXTREF_KEY) {
2384 ret = add_inode_ref(wc->trans, root, log, path,
2385 eb, i, &key);
2386 if (ret && ret != -ENOENT)
2387 break;
2388 ret = 0;
2389 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2390 ret = replay_one_extent(wc->trans, root, path,
2391 eb, i, &key);
2392 if (ret)
2393 break;
2394 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2395 ret = replay_one_dir_item(wc->trans, root, path,
2396 eb, i, &key);
2397 if (ret)
2398 break;
2399 }
2400 }
2401 btrfs_free_path(path);
2402 return ret;
2403 }
2404
2405 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2406 struct btrfs_root *root,
2407 struct btrfs_path *path, int *level,
2408 struct walk_control *wc)
2409 {
2410 u64 root_owner;
2411 u64 bytenr;
2412 u64 ptr_gen;
2413 struct extent_buffer *next;
2414 struct extent_buffer *cur;
2415 struct extent_buffer *parent;
2416 u32 blocksize;
2417 int ret = 0;
2418
2419 WARN_ON(*level < 0);
2420 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2421
2422 while (*level > 0) {
2423 WARN_ON(*level < 0);
2424 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2425 cur = path->nodes[*level];
2426
2427 WARN_ON(btrfs_header_level(cur) != *level);
2428
2429 if (path->slots[*level] >=
2430 btrfs_header_nritems(cur))
2431 break;
2432
2433 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2434 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2435 blocksize = root->nodesize;
2436
2437 parent = path->nodes[*level];
2438 root_owner = btrfs_header_owner(parent);
2439
2440 next = btrfs_find_create_tree_block(root, bytenr);
2441 if (IS_ERR(next))
2442 return PTR_ERR(next);
2443
2444 if (*level == 1) {
2445 ret = wc->process_func(root, next, wc, ptr_gen);
2446 if (ret) {
2447 free_extent_buffer(next);
2448 return ret;
2449 }
2450
2451 path->slots[*level]++;
2452 if (wc->free) {
2453 ret = btrfs_read_buffer(next, ptr_gen);
2454 if (ret) {
2455 free_extent_buffer(next);
2456 return ret;
2457 }
2458
2459 if (trans) {
2460 btrfs_tree_lock(next);
2461 btrfs_set_lock_blocking(next);
2462 clean_tree_block(trans, root->fs_info,
2463 next);
2464 btrfs_wait_tree_block_writeback(next);
2465 btrfs_tree_unlock(next);
2466 }
2467
2468 WARN_ON(root_owner !=
2469 BTRFS_TREE_LOG_OBJECTID);
2470 ret = btrfs_free_and_pin_reserved_extent(root,
2471 bytenr, blocksize);
2472 if (ret) {
2473 free_extent_buffer(next);
2474 return ret;
2475 }
2476 }
2477 free_extent_buffer(next);
2478 continue;
2479 }
2480 ret = btrfs_read_buffer(next, ptr_gen);
2481 if (ret) {
2482 free_extent_buffer(next);
2483 return ret;
2484 }
2485
2486 WARN_ON(*level <= 0);
2487 if (path->nodes[*level-1])
2488 free_extent_buffer(path->nodes[*level-1]);
2489 path->nodes[*level-1] = next;
2490 *level = btrfs_header_level(next);
2491 path->slots[*level] = 0;
2492 cond_resched();
2493 }
2494 WARN_ON(*level < 0);
2495 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2496
2497 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2498
2499 cond_resched();
2500 return 0;
2501 }
2502
2503 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2504 struct btrfs_root *root,
2505 struct btrfs_path *path, int *level,
2506 struct walk_control *wc)
2507 {
2508 u64 root_owner;
2509 int i;
2510 int slot;
2511 int ret;
2512
2513 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2514 slot = path->slots[i];
2515 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2516 path->slots[i]++;
2517 *level = i;
2518 WARN_ON(*level == 0);
2519 return 0;
2520 } else {
2521 struct extent_buffer *parent;
2522 if (path->nodes[*level] == root->node)
2523 parent = path->nodes[*level];
2524 else
2525 parent = path->nodes[*level + 1];
2526
2527 root_owner = btrfs_header_owner(parent);
2528 ret = wc->process_func(root, path->nodes[*level], wc,
2529 btrfs_header_generation(path->nodes[*level]));
2530 if (ret)
2531 return ret;
2532
2533 if (wc->free) {
2534 struct extent_buffer *next;
2535
2536 next = path->nodes[*level];
2537
2538 if (trans) {
2539 btrfs_tree_lock(next);
2540 btrfs_set_lock_blocking(next);
2541 clean_tree_block(trans, root->fs_info,
2542 next);
2543 btrfs_wait_tree_block_writeback(next);
2544 btrfs_tree_unlock(next);
2545 }
2546
2547 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2548 ret = btrfs_free_and_pin_reserved_extent(root,
2549 path->nodes[*level]->start,
2550 path->nodes[*level]->len);
2551 if (ret)
2552 return ret;
2553 }
2554 free_extent_buffer(path->nodes[*level]);
2555 path->nodes[*level] = NULL;
2556 *level = i + 1;
2557 }
2558 }
2559 return 1;
2560 }
2561
2562 /*
2563 * drop the reference count on the tree rooted at 'snap'. This traverses
2564 * the tree freeing any blocks that have a ref count of zero after being
2565 * decremented.
2566 */
2567 static int walk_log_tree(struct btrfs_trans_handle *trans,
2568 struct btrfs_root *log, struct walk_control *wc)
2569 {
2570 int ret = 0;
2571 int wret;
2572 int level;
2573 struct btrfs_path *path;
2574 int orig_level;
2575
2576 path = btrfs_alloc_path();
2577 if (!path)
2578 return -ENOMEM;
2579
2580 level = btrfs_header_level(log->node);
2581 orig_level = level;
2582 path->nodes[level] = log->node;
2583 extent_buffer_get(log->node);
2584 path->slots[level] = 0;
2585
2586 while (1) {
2587 wret = walk_down_log_tree(trans, log, path, &level, wc);
2588 if (wret > 0)
2589 break;
2590 if (wret < 0) {
2591 ret = wret;
2592 goto out;
2593 }
2594
2595 wret = walk_up_log_tree(trans, log, path, &level, wc);
2596 if (wret > 0)
2597 break;
2598 if (wret < 0) {
2599 ret = wret;
2600 goto out;
2601 }
2602 }
2603
2604 /* was the root node processed? if not, catch it here */
2605 if (path->nodes[orig_level]) {
2606 ret = wc->process_func(log, path->nodes[orig_level], wc,
2607 btrfs_header_generation(path->nodes[orig_level]));
2608 if (ret)
2609 goto out;
2610 if (wc->free) {
2611 struct extent_buffer *next;
2612
2613 next = path->nodes[orig_level];
2614
2615 if (trans) {
2616 btrfs_tree_lock(next);
2617 btrfs_set_lock_blocking(next);
2618 clean_tree_block(trans, log->fs_info, next);
2619 btrfs_wait_tree_block_writeback(next);
2620 btrfs_tree_unlock(next);
2621 }
2622
2623 WARN_ON(log->root_key.objectid !=
2624 BTRFS_TREE_LOG_OBJECTID);
2625 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2626 next->len);
2627 if (ret)
2628 goto out;
2629 }
2630 }
2631
2632 out:
2633 btrfs_free_path(path);
2634 return ret;
2635 }
2636
2637 /*
2638 * helper function to update the item for a given subvolumes log root
2639 * in the tree of log roots
2640 */
2641 static int update_log_root(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *log)
2643 {
2644 int ret;
2645
2646 if (log->log_transid == 1) {
2647 /* insert root item on the first sync */
2648 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2649 &log->root_key, &log->root_item);
2650 } else {
2651 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2652 &log->root_key, &log->root_item);
2653 }
2654 return ret;
2655 }
2656
2657 static void wait_log_commit(struct btrfs_root *root, int transid)
2658 {
2659 DEFINE_WAIT(wait);
2660 int index = transid % 2;
2661
2662 /*
2663 * we only allow two pending log transactions at a time,
2664 * so we know that if ours is more than 2 older than the
2665 * current transaction, we're done
2666 */
2667 do {
2668 prepare_to_wait(&root->log_commit_wait[index],
2669 &wait, TASK_UNINTERRUPTIBLE);
2670 mutex_unlock(&root->log_mutex);
2671
2672 if (root->log_transid_committed < transid &&
2673 atomic_read(&root->log_commit[index]))
2674 schedule();
2675
2676 finish_wait(&root->log_commit_wait[index], &wait);
2677 mutex_lock(&root->log_mutex);
2678 } while (root->log_transid_committed < transid &&
2679 atomic_read(&root->log_commit[index]));
2680 }
2681
2682 static void wait_for_writer(struct btrfs_root *root)
2683 {
2684 DEFINE_WAIT(wait);
2685
2686 while (atomic_read(&root->log_writers)) {
2687 prepare_to_wait(&root->log_writer_wait,
2688 &wait, TASK_UNINTERRUPTIBLE);
2689 mutex_unlock(&root->log_mutex);
2690 if (atomic_read(&root->log_writers))
2691 schedule();
2692 finish_wait(&root->log_writer_wait, &wait);
2693 mutex_lock(&root->log_mutex);
2694 }
2695 }
2696
2697 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2698 struct btrfs_log_ctx *ctx)
2699 {
2700 if (!ctx)
2701 return;
2702
2703 mutex_lock(&root->log_mutex);
2704 list_del_init(&ctx->list);
2705 mutex_unlock(&root->log_mutex);
2706 }
2707
2708 /*
2709 * Invoked in log mutex context, or be sure there is no other task which
2710 * can access the list.
2711 */
2712 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2713 int index, int error)
2714 {
2715 struct btrfs_log_ctx *ctx;
2716
2717 if (!error) {
2718 INIT_LIST_HEAD(&root->log_ctxs[index]);
2719 return;
2720 }
2721
2722 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2723 ctx->log_ret = error;
2724
2725 INIT_LIST_HEAD(&root->log_ctxs[index]);
2726 }
2727
2728 /*
2729 * btrfs_sync_log does sends a given tree log down to the disk and
2730 * updates the super blocks to record it. When this call is done,
2731 * you know that any inodes previously logged are safely on disk only
2732 * if it returns 0.
2733 *
2734 * Any other return value means you need to call btrfs_commit_transaction.
2735 * Some of the edge cases for fsyncing directories that have had unlinks
2736 * or renames done in the past mean that sometimes the only safe
2737 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2738 * that has happened.
2739 */
2740 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2741 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2742 {
2743 int index1;
2744 int index2;
2745 int mark;
2746 int ret;
2747 struct btrfs_root *log = root->log_root;
2748 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2749 int log_transid = 0;
2750 struct btrfs_log_ctx root_log_ctx;
2751 struct blk_plug plug;
2752
2753 mutex_lock(&root->log_mutex);
2754 log_transid = ctx->log_transid;
2755 if (root->log_transid_committed >= log_transid) {
2756 mutex_unlock(&root->log_mutex);
2757 return ctx->log_ret;
2758 }
2759
2760 index1 = log_transid % 2;
2761 if (atomic_read(&root->log_commit[index1])) {
2762 wait_log_commit(root, log_transid);
2763 mutex_unlock(&root->log_mutex);
2764 return ctx->log_ret;
2765 }
2766 ASSERT(log_transid == root->log_transid);
2767 atomic_set(&root->log_commit[index1], 1);
2768
2769 /* wait for previous tree log sync to complete */
2770 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2771 wait_log_commit(root, log_transid - 1);
2772
2773 while (1) {
2774 int batch = atomic_read(&root->log_batch);
2775 /* when we're on an ssd, just kick the log commit out */
2776 if (!btrfs_test_opt(root->fs_info, SSD) &&
2777 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2778 mutex_unlock(&root->log_mutex);
2779 schedule_timeout_uninterruptible(1);
2780 mutex_lock(&root->log_mutex);
2781 }
2782 wait_for_writer(root);
2783 if (batch == atomic_read(&root->log_batch))
2784 break;
2785 }
2786
2787 /* bail out if we need to do a full commit */
2788 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2789 ret = -EAGAIN;
2790 btrfs_free_logged_extents(log, log_transid);
2791 mutex_unlock(&root->log_mutex);
2792 goto out;
2793 }
2794
2795 if (log_transid % 2 == 0)
2796 mark = EXTENT_DIRTY;
2797 else
2798 mark = EXTENT_NEW;
2799
2800 /* we start IO on all the marked extents here, but we don't actually
2801 * wait for them until later.
2802 */
2803 blk_start_plug(&plug);
2804 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2805 if (ret) {
2806 blk_finish_plug(&plug);
2807 btrfs_abort_transaction(trans, ret);
2808 btrfs_free_logged_extents(log, log_transid);
2809 btrfs_set_log_full_commit(root->fs_info, trans);
2810 mutex_unlock(&root->log_mutex);
2811 goto out;
2812 }
2813
2814 btrfs_set_root_node(&log->root_item, log->node);
2815
2816 root->log_transid++;
2817 log->log_transid = root->log_transid;
2818 root->log_start_pid = 0;
2819 /*
2820 * IO has been started, blocks of the log tree have WRITTEN flag set
2821 * in their headers. new modifications of the log will be written to
2822 * new positions. so it's safe to allow log writers to go in.
2823 */
2824 mutex_unlock(&root->log_mutex);
2825
2826 btrfs_init_log_ctx(&root_log_ctx, NULL);
2827
2828 mutex_lock(&log_root_tree->log_mutex);
2829 atomic_inc(&log_root_tree->log_batch);
2830 atomic_inc(&log_root_tree->log_writers);
2831
2832 index2 = log_root_tree->log_transid % 2;
2833 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2834 root_log_ctx.log_transid = log_root_tree->log_transid;
2835
2836 mutex_unlock(&log_root_tree->log_mutex);
2837
2838 ret = update_log_root(trans, log);
2839
2840 mutex_lock(&log_root_tree->log_mutex);
2841 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2842 /*
2843 * Implicit memory barrier after atomic_dec_and_test
2844 */
2845 if (waitqueue_active(&log_root_tree->log_writer_wait))
2846 wake_up(&log_root_tree->log_writer_wait);
2847 }
2848
2849 if (ret) {
2850 if (!list_empty(&root_log_ctx.list))
2851 list_del_init(&root_log_ctx.list);
2852
2853 blk_finish_plug(&plug);
2854 btrfs_set_log_full_commit(root->fs_info, trans);
2855
2856 if (ret != -ENOSPC) {
2857 btrfs_abort_transaction(trans, ret);
2858 mutex_unlock(&log_root_tree->log_mutex);
2859 goto out;
2860 }
2861 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2862 btrfs_free_logged_extents(log, log_transid);
2863 mutex_unlock(&log_root_tree->log_mutex);
2864 ret = -EAGAIN;
2865 goto out;
2866 }
2867
2868 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2869 blk_finish_plug(&plug);
2870 list_del_init(&root_log_ctx.list);
2871 mutex_unlock(&log_root_tree->log_mutex);
2872 ret = root_log_ctx.log_ret;
2873 goto out;
2874 }
2875
2876 index2 = root_log_ctx.log_transid % 2;
2877 if (atomic_read(&log_root_tree->log_commit[index2])) {
2878 blk_finish_plug(&plug);
2879 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2880 mark);
2881 btrfs_wait_logged_extents(trans, log, log_transid);
2882 wait_log_commit(log_root_tree,
2883 root_log_ctx.log_transid);
2884 mutex_unlock(&log_root_tree->log_mutex);
2885 if (!ret)
2886 ret = root_log_ctx.log_ret;
2887 goto out;
2888 }
2889 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2890 atomic_set(&log_root_tree->log_commit[index2], 1);
2891
2892 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2893 wait_log_commit(log_root_tree,
2894 root_log_ctx.log_transid - 1);
2895 }
2896
2897 wait_for_writer(log_root_tree);
2898
2899 /*
2900 * now that we've moved on to the tree of log tree roots,
2901 * check the full commit flag again
2902 */
2903 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2904 blk_finish_plug(&plug);
2905 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2906 btrfs_free_logged_extents(log, log_transid);
2907 mutex_unlock(&log_root_tree->log_mutex);
2908 ret = -EAGAIN;
2909 goto out_wake_log_root;
2910 }
2911
2912 ret = btrfs_write_marked_extents(log_root_tree,
2913 &log_root_tree->dirty_log_pages,
2914 EXTENT_DIRTY | EXTENT_NEW);
2915 blk_finish_plug(&plug);
2916 if (ret) {
2917 btrfs_set_log_full_commit(root->fs_info, trans);
2918 btrfs_abort_transaction(trans, ret);
2919 btrfs_free_logged_extents(log, log_transid);
2920 mutex_unlock(&log_root_tree->log_mutex);
2921 goto out_wake_log_root;
2922 }
2923 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2924 if (!ret)
2925 ret = btrfs_wait_marked_extents(log_root_tree,
2926 &log_root_tree->dirty_log_pages,
2927 EXTENT_NEW | EXTENT_DIRTY);
2928 if (ret) {
2929 btrfs_set_log_full_commit(root->fs_info, trans);
2930 btrfs_free_logged_extents(log, log_transid);
2931 mutex_unlock(&log_root_tree->log_mutex);
2932 goto out_wake_log_root;
2933 }
2934 btrfs_wait_logged_extents(trans, log, log_transid);
2935
2936 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2937 log_root_tree->node->start);
2938 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2939 btrfs_header_level(log_root_tree->node));
2940
2941 log_root_tree->log_transid++;
2942 mutex_unlock(&log_root_tree->log_mutex);
2943
2944 /*
2945 * nobody else is going to jump in and write the the ctree
2946 * super here because the log_commit atomic below is protecting
2947 * us. We must be called with a transaction handle pinning
2948 * the running transaction open, so a full commit can't hop
2949 * in and cause problems either.
2950 */
2951 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2952 if (ret) {
2953 btrfs_set_log_full_commit(root->fs_info, trans);
2954 btrfs_abort_transaction(trans, ret);
2955 goto out_wake_log_root;
2956 }
2957
2958 mutex_lock(&root->log_mutex);
2959 if (root->last_log_commit < log_transid)
2960 root->last_log_commit = log_transid;
2961 mutex_unlock(&root->log_mutex);
2962
2963 out_wake_log_root:
2964 /*
2965 * We needn't get log_mutex here because we are sure all
2966 * the other tasks are blocked.
2967 */
2968 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2969
2970 mutex_lock(&log_root_tree->log_mutex);
2971 log_root_tree->log_transid_committed++;
2972 atomic_set(&log_root_tree->log_commit[index2], 0);
2973 mutex_unlock(&log_root_tree->log_mutex);
2974
2975 /*
2976 * The barrier before waitqueue_active is implied by mutex_unlock
2977 */
2978 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2979 wake_up(&log_root_tree->log_commit_wait[index2]);
2980 out:
2981 /* See above. */
2982 btrfs_remove_all_log_ctxs(root, index1, ret);
2983
2984 mutex_lock(&root->log_mutex);
2985 root->log_transid_committed++;
2986 atomic_set(&root->log_commit[index1], 0);
2987 mutex_unlock(&root->log_mutex);
2988
2989 /*
2990 * The barrier before waitqueue_active is implied by mutex_unlock
2991 */
2992 if (waitqueue_active(&root->log_commit_wait[index1]))
2993 wake_up(&root->log_commit_wait[index1]);
2994 return ret;
2995 }
2996
2997 static void free_log_tree(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *log)
2999 {
3000 int ret;
3001 u64 start;
3002 u64 end;
3003 struct walk_control wc = {
3004 .free = 1,
3005 .process_func = process_one_buffer
3006 };
3007
3008 ret = walk_log_tree(trans, log, &wc);
3009 /* I don't think this can happen but just in case */
3010 if (ret)
3011 btrfs_abort_transaction(trans, ret);
3012
3013 while (1) {
3014 ret = find_first_extent_bit(&log->dirty_log_pages,
3015 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3016 NULL);
3017 if (ret)
3018 break;
3019
3020 clear_extent_bits(&log->dirty_log_pages, start, end,
3021 EXTENT_DIRTY | EXTENT_NEW);
3022 }
3023
3024 /*
3025 * We may have short-circuited the log tree with the full commit logic
3026 * and left ordered extents on our list, so clear these out to keep us
3027 * from leaking inodes and memory.
3028 */
3029 btrfs_free_logged_extents(log, 0);
3030 btrfs_free_logged_extents(log, 1);
3031
3032 free_extent_buffer(log->node);
3033 kfree(log);
3034 }
3035
3036 /*
3037 * free all the extents used by the tree log. This should be called
3038 * at commit time of the full transaction
3039 */
3040 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3041 {
3042 if (root->log_root) {
3043 free_log_tree(trans, root->log_root);
3044 root->log_root = NULL;
3045 }
3046 return 0;
3047 }
3048
3049 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3050 struct btrfs_fs_info *fs_info)
3051 {
3052 if (fs_info->log_root_tree) {
3053 free_log_tree(trans, fs_info->log_root_tree);
3054 fs_info->log_root_tree = NULL;
3055 }
3056 return 0;
3057 }
3058
3059 /*
3060 * If both a file and directory are logged, and unlinks or renames are
3061 * mixed in, we have a few interesting corners:
3062 *
3063 * create file X in dir Y
3064 * link file X to X.link in dir Y
3065 * fsync file X
3066 * unlink file X but leave X.link
3067 * fsync dir Y
3068 *
3069 * After a crash we would expect only X.link to exist. But file X
3070 * didn't get fsync'd again so the log has back refs for X and X.link.
3071 *
3072 * We solve this by removing directory entries and inode backrefs from the
3073 * log when a file that was logged in the current transaction is
3074 * unlinked. Any later fsync will include the updated log entries, and
3075 * we'll be able to reconstruct the proper directory items from backrefs.
3076 *
3077 * This optimizations allows us to avoid relogging the entire inode
3078 * or the entire directory.
3079 */
3080 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3081 struct btrfs_root *root,
3082 const char *name, int name_len,
3083 struct inode *dir, u64 index)
3084 {
3085 struct btrfs_root *log;
3086 struct btrfs_dir_item *di;
3087 struct btrfs_path *path;
3088 int ret;
3089 int err = 0;
3090 int bytes_del = 0;
3091 u64 dir_ino = btrfs_ino(dir);
3092
3093 if (BTRFS_I(dir)->logged_trans < trans->transid)
3094 return 0;
3095
3096 ret = join_running_log_trans(root);
3097 if (ret)
3098 return 0;
3099
3100 mutex_lock(&BTRFS_I(dir)->log_mutex);
3101
3102 log = root->log_root;
3103 path = btrfs_alloc_path();
3104 if (!path) {
3105 err = -ENOMEM;
3106 goto out_unlock;
3107 }
3108
3109 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3110 name, name_len, -1);
3111 if (IS_ERR(di)) {
3112 err = PTR_ERR(di);
3113 goto fail;
3114 }
3115 if (di) {
3116 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3117 bytes_del += name_len;
3118 if (ret) {
3119 err = ret;
3120 goto fail;
3121 }
3122 }
3123 btrfs_release_path(path);
3124 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3125 index, name, name_len, -1);
3126 if (IS_ERR(di)) {
3127 err = PTR_ERR(di);
3128 goto fail;
3129 }
3130 if (di) {
3131 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3132 bytes_del += name_len;
3133 if (ret) {
3134 err = ret;
3135 goto fail;
3136 }
3137 }
3138
3139 /* update the directory size in the log to reflect the names
3140 * we have removed
3141 */
3142 if (bytes_del) {
3143 struct btrfs_key key;
3144
3145 key.objectid = dir_ino;
3146 key.offset = 0;
3147 key.type = BTRFS_INODE_ITEM_KEY;
3148 btrfs_release_path(path);
3149
3150 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3151 if (ret < 0) {
3152 err = ret;
3153 goto fail;
3154 }
3155 if (ret == 0) {
3156 struct btrfs_inode_item *item;
3157 u64 i_size;
3158
3159 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3160 struct btrfs_inode_item);
3161 i_size = btrfs_inode_size(path->nodes[0], item);
3162 if (i_size > bytes_del)
3163 i_size -= bytes_del;
3164 else
3165 i_size = 0;
3166 btrfs_set_inode_size(path->nodes[0], item, i_size);
3167 btrfs_mark_buffer_dirty(path->nodes[0]);
3168 } else
3169 ret = 0;
3170 btrfs_release_path(path);
3171 }
3172 fail:
3173 btrfs_free_path(path);
3174 out_unlock:
3175 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3176 if (ret == -ENOSPC) {
3177 btrfs_set_log_full_commit(root->fs_info, trans);
3178 ret = 0;
3179 } else if (ret < 0)
3180 btrfs_abort_transaction(trans, ret);
3181
3182 btrfs_end_log_trans(root);
3183
3184 return err;
3185 }
3186
3187 /* see comments for btrfs_del_dir_entries_in_log */
3188 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 const char *name, int name_len,
3191 struct inode *inode, u64 dirid)
3192 {
3193 struct btrfs_root *log;
3194 u64 index;
3195 int ret;
3196
3197 if (BTRFS_I(inode)->logged_trans < trans->transid)
3198 return 0;
3199
3200 ret = join_running_log_trans(root);
3201 if (ret)
3202 return 0;
3203 log = root->log_root;
3204 mutex_lock(&BTRFS_I(inode)->log_mutex);
3205
3206 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3207 dirid, &index);
3208 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3209 if (ret == -ENOSPC) {
3210 btrfs_set_log_full_commit(root->fs_info, trans);
3211 ret = 0;
3212 } else if (ret < 0 && ret != -ENOENT)
3213 btrfs_abort_transaction(trans, ret);
3214 btrfs_end_log_trans(root);
3215
3216 return ret;
3217 }
3218
3219 /*
3220 * creates a range item in the log for 'dirid'. first_offset and
3221 * last_offset tell us which parts of the key space the log should
3222 * be considered authoritative for.
3223 */
3224 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3225 struct btrfs_root *log,
3226 struct btrfs_path *path,
3227 int key_type, u64 dirid,
3228 u64 first_offset, u64 last_offset)
3229 {
3230 int ret;
3231 struct btrfs_key key;
3232 struct btrfs_dir_log_item *item;
3233
3234 key.objectid = dirid;
3235 key.offset = first_offset;
3236 if (key_type == BTRFS_DIR_ITEM_KEY)
3237 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3238 else
3239 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3240 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3241 if (ret)
3242 return ret;
3243
3244 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3245 struct btrfs_dir_log_item);
3246 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3247 btrfs_mark_buffer_dirty(path->nodes[0]);
3248 btrfs_release_path(path);
3249 return 0;
3250 }
3251
3252 /*
3253 * log all the items included in the current transaction for a given
3254 * directory. This also creates the range items in the log tree required
3255 * to replay anything deleted before the fsync
3256 */
3257 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root, struct inode *inode,
3259 struct btrfs_path *path,
3260 struct btrfs_path *dst_path, int key_type,
3261 struct btrfs_log_ctx *ctx,
3262 u64 min_offset, u64 *last_offset_ret)
3263 {
3264 struct btrfs_key min_key;
3265 struct btrfs_root *log = root->log_root;
3266 struct extent_buffer *src;
3267 int err = 0;
3268 int ret;
3269 int i;
3270 int nritems;
3271 u64 first_offset = min_offset;
3272 u64 last_offset = (u64)-1;
3273 u64 ino = btrfs_ino(inode);
3274
3275 log = root->log_root;
3276
3277 min_key.objectid = ino;
3278 min_key.type = key_type;
3279 min_key.offset = min_offset;
3280
3281 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3282
3283 /*
3284 * we didn't find anything from this transaction, see if there
3285 * is anything at all
3286 */
3287 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3288 min_key.objectid = ino;
3289 min_key.type = key_type;
3290 min_key.offset = (u64)-1;
3291 btrfs_release_path(path);
3292 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3293 if (ret < 0) {
3294 btrfs_release_path(path);
3295 return ret;
3296 }
3297 ret = btrfs_previous_item(root, path, ino, key_type);
3298
3299 /* if ret == 0 there are items for this type,
3300 * create a range to tell us the last key of this type.
3301 * otherwise, there are no items in this directory after
3302 * *min_offset, and we create a range to indicate that.
3303 */
3304 if (ret == 0) {
3305 struct btrfs_key tmp;
3306 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3307 path->slots[0]);
3308 if (key_type == tmp.type)
3309 first_offset = max(min_offset, tmp.offset) + 1;
3310 }
3311 goto done;
3312 }
3313
3314 /* go backward to find any previous key */
3315 ret = btrfs_previous_item(root, path, ino, key_type);
3316 if (ret == 0) {
3317 struct btrfs_key tmp;
3318 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3319 if (key_type == tmp.type) {
3320 first_offset = tmp.offset;
3321 ret = overwrite_item(trans, log, dst_path,
3322 path->nodes[0], path->slots[0],
3323 &tmp);
3324 if (ret) {
3325 err = ret;
3326 goto done;
3327 }
3328 }
3329 }
3330 btrfs_release_path(path);
3331
3332 /* find the first key from this transaction again */
3333 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3334 if (WARN_ON(ret != 0))
3335 goto done;
3336
3337 /*
3338 * we have a block from this transaction, log every item in it
3339 * from our directory
3340 */
3341 while (1) {
3342 struct btrfs_key tmp;
3343 src = path->nodes[0];
3344 nritems = btrfs_header_nritems(src);
3345 for (i = path->slots[0]; i < nritems; i++) {
3346 struct btrfs_dir_item *di;
3347
3348 btrfs_item_key_to_cpu(src, &min_key, i);
3349
3350 if (min_key.objectid != ino || min_key.type != key_type)
3351 goto done;
3352 ret = overwrite_item(trans, log, dst_path, src, i,
3353 &min_key);
3354 if (ret) {
3355 err = ret;
3356 goto done;
3357 }
3358
3359 /*
3360 * We must make sure that when we log a directory entry,
3361 * the corresponding inode, after log replay, has a
3362 * matching link count. For example:
3363 *
3364 * touch foo
3365 * mkdir mydir
3366 * sync
3367 * ln foo mydir/bar
3368 * xfs_io -c "fsync" mydir
3369 * <crash>
3370 * <mount fs and log replay>
3371 *
3372 * Would result in a fsync log that when replayed, our
3373 * file inode would have a link count of 1, but we get
3374 * two directory entries pointing to the same inode.
3375 * After removing one of the names, it would not be
3376 * possible to remove the other name, which resulted
3377 * always in stale file handle errors, and would not
3378 * be possible to rmdir the parent directory, since
3379 * its i_size could never decrement to the value
3380 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3381 */
3382 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3383 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3384 if (ctx &&
3385 (btrfs_dir_transid(src, di) == trans->transid ||
3386 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3387 tmp.type != BTRFS_ROOT_ITEM_KEY)
3388 ctx->log_new_dentries = true;
3389 }
3390 path->slots[0] = nritems;
3391
3392 /*
3393 * look ahead to the next item and see if it is also
3394 * from this directory and from this transaction
3395 */
3396 ret = btrfs_next_leaf(root, path);
3397 if (ret == 1) {
3398 last_offset = (u64)-1;
3399 goto done;
3400 }
3401 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3402 if (tmp.objectid != ino || tmp.type != key_type) {
3403 last_offset = (u64)-1;
3404 goto done;
3405 }
3406 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3407 ret = overwrite_item(trans, log, dst_path,
3408 path->nodes[0], path->slots[0],
3409 &tmp);
3410 if (ret)
3411 err = ret;
3412 else
3413 last_offset = tmp.offset;
3414 goto done;
3415 }
3416 }
3417 done:
3418 btrfs_release_path(path);
3419 btrfs_release_path(dst_path);
3420
3421 if (err == 0) {
3422 *last_offset_ret = last_offset;
3423 /*
3424 * insert the log range keys to indicate where the log
3425 * is valid
3426 */
3427 ret = insert_dir_log_key(trans, log, path, key_type,
3428 ino, first_offset, last_offset);
3429 if (ret)
3430 err = ret;
3431 }
3432 return err;
3433 }
3434
3435 /*
3436 * logging directories is very similar to logging inodes, We find all the items
3437 * from the current transaction and write them to the log.
3438 *
3439 * The recovery code scans the directory in the subvolume, and if it finds a
3440 * key in the range logged that is not present in the log tree, then it means
3441 * that dir entry was unlinked during the transaction.
3442 *
3443 * In order for that scan to work, we must include one key smaller than
3444 * the smallest logged by this transaction and one key larger than the largest
3445 * key logged by this transaction.
3446 */
3447 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3448 struct btrfs_root *root, struct inode *inode,
3449 struct btrfs_path *path,
3450 struct btrfs_path *dst_path,
3451 struct btrfs_log_ctx *ctx)
3452 {
3453 u64 min_key;
3454 u64 max_key;
3455 int ret;
3456 int key_type = BTRFS_DIR_ITEM_KEY;
3457
3458 again:
3459 min_key = 0;
3460 max_key = 0;
3461 while (1) {
3462 ret = log_dir_items(trans, root, inode, path,
3463 dst_path, key_type, ctx, min_key,
3464 &max_key);
3465 if (ret)
3466 return ret;
3467 if (max_key == (u64)-1)
3468 break;
3469 min_key = max_key + 1;
3470 }
3471
3472 if (key_type == BTRFS_DIR_ITEM_KEY) {
3473 key_type = BTRFS_DIR_INDEX_KEY;
3474 goto again;
3475 }
3476 return 0;
3477 }
3478
3479 /*
3480 * a helper function to drop items from the log before we relog an
3481 * inode. max_key_type indicates the highest item type to remove.
3482 * This cannot be run for file data extents because it does not
3483 * free the extents they point to.
3484 */
3485 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3486 struct btrfs_root *log,
3487 struct btrfs_path *path,
3488 u64 objectid, int max_key_type)
3489 {
3490 int ret;
3491 struct btrfs_key key;
3492 struct btrfs_key found_key;
3493 int start_slot;
3494
3495 key.objectid = objectid;
3496 key.type = max_key_type;
3497 key.offset = (u64)-1;
3498
3499 while (1) {
3500 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3501 BUG_ON(ret == 0); /* Logic error */
3502 if (ret < 0)
3503 break;
3504
3505 if (path->slots[0] == 0)
3506 break;
3507
3508 path->slots[0]--;
3509 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3510 path->slots[0]);
3511
3512 if (found_key.objectid != objectid)
3513 break;
3514
3515 found_key.offset = 0;
3516 found_key.type = 0;
3517 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3518 &start_slot);
3519
3520 ret = btrfs_del_items(trans, log, path, start_slot,
3521 path->slots[0] - start_slot + 1);
3522 /*
3523 * If start slot isn't 0 then we don't need to re-search, we've
3524 * found the last guy with the objectid in this tree.
3525 */
3526 if (ret || start_slot != 0)
3527 break;
3528 btrfs_release_path(path);
3529 }
3530 btrfs_release_path(path);
3531 if (ret > 0)
3532 ret = 0;
3533 return ret;
3534 }
3535
3536 static void fill_inode_item(struct btrfs_trans_handle *trans,
3537 struct extent_buffer *leaf,
3538 struct btrfs_inode_item *item,
3539 struct inode *inode, int log_inode_only,
3540 u64 logged_isize)
3541 {
3542 struct btrfs_map_token token;
3543
3544 btrfs_init_map_token(&token);
3545
3546 if (log_inode_only) {
3547 /* set the generation to zero so the recover code
3548 * can tell the difference between an logging
3549 * just to say 'this inode exists' and a logging
3550 * to say 'update this inode with these values'
3551 */
3552 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3553 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3554 } else {
3555 btrfs_set_token_inode_generation(leaf, item,
3556 BTRFS_I(inode)->generation,
3557 &token);
3558 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3559 }
3560
3561 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3562 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3563 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3564 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3565
3566 btrfs_set_token_timespec_sec(leaf, &item->atime,
3567 inode->i_atime.tv_sec, &token);
3568 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3569 inode->i_atime.tv_nsec, &token);
3570
3571 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3572 inode->i_mtime.tv_sec, &token);
3573 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3574 inode->i_mtime.tv_nsec, &token);
3575
3576 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3577 inode->i_ctime.tv_sec, &token);
3578 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3579 inode->i_ctime.tv_nsec, &token);
3580
3581 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3582 &token);
3583
3584 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3585 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3586 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3587 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3588 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3589 }
3590
3591 static int log_inode_item(struct btrfs_trans_handle *trans,
3592 struct btrfs_root *log, struct btrfs_path *path,
3593 struct inode *inode)
3594 {
3595 struct btrfs_inode_item *inode_item;
3596 int ret;
3597
3598 ret = btrfs_insert_empty_item(trans, log, path,
3599 &BTRFS_I(inode)->location,
3600 sizeof(*inode_item));
3601 if (ret && ret != -EEXIST)
3602 return ret;
3603 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3604 struct btrfs_inode_item);
3605 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3606 btrfs_release_path(path);
3607 return 0;
3608 }
3609
3610 static noinline int copy_items(struct btrfs_trans_handle *trans,
3611 struct inode *inode,
3612 struct btrfs_path *dst_path,
3613 struct btrfs_path *src_path, u64 *last_extent,
3614 int start_slot, int nr, int inode_only,
3615 u64 logged_isize)
3616 {
3617 unsigned long src_offset;
3618 unsigned long dst_offset;
3619 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3620 struct btrfs_file_extent_item *extent;
3621 struct btrfs_inode_item *inode_item;
3622 struct extent_buffer *src = src_path->nodes[0];
3623 struct btrfs_key first_key, last_key, key;
3624 int ret;
3625 struct btrfs_key *ins_keys;
3626 u32 *ins_sizes;
3627 char *ins_data;
3628 int i;
3629 struct list_head ordered_sums;
3630 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3631 bool has_extents = false;
3632 bool need_find_last_extent = true;
3633 bool done = false;
3634
3635 INIT_LIST_HEAD(&ordered_sums);
3636
3637 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3638 nr * sizeof(u32), GFP_NOFS);
3639 if (!ins_data)
3640 return -ENOMEM;
3641
3642 first_key.objectid = (u64)-1;
3643
3644 ins_sizes = (u32 *)ins_data;
3645 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3646
3647 for (i = 0; i < nr; i++) {
3648 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3649 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3650 }
3651 ret = btrfs_insert_empty_items(trans, log, dst_path,
3652 ins_keys, ins_sizes, nr);
3653 if (ret) {
3654 kfree(ins_data);
3655 return ret;
3656 }
3657
3658 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3659 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3660 dst_path->slots[0]);
3661
3662 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3663
3664 if ((i == (nr - 1)))
3665 last_key = ins_keys[i];
3666
3667 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3668 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3669 dst_path->slots[0],
3670 struct btrfs_inode_item);
3671 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3672 inode, inode_only == LOG_INODE_EXISTS,
3673 logged_isize);
3674 } else {
3675 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3676 src_offset, ins_sizes[i]);
3677 }
3678
3679 /*
3680 * We set need_find_last_extent here in case we know we were
3681 * processing other items and then walk into the first extent in
3682 * the inode. If we don't hit an extent then nothing changes,
3683 * we'll do the last search the next time around.
3684 */
3685 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3686 has_extents = true;
3687 if (first_key.objectid == (u64)-1)
3688 first_key = ins_keys[i];
3689 } else {
3690 need_find_last_extent = false;
3691 }
3692
3693 /* take a reference on file data extents so that truncates
3694 * or deletes of this inode don't have to relog the inode
3695 * again
3696 */
3697 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3698 !skip_csum) {
3699 int found_type;
3700 extent = btrfs_item_ptr(src, start_slot + i,
3701 struct btrfs_file_extent_item);
3702
3703 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3704 continue;
3705
3706 found_type = btrfs_file_extent_type(src, extent);
3707 if (found_type == BTRFS_FILE_EXTENT_REG) {
3708 u64 ds, dl, cs, cl;
3709 ds = btrfs_file_extent_disk_bytenr(src,
3710 extent);
3711 /* ds == 0 is a hole */
3712 if (ds == 0)
3713 continue;
3714
3715 dl = btrfs_file_extent_disk_num_bytes(src,
3716 extent);
3717 cs = btrfs_file_extent_offset(src, extent);
3718 cl = btrfs_file_extent_num_bytes(src,
3719 extent);
3720 if (btrfs_file_extent_compression(src,
3721 extent)) {
3722 cs = 0;
3723 cl = dl;
3724 }
3725
3726 ret = btrfs_lookup_csums_range(
3727 log->fs_info->csum_root,
3728 ds + cs, ds + cs + cl - 1,
3729 &ordered_sums, 0);
3730 if (ret) {
3731 btrfs_release_path(dst_path);
3732 kfree(ins_data);
3733 return ret;
3734 }
3735 }
3736 }
3737 }
3738
3739 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3740 btrfs_release_path(dst_path);
3741 kfree(ins_data);
3742
3743 /*
3744 * we have to do this after the loop above to avoid changing the
3745 * log tree while trying to change the log tree.
3746 */
3747 ret = 0;
3748 while (!list_empty(&ordered_sums)) {
3749 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3750 struct btrfs_ordered_sum,
3751 list);
3752 if (!ret)
3753 ret = btrfs_csum_file_blocks(trans, log, sums);
3754 list_del(&sums->list);
3755 kfree(sums);
3756 }
3757
3758 if (!has_extents)
3759 return ret;
3760
3761 if (need_find_last_extent && *last_extent == first_key.offset) {
3762 /*
3763 * We don't have any leafs between our current one and the one
3764 * we processed before that can have file extent items for our
3765 * inode (and have a generation number smaller than our current
3766 * transaction id).
3767 */
3768 need_find_last_extent = false;
3769 }
3770
3771 /*
3772 * Because we use btrfs_search_forward we could skip leaves that were
3773 * not modified and then assume *last_extent is valid when it really
3774 * isn't. So back up to the previous leaf and read the end of the last
3775 * extent before we go and fill in holes.
3776 */
3777 if (need_find_last_extent) {
3778 u64 len;
3779
3780 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3781 if (ret < 0)
3782 return ret;
3783 if (ret)
3784 goto fill_holes;
3785 if (src_path->slots[0])
3786 src_path->slots[0]--;
3787 src = src_path->nodes[0];
3788 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3789 if (key.objectid != btrfs_ino(inode) ||
3790 key.type != BTRFS_EXTENT_DATA_KEY)
3791 goto fill_holes;
3792 extent = btrfs_item_ptr(src, src_path->slots[0],
3793 struct btrfs_file_extent_item);
3794 if (btrfs_file_extent_type(src, extent) ==
3795 BTRFS_FILE_EXTENT_INLINE) {
3796 len = btrfs_file_extent_inline_len(src,
3797 src_path->slots[0],
3798 extent);
3799 *last_extent = ALIGN(key.offset + len,
3800 log->sectorsize);
3801 } else {
3802 len = btrfs_file_extent_num_bytes(src, extent);
3803 *last_extent = key.offset + len;
3804 }
3805 }
3806 fill_holes:
3807 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3808 * things could have happened
3809 *
3810 * 1) A merge could have happened, so we could currently be on a leaf
3811 * that holds what we were copying in the first place.
3812 * 2) A split could have happened, and now not all of the items we want
3813 * are on the same leaf.
3814 *
3815 * So we need to adjust how we search for holes, we need to drop the
3816 * path and re-search for the first extent key we found, and then walk
3817 * forward until we hit the last one we copied.
3818 */
3819 if (need_find_last_extent) {
3820 /* btrfs_prev_leaf could return 1 without releasing the path */
3821 btrfs_release_path(src_path);
3822 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3823 src_path, 0, 0);
3824 if (ret < 0)
3825 return ret;
3826 ASSERT(ret == 0);
3827 src = src_path->nodes[0];
3828 i = src_path->slots[0];
3829 } else {
3830 i = start_slot;
3831 }
3832
3833 /*
3834 * Ok so here we need to go through and fill in any holes we may have
3835 * to make sure that holes are punched for those areas in case they had
3836 * extents previously.
3837 */
3838 while (!done) {
3839 u64 offset, len;
3840 u64 extent_end;
3841
3842 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3843 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3844 if (ret < 0)
3845 return ret;
3846 ASSERT(ret == 0);
3847 src = src_path->nodes[0];
3848 i = 0;
3849 }
3850
3851 btrfs_item_key_to_cpu(src, &key, i);
3852 if (!btrfs_comp_cpu_keys(&key, &last_key))
3853 done = true;
3854 if (key.objectid != btrfs_ino(inode) ||
3855 key.type != BTRFS_EXTENT_DATA_KEY) {
3856 i++;
3857 continue;
3858 }
3859 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3860 if (btrfs_file_extent_type(src, extent) ==
3861 BTRFS_FILE_EXTENT_INLINE) {
3862 len = btrfs_file_extent_inline_len(src, i, extent);
3863 extent_end = ALIGN(key.offset + len, log->sectorsize);
3864 } else {
3865 len = btrfs_file_extent_num_bytes(src, extent);
3866 extent_end = key.offset + len;
3867 }
3868 i++;
3869
3870 if (*last_extent == key.offset) {
3871 *last_extent = extent_end;
3872 continue;
3873 }
3874 offset = *last_extent;
3875 len = key.offset - *last_extent;
3876 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3877 offset, 0, 0, len, 0, len, 0,
3878 0, 0);
3879 if (ret)
3880 break;
3881 *last_extent = extent_end;
3882 }
3883 /*
3884 * Need to let the callers know we dropped the path so they should
3885 * re-search.
3886 */
3887 if (!ret && need_find_last_extent)
3888 ret = 1;
3889 return ret;
3890 }
3891
3892 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3893 {
3894 struct extent_map *em1, *em2;
3895
3896 em1 = list_entry(a, struct extent_map, list);
3897 em2 = list_entry(b, struct extent_map, list);
3898
3899 if (em1->start < em2->start)
3900 return -1;
3901 else if (em1->start > em2->start)
3902 return 1;
3903 return 0;
3904 }
3905
3906 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3907 struct inode *inode,
3908 struct btrfs_root *root,
3909 const struct extent_map *em,
3910 const struct list_head *logged_list,
3911 bool *ordered_io_error)
3912 {
3913 struct btrfs_ordered_extent *ordered;
3914 struct btrfs_root *log = root->log_root;
3915 u64 mod_start = em->mod_start;
3916 u64 mod_len = em->mod_len;
3917 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3918 u64 csum_offset;
3919 u64 csum_len;
3920 LIST_HEAD(ordered_sums);
3921 int ret = 0;
3922
3923 *ordered_io_error = false;
3924
3925 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3926 em->block_start == EXTENT_MAP_HOLE)
3927 return 0;
3928
3929 /*
3930 * Wait far any ordered extent that covers our extent map. If it
3931 * finishes without an error, first check and see if our csums are on
3932 * our outstanding ordered extents.
3933 */
3934 list_for_each_entry(ordered, logged_list, log_list) {
3935 struct btrfs_ordered_sum *sum;
3936
3937 if (!mod_len)
3938 break;
3939
3940 if (ordered->file_offset + ordered->len <= mod_start ||
3941 mod_start + mod_len <= ordered->file_offset)
3942 continue;
3943
3944 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3945 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3946 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3947 const u64 start = ordered->file_offset;
3948 const u64 end = ordered->file_offset + ordered->len - 1;
3949
3950 WARN_ON(ordered->inode != inode);
3951 filemap_fdatawrite_range(inode->i_mapping, start, end);
3952 }
3953
3954 wait_event(ordered->wait,
3955 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3956 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3957
3958 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3959 /*
3960 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3961 * i_mapping flags, so that the next fsync won't get
3962 * an outdated io error too.
3963 */
3964 btrfs_inode_check_errors(inode);
3965 *ordered_io_error = true;
3966 break;
3967 }
3968 /*
3969 * We are going to copy all the csums on this ordered extent, so
3970 * go ahead and adjust mod_start and mod_len in case this
3971 * ordered extent has already been logged.
3972 */
3973 if (ordered->file_offset > mod_start) {
3974 if (ordered->file_offset + ordered->len >=
3975 mod_start + mod_len)
3976 mod_len = ordered->file_offset - mod_start;
3977 /*
3978 * If we have this case
3979 *
3980 * |--------- logged extent ---------|
3981 * |----- ordered extent ----|
3982 *
3983 * Just don't mess with mod_start and mod_len, we'll
3984 * just end up logging more csums than we need and it
3985 * will be ok.
3986 */
3987 } else {
3988 if (ordered->file_offset + ordered->len <
3989 mod_start + mod_len) {
3990 mod_len = (mod_start + mod_len) -
3991 (ordered->file_offset + ordered->len);
3992 mod_start = ordered->file_offset +
3993 ordered->len;
3994 } else {
3995 mod_len = 0;
3996 }
3997 }
3998
3999 if (skip_csum)
4000 continue;
4001
4002 /*
4003 * To keep us from looping for the above case of an ordered
4004 * extent that falls inside of the logged extent.
4005 */
4006 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4007 &ordered->flags))
4008 continue;
4009
4010 list_for_each_entry(sum, &ordered->list, list) {
4011 ret = btrfs_csum_file_blocks(trans, log, sum);
4012 if (ret)
4013 break;
4014 }
4015 }
4016
4017 if (*ordered_io_error || !mod_len || ret || skip_csum)
4018 return ret;
4019
4020 if (em->compress_type) {
4021 csum_offset = 0;
4022 csum_len = max(em->block_len, em->orig_block_len);
4023 } else {
4024 csum_offset = mod_start - em->start;
4025 csum_len = mod_len;
4026 }
4027
4028 /* block start is already adjusted for the file extent offset. */
4029 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4030 em->block_start + csum_offset,
4031 em->block_start + csum_offset +
4032 csum_len - 1, &ordered_sums, 0);
4033 if (ret)
4034 return ret;
4035
4036 while (!list_empty(&ordered_sums)) {
4037 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4038 struct btrfs_ordered_sum,
4039 list);
4040 if (!ret)
4041 ret = btrfs_csum_file_blocks(trans, log, sums);
4042 list_del(&sums->list);
4043 kfree(sums);
4044 }
4045
4046 return ret;
4047 }
4048
4049 static int log_one_extent(struct btrfs_trans_handle *trans,
4050 struct inode *inode, struct btrfs_root *root,
4051 const struct extent_map *em,
4052 struct btrfs_path *path,
4053 const struct list_head *logged_list,
4054 struct btrfs_log_ctx *ctx)
4055 {
4056 struct btrfs_root *log = root->log_root;
4057 struct btrfs_file_extent_item *fi;
4058 struct extent_buffer *leaf;
4059 struct btrfs_map_token token;
4060 struct btrfs_key key;
4061 u64 extent_offset = em->start - em->orig_start;
4062 u64 block_len;
4063 int ret;
4064 int extent_inserted = 0;
4065 bool ordered_io_err = false;
4066
4067 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4068 &ordered_io_err);
4069 if (ret)
4070 return ret;
4071
4072 if (ordered_io_err) {
4073 ctx->io_err = -EIO;
4074 return 0;
4075 }
4076
4077 btrfs_init_map_token(&token);
4078
4079 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4080 em->start + em->len, NULL, 0, 1,
4081 sizeof(*fi), &extent_inserted);
4082 if (ret)
4083 return ret;
4084
4085 if (!extent_inserted) {
4086 key.objectid = btrfs_ino(inode);
4087 key.type = BTRFS_EXTENT_DATA_KEY;
4088 key.offset = em->start;
4089
4090 ret = btrfs_insert_empty_item(trans, log, path, &key,
4091 sizeof(*fi));
4092 if (ret)
4093 return ret;
4094 }
4095 leaf = path->nodes[0];
4096 fi = btrfs_item_ptr(leaf, path->slots[0],
4097 struct btrfs_file_extent_item);
4098
4099 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4100 &token);
4101 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4102 btrfs_set_token_file_extent_type(leaf, fi,
4103 BTRFS_FILE_EXTENT_PREALLOC,
4104 &token);
4105 else
4106 btrfs_set_token_file_extent_type(leaf, fi,
4107 BTRFS_FILE_EXTENT_REG,
4108 &token);
4109
4110 block_len = max(em->block_len, em->orig_block_len);
4111 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4112 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4113 em->block_start,
4114 &token);
4115 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4116 &token);
4117 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4118 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4119 em->block_start -
4120 extent_offset, &token);
4121 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4122 &token);
4123 } else {
4124 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4125 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4126 &token);
4127 }
4128
4129 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4130 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4131 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4132 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4133 &token);
4134 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4135 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4136 btrfs_mark_buffer_dirty(leaf);
4137
4138 btrfs_release_path(path);
4139
4140 return ret;
4141 }
4142
4143 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *root,
4145 struct inode *inode,
4146 struct btrfs_path *path,
4147 struct list_head *logged_list,
4148 struct btrfs_log_ctx *ctx,
4149 const u64 start,
4150 const u64 end)
4151 {
4152 struct extent_map *em, *n;
4153 struct list_head extents;
4154 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4155 u64 test_gen;
4156 int ret = 0;
4157 int num = 0;
4158
4159 INIT_LIST_HEAD(&extents);
4160
4161 down_write(&BTRFS_I(inode)->dio_sem);
4162 write_lock(&tree->lock);
4163 test_gen = root->fs_info->last_trans_committed;
4164
4165 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4166 list_del_init(&em->list);
4167
4168 /*
4169 * Just an arbitrary number, this can be really CPU intensive
4170 * once we start getting a lot of extents, and really once we
4171 * have a bunch of extents we just want to commit since it will
4172 * be faster.
4173 */
4174 if (++num > 32768) {
4175 list_del_init(&tree->modified_extents);
4176 ret = -EFBIG;
4177 goto process;
4178 }
4179
4180 if (em->generation <= test_gen)
4181 continue;
4182 /* Need a ref to keep it from getting evicted from cache */
4183 atomic_inc(&em->refs);
4184 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4185 list_add_tail(&em->list, &extents);
4186 num++;
4187 }
4188
4189 list_sort(NULL, &extents, extent_cmp);
4190 btrfs_get_logged_extents(inode, logged_list, start, end);
4191 /*
4192 * Some ordered extents started by fsync might have completed
4193 * before we could collect them into the list logged_list, which
4194 * means they're gone, not in our logged_list nor in the inode's
4195 * ordered tree. We want the application/user space to know an
4196 * error happened while attempting to persist file data so that
4197 * it can take proper action. If such error happened, we leave
4198 * without writing to the log tree and the fsync must report the
4199 * file data write error and not commit the current transaction.
4200 */
4201 ret = btrfs_inode_check_errors(inode);
4202 if (ret)
4203 ctx->io_err = ret;
4204 process:
4205 while (!list_empty(&extents)) {
4206 em = list_entry(extents.next, struct extent_map, list);
4207
4208 list_del_init(&em->list);
4209
4210 /*
4211 * If we had an error we just need to delete everybody from our
4212 * private list.
4213 */
4214 if (ret) {
4215 clear_em_logging(tree, em);
4216 free_extent_map(em);
4217 continue;
4218 }
4219
4220 write_unlock(&tree->lock);
4221
4222 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4223 ctx);
4224 write_lock(&tree->lock);
4225 clear_em_logging(tree, em);
4226 free_extent_map(em);
4227 }
4228 WARN_ON(!list_empty(&extents));
4229 write_unlock(&tree->lock);
4230 up_write(&BTRFS_I(inode)->dio_sem);
4231
4232 btrfs_release_path(path);
4233 return ret;
4234 }
4235
4236 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4237 struct btrfs_path *path, u64 *size_ret)
4238 {
4239 struct btrfs_key key;
4240 int ret;
4241
4242 key.objectid = btrfs_ino(inode);
4243 key.type = BTRFS_INODE_ITEM_KEY;
4244 key.offset = 0;
4245
4246 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4247 if (ret < 0) {
4248 return ret;
4249 } else if (ret > 0) {
4250 *size_ret = 0;
4251 } else {
4252 struct btrfs_inode_item *item;
4253
4254 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4255 struct btrfs_inode_item);
4256 *size_ret = btrfs_inode_size(path->nodes[0], item);
4257 }
4258
4259 btrfs_release_path(path);
4260 return 0;
4261 }
4262
4263 /*
4264 * At the moment we always log all xattrs. This is to figure out at log replay
4265 * time which xattrs must have their deletion replayed. If a xattr is missing
4266 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4267 * because if a xattr is deleted, the inode is fsynced and a power failure
4268 * happens, causing the log to be replayed the next time the fs is mounted,
4269 * we want the xattr to not exist anymore (same behaviour as other filesystems
4270 * with a journal, ext3/4, xfs, f2fs, etc).
4271 */
4272 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4273 struct btrfs_root *root,
4274 struct inode *inode,
4275 struct btrfs_path *path,
4276 struct btrfs_path *dst_path)
4277 {
4278 int ret;
4279 struct btrfs_key key;
4280 const u64 ino = btrfs_ino(inode);
4281 int ins_nr = 0;
4282 int start_slot = 0;
4283
4284 key.objectid = ino;
4285 key.type = BTRFS_XATTR_ITEM_KEY;
4286 key.offset = 0;
4287
4288 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4289 if (ret < 0)
4290 return ret;
4291
4292 while (true) {
4293 int slot = path->slots[0];
4294 struct extent_buffer *leaf = path->nodes[0];
4295 int nritems = btrfs_header_nritems(leaf);
4296
4297 if (slot >= nritems) {
4298 if (ins_nr > 0) {
4299 u64 last_extent = 0;
4300
4301 ret = copy_items(trans, inode, dst_path, path,
4302 &last_extent, start_slot,
4303 ins_nr, 1, 0);
4304 /* can't be 1, extent items aren't processed */
4305 ASSERT(ret <= 0);
4306 if (ret < 0)
4307 return ret;
4308 ins_nr = 0;
4309 }
4310 ret = btrfs_next_leaf(root, path);
4311 if (ret < 0)
4312 return ret;
4313 else if (ret > 0)
4314 break;
4315 continue;
4316 }
4317
4318 btrfs_item_key_to_cpu(leaf, &key, slot);
4319 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4320 break;
4321
4322 if (ins_nr == 0)
4323 start_slot = slot;
4324 ins_nr++;
4325 path->slots[0]++;
4326 cond_resched();
4327 }
4328 if (ins_nr > 0) {
4329 u64 last_extent = 0;
4330
4331 ret = copy_items(trans, inode, dst_path, path,
4332 &last_extent, start_slot,
4333 ins_nr, 1, 0);
4334 /* can't be 1, extent items aren't processed */
4335 ASSERT(ret <= 0);
4336 if (ret < 0)
4337 return ret;
4338 }
4339
4340 return 0;
4341 }
4342
4343 /*
4344 * If the no holes feature is enabled we need to make sure any hole between the
4345 * last extent and the i_size of our inode is explicitly marked in the log. This
4346 * is to make sure that doing something like:
4347 *
4348 * 1) create file with 128Kb of data
4349 * 2) truncate file to 64Kb
4350 * 3) truncate file to 256Kb
4351 * 4) fsync file
4352 * 5) <crash/power failure>
4353 * 6) mount fs and trigger log replay
4354 *
4355 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4356 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4357 * file correspond to a hole. The presence of explicit holes in a log tree is
4358 * what guarantees that log replay will remove/adjust file extent items in the
4359 * fs/subvol tree.
4360 *
4361 * Here we do not need to care about holes between extents, that is already done
4362 * by copy_items(). We also only need to do this in the full sync path, where we
4363 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4364 * lookup the list of modified extent maps and if any represents a hole, we
4365 * insert a corresponding extent representing a hole in the log tree.
4366 */
4367 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4368 struct btrfs_root *root,
4369 struct inode *inode,
4370 struct btrfs_path *path)
4371 {
4372 int ret;
4373 struct btrfs_key key;
4374 u64 hole_start;
4375 u64 hole_size;
4376 struct extent_buffer *leaf;
4377 struct btrfs_root *log = root->log_root;
4378 const u64 ino = btrfs_ino(inode);
4379 const u64 i_size = i_size_read(inode);
4380
4381 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4382 return 0;
4383
4384 key.objectid = ino;
4385 key.type = BTRFS_EXTENT_DATA_KEY;
4386 key.offset = (u64)-1;
4387
4388 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4389 ASSERT(ret != 0);
4390 if (ret < 0)
4391 return ret;
4392
4393 ASSERT(path->slots[0] > 0);
4394 path->slots[0]--;
4395 leaf = path->nodes[0];
4396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4397
4398 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4399 /* inode does not have any extents */
4400 hole_start = 0;
4401 hole_size = i_size;
4402 } else {
4403 struct btrfs_file_extent_item *extent;
4404 u64 len;
4405
4406 /*
4407 * If there's an extent beyond i_size, an explicit hole was
4408 * already inserted by copy_items().
4409 */
4410 if (key.offset >= i_size)
4411 return 0;
4412
4413 extent = btrfs_item_ptr(leaf, path->slots[0],
4414 struct btrfs_file_extent_item);
4415
4416 if (btrfs_file_extent_type(leaf, extent) ==
4417 BTRFS_FILE_EXTENT_INLINE) {
4418 len = btrfs_file_extent_inline_len(leaf,
4419 path->slots[0],
4420 extent);
4421 ASSERT(len == i_size);
4422 return 0;
4423 }
4424
4425 len = btrfs_file_extent_num_bytes(leaf, extent);
4426 /* Last extent goes beyond i_size, no need to log a hole. */
4427 if (key.offset + len > i_size)
4428 return 0;
4429 hole_start = key.offset + len;
4430 hole_size = i_size - hole_start;
4431 }
4432 btrfs_release_path(path);
4433
4434 /* Last extent ends at i_size. */
4435 if (hole_size == 0)
4436 return 0;
4437
4438 hole_size = ALIGN(hole_size, root->sectorsize);
4439 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4440 hole_size, 0, hole_size, 0, 0, 0);
4441 return ret;
4442 }
4443
4444 /*
4445 * When we are logging a new inode X, check if it doesn't have a reference that
4446 * matches the reference from some other inode Y created in a past transaction
4447 * and that was renamed in the current transaction. If we don't do this, then at
4448 * log replay time we can lose inode Y (and all its files if it's a directory):
4449 *
4450 * mkdir /mnt/x
4451 * echo "hello world" > /mnt/x/foobar
4452 * sync
4453 * mv /mnt/x /mnt/y
4454 * mkdir /mnt/x # or touch /mnt/x
4455 * xfs_io -c fsync /mnt/x
4456 * <power fail>
4457 * mount fs, trigger log replay
4458 *
4459 * After the log replay procedure, we would lose the first directory and all its
4460 * files (file foobar).
4461 * For the case where inode Y is not a directory we simply end up losing it:
4462 *
4463 * echo "123" > /mnt/foo
4464 * sync
4465 * mv /mnt/foo /mnt/bar
4466 * echo "abc" > /mnt/foo
4467 * xfs_io -c fsync /mnt/foo
4468 * <power fail>
4469 *
4470 * We also need this for cases where a snapshot entry is replaced by some other
4471 * entry (file or directory) otherwise we end up with an unreplayable log due to
4472 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4473 * if it were a regular entry:
4474 *
4475 * mkdir /mnt/x
4476 * btrfs subvolume snapshot /mnt /mnt/x/snap
4477 * btrfs subvolume delete /mnt/x/snap
4478 * rmdir /mnt/x
4479 * mkdir /mnt/x
4480 * fsync /mnt/x or fsync some new file inside it
4481 * <power fail>
4482 *
4483 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4484 * the same transaction.
4485 */
4486 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4487 const int slot,
4488 const struct btrfs_key *key,
4489 struct inode *inode,
4490 u64 *other_ino)
4491 {
4492 int ret;
4493 struct btrfs_path *search_path;
4494 char *name = NULL;
4495 u32 name_len = 0;
4496 u32 item_size = btrfs_item_size_nr(eb, slot);
4497 u32 cur_offset = 0;
4498 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4499
4500 search_path = btrfs_alloc_path();
4501 if (!search_path)
4502 return -ENOMEM;
4503 search_path->search_commit_root = 1;
4504 search_path->skip_locking = 1;
4505
4506 while (cur_offset < item_size) {
4507 u64 parent;
4508 u32 this_name_len;
4509 u32 this_len;
4510 unsigned long name_ptr;
4511 struct btrfs_dir_item *di;
4512
4513 if (key->type == BTRFS_INODE_REF_KEY) {
4514 struct btrfs_inode_ref *iref;
4515
4516 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4517 parent = key->offset;
4518 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4519 name_ptr = (unsigned long)(iref + 1);
4520 this_len = sizeof(*iref) + this_name_len;
4521 } else {
4522 struct btrfs_inode_extref *extref;
4523
4524 extref = (struct btrfs_inode_extref *)(ptr +
4525 cur_offset);
4526 parent = btrfs_inode_extref_parent(eb, extref);
4527 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4528 name_ptr = (unsigned long)&extref->name;
4529 this_len = sizeof(*extref) + this_name_len;
4530 }
4531
4532 if (this_name_len > name_len) {
4533 char *new_name;
4534
4535 new_name = krealloc(name, this_name_len, GFP_NOFS);
4536 if (!new_name) {
4537 ret = -ENOMEM;
4538 goto out;
4539 }
4540 name_len = this_name_len;
4541 name = new_name;
4542 }
4543
4544 read_extent_buffer(eb, name, name_ptr, this_name_len);
4545 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4546 search_path, parent,
4547 name, this_name_len, 0);
4548 if (di && !IS_ERR(di)) {
4549 struct btrfs_key di_key;
4550
4551 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4552 di, &di_key);
4553 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4554 ret = 1;
4555 *other_ino = di_key.objectid;
4556 } else {
4557 ret = -EAGAIN;
4558 }
4559 goto out;
4560 } else if (IS_ERR(di)) {
4561 ret = PTR_ERR(di);
4562 goto out;
4563 }
4564 btrfs_release_path(search_path);
4565
4566 cur_offset += this_len;
4567 }
4568 ret = 0;
4569 out:
4570 btrfs_free_path(search_path);
4571 kfree(name);
4572 return ret;
4573 }
4574
4575 /* log a single inode in the tree log.
4576 * At least one parent directory for this inode must exist in the tree
4577 * or be logged already.
4578 *
4579 * Any items from this inode changed by the current transaction are copied
4580 * to the log tree. An extra reference is taken on any extents in this
4581 * file, allowing us to avoid a whole pile of corner cases around logging
4582 * blocks that have been removed from the tree.
4583 *
4584 * See LOG_INODE_ALL and related defines for a description of what inode_only
4585 * does.
4586 *
4587 * This handles both files and directories.
4588 */
4589 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4590 struct btrfs_root *root, struct inode *inode,
4591 int inode_only,
4592 const loff_t start,
4593 const loff_t end,
4594 struct btrfs_log_ctx *ctx)
4595 {
4596 struct btrfs_path *path;
4597 struct btrfs_path *dst_path;
4598 struct btrfs_key min_key;
4599 struct btrfs_key max_key;
4600 struct btrfs_root *log = root->log_root;
4601 struct extent_buffer *src = NULL;
4602 LIST_HEAD(logged_list);
4603 u64 last_extent = 0;
4604 int err = 0;
4605 int ret;
4606 int nritems;
4607 int ins_start_slot = 0;
4608 int ins_nr;
4609 bool fast_search = false;
4610 u64 ino = btrfs_ino(inode);
4611 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4612 u64 logged_isize = 0;
4613 bool need_log_inode_item = true;
4614
4615 path = btrfs_alloc_path();
4616 if (!path)
4617 return -ENOMEM;
4618 dst_path = btrfs_alloc_path();
4619 if (!dst_path) {
4620 btrfs_free_path(path);
4621 return -ENOMEM;
4622 }
4623
4624 min_key.objectid = ino;
4625 min_key.type = BTRFS_INODE_ITEM_KEY;
4626 min_key.offset = 0;
4627
4628 max_key.objectid = ino;
4629
4630
4631 /* today the code can only do partial logging of directories */
4632 if (S_ISDIR(inode->i_mode) ||
4633 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4634 &BTRFS_I(inode)->runtime_flags) &&
4635 inode_only == LOG_INODE_EXISTS))
4636 max_key.type = BTRFS_XATTR_ITEM_KEY;
4637 else
4638 max_key.type = (u8)-1;
4639 max_key.offset = (u64)-1;
4640
4641 /*
4642 * Only run delayed items if we are a dir or a new file.
4643 * Otherwise commit the delayed inode only, which is needed in
4644 * order for the log replay code to mark inodes for link count
4645 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4646 */
4647 if (S_ISDIR(inode->i_mode) ||
4648 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4649 ret = btrfs_commit_inode_delayed_items(trans, inode);
4650 else
4651 ret = btrfs_commit_inode_delayed_inode(inode);
4652
4653 if (ret) {
4654 btrfs_free_path(path);
4655 btrfs_free_path(dst_path);
4656 return ret;
4657 }
4658
4659 mutex_lock(&BTRFS_I(inode)->log_mutex);
4660
4661 /*
4662 * a brute force approach to making sure we get the most uptodate
4663 * copies of everything.
4664 */
4665 if (S_ISDIR(inode->i_mode)) {
4666 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4667
4668 if (inode_only == LOG_INODE_EXISTS)
4669 max_key_type = BTRFS_XATTR_ITEM_KEY;
4670 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4671 } else {
4672 if (inode_only == LOG_INODE_EXISTS) {
4673 /*
4674 * Make sure the new inode item we write to the log has
4675 * the same isize as the current one (if it exists).
4676 * This is necessary to prevent data loss after log
4677 * replay, and also to prevent doing a wrong expanding
4678 * truncate - for e.g. create file, write 4K into offset
4679 * 0, fsync, write 4K into offset 4096, add hard link,
4680 * fsync some other file (to sync log), power fail - if
4681 * we use the inode's current i_size, after log replay
4682 * we get a 8Kb file, with the last 4Kb extent as a hole
4683 * (zeroes), as if an expanding truncate happened,
4684 * instead of getting a file of 4Kb only.
4685 */
4686 err = logged_inode_size(log, inode, path,
4687 &logged_isize);
4688 if (err)
4689 goto out_unlock;
4690 }
4691 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4692 &BTRFS_I(inode)->runtime_flags)) {
4693 if (inode_only == LOG_INODE_EXISTS) {
4694 max_key.type = BTRFS_XATTR_ITEM_KEY;
4695 ret = drop_objectid_items(trans, log, path, ino,
4696 max_key.type);
4697 } else {
4698 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4699 &BTRFS_I(inode)->runtime_flags);
4700 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4701 &BTRFS_I(inode)->runtime_flags);
4702 while(1) {
4703 ret = btrfs_truncate_inode_items(trans,
4704 log, inode, 0, 0);
4705 if (ret != -EAGAIN)
4706 break;
4707 }
4708 }
4709 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4710 &BTRFS_I(inode)->runtime_flags) ||
4711 inode_only == LOG_INODE_EXISTS) {
4712 if (inode_only == LOG_INODE_ALL)
4713 fast_search = true;
4714 max_key.type = BTRFS_XATTR_ITEM_KEY;
4715 ret = drop_objectid_items(trans, log, path, ino,
4716 max_key.type);
4717 } else {
4718 if (inode_only == LOG_INODE_ALL)
4719 fast_search = true;
4720 goto log_extents;
4721 }
4722
4723 }
4724 if (ret) {
4725 err = ret;
4726 goto out_unlock;
4727 }
4728
4729 while (1) {
4730 ins_nr = 0;
4731 ret = btrfs_search_forward(root, &min_key,
4732 path, trans->transid);
4733 if (ret < 0) {
4734 err = ret;
4735 goto out_unlock;
4736 }
4737 if (ret != 0)
4738 break;
4739 again:
4740 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4741 if (min_key.objectid != ino)
4742 break;
4743 if (min_key.type > max_key.type)
4744 break;
4745
4746 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4747 need_log_inode_item = false;
4748
4749 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4750 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4751 BTRFS_I(inode)->generation == trans->transid) {
4752 u64 other_ino = 0;
4753
4754 ret = btrfs_check_ref_name_override(path->nodes[0],
4755 path->slots[0],
4756 &min_key, inode,
4757 &other_ino);
4758 if (ret < 0) {
4759 err = ret;
4760 goto out_unlock;
4761 } else if (ret > 0 && ctx &&
4762 other_ino != btrfs_ino(ctx->inode)) {
4763 struct btrfs_key inode_key;
4764 struct inode *other_inode;
4765
4766 if (ins_nr > 0) {
4767 ins_nr++;
4768 } else {
4769 ins_nr = 1;
4770 ins_start_slot = path->slots[0];
4771 }
4772 ret = copy_items(trans, inode, dst_path, path,
4773 &last_extent, ins_start_slot,
4774 ins_nr, inode_only,
4775 logged_isize);
4776 if (ret < 0) {
4777 err = ret;
4778 goto out_unlock;
4779 }
4780 ins_nr = 0;
4781 btrfs_release_path(path);
4782 inode_key.objectid = other_ino;
4783 inode_key.type = BTRFS_INODE_ITEM_KEY;
4784 inode_key.offset = 0;
4785 other_inode = btrfs_iget(root->fs_info->sb,
4786 &inode_key, root,
4787 NULL);
4788 /*
4789 * If the other inode that had a conflicting dir
4790 * entry was deleted in the current transaction,
4791 * we don't need to do more work nor fallback to
4792 * a transaction commit.
4793 */
4794 if (IS_ERR(other_inode) &&
4795 PTR_ERR(other_inode) == -ENOENT) {
4796 goto next_key;
4797 } else if (IS_ERR(other_inode)) {
4798 err = PTR_ERR(other_inode);
4799 goto out_unlock;
4800 }
4801 /*
4802 * We are safe logging the other inode without
4803 * acquiring its i_mutex as long as we log with
4804 * the LOG_INODE_EXISTS mode. We're safe against
4805 * concurrent renames of the other inode as well
4806 * because during a rename we pin the log and
4807 * update the log with the new name before we
4808 * unpin it.
4809 */
4810 err = btrfs_log_inode(trans, root, other_inode,
4811 LOG_INODE_EXISTS,
4812 0, LLONG_MAX, ctx);
4813 iput(other_inode);
4814 if (err)
4815 goto out_unlock;
4816 else
4817 goto next_key;
4818 }
4819 }
4820
4821 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4822 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4823 if (ins_nr == 0)
4824 goto next_slot;
4825 ret = copy_items(trans, inode, dst_path, path,
4826 &last_extent, ins_start_slot,
4827 ins_nr, inode_only, logged_isize);
4828 if (ret < 0) {
4829 err = ret;
4830 goto out_unlock;
4831 }
4832 ins_nr = 0;
4833 if (ret) {
4834 btrfs_release_path(path);
4835 continue;
4836 }
4837 goto next_slot;
4838 }
4839
4840 src = path->nodes[0];
4841 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4842 ins_nr++;
4843 goto next_slot;
4844 } else if (!ins_nr) {
4845 ins_start_slot = path->slots[0];
4846 ins_nr = 1;
4847 goto next_slot;
4848 }
4849
4850 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4851 ins_start_slot, ins_nr, inode_only,
4852 logged_isize);
4853 if (ret < 0) {
4854 err = ret;
4855 goto out_unlock;
4856 }
4857 if (ret) {
4858 ins_nr = 0;
4859 btrfs_release_path(path);
4860 continue;
4861 }
4862 ins_nr = 1;
4863 ins_start_slot = path->slots[0];
4864 next_slot:
4865
4866 nritems = btrfs_header_nritems(path->nodes[0]);
4867 path->slots[0]++;
4868 if (path->slots[0] < nritems) {
4869 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4870 path->slots[0]);
4871 goto again;
4872 }
4873 if (ins_nr) {
4874 ret = copy_items(trans, inode, dst_path, path,
4875 &last_extent, ins_start_slot,
4876 ins_nr, inode_only, logged_isize);
4877 if (ret < 0) {
4878 err = ret;
4879 goto out_unlock;
4880 }
4881 ret = 0;
4882 ins_nr = 0;
4883 }
4884 btrfs_release_path(path);
4885 next_key:
4886 if (min_key.offset < (u64)-1) {
4887 min_key.offset++;
4888 } else if (min_key.type < max_key.type) {
4889 min_key.type++;
4890 min_key.offset = 0;
4891 } else {
4892 break;
4893 }
4894 }
4895 if (ins_nr) {
4896 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4897 ins_start_slot, ins_nr, inode_only,
4898 logged_isize);
4899 if (ret < 0) {
4900 err = ret;
4901 goto out_unlock;
4902 }
4903 ret = 0;
4904 ins_nr = 0;
4905 }
4906
4907 btrfs_release_path(path);
4908 btrfs_release_path(dst_path);
4909 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4910 if (err)
4911 goto out_unlock;
4912 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4913 btrfs_release_path(path);
4914 btrfs_release_path(dst_path);
4915 err = btrfs_log_trailing_hole(trans, root, inode, path);
4916 if (err)
4917 goto out_unlock;
4918 }
4919 log_extents:
4920 btrfs_release_path(path);
4921 btrfs_release_path(dst_path);
4922 if (need_log_inode_item) {
4923 err = log_inode_item(trans, log, dst_path, inode);
4924 if (err)
4925 goto out_unlock;
4926 }
4927 if (fast_search) {
4928 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4929 &logged_list, ctx, start, end);
4930 if (ret) {
4931 err = ret;
4932 goto out_unlock;
4933 }
4934 } else if (inode_only == LOG_INODE_ALL) {
4935 struct extent_map *em, *n;
4936
4937 write_lock(&em_tree->lock);
4938 /*
4939 * We can't just remove every em if we're called for a ranged
4940 * fsync - that is, one that doesn't cover the whole possible
4941 * file range (0 to LLONG_MAX). This is because we can have
4942 * em's that fall outside the range we're logging and therefore
4943 * their ordered operations haven't completed yet
4944 * (btrfs_finish_ordered_io() not invoked yet). This means we
4945 * didn't get their respective file extent item in the fs/subvol
4946 * tree yet, and need to let the next fast fsync (one which
4947 * consults the list of modified extent maps) find the em so
4948 * that it logs a matching file extent item and waits for the
4949 * respective ordered operation to complete (if it's still
4950 * running).
4951 *
4952 * Removing every em outside the range we're logging would make
4953 * the next fast fsync not log their matching file extent items,
4954 * therefore making us lose data after a log replay.
4955 */
4956 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4957 list) {
4958 const u64 mod_end = em->mod_start + em->mod_len - 1;
4959
4960 if (em->mod_start >= start && mod_end <= end)
4961 list_del_init(&em->list);
4962 }
4963 write_unlock(&em_tree->lock);
4964 }
4965
4966 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4967 ret = log_directory_changes(trans, root, inode, path, dst_path,
4968 ctx);
4969 if (ret) {
4970 err = ret;
4971 goto out_unlock;
4972 }
4973 }
4974
4975 spin_lock(&BTRFS_I(inode)->lock);
4976 BTRFS_I(inode)->logged_trans = trans->transid;
4977 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4978 spin_unlock(&BTRFS_I(inode)->lock);
4979 out_unlock:
4980 if (unlikely(err))
4981 btrfs_put_logged_extents(&logged_list);
4982 else
4983 btrfs_submit_logged_extents(&logged_list, log);
4984 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4985
4986 btrfs_free_path(path);
4987 btrfs_free_path(dst_path);
4988 return err;
4989 }
4990
4991 /*
4992 * Check if we must fallback to a transaction commit when logging an inode.
4993 * This must be called after logging the inode and is used only in the context
4994 * when fsyncing an inode requires the need to log some other inode - in which
4995 * case we can't lock the i_mutex of each other inode we need to log as that
4996 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4997 * log inodes up or down in the hierarchy) or rename operations for example. So
4998 * we take the log_mutex of the inode after we have logged it and then check for
4999 * its last_unlink_trans value - this is safe because any task setting
5000 * last_unlink_trans must take the log_mutex and it must do this before it does
5001 * the actual unlink operation, so if we do this check before a concurrent task
5002 * sets last_unlink_trans it means we've logged a consistent version/state of
5003 * all the inode items, otherwise we are not sure and must do a transaction
5004 * commit (the concurrent task might have only updated last_unlink_trans before
5005 * we logged the inode or it might have also done the unlink).
5006 */
5007 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5008 struct inode *inode)
5009 {
5010 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5011 bool ret = false;
5012
5013 mutex_lock(&BTRFS_I(inode)->log_mutex);
5014 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5015 /*
5016 * Make sure any commits to the log are forced to be full
5017 * commits.
5018 */
5019 btrfs_set_log_full_commit(fs_info, trans);
5020 ret = true;
5021 }
5022 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5023
5024 return ret;
5025 }
5026
5027 /*
5028 * follow the dentry parent pointers up the chain and see if any
5029 * of the directories in it require a full commit before they can
5030 * be logged. Returns zero if nothing special needs to be done or 1 if
5031 * a full commit is required.
5032 */
5033 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5034 struct inode *inode,
5035 struct dentry *parent,
5036 struct super_block *sb,
5037 u64 last_committed)
5038 {
5039 int ret = 0;
5040 struct dentry *old_parent = NULL;
5041 struct inode *orig_inode = inode;
5042
5043 /*
5044 * for regular files, if its inode is already on disk, we don't
5045 * have to worry about the parents at all. This is because
5046 * we can use the last_unlink_trans field to record renames
5047 * and other fun in this file.
5048 */
5049 if (S_ISREG(inode->i_mode) &&
5050 BTRFS_I(inode)->generation <= last_committed &&
5051 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5052 goto out;
5053
5054 if (!S_ISDIR(inode->i_mode)) {
5055 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5056 goto out;
5057 inode = d_inode(parent);
5058 }
5059
5060 while (1) {
5061 /*
5062 * If we are logging a directory then we start with our inode,
5063 * not our parent's inode, so we need to skip setting the
5064 * logged_trans so that further down in the log code we don't
5065 * think this inode has already been logged.
5066 */
5067 if (inode != orig_inode)
5068 BTRFS_I(inode)->logged_trans = trans->transid;
5069 smp_mb();
5070
5071 if (btrfs_must_commit_transaction(trans, inode)) {
5072 ret = 1;
5073 break;
5074 }
5075
5076 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5077 break;
5078
5079 if (IS_ROOT(parent)) {
5080 inode = d_inode(parent);
5081 if (btrfs_must_commit_transaction(trans, inode))
5082 ret = 1;
5083 break;
5084 }
5085
5086 parent = dget_parent(parent);
5087 dput(old_parent);
5088 old_parent = parent;
5089 inode = d_inode(parent);
5090
5091 }
5092 dput(old_parent);
5093 out:
5094 return ret;
5095 }
5096
5097 struct btrfs_dir_list {
5098 u64 ino;
5099 struct list_head list;
5100 };
5101
5102 /*
5103 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5104 * details about the why it is needed.
5105 * This is a recursive operation - if an existing dentry corresponds to a
5106 * directory, that directory's new entries are logged too (same behaviour as
5107 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5108 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5109 * complains about the following circular lock dependency / possible deadlock:
5110 *
5111 * CPU0 CPU1
5112 * ---- ----
5113 * lock(&type->i_mutex_dir_key#3/2);
5114 * lock(sb_internal#2);
5115 * lock(&type->i_mutex_dir_key#3/2);
5116 * lock(&sb->s_type->i_mutex_key#14);
5117 *
5118 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5119 * sb_start_intwrite() in btrfs_start_transaction().
5120 * Not locking i_mutex of the inodes is still safe because:
5121 *
5122 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5123 * that while logging the inode new references (names) are added or removed
5124 * from the inode, leaving the logged inode item with a link count that does
5125 * not match the number of logged inode reference items. This is fine because
5126 * at log replay time we compute the real number of links and correct the
5127 * link count in the inode item (see replay_one_buffer() and
5128 * link_to_fixup_dir());
5129 *
5130 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5131 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5132 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5133 * has a size that doesn't match the sum of the lengths of all the logged
5134 * names. This does not result in a problem because if a dir_item key is
5135 * logged but its matching dir_index key is not logged, at log replay time we
5136 * don't use it to replay the respective name (see replay_one_name()). On the
5137 * other hand if only the dir_index key ends up being logged, the respective
5138 * name is added to the fs/subvol tree with both the dir_item and dir_index
5139 * keys created (see replay_one_name()).
5140 * The directory's inode item with a wrong i_size is not a problem as well,
5141 * since we don't use it at log replay time to set the i_size in the inode
5142 * item of the fs/subvol tree (see overwrite_item()).
5143 */
5144 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5145 struct btrfs_root *root,
5146 struct inode *start_inode,
5147 struct btrfs_log_ctx *ctx)
5148 {
5149 struct btrfs_root *log = root->log_root;
5150 struct btrfs_path *path;
5151 LIST_HEAD(dir_list);
5152 struct btrfs_dir_list *dir_elem;
5153 int ret = 0;
5154
5155 path = btrfs_alloc_path();
5156 if (!path)
5157 return -ENOMEM;
5158
5159 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5160 if (!dir_elem) {
5161 btrfs_free_path(path);
5162 return -ENOMEM;
5163 }
5164 dir_elem->ino = btrfs_ino(start_inode);
5165 list_add_tail(&dir_elem->list, &dir_list);
5166
5167 while (!list_empty(&dir_list)) {
5168 struct extent_buffer *leaf;
5169 struct btrfs_key min_key;
5170 int nritems;
5171 int i;
5172
5173 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5174 list);
5175 if (ret)
5176 goto next_dir_inode;
5177
5178 min_key.objectid = dir_elem->ino;
5179 min_key.type = BTRFS_DIR_ITEM_KEY;
5180 min_key.offset = 0;
5181 again:
5182 btrfs_release_path(path);
5183 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5184 if (ret < 0) {
5185 goto next_dir_inode;
5186 } else if (ret > 0) {
5187 ret = 0;
5188 goto next_dir_inode;
5189 }
5190
5191 process_leaf:
5192 leaf = path->nodes[0];
5193 nritems = btrfs_header_nritems(leaf);
5194 for (i = path->slots[0]; i < nritems; i++) {
5195 struct btrfs_dir_item *di;
5196 struct btrfs_key di_key;
5197 struct inode *di_inode;
5198 struct btrfs_dir_list *new_dir_elem;
5199 int log_mode = LOG_INODE_EXISTS;
5200 int type;
5201
5202 btrfs_item_key_to_cpu(leaf, &min_key, i);
5203 if (min_key.objectid != dir_elem->ino ||
5204 min_key.type != BTRFS_DIR_ITEM_KEY)
5205 goto next_dir_inode;
5206
5207 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5208 type = btrfs_dir_type(leaf, di);
5209 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5210 type != BTRFS_FT_DIR)
5211 continue;
5212 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5213 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5214 continue;
5215
5216 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5217 root, NULL);
5218 if (IS_ERR(di_inode)) {
5219 ret = PTR_ERR(di_inode);
5220 goto next_dir_inode;
5221 }
5222
5223 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5224 iput(di_inode);
5225 continue;
5226 }
5227
5228 ctx->log_new_dentries = false;
5229 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5230 log_mode = LOG_INODE_ALL;
5231 btrfs_release_path(path);
5232 ret = btrfs_log_inode(trans, root, di_inode,
5233 log_mode, 0, LLONG_MAX, ctx);
5234 if (!ret &&
5235 btrfs_must_commit_transaction(trans, di_inode))
5236 ret = 1;
5237 iput(di_inode);
5238 if (ret)
5239 goto next_dir_inode;
5240 if (ctx->log_new_dentries) {
5241 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5242 GFP_NOFS);
5243 if (!new_dir_elem) {
5244 ret = -ENOMEM;
5245 goto next_dir_inode;
5246 }
5247 new_dir_elem->ino = di_key.objectid;
5248 list_add_tail(&new_dir_elem->list, &dir_list);
5249 }
5250 break;
5251 }
5252 if (i == nritems) {
5253 ret = btrfs_next_leaf(log, path);
5254 if (ret < 0) {
5255 goto next_dir_inode;
5256 } else if (ret > 0) {
5257 ret = 0;
5258 goto next_dir_inode;
5259 }
5260 goto process_leaf;
5261 }
5262 if (min_key.offset < (u64)-1) {
5263 min_key.offset++;
5264 goto again;
5265 }
5266 next_dir_inode:
5267 list_del(&dir_elem->list);
5268 kfree(dir_elem);
5269 }
5270
5271 btrfs_free_path(path);
5272 return ret;
5273 }
5274
5275 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5276 struct inode *inode,
5277 struct btrfs_log_ctx *ctx)
5278 {
5279 int ret;
5280 struct btrfs_path *path;
5281 struct btrfs_key key;
5282 struct btrfs_root *root = BTRFS_I(inode)->root;
5283 const u64 ino = btrfs_ino(inode);
5284
5285 path = btrfs_alloc_path();
5286 if (!path)
5287 return -ENOMEM;
5288 path->skip_locking = 1;
5289 path->search_commit_root = 1;
5290
5291 key.objectid = ino;
5292 key.type = BTRFS_INODE_REF_KEY;
5293 key.offset = 0;
5294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5295 if (ret < 0)
5296 goto out;
5297
5298 while (true) {
5299 struct extent_buffer *leaf = path->nodes[0];
5300 int slot = path->slots[0];
5301 u32 cur_offset = 0;
5302 u32 item_size;
5303 unsigned long ptr;
5304
5305 if (slot >= btrfs_header_nritems(leaf)) {
5306 ret = btrfs_next_leaf(root, path);
5307 if (ret < 0)
5308 goto out;
5309 else if (ret > 0)
5310 break;
5311 continue;
5312 }
5313
5314 btrfs_item_key_to_cpu(leaf, &key, slot);
5315 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5316 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5317 break;
5318
5319 item_size = btrfs_item_size_nr(leaf, slot);
5320 ptr = btrfs_item_ptr_offset(leaf, slot);
5321 while (cur_offset < item_size) {
5322 struct btrfs_key inode_key;
5323 struct inode *dir_inode;
5324
5325 inode_key.type = BTRFS_INODE_ITEM_KEY;
5326 inode_key.offset = 0;
5327
5328 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5329 struct btrfs_inode_extref *extref;
5330
5331 extref = (struct btrfs_inode_extref *)
5332 (ptr + cur_offset);
5333 inode_key.objectid = btrfs_inode_extref_parent(
5334 leaf, extref);
5335 cur_offset += sizeof(*extref);
5336 cur_offset += btrfs_inode_extref_name_len(leaf,
5337 extref);
5338 } else {
5339 inode_key.objectid = key.offset;
5340 cur_offset = item_size;
5341 }
5342
5343 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5344 root, NULL);
5345 /* If parent inode was deleted, skip it. */
5346 if (IS_ERR(dir_inode))
5347 continue;
5348
5349 if (ctx)
5350 ctx->log_new_dentries = false;
5351 ret = btrfs_log_inode(trans, root, dir_inode,
5352 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5353 if (!ret &&
5354 btrfs_must_commit_transaction(trans, dir_inode))
5355 ret = 1;
5356 if (!ret && ctx && ctx->log_new_dentries)
5357 ret = log_new_dir_dentries(trans, root,
5358 dir_inode, ctx);
5359 iput(dir_inode);
5360 if (ret)
5361 goto out;
5362 }
5363 path->slots[0]++;
5364 }
5365 ret = 0;
5366 out:
5367 btrfs_free_path(path);
5368 return ret;
5369 }
5370
5371 /*
5372 * helper function around btrfs_log_inode to make sure newly created
5373 * parent directories also end up in the log. A minimal inode and backref
5374 * only logging is done of any parent directories that are older than
5375 * the last committed transaction
5376 */
5377 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5378 struct btrfs_root *root, struct inode *inode,
5379 struct dentry *parent,
5380 const loff_t start,
5381 const loff_t end,
5382 int exists_only,
5383 struct btrfs_log_ctx *ctx)
5384 {
5385 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5386 struct super_block *sb;
5387 struct dentry *old_parent = NULL;
5388 int ret = 0;
5389 u64 last_committed = root->fs_info->last_trans_committed;
5390 bool log_dentries = false;
5391 struct inode *orig_inode = inode;
5392
5393 sb = inode->i_sb;
5394
5395 if (btrfs_test_opt(root->fs_info, NOTREELOG)) {
5396 ret = 1;
5397 goto end_no_trans;
5398 }
5399
5400 /*
5401 * The prev transaction commit doesn't complete, we need do
5402 * full commit by ourselves.
5403 */
5404 if (root->fs_info->last_trans_log_full_commit >
5405 root->fs_info->last_trans_committed) {
5406 ret = 1;
5407 goto end_no_trans;
5408 }
5409
5410 if (root != BTRFS_I(inode)->root ||
5411 btrfs_root_refs(&root->root_item) == 0) {
5412 ret = 1;
5413 goto end_no_trans;
5414 }
5415
5416 ret = check_parent_dirs_for_sync(trans, inode, parent,
5417 sb, last_committed);
5418 if (ret)
5419 goto end_no_trans;
5420
5421 if (btrfs_inode_in_log(inode, trans->transid)) {
5422 ret = BTRFS_NO_LOG_SYNC;
5423 goto end_no_trans;
5424 }
5425
5426 ret = start_log_trans(trans, root, ctx);
5427 if (ret)
5428 goto end_no_trans;
5429
5430 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5431 if (ret)
5432 goto end_trans;
5433
5434 /*
5435 * for regular files, if its inode is already on disk, we don't
5436 * have to worry about the parents at all. This is because
5437 * we can use the last_unlink_trans field to record renames
5438 * and other fun in this file.
5439 */
5440 if (S_ISREG(inode->i_mode) &&
5441 BTRFS_I(inode)->generation <= last_committed &&
5442 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5443 ret = 0;
5444 goto end_trans;
5445 }
5446
5447 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5448 log_dentries = true;
5449
5450 /*
5451 * On unlink we must make sure all our current and old parent directory
5452 * inodes are fully logged. This is to prevent leaving dangling
5453 * directory index entries in directories that were our parents but are
5454 * not anymore. Not doing this results in old parent directory being
5455 * impossible to delete after log replay (rmdir will always fail with
5456 * error -ENOTEMPTY).
5457 *
5458 * Example 1:
5459 *
5460 * mkdir testdir
5461 * touch testdir/foo
5462 * ln testdir/foo testdir/bar
5463 * sync
5464 * unlink testdir/bar
5465 * xfs_io -c fsync testdir/foo
5466 * <power failure>
5467 * mount fs, triggers log replay
5468 *
5469 * If we don't log the parent directory (testdir), after log replay the
5470 * directory still has an entry pointing to the file inode using the bar
5471 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5472 * the file inode has a link count of 1.
5473 *
5474 * Example 2:
5475 *
5476 * mkdir testdir
5477 * touch foo
5478 * ln foo testdir/foo2
5479 * ln foo testdir/foo3
5480 * sync
5481 * unlink testdir/foo3
5482 * xfs_io -c fsync foo
5483 * <power failure>
5484 * mount fs, triggers log replay
5485 *
5486 * Similar as the first example, after log replay the parent directory
5487 * testdir still has an entry pointing to the inode file with name foo3
5488 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5489 * and has a link count of 2.
5490 */
5491 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5492 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5493 if (ret)
5494 goto end_trans;
5495 }
5496
5497 while (1) {
5498 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5499 break;
5500
5501 inode = d_inode(parent);
5502 if (root != BTRFS_I(inode)->root)
5503 break;
5504
5505 if (BTRFS_I(inode)->generation > last_committed) {
5506 ret = btrfs_log_inode(trans, root, inode,
5507 LOG_INODE_EXISTS,
5508 0, LLONG_MAX, ctx);
5509 if (ret)
5510 goto end_trans;
5511 }
5512 if (IS_ROOT(parent))
5513 break;
5514
5515 parent = dget_parent(parent);
5516 dput(old_parent);
5517 old_parent = parent;
5518 }
5519 if (log_dentries)
5520 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5521 else
5522 ret = 0;
5523 end_trans:
5524 dput(old_parent);
5525 if (ret < 0) {
5526 btrfs_set_log_full_commit(root->fs_info, trans);
5527 ret = 1;
5528 }
5529
5530 if (ret)
5531 btrfs_remove_log_ctx(root, ctx);
5532 btrfs_end_log_trans(root);
5533 end_no_trans:
5534 return ret;
5535 }
5536
5537 /*
5538 * it is not safe to log dentry if the chunk root has added new
5539 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5540 * If this returns 1, you must commit the transaction to safely get your
5541 * data on disk.
5542 */
5543 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5544 struct btrfs_root *root, struct dentry *dentry,
5545 const loff_t start,
5546 const loff_t end,
5547 struct btrfs_log_ctx *ctx)
5548 {
5549 struct dentry *parent = dget_parent(dentry);
5550 int ret;
5551
5552 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5553 start, end, 0, ctx);
5554 dput(parent);
5555
5556 return ret;
5557 }
5558
5559 /*
5560 * should be called during mount to recover any replay any log trees
5561 * from the FS
5562 */
5563 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5564 {
5565 int ret;
5566 struct btrfs_path *path;
5567 struct btrfs_trans_handle *trans;
5568 struct btrfs_key key;
5569 struct btrfs_key found_key;
5570 struct btrfs_key tmp_key;
5571 struct btrfs_root *log;
5572 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5573 struct walk_control wc = {
5574 .process_func = process_one_buffer,
5575 .stage = 0,
5576 };
5577
5578 path = btrfs_alloc_path();
5579 if (!path)
5580 return -ENOMEM;
5581
5582 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5583
5584 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5585 if (IS_ERR(trans)) {
5586 ret = PTR_ERR(trans);
5587 goto error;
5588 }
5589
5590 wc.trans = trans;
5591 wc.pin = 1;
5592
5593 ret = walk_log_tree(trans, log_root_tree, &wc);
5594 if (ret) {
5595 btrfs_handle_fs_error(fs_info, ret, "Failed to pin buffers while "
5596 "recovering log root tree.");
5597 goto error;
5598 }
5599
5600 again:
5601 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5602 key.offset = (u64)-1;
5603 key.type = BTRFS_ROOT_ITEM_KEY;
5604
5605 while (1) {
5606 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5607
5608 if (ret < 0) {
5609 btrfs_handle_fs_error(fs_info, ret,
5610 "Couldn't find tree log root.");
5611 goto error;
5612 }
5613 if (ret > 0) {
5614 if (path->slots[0] == 0)
5615 break;
5616 path->slots[0]--;
5617 }
5618 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5619 path->slots[0]);
5620 btrfs_release_path(path);
5621 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5622 break;
5623
5624 log = btrfs_read_fs_root(log_root_tree, &found_key);
5625 if (IS_ERR(log)) {
5626 ret = PTR_ERR(log);
5627 btrfs_handle_fs_error(fs_info, ret,
5628 "Couldn't read tree log root.");
5629 goto error;
5630 }
5631
5632 tmp_key.objectid = found_key.offset;
5633 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5634 tmp_key.offset = (u64)-1;
5635
5636 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5637 if (IS_ERR(wc.replay_dest)) {
5638 ret = PTR_ERR(wc.replay_dest);
5639 free_extent_buffer(log->node);
5640 free_extent_buffer(log->commit_root);
5641 kfree(log);
5642 btrfs_handle_fs_error(fs_info, ret, "Couldn't read target root "
5643 "for tree log recovery.");
5644 goto error;
5645 }
5646
5647 wc.replay_dest->log_root = log;
5648 btrfs_record_root_in_trans(trans, wc.replay_dest);
5649 ret = walk_log_tree(trans, log, &wc);
5650
5651 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5652 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5653 path);
5654 }
5655
5656 key.offset = found_key.offset - 1;
5657 wc.replay_dest->log_root = NULL;
5658 free_extent_buffer(log->node);
5659 free_extent_buffer(log->commit_root);
5660 kfree(log);
5661
5662 if (ret)
5663 goto error;
5664
5665 if (found_key.offset == 0)
5666 break;
5667 }
5668 btrfs_release_path(path);
5669
5670 /* step one is to pin it all, step two is to replay just inodes */
5671 if (wc.pin) {
5672 wc.pin = 0;
5673 wc.process_func = replay_one_buffer;
5674 wc.stage = LOG_WALK_REPLAY_INODES;
5675 goto again;
5676 }
5677 /* step three is to replay everything */
5678 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5679 wc.stage++;
5680 goto again;
5681 }
5682
5683 btrfs_free_path(path);
5684
5685 /* step 4: commit the transaction, which also unpins the blocks */
5686 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5687 if (ret)
5688 return ret;
5689
5690 free_extent_buffer(log_root_tree->node);
5691 log_root_tree->log_root = NULL;
5692 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5693 kfree(log_root_tree);
5694
5695 return 0;
5696 error:
5697 if (wc.trans)
5698 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5699 btrfs_free_path(path);
5700 return ret;
5701 }
5702
5703 /*
5704 * there are some corner cases where we want to force a full
5705 * commit instead of allowing a directory to be logged.
5706 *
5707 * They revolve around files there were unlinked from the directory, and
5708 * this function updates the parent directory so that a full commit is
5709 * properly done if it is fsync'd later after the unlinks are done.
5710 *
5711 * Must be called before the unlink operations (updates to the subvolume tree,
5712 * inodes, etc) are done.
5713 */
5714 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5715 struct inode *dir, struct inode *inode,
5716 int for_rename)
5717 {
5718 /*
5719 * when we're logging a file, if it hasn't been renamed
5720 * or unlinked, and its inode is fully committed on disk,
5721 * we don't have to worry about walking up the directory chain
5722 * to log its parents.
5723 *
5724 * So, we use the last_unlink_trans field to put this transid
5725 * into the file. When the file is logged we check it and
5726 * don't log the parents if the file is fully on disk.
5727 */
5728 mutex_lock(&BTRFS_I(inode)->log_mutex);
5729 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5730 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5731
5732 /*
5733 * if this directory was already logged any new
5734 * names for this file/dir will get recorded
5735 */
5736 smp_mb();
5737 if (BTRFS_I(dir)->logged_trans == trans->transid)
5738 return;
5739
5740 /*
5741 * if the inode we're about to unlink was logged,
5742 * the log will be properly updated for any new names
5743 */
5744 if (BTRFS_I(inode)->logged_trans == trans->transid)
5745 return;
5746
5747 /*
5748 * when renaming files across directories, if the directory
5749 * there we're unlinking from gets fsync'd later on, there's
5750 * no way to find the destination directory later and fsync it
5751 * properly. So, we have to be conservative and force commits
5752 * so the new name gets discovered.
5753 */
5754 if (for_rename)
5755 goto record;
5756
5757 /* we can safely do the unlink without any special recording */
5758 return;
5759
5760 record:
5761 mutex_lock(&BTRFS_I(dir)->log_mutex);
5762 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5763 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5764 }
5765
5766 /*
5767 * Make sure that if someone attempts to fsync the parent directory of a deleted
5768 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5769 * that after replaying the log tree of the parent directory's root we will not
5770 * see the snapshot anymore and at log replay time we will not see any log tree
5771 * corresponding to the deleted snapshot's root, which could lead to replaying
5772 * it after replaying the log tree of the parent directory (which would replay
5773 * the snapshot delete operation).
5774 *
5775 * Must be called before the actual snapshot destroy operation (updates to the
5776 * parent root and tree of tree roots trees, etc) are done.
5777 */
5778 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5779 struct inode *dir)
5780 {
5781 mutex_lock(&BTRFS_I(dir)->log_mutex);
5782 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5783 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5784 }
5785
5786 /*
5787 * Call this after adding a new name for a file and it will properly
5788 * update the log to reflect the new name.
5789 *
5790 * It will return zero if all goes well, and it will return 1 if a
5791 * full transaction commit is required.
5792 */
5793 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5794 struct inode *inode, struct inode *old_dir,
5795 struct dentry *parent)
5796 {
5797 struct btrfs_root * root = BTRFS_I(inode)->root;
5798
5799 /*
5800 * this will force the logging code to walk the dentry chain
5801 * up for the file
5802 */
5803 if (S_ISREG(inode->i_mode))
5804 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5805
5806 /*
5807 * if this inode hasn't been logged and directory we're renaming it
5808 * from hasn't been logged, we don't need to log it
5809 */
5810 if (BTRFS_I(inode)->logged_trans <=
5811 root->fs_info->last_trans_committed &&
5812 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5813 root->fs_info->last_trans_committed))
5814 return 0;
5815
5816 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5817 LLONG_MAX, 1, NULL);
5818 }
5819
This page took 0.157665 seconds and 5 git commands to generate.