mm, CMA: clean-up CMA allocation error path
[deliverable/linux.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83 void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85 {
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 ClearPagePrivate(page);
127 set_page_private(page, 0);
128 page_cache_release(page);
129 }
130
131
132 static int quiet_error(struct buffer_head *bh)
133 {
134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 return 0;
136 return 1;
137 }
138
139
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142 char b[BDEVNAME_SIZE];
143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh->b_bdev, b),
145 (unsigned long long)bh->b_blocknr);
146 }
147
148 /*
149 * End-of-IO handler helper function which does not touch the bh after
150 * unlocking it.
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 * itself.
155 */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158 if (uptodate) {
159 set_buffer_uptodate(bh);
160 } else {
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
165 }
166
167 /*
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
170 */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173 __end_buffer_read_notouch(bh, uptodate);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180 char b[BDEVNAME_SIZE];
181
182 if (uptodate) {
183 set_buffer_uptodate(bh);
184 } else {
185 if (!quiet_error(bh)) {
186 buffer_io_error(bh);
187 printk(KERN_WARNING "lost page write due to "
188 "I/O error on %s\n",
189 bdevname(bh->b_bdev, b));
190 }
191 set_buffer_write_io_error(bh);
192 clear_buffer_uptodate(bh);
193 }
194 unlock_buffer(bh);
195 put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198
199 /*
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
203 * private_lock.
204 *
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
209 */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213 struct inode *bd_inode = bdev->bd_inode;
214 struct address_space *bd_mapping = bd_inode->i_mapping;
215 struct buffer_head *ret = NULL;
216 pgoff_t index;
217 struct buffer_head *bh;
218 struct buffer_head *head;
219 struct page *page;
220 int all_mapped = 1;
221
222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224 if (!page)
225 goto out;
226
227 spin_lock(&bd_mapping->private_lock);
228 if (!page_has_buffers(page))
229 goto out_unlock;
230 head = page_buffers(page);
231 bh = head;
232 do {
233 if (!buffer_mapped(bh))
234 all_mapped = 0;
235 else if (bh->b_blocknr == block) {
236 ret = bh;
237 get_bh(bh);
238 goto out_unlock;
239 }
240 bh = bh->b_this_page;
241 } while (bh != head);
242
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
247 */
248 if (all_mapped) {
249 char b[BDEVNAME_SIZE];
250
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
253 (unsigned long long)block,
254 (unsigned long long)bh->b_blocknr);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh->b_state, bh->b_size);
257 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 1 << bd_inode->i_blkbits);
259 }
260 out_unlock:
261 spin_unlock(&bd_mapping->private_lock);
262 page_cache_release(page);
263 out:
264 return ret;
265 }
266
267 /*
268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269 */
270 static void free_more_memory(void)
271 {
272 struct zone *zone;
273 int nid;
274
275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276 yield();
277
278 for_each_online_node(nid) {
279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 gfp_zone(GFP_NOFS), NULL,
281 &zone);
282 if (zone)
283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284 GFP_NOFS, NULL);
285 }
286 }
287
288 /*
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
291 */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294 unsigned long flags;
295 struct buffer_head *first;
296 struct buffer_head *tmp;
297 struct page *page;
298 int page_uptodate = 1;
299
300 BUG_ON(!buffer_async_read(bh));
301
302 page = bh->b_page;
303 if (uptodate) {
304 set_buffer_uptodate(bh);
305 } else {
306 clear_buffer_uptodate(bh);
307 if (!quiet_error(bh))
308 buffer_io_error(bh);
309 SetPageError(page);
310 }
311
312 /*
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
316 */
317 first = page_buffers(page);
318 local_irq_save(flags);
319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320 clear_buffer_async_read(bh);
321 unlock_buffer(bh);
322 tmp = bh;
323 do {
324 if (!buffer_uptodate(tmp))
325 page_uptodate = 0;
326 if (buffer_async_read(tmp)) {
327 BUG_ON(!buffer_locked(tmp));
328 goto still_busy;
329 }
330 tmp = tmp->b_this_page;
331 } while (tmp != bh);
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334
335 /*
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
338 */
339 if (page_uptodate && !PageError(page))
340 SetPageUptodate(page);
341 unlock_page(page);
342 return;
343
344 still_busy:
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
347 return;
348 }
349
350 /*
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
353 */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 char b[BDEVNAME_SIZE];
357 unsigned long flags;
358 struct buffer_head *first;
359 struct buffer_head *tmp;
360 struct page *page;
361
362 BUG_ON(!buffer_async_write(bh));
363
364 page = bh->b_page;
365 if (uptodate) {
366 set_buffer_uptodate(bh);
367 } else {
368 if (!quiet_error(bh)) {
369 buffer_io_error(bh);
370 printk(KERN_WARNING "lost page write due to "
371 "I/O error on %s\n",
372 bdevname(bh->b_bdev, b));
373 }
374 set_bit(AS_EIO, &page->mapping->flags);
375 set_buffer_write_io_error(bh);
376 clear_buffer_uptodate(bh);
377 SetPageError(page);
378 }
379
380 first = page_buffers(page);
381 local_irq_save(flags);
382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
384 clear_buffer_async_write(bh);
385 unlock_buffer(bh);
386 tmp = bh->b_this_page;
387 while (tmp != bh) {
388 if (buffer_async_write(tmp)) {
389 BUG_ON(!buffer_locked(tmp));
390 goto still_busy;
391 }
392 tmp = tmp->b_this_page;
393 }
394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 local_irq_restore(flags);
396 end_page_writeback(page);
397 return;
398
399 still_busy:
400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 local_irq_restore(flags);
402 return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405
406 /*
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
414 *
415 * The page comes unlocked when it has no locked buffer_async buffers
416 * left.
417 *
418 * PageLocked prevents anyone starting new async I/O reads any of
419 * the buffers.
420 *
421 * PageWriteback is used to prevent simultaneous writeout of the same
422 * page.
423 *
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
426 */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429 bh->b_end_io = end_buffer_async_read;
430 set_buffer_async_read(bh);
431 }
432
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 bh_end_io_t *handler)
435 {
436 bh->b_end_io = handler;
437 set_buffer_async_write(bh);
438 }
439
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442 mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447 /*
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
453 *
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
457 *
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
467 * ->private_lock.
468 *
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
471 *
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
476 *
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
480 *
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484 * queued up.
485 *
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
493 * b_inode back.
494 */
495
496 /*
497 * The buffer's backing address_space's private_lock must be held
498 */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501 list_del_init(&bh->b_assoc_buffers);
502 WARN_ON(!bh->b_assoc_map);
503 if (buffer_write_io_error(bh))
504 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 bh->b_assoc_map = NULL;
506 }
507
508 int inode_has_buffers(struct inode *inode)
509 {
510 return !list_empty(&inode->i_data.private_list);
511 }
512
513 /*
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
517 *
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
522 */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525 struct buffer_head *bh;
526 struct list_head *p;
527 int err = 0;
528
529 spin_lock(lock);
530 repeat:
531 list_for_each_prev(p, list) {
532 bh = BH_ENTRY(p);
533 if (buffer_locked(bh)) {
534 get_bh(bh);
535 spin_unlock(lock);
536 wait_on_buffer(bh);
537 if (!buffer_uptodate(bh))
538 err = -EIO;
539 brelse(bh);
540 spin_lock(lock);
541 goto repeat;
542 }
543 }
544 spin_unlock(lock);
545 return err;
546 }
547
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550 char b[BDEVNAME_SIZE];
551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 printk(KERN_WARNING "Emergency Thaw on %s\n",
553 bdevname(sb->s_bdev, b));
554 }
555
556 static void do_thaw_all(struct work_struct *work)
557 {
558 iterate_supers(do_thaw_one, NULL);
559 kfree(work);
560 printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562
563 /**
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
565 *
566 * Used for emergency unfreeze of all filesystems via SysRq
567 */
568 void emergency_thaw_all(void)
569 {
570 struct work_struct *work;
571
572 work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 if (work) {
574 INIT_WORK(work, do_thaw_all);
575 schedule_work(work);
576 }
577 }
578
579 /**
580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581 * @mapping: the mapping which wants those buffers written
582 *
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
584 * that I/O.
585 *
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
589 */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592 struct address_space *buffer_mapping = mapping->private_data;
593
594 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 return 0;
596
597 return fsync_buffers_list(&buffer_mapping->private_lock,
598 &mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601
602 /*
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
607 */
608 void write_boundary_block(struct block_device *bdev,
609 sector_t bblock, unsigned blocksize)
610 {
611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 if (bh) {
613 if (buffer_dirty(bh))
614 ll_rw_block(WRITE, 1, &bh);
615 put_bh(bh);
616 }
617 }
618
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621 struct address_space *mapping = inode->i_mapping;
622 struct address_space *buffer_mapping = bh->b_page->mapping;
623
624 mark_buffer_dirty(bh);
625 if (!mapping->private_data) {
626 mapping->private_data = buffer_mapping;
627 } else {
628 BUG_ON(mapping->private_data != buffer_mapping);
629 }
630 if (!bh->b_assoc_map) {
631 spin_lock(&buffer_mapping->private_lock);
632 list_move_tail(&bh->b_assoc_buffers,
633 &mapping->private_list);
634 bh->b_assoc_map = mapping;
635 spin_unlock(&buffer_mapping->private_lock);
636 }
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
640 /*
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642 * dirty.
643 *
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
646 */
647 static void __set_page_dirty(struct page *page,
648 struct address_space *mapping, int warn)
649 {
650 unsigned long flags;
651
652 spin_lock_irqsave(&mapping->tree_lock, flags);
653 if (page->mapping) { /* Race with truncate? */
654 WARN_ON_ONCE(warn && !PageUptodate(page));
655 account_page_dirtied(page, mapping);
656 radix_tree_tag_set(&mapping->page_tree,
657 page_index(page), PAGECACHE_TAG_DIRTY);
658 }
659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662
663 /*
664 * Add a page to the dirty page list.
665 *
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
668 *
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
672 * dirty.
673 *
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
680 *
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
684 *
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
687 */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690 int newly_dirty;
691 struct address_space *mapping = page_mapping(page);
692
693 if (unlikely(!mapping))
694 return !TestSetPageDirty(page);
695
696 spin_lock(&mapping->private_lock);
697 if (page_has_buffers(page)) {
698 struct buffer_head *head = page_buffers(page);
699 struct buffer_head *bh = head;
700
701 do {
702 set_buffer_dirty(bh);
703 bh = bh->b_this_page;
704 } while (bh != head);
705 }
706 newly_dirty = !TestSetPageDirty(page);
707 spin_unlock(&mapping->private_lock);
708
709 if (newly_dirty)
710 __set_page_dirty(page, mapping, 1);
711 return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715 /*
716 * Write out and wait upon a list of buffers.
717 *
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
722 *
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
726 *
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
733 */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736 struct buffer_head *bh;
737 struct list_head tmp;
738 struct address_space *mapping;
739 int err = 0, err2;
740 struct blk_plug plug;
741
742 INIT_LIST_HEAD(&tmp);
743 blk_start_plug(&plug);
744
745 spin_lock(lock);
746 while (!list_empty(list)) {
747 bh = BH_ENTRY(list->next);
748 mapping = bh->b_assoc_map;
749 __remove_assoc_queue(bh);
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
752 smp_mb();
753 if (buffer_dirty(bh) || buffer_locked(bh)) {
754 list_add(&bh->b_assoc_buffers, &tmp);
755 bh->b_assoc_map = mapping;
756 if (buffer_dirty(bh)) {
757 get_bh(bh);
758 spin_unlock(lock);
759 /*
760 * Ensure any pending I/O completes so that
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
764 * contents.
765 */
766 write_dirty_buffer(bh, WRITE_SYNC);
767
768 /*
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
773 */
774 brelse(bh);
775 spin_lock(lock);
776 }
777 }
778 }
779
780 spin_unlock(lock);
781 blk_finish_plug(&plug);
782 spin_lock(lock);
783
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
786 get_bh(bh);
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
794 &mapping->private_list);
795 bh->b_assoc_map = mapping;
796 }
797 spin_unlock(lock);
798 wait_on_buffer(bh);
799 if (!buffer_uptodate(bh))
800 err = -EIO;
801 brelse(bh);
802 spin_lock(lock);
803 }
804
805 spin_unlock(lock);
806 err2 = osync_buffers_list(lock, list);
807 if (err)
808 return err;
809 else
810 return err2;
811 }
812
813 /*
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
817 *
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
820 * for reiserfs.
821 */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
827 struct address_space *buffer_mapping = mapping->private_data;
828
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836
837 /*
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
840 *
841 * Returns true if all buffers were removed.
842 */
843 int remove_inode_buffers(struct inode *inode)
844 {
845 int ret = 1;
846
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
850 struct address_space *buffer_mapping = mapping->private_data;
851
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
856 ret = 0;
857 break;
858 }
859 __remove_assoc_queue(bh);
860 }
861 spin_unlock(&buffer_mapping->private_lock);
862 }
863 return ret;
864 }
865
866 /*
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
870 * buffers.
871 *
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
874 */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 int retry)
877 {
878 struct buffer_head *bh, *head;
879 long offset;
880
881 try_again:
882 head = NULL;
883 offset = PAGE_SIZE;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
886 if (!bh)
887 goto no_grow;
888
889 bh->b_this_page = head;
890 bh->b_blocknr = -1;
891 head = bh;
892
893 bh->b_size = size;
894
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
897 }
898 return head;
899 /*
900 * In case anything failed, we just free everything we got.
901 */
902 no_grow:
903 if (head) {
904 do {
905 bh = head;
906 head = head->b_this_page;
907 free_buffer_head(bh);
908 } while (head);
909 }
910
911 /*
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
916 */
917 if (!retry)
918 return NULL;
919
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
925 */
926 free_more_memory();
927 goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934 struct buffer_head *bh, *tail;
935
936 bh = head;
937 do {
938 tail = bh;
939 bh = bh->b_this_page;
940 } while (bh);
941 tail->b_this_page = head;
942 attach_page_buffers(page, head);
943 }
944
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947 sector_t retval = ~((sector_t)0);
948 loff_t sz = i_size_read(bdev->bd_inode);
949
950 if (sz) {
951 unsigned int sizebits = blksize_bits(size);
952 retval = (sz >> sizebits);
953 }
954 return retval;
955 }
956
957 /*
958 * Initialise the state of a blockdev page's buffers.
959 */
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
963 {
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968
969 do {
970 if (!buffer_mapped(bh)) {
971 init_buffer(bh, NULL, NULL);
972 bh->b_bdev = bdev;
973 bh->b_blocknr = block;
974 if (uptodate)
975 set_buffer_uptodate(bh);
976 if (block < end_block)
977 set_buffer_mapped(bh);
978 }
979 block++;
980 bh = bh->b_this_page;
981 } while (bh != head);
982
983 /*
984 * Caller needs to validate requested block against end of device.
985 */
986 return end_block;
987 }
988
989 /*
990 * Create the page-cache page that contains the requested block.
991 *
992 * This is used purely for blockdev mappings.
993 */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 pgoff_t index, int size, int sizebits)
997 {
998 struct inode *inode = bdev->bd_inode;
999 struct page *page;
1000 struct buffer_head *bh;
1001 sector_t end_block;
1002 int ret = 0; /* Will call free_more_memory() */
1003 gfp_t gfp_mask;
1004
1005 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006 gfp_mask |= __GFP_MOVABLE;
1007 /*
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1012 */
1013 gfp_mask |= __GFP_NOFAIL;
1014
1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016 if (!page)
1017 return ret;
1018
1019 BUG_ON(!PageLocked(page));
1020
1021 if (page_has_buffers(page)) {
1022 bh = page_buffers(page);
1023 if (bh->b_size == size) {
1024 end_block = init_page_buffers(page, bdev,
1025 index << sizebits, size);
1026 goto done;
1027 }
1028 if (!try_to_free_buffers(page))
1029 goto failed;
1030 }
1031
1032 /*
1033 * Allocate some buffers for this page
1034 */
1035 bh = alloc_page_buffers(page, size, 0);
1036 if (!bh)
1037 goto failed;
1038
1039 /*
1040 * Link the page to the buffers and initialise them. Take the
1041 * lock to be atomic wrt __find_get_block(), which does not
1042 * run under the page lock.
1043 */
1044 spin_lock(&inode->i_mapping->private_lock);
1045 link_dev_buffers(page, bh);
1046 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1047 spin_unlock(&inode->i_mapping->private_lock);
1048 done:
1049 ret = (block < end_block) ? 1 : -ENXIO;
1050 failed:
1051 unlock_page(page);
1052 page_cache_release(page);
1053 return ret;
1054 }
1055
1056 /*
1057 * Create buffers for the specified block device block's page. If
1058 * that page was dirty, the buffers are set dirty also.
1059 */
1060 static int
1061 grow_buffers(struct block_device *bdev, sector_t block, int size)
1062 {
1063 pgoff_t index;
1064 int sizebits;
1065
1066 sizebits = -1;
1067 do {
1068 sizebits++;
1069 } while ((size << sizebits) < PAGE_SIZE);
1070
1071 index = block >> sizebits;
1072
1073 /*
1074 * Check for a block which wants to lie outside our maximum possible
1075 * pagecache index. (this comparison is done using sector_t types).
1076 */
1077 if (unlikely(index != block >> sizebits)) {
1078 char b[BDEVNAME_SIZE];
1079
1080 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1081 "device %s\n",
1082 __func__, (unsigned long long)block,
1083 bdevname(bdev, b));
1084 return -EIO;
1085 }
1086
1087 /* Create a page with the proper size buffers.. */
1088 return grow_dev_page(bdev, block, index, size, sizebits);
1089 }
1090
1091 static struct buffer_head *
1092 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1093 {
1094 /* Size must be multiple of hard sectorsize */
1095 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096 (size < 512 || size > PAGE_SIZE))) {
1097 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098 size);
1099 printk(KERN_ERR "logical block size: %d\n",
1100 bdev_logical_block_size(bdev));
1101
1102 dump_stack();
1103 return NULL;
1104 }
1105
1106 for (;;) {
1107 struct buffer_head *bh;
1108 int ret;
1109
1110 bh = __find_get_block(bdev, block, size);
1111 if (bh)
1112 return bh;
1113
1114 ret = grow_buffers(bdev, block, size);
1115 if (ret < 0)
1116 return NULL;
1117 if (ret == 0)
1118 free_more_memory();
1119 }
1120 }
1121
1122 /*
1123 * The relationship between dirty buffers and dirty pages:
1124 *
1125 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1126 * the page is tagged dirty in its radix tree.
1127 *
1128 * At all times, the dirtiness of the buffers represents the dirtiness of
1129 * subsections of the page. If the page has buffers, the page dirty bit is
1130 * merely a hint about the true dirty state.
1131 *
1132 * When a page is set dirty in its entirety, all its buffers are marked dirty
1133 * (if the page has buffers).
1134 *
1135 * When a buffer is marked dirty, its page is dirtied, but the page's other
1136 * buffers are not.
1137 *
1138 * Also. When blockdev buffers are explicitly read with bread(), they
1139 * individually become uptodate. But their backing page remains not
1140 * uptodate - even if all of its buffers are uptodate. A subsequent
1141 * block_read_full_page() against that page will discover all the uptodate
1142 * buffers, will set the page uptodate and will perform no I/O.
1143 */
1144
1145 /**
1146 * mark_buffer_dirty - mark a buffer_head as needing writeout
1147 * @bh: the buffer_head to mark dirty
1148 *
1149 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1150 * backing page dirty, then tag the page as dirty in its address_space's radix
1151 * tree and then attach the address_space's inode to its superblock's dirty
1152 * inode list.
1153 *
1154 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1155 * mapping->tree_lock and mapping->host->i_lock.
1156 */
1157 void mark_buffer_dirty(struct buffer_head *bh)
1158 {
1159 WARN_ON_ONCE(!buffer_uptodate(bh));
1160
1161 trace_block_dirty_buffer(bh);
1162
1163 /*
1164 * Very *carefully* optimize the it-is-already-dirty case.
1165 *
1166 * Don't let the final "is it dirty" escape to before we
1167 * perhaps modified the buffer.
1168 */
1169 if (buffer_dirty(bh)) {
1170 smp_mb();
1171 if (buffer_dirty(bh))
1172 return;
1173 }
1174
1175 if (!test_set_buffer_dirty(bh)) {
1176 struct page *page = bh->b_page;
1177 if (!TestSetPageDirty(page)) {
1178 struct address_space *mapping = page_mapping(page);
1179 if (mapping)
1180 __set_page_dirty(page, mapping, 0);
1181 }
1182 }
1183 }
1184 EXPORT_SYMBOL(mark_buffer_dirty);
1185
1186 /*
1187 * Decrement a buffer_head's reference count. If all buffers against a page
1188 * have zero reference count, are clean and unlocked, and if the page is clean
1189 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1190 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1191 * a page but it ends up not being freed, and buffers may later be reattached).
1192 */
1193 void __brelse(struct buffer_head * buf)
1194 {
1195 if (atomic_read(&buf->b_count)) {
1196 put_bh(buf);
1197 return;
1198 }
1199 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1200 }
1201 EXPORT_SYMBOL(__brelse);
1202
1203 /*
1204 * bforget() is like brelse(), except it discards any
1205 * potentially dirty data.
1206 */
1207 void __bforget(struct buffer_head *bh)
1208 {
1209 clear_buffer_dirty(bh);
1210 if (bh->b_assoc_map) {
1211 struct address_space *buffer_mapping = bh->b_page->mapping;
1212
1213 spin_lock(&buffer_mapping->private_lock);
1214 list_del_init(&bh->b_assoc_buffers);
1215 bh->b_assoc_map = NULL;
1216 spin_unlock(&buffer_mapping->private_lock);
1217 }
1218 __brelse(bh);
1219 }
1220 EXPORT_SYMBOL(__bforget);
1221
1222 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1223 {
1224 lock_buffer(bh);
1225 if (buffer_uptodate(bh)) {
1226 unlock_buffer(bh);
1227 return bh;
1228 } else {
1229 get_bh(bh);
1230 bh->b_end_io = end_buffer_read_sync;
1231 submit_bh(READ, bh);
1232 wait_on_buffer(bh);
1233 if (buffer_uptodate(bh))
1234 return bh;
1235 }
1236 brelse(bh);
1237 return NULL;
1238 }
1239
1240 /*
1241 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1242 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1243 * refcount elevated by one when they're in an LRU. A buffer can only appear
1244 * once in a particular CPU's LRU. A single buffer can be present in multiple
1245 * CPU's LRUs at the same time.
1246 *
1247 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1248 * sb_find_get_block().
1249 *
1250 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1251 * a local interrupt disable for that.
1252 */
1253
1254 #define BH_LRU_SIZE 8
1255
1256 struct bh_lru {
1257 struct buffer_head *bhs[BH_LRU_SIZE];
1258 };
1259
1260 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1261
1262 #ifdef CONFIG_SMP
1263 #define bh_lru_lock() local_irq_disable()
1264 #define bh_lru_unlock() local_irq_enable()
1265 #else
1266 #define bh_lru_lock() preempt_disable()
1267 #define bh_lru_unlock() preempt_enable()
1268 #endif
1269
1270 static inline void check_irqs_on(void)
1271 {
1272 #ifdef irqs_disabled
1273 BUG_ON(irqs_disabled());
1274 #endif
1275 }
1276
1277 /*
1278 * The LRU management algorithm is dopey-but-simple. Sorry.
1279 */
1280 static void bh_lru_install(struct buffer_head *bh)
1281 {
1282 struct buffer_head *evictee = NULL;
1283
1284 check_irqs_on();
1285 bh_lru_lock();
1286 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1287 struct buffer_head *bhs[BH_LRU_SIZE];
1288 int in;
1289 int out = 0;
1290
1291 get_bh(bh);
1292 bhs[out++] = bh;
1293 for (in = 0; in < BH_LRU_SIZE; in++) {
1294 struct buffer_head *bh2 =
1295 __this_cpu_read(bh_lrus.bhs[in]);
1296
1297 if (bh2 == bh) {
1298 __brelse(bh2);
1299 } else {
1300 if (out >= BH_LRU_SIZE) {
1301 BUG_ON(evictee != NULL);
1302 evictee = bh2;
1303 } else {
1304 bhs[out++] = bh2;
1305 }
1306 }
1307 }
1308 while (out < BH_LRU_SIZE)
1309 bhs[out++] = NULL;
1310 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1311 }
1312 bh_lru_unlock();
1313
1314 if (evictee)
1315 __brelse(evictee);
1316 }
1317
1318 /*
1319 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1320 */
1321 static struct buffer_head *
1322 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324 struct buffer_head *ret = NULL;
1325 unsigned int i;
1326
1327 check_irqs_on();
1328 bh_lru_lock();
1329 for (i = 0; i < BH_LRU_SIZE; i++) {
1330 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1331
1332 if (bh && bh->b_bdev == bdev &&
1333 bh->b_blocknr == block && bh->b_size == size) {
1334 if (i) {
1335 while (i) {
1336 __this_cpu_write(bh_lrus.bhs[i],
1337 __this_cpu_read(bh_lrus.bhs[i - 1]));
1338 i--;
1339 }
1340 __this_cpu_write(bh_lrus.bhs[0], bh);
1341 }
1342 get_bh(bh);
1343 ret = bh;
1344 break;
1345 }
1346 }
1347 bh_lru_unlock();
1348 return ret;
1349 }
1350
1351 /*
1352 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1353 * it in the LRU and mark it as accessed. If it is not present then return
1354 * NULL
1355 */
1356 struct buffer_head *
1357 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1358 {
1359 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1360
1361 if (bh == NULL) {
1362 /* __find_get_block_slow will mark the page accessed */
1363 bh = __find_get_block_slow(bdev, block);
1364 if (bh)
1365 bh_lru_install(bh);
1366 } else
1367 touch_buffer(bh);
1368
1369 return bh;
1370 }
1371 EXPORT_SYMBOL(__find_get_block);
1372
1373 /*
1374 * __getblk will locate (and, if necessary, create) the buffer_head
1375 * which corresponds to the passed block_device, block and size. The
1376 * returned buffer has its reference count incremented.
1377 *
1378 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1379 * attempt is failing. FIXME, perhaps?
1380 */
1381 struct buffer_head *
1382 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1383 {
1384 struct buffer_head *bh = __find_get_block(bdev, block, size);
1385
1386 might_sleep();
1387 if (bh == NULL)
1388 bh = __getblk_slow(bdev, block, size);
1389 return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk);
1392
1393 /*
1394 * Do async read-ahead on a buffer..
1395 */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398 struct buffer_head *bh = __getblk(bdev, block, size);
1399 if (likely(bh)) {
1400 ll_rw_block(READA, 1, &bh);
1401 brelse(bh);
1402 }
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405
1406 /**
1407 * __bread() - reads a specified block and returns the bh
1408 * @bdev: the block_device to read from
1409 * @block: number of block
1410 * @size: size (in bytes) to read
1411 *
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * It returns NULL if the block was unreadable.
1414 */
1415 struct buffer_head *
1416 __bread(struct block_device *bdev, sector_t block, unsigned size)
1417 {
1418 struct buffer_head *bh = __getblk(bdev, block, size);
1419
1420 if (likely(bh) && !buffer_uptodate(bh))
1421 bh = __bread_slow(bh);
1422 return bh;
1423 }
1424 EXPORT_SYMBOL(__bread);
1425
1426 /*
1427 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1428 * This doesn't race because it runs in each cpu either in irq
1429 * or with preempt disabled.
1430 */
1431 static void invalidate_bh_lru(void *arg)
1432 {
1433 struct bh_lru *b = &get_cpu_var(bh_lrus);
1434 int i;
1435
1436 for (i = 0; i < BH_LRU_SIZE; i++) {
1437 brelse(b->bhs[i]);
1438 b->bhs[i] = NULL;
1439 }
1440 put_cpu_var(bh_lrus);
1441 }
1442
1443 static bool has_bh_in_lru(int cpu, void *dummy)
1444 {
1445 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1446 int i;
1447
1448 for (i = 0; i < BH_LRU_SIZE; i++) {
1449 if (b->bhs[i])
1450 return 1;
1451 }
1452
1453 return 0;
1454 }
1455
1456 void invalidate_bh_lrus(void)
1457 {
1458 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1459 }
1460 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1461
1462 void set_bh_page(struct buffer_head *bh,
1463 struct page *page, unsigned long offset)
1464 {
1465 bh->b_page = page;
1466 BUG_ON(offset >= PAGE_SIZE);
1467 if (PageHighMem(page))
1468 /*
1469 * This catches illegal uses and preserves the offset:
1470 */
1471 bh->b_data = (char *)(0 + offset);
1472 else
1473 bh->b_data = page_address(page) + offset;
1474 }
1475 EXPORT_SYMBOL(set_bh_page);
1476
1477 /*
1478 * Called when truncating a buffer on a page completely.
1479 */
1480
1481 /* Bits that are cleared during an invalidate */
1482 #define BUFFER_FLAGS_DISCARD \
1483 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1484 1 << BH_Delay | 1 << BH_Unwritten)
1485
1486 static void discard_buffer(struct buffer_head * bh)
1487 {
1488 unsigned long b_state, b_state_old;
1489
1490 lock_buffer(bh);
1491 clear_buffer_dirty(bh);
1492 bh->b_bdev = NULL;
1493 b_state = bh->b_state;
1494 for (;;) {
1495 b_state_old = cmpxchg(&bh->b_state, b_state,
1496 (b_state & ~BUFFER_FLAGS_DISCARD));
1497 if (b_state_old == b_state)
1498 break;
1499 b_state = b_state_old;
1500 }
1501 unlock_buffer(bh);
1502 }
1503
1504 /**
1505 * block_invalidatepage - invalidate part or all of a buffer-backed page
1506 *
1507 * @page: the page which is affected
1508 * @offset: start of the range to invalidate
1509 * @length: length of the range to invalidate
1510 *
1511 * block_invalidatepage() is called when all or part of the page has become
1512 * invalidated by a truncate operation.
1513 *
1514 * block_invalidatepage() does not have to release all buffers, but it must
1515 * ensure that no dirty buffer is left outside @offset and that no I/O
1516 * is underway against any of the blocks which are outside the truncation
1517 * point. Because the caller is about to free (and possibly reuse) those
1518 * blocks on-disk.
1519 */
1520 void block_invalidatepage(struct page *page, unsigned int offset,
1521 unsigned int length)
1522 {
1523 struct buffer_head *head, *bh, *next;
1524 unsigned int curr_off = 0;
1525 unsigned int stop = length + offset;
1526
1527 BUG_ON(!PageLocked(page));
1528 if (!page_has_buffers(page))
1529 goto out;
1530
1531 /*
1532 * Check for overflow
1533 */
1534 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1535
1536 head = page_buffers(page);
1537 bh = head;
1538 do {
1539 unsigned int next_off = curr_off + bh->b_size;
1540 next = bh->b_this_page;
1541
1542 /*
1543 * Are we still fully in range ?
1544 */
1545 if (next_off > stop)
1546 goto out;
1547
1548 /*
1549 * is this block fully invalidated?
1550 */
1551 if (offset <= curr_off)
1552 discard_buffer(bh);
1553 curr_off = next_off;
1554 bh = next;
1555 } while (bh != head);
1556
1557 /*
1558 * We release buffers only if the entire page is being invalidated.
1559 * The get_block cached value has been unconditionally invalidated,
1560 * so real IO is not possible anymore.
1561 */
1562 if (offset == 0)
1563 try_to_release_page(page, 0);
1564 out:
1565 return;
1566 }
1567 EXPORT_SYMBOL(block_invalidatepage);
1568
1569
1570 /*
1571 * We attach and possibly dirty the buffers atomically wrt
1572 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1573 * is already excluded via the page lock.
1574 */
1575 void create_empty_buffers(struct page *page,
1576 unsigned long blocksize, unsigned long b_state)
1577 {
1578 struct buffer_head *bh, *head, *tail;
1579
1580 head = alloc_page_buffers(page, blocksize, 1);
1581 bh = head;
1582 do {
1583 bh->b_state |= b_state;
1584 tail = bh;
1585 bh = bh->b_this_page;
1586 } while (bh);
1587 tail->b_this_page = head;
1588
1589 spin_lock(&page->mapping->private_lock);
1590 if (PageUptodate(page) || PageDirty(page)) {
1591 bh = head;
1592 do {
1593 if (PageDirty(page))
1594 set_buffer_dirty(bh);
1595 if (PageUptodate(page))
1596 set_buffer_uptodate(bh);
1597 bh = bh->b_this_page;
1598 } while (bh != head);
1599 }
1600 attach_page_buffers(page, head);
1601 spin_unlock(&page->mapping->private_lock);
1602 }
1603 EXPORT_SYMBOL(create_empty_buffers);
1604
1605 /*
1606 * We are taking a block for data and we don't want any output from any
1607 * buffer-cache aliases starting from return from that function and
1608 * until the moment when something will explicitly mark the buffer
1609 * dirty (hopefully that will not happen until we will free that block ;-)
1610 * We don't even need to mark it not-uptodate - nobody can expect
1611 * anything from a newly allocated buffer anyway. We used to used
1612 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1613 * don't want to mark the alias unmapped, for example - it would confuse
1614 * anyone who might pick it with bread() afterwards...
1615 *
1616 * Also.. Note that bforget() doesn't lock the buffer. So there can
1617 * be writeout I/O going on against recently-freed buffers. We don't
1618 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1619 * only if we really need to. That happens here.
1620 */
1621 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1622 {
1623 struct buffer_head *old_bh;
1624
1625 might_sleep();
1626
1627 old_bh = __find_get_block_slow(bdev, block);
1628 if (old_bh) {
1629 clear_buffer_dirty(old_bh);
1630 wait_on_buffer(old_bh);
1631 clear_buffer_req(old_bh);
1632 __brelse(old_bh);
1633 }
1634 }
1635 EXPORT_SYMBOL(unmap_underlying_metadata);
1636
1637 /*
1638 * Size is a power-of-two in the range 512..PAGE_SIZE,
1639 * and the case we care about most is PAGE_SIZE.
1640 *
1641 * So this *could* possibly be written with those
1642 * constraints in mind (relevant mostly if some
1643 * architecture has a slow bit-scan instruction)
1644 */
1645 static inline int block_size_bits(unsigned int blocksize)
1646 {
1647 return ilog2(blocksize);
1648 }
1649
1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1651 {
1652 BUG_ON(!PageLocked(page));
1653
1654 if (!page_has_buffers(page))
1655 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1656 return page_buffers(page);
1657 }
1658
1659 /*
1660 * NOTE! All mapped/uptodate combinations are valid:
1661 *
1662 * Mapped Uptodate Meaning
1663 *
1664 * No No "unknown" - must do get_block()
1665 * No Yes "hole" - zero-filled
1666 * Yes No "allocated" - allocated on disk, not read in
1667 * Yes Yes "valid" - allocated and up-to-date in memory.
1668 *
1669 * "Dirty" is valid only with the last case (mapped+uptodate).
1670 */
1671
1672 /*
1673 * While block_write_full_page is writing back the dirty buffers under
1674 * the page lock, whoever dirtied the buffers may decide to clean them
1675 * again at any time. We handle that by only looking at the buffer
1676 * state inside lock_buffer().
1677 *
1678 * If block_write_full_page() is called for regular writeback
1679 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1680 * locked buffer. This only can happen if someone has written the buffer
1681 * directly, with submit_bh(). At the address_space level PageWriteback
1682 * prevents this contention from occurring.
1683 *
1684 * If block_write_full_page() is called with wbc->sync_mode ==
1685 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1686 * causes the writes to be flagged as synchronous writes.
1687 */
1688 static int __block_write_full_page(struct inode *inode, struct page *page,
1689 get_block_t *get_block, struct writeback_control *wbc,
1690 bh_end_io_t *handler)
1691 {
1692 int err;
1693 sector_t block;
1694 sector_t last_block;
1695 struct buffer_head *bh, *head;
1696 unsigned int blocksize, bbits;
1697 int nr_underway = 0;
1698 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1699 WRITE_SYNC : WRITE);
1700
1701 head = create_page_buffers(page, inode,
1702 (1 << BH_Dirty)|(1 << BH_Uptodate));
1703
1704 /*
1705 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1706 * here, and the (potentially unmapped) buffers may become dirty at
1707 * any time. If a buffer becomes dirty here after we've inspected it
1708 * then we just miss that fact, and the page stays dirty.
1709 *
1710 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1711 * handle that here by just cleaning them.
1712 */
1713
1714 bh = head;
1715 blocksize = bh->b_size;
1716 bbits = block_size_bits(blocksize);
1717
1718 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1719 last_block = (i_size_read(inode) - 1) >> bbits;
1720
1721 /*
1722 * Get all the dirty buffers mapped to disk addresses and
1723 * handle any aliases from the underlying blockdev's mapping.
1724 */
1725 do {
1726 if (block > last_block) {
1727 /*
1728 * mapped buffers outside i_size will occur, because
1729 * this page can be outside i_size when there is a
1730 * truncate in progress.
1731 */
1732 /*
1733 * The buffer was zeroed by block_write_full_page()
1734 */
1735 clear_buffer_dirty(bh);
1736 set_buffer_uptodate(bh);
1737 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1738 buffer_dirty(bh)) {
1739 WARN_ON(bh->b_size != blocksize);
1740 err = get_block(inode, block, bh, 1);
1741 if (err)
1742 goto recover;
1743 clear_buffer_delay(bh);
1744 if (buffer_new(bh)) {
1745 /* blockdev mappings never come here */
1746 clear_buffer_new(bh);
1747 unmap_underlying_metadata(bh->b_bdev,
1748 bh->b_blocknr);
1749 }
1750 }
1751 bh = bh->b_this_page;
1752 block++;
1753 } while (bh != head);
1754
1755 do {
1756 if (!buffer_mapped(bh))
1757 continue;
1758 /*
1759 * If it's a fully non-blocking write attempt and we cannot
1760 * lock the buffer then redirty the page. Note that this can
1761 * potentially cause a busy-wait loop from writeback threads
1762 * and kswapd activity, but those code paths have their own
1763 * higher-level throttling.
1764 */
1765 if (wbc->sync_mode != WB_SYNC_NONE) {
1766 lock_buffer(bh);
1767 } else if (!trylock_buffer(bh)) {
1768 redirty_page_for_writepage(wbc, page);
1769 continue;
1770 }
1771 if (test_clear_buffer_dirty(bh)) {
1772 mark_buffer_async_write_endio(bh, handler);
1773 } else {
1774 unlock_buffer(bh);
1775 }
1776 } while ((bh = bh->b_this_page) != head);
1777
1778 /*
1779 * The page and its buffers are protected by PageWriteback(), so we can
1780 * drop the bh refcounts early.
1781 */
1782 BUG_ON(PageWriteback(page));
1783 set_page_writeback(page);
1784
1785 do {
1786 struct buffer_head *next = bh->b_this_page;
1787 if (buffer_async_write(bh)) {
1788 submit_bh(write_op, bh);
1789 nr_underway++;
1790 }
1791 bh = next;
1792 } while (bh != head);
1793 unlock_page(page);
1794
1795 err = 0;
1796 done:
1797 if (nr_underway == 0) {
1798 /*
1799 * The page was marked dirty, but the buffers were
1800 * clean. Someone wrote them back by hand with
1801 * ll_rw_block/submit_bh. A rare case.
1802 */
1803 end_page_writeback(page);
1804
1805 /*
1806 * The page and buffer_heads can be released at any time from
1807 * here on.
1808 */
1809 }
1810 return err;
1811
1812 recover:
1813 /*
1814 * ENOSPC, or some other error. We may already have added some
1815 * blocks to the file, so we need to write these out to avoid
1816 * exposing stale data.
1817 * The page is currently locked and not marked for writeback
1818 */
1819 bh = head;
1820 /* Recovery: lock and submit the mapped buffers */
1821 do {
1822 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1823 !buffer_delay(bh)) {
1824 lock_buffer(bh);
1825 mark_buffer_async_write_endio(bh, handler);
1826 } else {
1827 /*
1828 * The buffer may have been set dirty during
1829 * attachment to a dirty page.
1830 */
1831 clear_buffer_dirty(bh);
1832 }
1833 } while ((bh = bh->b_this_page) != head);
1834 SetPageError(page);
1835 BUG_ON(PageWriteback(page));
1836 mapping_set_error(page->mapping, err);
1837 set_page_writeback(page);
1838 do {
1839 struct buffer_head *next = bh->b_this_page;
1840 if (buffer_async_write(bh)) {
1841 clear_buffer_dirty(bh);
1842 submit_bh(write_op, bh);
1843 nr_underway++;
1844 }
1845 bh = next;
1846 } while (bh != head);
1847 unlock_page(page);
1848 goto done;
1849 }
1850
1851 /*
1852 * If a page has any new buffers, zero them out here, and mark them uptodate
1853 * and dirty so they'll be written out (in order to prevent uninitialised
1854 * block data from leaking). And clear the new bit.
1855 */
1856 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1857 {
1858 unsigned int block_start, block_end;
1859 struct buffer_head *head, *bh;
1860
1861 BUG_ON(!PageLocked(page));
1862 if (!page_has_buffers(page))
1863 return;
1864
1865 bh = head = page_buffers(page);
1866 block_start = 0;
1867 do {
1868 block_end = block_start + bh->b_size;
1869
1870 if (buffer_new(bh)) {
1871 if (block_end > from && block_start < to) {
1872 if (!PageUptodate(page)) {
1873 unsigned start, size;
1874
1875 start = max(from, block_start);
1876 size = min(to, block_end) - start;
1877
1878 zero_user(page, start, size);
1879 set_buffer_uptodate(bh);
1880 }
1881
1882 clear_buffer_new(bh);
1883 mark_buffer_dirty(bh);
1884 }
1885 }
1886
1887 block_start = block_end;
1888 bh = bh->b_this_page;
1889 } while (bh != head);
1890 }
1891 EXPORT_SYMBOL(page_zero_new_buffers);
1892
1893 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1894 get_block_t *get_block)
1895 {
1896 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1897 unsigned to = from + len;
1898 struct inode *inode = page->mapping->host;
1899 unsigned block_start, block_end;
1900 sector_t block;
1901 int err = 0;
1902 unsigned blocksize, bbits;
1903 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1904
1905 BUG_ON(!PageLocked(page));
1906 BUG_ON(from > PAGE_CACHE_SIZE);
1907 BUG_ON(to > PAGE_CACHE_SIZE);
1908 BUG_ON(from > to);
1909
1910 head = create_page_buffers(page, inode, 0);
1911 blocksize = head->b_size;
1912 bbits = block_size_bits(blocksize);
1913
1914 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1915
1916 for(bh = head, block_start = 0; bh != head || !block_start;
1917 block++, block_start=block_end, bh = bh->b_this_page) {
1918 block_end = block_start + blocksize;
1919 if (block_end <= from || block_start >= to) {
1920 if (PageUptodate(page)) {
1921 if (!buffer_uptodate(bh))
1922 set_buffer_uptodate(bh);
1923 }
1924 continue;
1925 }
1926 if (buffer_new(bh))
1927 clear_buffer_new(bh);
1928 if (!buffer_mapped(bh)) {
1929 WARN_ON(bh->b_size != blocksize);
1930 err = get_block(inode, block, bh, 1);
1931 if (err)
1932 break;
1933 if (buffer_new(bh)) {
1934 unmap_underlying_metadata(bh->b_bdev,
1935 bh->b_blocknr);
1936 if (PageUptodate(page)) {
1937 clear_buffer_new(bh);
1938 set_buffer_uptodate(bh);
1939 mark_buffer_dirty(bh);
1940 continue;
1941 }
1942 if (block_end > to || block_start < from)
1943 zero_user_segments(page,
1944 to, block_end,
1945 block_start, from);
1946 continue;
1947 }
1948 }
1949 if (PageUptodate(page)) {
1950 if (!buffer_uptodate(bh))
1951 set_buffer_uptodate(bh);
1952 continue;
1953 }
1954 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1955 !buffer_unwritten(bh) &&
1956 (block_start < from || block_end > to)) {
1957 ll_rw_block(READ, 1, &bh);
1958 *wait_bh++=bh;
1959 }
1960 }
1961 /*
1962 * If we issued read requests - let them complete.
1963 */
1964 while(wait_bh > wait) {
1965 wait_on_buffer(*--wait_bh);
1966 if (!buffer_uptodate(*wait_bh))
1967 err = -EIO;
1968 }
1969 if (unlikely(err))
1970 page_zero_new_buffers(page, from, to);
1971 return err;
1972 }
1973 EXPORT_SYMBOL(__block_write_begin);
1974
1975 static int __block_commit_write(struct inode *inode, struct page *page,
1976 unsigned from, unsigned to)
1977 {
1978 unsigned block_start, block_end;
1979 int partial = 0;
1980 unsigned blocksize;
1981 struct buffer_head *bh, *head;
1982
1983 bh = head = page_buffers(page);
1984 blocksize = bh->b_size;
1985
1986 block_start = 0;
1987 do {
1988 block_end = block_start + blocksize;
1989 if (block_end <= from || block_start >= to) {
1990 if (!buffer_uptodate(bh))
1991 partial = 1;
1992 } else {
1993 set_buffer_uptodate(bh);
1994 mark_buffer_dirty(bh);
1995 }
1996 clear_buffer_new(bh);
1997
1998 block_start = block_end;
1999 bh = bh->b_this_page;
2000 } while (bh != head);
2001
2002 /*
2003 * If this is a partial write which happened to make all buffers
2004 * uptodate then we can optimize away a bogus readpage() for
2005 * the next read(). Here we 'discover' whether the page went
2006 * uptodate as a result of this (potentially partial) write.
2007 */
2008 if (!partial)
2009 SetPageUptodate(page);
2010 return 0;
2011 }
2012
2013 /*
2014 * block_write_begin takes care of the basic task of block allocation and
2015 * bringing partial write blocks uptodate first.
2016 *
2017 * The filesystem needs to handle block truncation upon failure.
2018 */
2019 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2020 unsigned flags, struct page **pagep, get_block_t *get_block)
2021 {
2022 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2023 struct page *page;
2024 int status;
2025
2026 page = grab_cache_page_write_begin(mapping, index, flags);
2027 if (!page)
2028 return -ENOMEM;
2029
2030 status = __block_write_begin(page, pos, len, get_block);
2031 if (unlikely(status)) {
2032 unlock_page(page);
2033 page_cache_release(page);
2034 page = NULL;
2035 }
2036
2037 *pagep = page;
2038 return status;
2039 }
2040 EXPORT_SYMBOL(block_write_begin);
2041
2042 int block_write_end(struct file *file, struct address_space *mapping,
2043 loff_t pos, unsigned len, unsigned copied,
2044 struct page *page, void *fsdata)
2045 {
2046 struct inode *inode = mapping->host;
2047 unsigned start;
2048
2049 start = pos & (PAGE_CACHE_SIZE - 1);
2050
2051 if (unlikely(copied < len)) {
2052 /*
2053 * The buffers that were written will now be uptodate, so we
2054 * don't have to worry about a readpage reading them and
2055 * overwriting a partial write. However if we have encountered
2056 * a short write and only partially written into a buffer, it
2057 * will not be marked uptodate, so a readpage might come in and
2058 * destroy our partial write.
2059 *
2060 * Do the simplest thing, and just treat any short write to a
2061 * non uptodate page as a zero-length write, and force the
2062 * caller to redo the whole thing.
2063 */
2064 if (!PageUptodate(page))
2065 copied = 0;
2066
2067 page_zero_new_buffers(page, start+copied, start+len);
2068 }
2069 flush_dcache_page(page);
2070
2071 /* This could be a short (even 0-length) commit */
2072 __block_commit_write(inode, page, start, start+copied);
2073
2074 return copied;
2075 }
2076 EXPORT_SYMBOL(block_write_end);
2077
2078 int generic_write_end(struct file *file, struct address_space *mapping,
2079 loff_t pos, unsigned len, unsigned copied,
2080 struct page *page, void *fsdata)
2081 {
2082 struct inode *inode = mapping->host;
2083 int i_size_changed = 0;
2084
2085 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2086
2087 /*
2088 * No need to use i_size_read() here, the i_size
2089 * cannot change under us because we hold i_mutex.
2090 *
2091 * But it's important to update i_size while still holding page lock:
2092 * page writeout could otherwise come in and zero beyond i_size.
2093 */
2094 if (pos+copied > inode->i_size) {
2095 i_size_write(inode, pos+copied);
2096 i_size_changed = 1;
2097 }
2098
2099 unlock_page(page);
2100 page_cache_release(page);
2101
2102 /*
2103 * Don't mark the inode dirty under page lock. First, it unnecessarily
2104 * makes the holding time of page lock longer. Second, it forces lock
2105 * ordering of page lock and transaction start for journaling
2106 * filesystems.
2107 */
2108 if (i_size_changed)
2109 mark_inode_dirty(inode);
2110
2111 return copied;
2112 }
2113 EXPORT_SYMBOL(generic_write_end);
2114
2115 /*
2116 * block_is_partially_uptodate checks whether buffers within a page are
2117 * uptodate or not.
2118 *
2119 * Returns true if all buffers which correspond to a file portion
2120 * we want to read are uptodate.
2121 */
2122 int block_is_partially_uptodate(struct page *page, unsigned long from,
2123 unsigned long count)
2124 {
2125 unsigned block_start, block_end, blocksize;
2126 unsigned to;
2127 struct buffer_head *bh, *head;
2128 int ret = 1;
2129
2130 if (!page_has_buffers(page))
2131 return 0;
2132
2133 head = page_buffers(page);
2134 blocksize = head->b_size;
2135 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2136 to = from + to;
2137 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2138 return 0;
2139
2140 bh = head;
2141 block_start = 0;
2142 do {
2143 block_end = block_start + blocksize;
2144 if (block_end > from && block_start < to) {
2145 if (!buffer_uptodate(bh)) {
2146 ret = 0;
2147 break;
2148 }
2149 if (block_end >= to)
2150 break;
2151 }
2152 block_start = block_end;
2153 bh = bh->b_this_page;
2154 } while (bh != head);
2155
2156 return ret;
2157 }
2158 EXPORT_SYMBOL(block_is_partially_uptodate);
2159
2160 /*
2161 * Generic "read page" function for block devices that have the normal
2162 * get_block functionality. This is most of the block device filesystems.
2163 * Reads the page asynchronously --- the unlock_buffer() and
2164 * set/clear_buffer_uptodate() functions propagate buffer state into the
2165 * page struct once IO has completed.
2166 */
2167 int block_read_full_page(struct page *page, get_block_t *get_block)
2168 {
2169 struct inode *inode = page->mapping->host;
2170 sector_t iblock, lblock;
2171 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2172 unsigned int blocksize, bbits;
2173 int nr, i;
2174 int fully_mapped = 1;
2175
2176 head = create_page_buffers(page, inode, 0);
2177 blocksize = head->b_size;
2178 bbits = block_size_bits(blocksize);
2179
2180 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2181 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2182 bh = head;
2183 nr = 0;
2184 i = 0;
2185
2186 do {
2187 if (buffer_uptodate(bh))
2188 continue;
2189
2190 if (!buffer_mapped(bh)) {
2191 int err = 0;
2192
2193 fully_mapped = 0;
2194 if (iblock < lblock) {
2195 WARN_ON(bh->b_size != blocksize);
2196 err = get_block(inode, iblock, bh, 0);
2197 if (err)
2198 SetPageError(page);
2199 }
2200 if (!buffer_mapped(bh)) {
2201 zero_user(page, i * blocksize, blocksize);
2202 if (!err)
2203 set_buffer_uptodate(bh);
2204 continue;
2205 }
2206 /*
2207 * get_block() might have updated the buffer
2208 * synchronously
2209 */
2210 if (buffer_uptodate(bh))
2211 continue;
2212 }
2213 arr[nr++] = bh;
2214 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2215
2216 if (fully_mapped)
2217 SetPageMappedToDisk(page);
2218
2219 if (!nr) {
2220 /*
2221 * All buffers are uptodate - we can set the page uptodate
2222 * as well. But not if get_block() returned an error.
2223 */
2224 if (!PageError(page))
2225 SetPageUptodate(page);
2226 unlock_page(page);
2227 return 0;
2228 }
2229
2230 /* Stage two: lock the buffers */
2231 for (i = 0; i < nr; i++) {
2232 bh = arr[i];
2233 lock_buffer(bh);
2234 mark_buffer_async_read(bh);
2235 }
2236
2237 /*
2238 * Stage 3: start the IO. Check for uptodateness
2239 * inside the buffer lock in case another process reading
2240 * the underlying blockdev brought it uptodate (the sct fix).
2241 */
2242 for (i = 0; i < nr; i++) {
2243 bh = arr[i];
2244 if (buffer_uptodate(bh))
2245 end_buffer_async_read(bh, 1);
2246 else
2247 submit_bh(READ, bh);
2248 }
2249 return 0;
2250 }
2251 EXPORT_SYMBOL(block_read_full_page);
2252
2253 /* utility function for filesystems that need to do work on expanding
2254 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2255 * deal with the hole.
2256 */
2257 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2258 {
2259 struct address_space *mapping = inode->i_mapping;
2260 struct page *page;
2261 void *fsdata;
2262 int err;
2263
2264 err = inode_newsize_ok(inode, size);
2265 if (err)
2266 goto out;
2267
2268 err = pagecache_write_begin(NULL, mapping, size, 0,
2269 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2270 &page, &fsdata);
2271 if (err)
2272 goto out;
2273
2274 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2275 BUG_ON(err > 0);
2276
2277 out:
2278 return err;
2279 }
2280 EXPORT_SYMBOL(generic_cont_expand_simple);
2281
2282 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2283 loff_t pos, loff_t *bytes)
2284 {
2285 struct inode *inode = mapping->host;
2286 unsigned blocksize = 1 << inode->i_blkbits;
2287 struct page *page;
2288 void *fsdata;
2289 pgoff_t index, curidx;
2290 loff_t curpos;
2291 unsigned zerofrom, offset, len;
2292 int err = 0;
2293
2294 index = pos >> PAGE_CACHE_SHIFT;
2295 offset = pos & ~PAGE_CACHE_MASK;
2296
2297 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2298 zerofrom = curpos & ~PAGE_CACHE_MASK;
2299 if (zerofrom & (blocksize-1)) {
2300 *bytes |= (blocksize-1);
2301 (*bytes)++;
2302 }
2303 len = PAGE_CACHE_SIZE - zerofrom;
2304
2305 err = pagecache_write_begin(file, mapping, curpos, len,
2306 AOP_FLAG_UNINTERRUPTIBLE,
2307 &page, &fsdata);
2308 if (err)
2309 goto out;
2310 zero_user(page, zerofrom, len);
2311 err = pagecache_write_end(file, mapping, curpos, len, len,
2312 page, fsdata);
2313 if (err < 0)
2314 goto out;
2315 BUG_ON(err != len);
2316 err = 0;
2317
2318 balance_dirty_pages_ratelimited(mapping);
2319 }
2320
2321 /* page covers the boundary, find the boundary offset */
2322 if (index == curidx) {
2323 zerofrom = curpos & ~PAGE_CACHE_MASK;
2324 /* if we will expand the thing last block will be filled */
2325 if (offset <= zerofrom) {
2326 goto out;
2327 }
2328 if (zerofrom & (blocksize-1)) {
2329 *bytes |= (blocksize-1);
2330 (*bytes)++;
2331 }
2332 len = offset - zerofrom;
2333
2334 err = pagecache_write_begin(file, mapping, curpos, len,
2335 AOP_FLAG_UNINTERRUPTIBLE,
2336 &page, &fsdata);
2337 if (err)
2338 goto out;
2339 zero_user(page, zerofrom, len);
2340 err = pagecache_write_end(file, mapping, curpos, len, len,
2341 page, fsdata);
2342 if (err < 0)
2343 goto out;
2344 BUG_ON(err != len);
2345 err = 0;
2346 }
2347 out:
2348 return err;
2349 }
2350
2351 /*
2352 * For moronic filesystems that do not allow holes in file.
2353 * We may have to extend the file.
2354 */
2355 int cont_write_begin(struct file *file, struct address_space *mapping,
2356 loff_t pos, unsigned len, unsigned flags,
2357 struct page **pagep, void **fsdata,
2358 get_block_t *get_block, loff_t *bytes)
2359 {
2360 struct inode *inode = mapping->host;
2361 unsigned blocksize = 1 << inode->i_blkbits;
2362 unsigned zerofrom;
2363 int err;
2364
2365 err = cont_expand_zero(file, mapping, pos, bytes);
2366 if (err)
2367 return err;
2368
2369 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2370 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2371 *bytes |= (blocksize-1);
2372 (*bytes)++;
2373 }
2374
2375 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2376 }
2377 EXPORT_SYMBOL(cont_write_begin);
2378
2379 int block_commit_write(struct page *page, unsigned from, unsigned to)
2380 {
2381 struct inode *inode = page->mapping->host;
2382 __block_commit_write(inode,page,from,to);
2383 return 0;
2384 }
2385 EXPORT_SYMBOL(block_commit_write);
2386
2387 /*
2388 * block_page_mkwrite() is not allowed to change the file size as it gets
2389 * called from a page fault handler when a page is first dirtied. Hence we must
2390 * be careful to check for EOF conditions here. We set the page up correctly
2391 * for a written page which means we get ENOSPC checking when writing into
2392 * holes and correct delalloc and unwritten extent mapping on filesystems that
2393 * support these features.
2394 *
2395 * We are not allowed to take the i_mutex here so we have to play games to
2396 * protect against truncate races as the page could now be beyond EOF. Because
2397 * truncate writes the inode size before removing pages, once we have the
2398 * page lock we can determine safely if the page is beyond EOF. If it is not
2399 * beyond EOF, then the page is guaranteed safe against truncation until we
2400 * unlock the page.
2401 *
2402 * Direct callers of this function should protect against filesystem freezing
2403 * using sb_start_write() - sb_end_write() functions.
2404 */
2405 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2406 get_block_t get_block)
2407 {
2408 struct page *page = vmf->page;
2409 struct inode *inode = file_inode(vma->vm_file);
2410 unsigned long end;
2411 loff_t size;
2412 int ret;
2413
2414 lock_page(page);
2415 size = i_size_read(inode);
2416 if ((page->mapping != inode->i_mapping) ||
2417 (page_offset(page) > size)) {
2418 /* We overload EFAULT to mean page got truncated */
2419 ret = -EFAULT;
2420 goto out_unlock;
2421 }
2422
2423 /* page is wholly or partially inside EOF */
2424 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2425 end = size & ~PAGE_CACHE_MASK;
2426 else
2427 end = PAGE_CACHE_SIZE;
2428
2429 ret = __block_write_begin(page, 0, end, get_block);
2430 if (!ret)
2431 ret = block_commit_write(page, 0, end);
2432
2433 if (unlikely(ret < 0))
2434 goto out_unlock;
2435 set_page_dirty(page);
2436 wait_for_stable_page(page);
2437 return 0;
2438 out_unlock:
2439 unlock_page(page);
2440 return ret;
2441 }
2442 EXPORT_SYMBOL(__block_page_mkwrite);
2443
2444 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2445 get_block_t get_block)
2446 {
2447 int ret;
2448 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2449
2450 sb_start_pagefault(sb);
2451
2452 /*
2453 * Update file times before taking page lock. We may end up failing the
2454 * fault so this update may be superfluous but who really cares...
2455 */
2456 file_update_time(vma->vm_file);
2457
2458 ret = __block_page_mkwrite(vma, vmf, get_block);
2459 sb_end_pagefault(sb);
2460 return block_page_mkwrite_return(ret);
2461 }
2462 EXPORT_SYMBOL(block_page_mkwrite);
2463
2464 /*
2465 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2466 * immediately, while under the page lock. So it needs a special end_io
2467 * handler which does not touch the bh after unlocking it.
2468 */
2469 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2470 {
2471 __end_buffer_read_notouch(bh, uptodate);
2472 }
2473
2474 /*
2475 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2476 * the page (converting it to circular linked list and taking care of page
2477 * dirty races).
2478 */
2479 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2480 {
2481 struct buffer_head *bh;
2482
2483 BUG_ON(!PageLocked(page));
2484
2485 spin_lock(&page->mapping->private_lock);
2486 bh = head;
2487 do {
2488 if (PageDirty(page))
2489 set_buffer_dirty(bh);
2490 if (!bh->b_this_page)
2491 bh->b_this_page = head;
2492 bh = bh->b_this_page;
2493 } while (bh != head);
2494 attach_page_buffers(page, head);
2495 spin_unlock(&page->mapping->private_lock);
2496 }
2497
2498 /*
2499 * On entry, the page is fully not uptodate.
2500 * On exit the page is fully uptodate in the areas outside (from,to)
2501 * The filesystem needs to handle block truncation upon failure.
2502 */
2503 int nobh_write_begin(struct address_space *mapping,
2504 loff_t pos, unsigned len, unsigned flags,
2505 struct page **pagep, void **fsdata,
2506 get_block_t *get_block)
2507 {
2508 struct inode *inode = mapping->host;
2509 const unsigned blkbits = inode->i_blkbits;
2510 const unsigned blocksize = 1 << blkbits;
2511 struct buffer_head *head, *bh;
2512 struct page *page;
2513 pgoff_t index;
2514 unsigned from, to;
2515 unsigned block_in_page;
2516 unsigned block_start, block_end;
2517 sector_t block_in_file;
2518 int nr_reads = 0;
2519 int ret = 0;
2520 int is_mapped_to_disk = 1;
2521
2522 index = pos >> PAGE_CACHE_SHIFT;
2523 from = pos & (PAGE_CACHE_SIZE - 1);
2524 to = from + len;
2525
2526 page = grab_cache_page_write_begin(mapping, index, flags);
2527 if (!page)
2528 return -ENOMEM;
2529 *pagep = page;
2530 *fsdata = NULL;
2531
2532 if (page_has_buffers(page)) {
2533 ret = __block_write_begin(page, pos, len, get_block);
2534 if (unlikely(ret))
2535 goto out_release;
2536 return ret;
2537 }
2538
2539 if (PageMappedToDisk(page))
2540 return 0;
2541
2542 /*
2543 * Allocate buffers so that we can keep track of state, and potentially
2544 * attach them to the page if an error occurs. In the common case of
2545 * no error, they will just be freed again without ever being attached
2546 * to the page (which is all OK, because we're under the page lock).
2547 *
2548 * Be careful: the buffer linked list is a NULL terminated one, rather
2549 * than the circular one we're used to.
2550 */
2551 head = alloc_page_buffers(page, blocksize, 0);
2552 if (!head) {
2553 ret = -ENOMEM;
2554 goto out_release;
2555 }
2556
2557 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2558
2559 /*
2560 * We loop across all blocks in the page, whether or not they are
2561 * part of the affected region. This is so we can discover if the
2562 * page is fully mapped-to-disk.
2563 */
2564 for (block_start = 0, block_in_page = 0, bh = head;
2565 block_start < PAGE_CACHE_SIZE;
2566 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2567 int create;
2568
2569 block_end = block_start + blocksize;
2570 bh->b_state = 0;
2571 create = 1;
2572 if (block_start >= to)
2573 create = 0;
2574 ret = get_block(inode, block_in_file + block_in_page,
2575 bh, create);
2576 if (ret)
2577 goto failed;
2578 if (!buffer_mapped(bh))
2579 is_mapped_to_disk = 0;
2580 if (buffer_new(bh))
2581 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2582 if (PageUptodate(page)) {
2583 set_buffer_uptodate(bh);
2584 continue;
2585 }
2586 if (buffer_new(bh) || !buffer_mapped(bh)) {
2587 zero_user_segments(page, block_start, from,
2588 to, block_end);
2589 continue;
2590 }
2591 if (buffer_uptodate(bh))
2592 continue; /* reiserfs does this */
2593 if (block_start < from || block_end > to) {
2594 lock_buffer(bh);
2595 bh->b_end_io = end_buffer_read_nobh;
2596 submit_bh(READ, bh);
2597 nr_reads++;
2598 }
2599 }
2600
2601 if (nr_reads) {
2602 /*
2603 * The page is locked, so these buffers are protected from
2604 * any VM or truncate activity. Hence we don't need to care
2605 * for the buffer_head refcounts.
2606 */
2607 for (bh = head; bh; bh = bh->b_this_page) {
2608 wait_on_buffer(bh);
2609 if (!buffer_uptodate(bh))
2610 ret = -EIO;
2611 }
2612 if (ret)
2613 goto failed;
2614 }
2615
2616 if (is_mapped_to_disk)
2617 SetPageMappedToDisk(page);
2618
2619 *fsdata = head; /* to be released by nobh_write_end */
2620
2621 return 0;
2622
2623 failed:
2624 BUG_ON(!ret);
2625 /*
2626 * Error recovery is a bit difficult. We need to zero out blocks that
2627 * were newly allocated, and dirty them to ensure they get written out.
2628 * Buffers need to be attached to the page at this point, otherwise
2629 * the handling of potential IO errors during writeout would be hard
2630 * (could try doing synchronous writeout, but what if that fails too?)
2631 */
2632 attach_nobh_buffers(page, head);
2633 page_zero_new_buffers(page, from, to);
2634
2635 out_release:
2636 unlock_page(page);
2637 page_cache_release(page);
2638 *pagep = NULL;
2639
2640 return ret;
2641 }
2642 EXPORT_SYMBOL(nobh_write_begin);
2643
2644 int nobh_write_end(struct file *file, struct address_space *mapping,
2645 loff_t pos, unsigned len, unsigned copied,
2646 struct page *page, void *fsdata)
2647 {
2648 struct inode *inode = page->mapping->host;
2649 struct buffer_head *head = fsdata;
2650 struct buffer_head *bh;
2651 BUG_ON(fsdata != NULL && page_has_buffers(page));
2652
2653 if (unlikely(copied < len) && head)
2654 attach_nobh_buffers(page, head);
2655 if (page_has_buffers(page))
2656 return generic_write_end(file, mapping, pos, len,
2657 copied, page, fsdata);
2658
2659 SetPageUptodate(page);
2660 set_page_dirty(page);
2661 if (pos+copied > inode->i_size) {
2662 i_size_write(inode, pos+copied);
2663 mark_inode_dirty(inode);
2664 }
2665
2666 unlock_page(page);
2667 page_cache_release(page);
2668
2669 while (head) {
2670 bh = head;
2671 head = head->b_this_page;
2672 free_buffer_head(bh);
2673 }
2674
2675 return copied;
2676 }
2677 EXPORT_SYMBOL(nobh_write_end);
2678
2679 /*
2680 * nobh_writepage() - based on block_full_write_page() except
2681 * that it tries to operate without attaching bufferheads to
2682 * the page.
2683 */
2684 int nobh_writepage(struct page *page, get_block_t *get_block,
2685 struct writeback_control *wbc)
2686 {
2687 struct inode * const inode = page->mapping->host;
2688 loff_t i_size = i_size_read(inode);
2689 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2690 unsigned offset;
2691 int ret;
2692
2693 /* Is the page fully inside i_size? */
2694 if (page->index < end_index)
2695 goto out;
2696
2697 /* Is the page fully outside i_size? (truncate in progress) */
2698 offset = i_size & (PAGE_CACHE_SIZE-1);
2699 if (page->index >= end_index+1 || !offset) {
2700 /*
2701 * The page may have dirty, unmapped buffers. For example,
2702 * they may have been added in ext3_writepage(). Make them
2703 * freeable here, so the page does not leak.
2704 */
2705 #if 0
2706 /* Not really sure about this - do we need this ? */
2707 if (page->mapping->a_ops->invalidatepage)
2708 page->mapping->a_ops->invalidatepage(page, offset);
2709 #endif
2710 unlock_page(page);
2711 return 0; /* don't care */
2712 }
2713
2714 /*
2715 * The page straddles i_size. It must be zeroed out on each and every
2716 * writepage invocation because it may be mmapped. "A file is mapped
2717 * in multiples of the page size. For a file that is not a multiple of
2718 * the page size, the remaining memory is zeroed when mapped, and
2719 * writes to that region are not written out to the file."
2720 */
2721 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2722 out:
2723 ret = mpage_writepage(page, get_block, wbc);
2724 if (ret == -EAGAIN)
2725 ret = __block_write_full_page(inode, page, get_block, wbc,
2726 end_buffer_async_write);
2727 return ret;
2728 }
2729 EXPORT_SYMBOL(nobh_writepage);
2730
2731 int nobh_truncate_page(struct address_space *mapping,
2732 loff_t from, get_block_t *get_block)
2733 {
2734 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2735 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2736 unsigned blocksize;
2737 sector_t iblock;
2738 unsigned length, pos;
2739 struct inode *inode = mapping->host;
2740 struct page *page;
2741 struct buffer_head map_bh;
2742 int err;
2743
2744 blocksize = 1 << inode->i_blkbits;
2745 length = offset & (blocksize - 1);
2746
2747 /* Block boundary? Nothing to do */
2748 if (!length)
2749 return 0;
2750
2751 length = blocksize - length;
2752 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2753
2754 page = grab_cache_page(mapping, index);
2755 err = -ENOMEM;
2756 if (!page)
2757 goto out;
2758
2759 if (page_has_buffers(page)) {
2760 has_buffers:
2761 unlock_page(page);
2762 page_cache_release(page);
2763 return block_truncate_page(mapping, from, get_block);
2764 }
2765
2766 /* Find the buffer that contains "offset" */
2767 pos = blocksize;
2768 while (offset >= pos) {
2769 iblock++;
2770 pos += blocksize;
2771 }
2772
2773 map_bh.b_size = blocksize;
2774 map_bh.b_state = 0;
2775 err = get_block(inode, iblock, &map_bh, 0);
2776 if (err)
2777 goto unlock;
2778 /* unmapped? It's a hole - nothing to do */
2779 if (!buffer_mapped(&map_bh))
2780 goto unlock;
2781
2782 /* Ok, it's mapped. Make sure it's up-to-date */
2783 if (!PageUptodate(page)) {
2784 err = mapping->a_ops->readpage(NULL, page);
2785 if (err) {
2786 page_cache_release(page);
2787 goto out;
2788 }
2789 lock_page(page);
2790 if (!PageUptodate(page)) {
2791 err = -EIO;
2792 goto unlock;
2793 }
2794 if (page_has_buffers(page))
2795 goto has_buffers;
2796 }
2797 zero_user(page, offset, length);
2798 set_page_dirty(page);
2799 err = 0;
2800
2801 unlock:
2802 unlock_page(page);
2803 page_cache_release(page);
2804 out:
2805 return err;
2806 }
2807 EXPORT_SYMBOL(nobh_truncate_page);
2808
2809 int block_truncate_page(struct address_space *mapping,
2810 loff_t from, get_block_t *get_block)
2811 {
2812 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2813 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2814 unsigned blocksize;
2815 sector_t iblock;
2816 unsigned length, pos;
2817 struct inode *inode = mapping->host;
2818 struct page *page;
2819 struct buffer_head *bh;
2820 int err;
2821
2822 blocksize = 1 << inode->i_blkbits;
2823 length = offset & (blocksize - 1);
2824
2825 /* Block boundary? Nothing to do */
2826 if (!length)
2827 return 0;
2828
2829 length = blocksize - length;
2830 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2831
2832 page = grab_cache_page(mapping, index);
2833 err = -ENOMEM;
2834 if (!page)
2835 goto out;
2836
2837 if (!page_has_buffers(page))
2838 create_empty_buffers(page, blocksize, 0);
2839
2840 /* Find the buffer that contains "offset" */
2841 bh = page_buffers(page);
2842 pos = blocksize;
2843 while (offset >= pos) {
2844 bh = bh->b_this_page;
2845 iblock++;
2846 pos += blocksize;
2847 }
2848
2849 err = 0;
2850 if (!buffer_mapped(bh)) {
2851 WARN_ON(bh->b_size != blocksize);
2852 err = get_block(inode, iblock, bh, 0);
2853 if (err)
2854 goto unlock;
2855 /* unmapped? It's a hole - nothing to do */
2856 if (!buffer_mapped(bh))
2857 goto unlock;
2858 }
2859
2860 /* Ok, it's mapped. Make sure it's up-to-date */
2861 if (PageUptodate(page))
2862 set_buffer_uptodate(bh);
2863
2864 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2865 err = -EIO;
2866 ll_rw_block(READ, 1, &bh);
2867 wait_on_buffer(bh);
2868 /* Uhhuh. Read error. Complain and punt. */
2869 if (!buffer_uptodate(bh))
2870 goto unlock;
2871 }
2872
2873 zero_user(page, offset, length);
2874 mark_buffer_dirty(bh);
2875 err = 0;
2876
2877 unlock:
2878 unlock_page(page);
2879 page_cache_release(page);
2880 out:
2881 return err;
2882 }
2883 EXPORT_SYMBOL(block_truncate_page);
2884
2885 /*
2886 * The generic ->writepage function for buffer-backed address_spaces
2887 */
2888 int block_write_full_page(struct page *page, get_block_t *get_block,
2889 struct writeback_control *wbc)
2890 {
2891 struct inode * const inode = page->mapping->host;
2892 loff_t i_size = i_size_read(inode);
2893 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2894 unsigned offset;
2895
2896 /* Is the page fully inside i_size? */
2897 if (page->index < end_index)
2898 return __block_write_full_page(inode, page, get_block, wbc,
2899 end_buffer_async_write);
2900
2901 /* Is the page fully outside i_size? (truncate in progress) */
2902 offset = i_size & (PAGE_CACHE_SIZE-1);
2903 if (page->index >= end_index+1 || !offset) {
2904 /*
2905 * The page may have dirty, unmapped buffers. For example,
2906 * they may have been added in ext3_writepage(). Make them
2907 * freeable here, so the page does not leak.
2908 */
2909 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2910 unlock_page(page);
2911 return 0; /* don't care */
2912 }
2913
2914 /*
2915 * The page straddles i_size. It must be zeroed out on each and every
2916 * writepage invocation because it may be mmapped. "A file is mapped
2917 * in multiples of the page size. For a file that is not a multiple of
2918 * the page size, the remaining memory is zeroed when mapped, and
2919 * writes to that region are not written out to the file."
2920 */
2921 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2922 return __block_write_full_page(inode, page, get_block, wbc,
2923 end_buffer_async_write);
2924 }
2925 EXPORT_SYMBOL(block_write_full_page);
2926
2927 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2928 get_block_t *get_block)
2929 {
2930 struct buffer_head tmp;
2931 struct inode *inode = mapping->host;
2932 tmp.b_state = 0;
2933 tmp.b_blocknr = 0;
2934 tmp.b_size = 1 << inode->i_blkbits;
2935 get_block(inode, block, &tmp, 0);
2936 return tmp.b_blocknr;
2937 }
2938 EXPORT_SYMBOL(generic_block_bmap);
2939
2940 static void end_bio_bh_io_sync(struct bio *bio, int err)
2941 {
2942 struct buffer_head *bh = bio->bi_private;
2943
2944 if (err == -EOPNOTSUPP) {
2945 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2946 }
2947
2948 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2949 set_bit(BH_Quiet, &bh->b_state);
2950
2951 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2952 bio_put(bio);
2953 }
2954
2955 /*
2956 * This allows us to do IO even on the odd last sectors
2957 * of a device, even if the bh block size is some multiple
2958 * of the physical sector size.
2959 *
2960 * We'll just truncate the bio to the size of the device,
2961 * and clear the end of the buffer head manually.
2962 *
2963 * Truly out-of-range accesses will turn into actual IO
2964 * errors, this only handles the "we need to be able to
2965 * do IO at the final sector" case.
2966 */
2967 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2968 {
2969 sector_t maxsector;
2970 unsigned bytes;
2971
2972 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2973 if (!maxsector)
2974 return;
2975
2976 /*
2977 * If the *whole* IO is past the end of the device,
2978 * let it through, and the IO layer will turn it into
2979 * an EIO.
2980 */
2981 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2982 return;
2983
2984 maxsector -= bio->bi_iter.bi_sector;
2985 bytes = bio->bi_iter.bi_size;
2986 if (likely((bytes >> 9) <= maxsector))
2987 return;
2988
2989 /* Uhhuh. We've got a bh that straddles the device size! */
2990 bytes = maxsector << 9;
2991
2992 /* Truncate the bio.. */
2993 bio->bi_iter.bi_size = bytes;
2994 bio->bi_io_vec[0].bv_len = bytes;
2995
2996 /* ..and clear the end of the buffer for reads */
2997 if ((rw & RW_MASK) == READ) {
2998 void *kaddr = kmap_atomic(bh->b_page);
2999 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3000 kunmap_atomic(kaddr);
3001 flush_dcache_page(bh->b_page);
3002 }
3003 }
3004
3005 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3006 {
3007 struct bio *bio;
3008 int ret = 0;
3009
3010 BUG_ON(!buffer_locked(bh));
3011 BUG_ON(!buffer_mapped(bh));
3012 BUG_ON(!bh->b_end_io);
3013 BUG_ON(buffer_delay(bh));
3014 BUG_ON(buffer_unwritten(bh));
3015
3016 /*
3017 * Only clear out a write error when rewriting
3018 */
3019 if (test_set_buffer_req(bh) && (rw & WRITE))
3020 clear_buffer_write_io_error(bh);
3021
3022 /*
3023 * from here on down, it's all bio -- do the initial mapping,
3024 * submit_bio -> generic_make_request may further map this bio around
3025 */
3026 bio = bio_alloc(GFP_NOIO, 1);
3027
3028 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3029 bio->bi_bdev = bh->b_bdev;
3030 bio->bi_io_vec[0].bv_page = bh->b_page;
3031 bio->bi_io_vec[0].bv_len = bh->b_size;
3032 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3033
3034 bio->bi_vcnt = 1;
3035 bio->bi_iter.bi_size = bh->b_size;
3036
3037 bio->bi_end_io = end_bio_bh_io_sync;
3038 bio->bi_private = bh;
3039 bio->bi_flags |= bio_flags;
3040
3041 /* Take care of bh's that straddle the end of the device */
3042 guard_bh_eod(rw, bio, bh);
3043
3044 if (buffer_meta(bh))
3045 rw |= REQ_META;
3046 if (buffer_prio(bh))
3047 rw |= REQ_PRIO;
3048
3049 bio_get(bio);
3050 submit_bio(rw, bio);
3051
3052 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3053 ret = -EOPNOTSUPP;
3054
3055 bio_put(bio);
3056 return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(_submit_bh);
3059
3060 int submit_bh(int rw, struct buffer_head *bh)
3061 {
3062 return _submit_bh(rw, bh, 0);
3063 }
3064 EXPORT_SYMBOL(submit_bh);
3065
3066 /**
3067 * ll_rw_block: low-level access to block devices (DEPRECATED)
3068 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3069 * @nr: number of &struct buffer_heads in the array
3070 * @bhs: array of pointers to &struct buffer_head
3071 *
3072 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3074 * %READA option is described in the documentation for generic_make_request()
3075 * which ll_rw_block() calls.
3076 *
3077 * This function drops any buffer that it cannot get a lock on (with the
3078 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079 * request, and any buffer that appears to be up-to-date when doing read
3080 * request. Further it marks as clean buffers that are processed for
3081 * writing (the buffer cache won't assume that they are actually clean
3082 * until the buffer gets unlocked).
3083 *
3084 * ll_rw_block sets b_end_io to simple completion handler that marks
3085 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3086 * any waiters.
3087 *
3088 * All of the buffers must be for the same device, and must also be a
3089 * multiple of the current approved size for the device.
3090 */
3091 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3092 {
3093 int i;
3094
3095 for (i = 0; i < nr; i++) {
3096 struct buffer_head *bh = bhs[i];
3097
3098 if (!trylock_buffer(bh))
3099 continue;
3100 if (rw == WRITE) {
3101 if (test_clear_buffer_dirty(bh)) {
3102 bh->b_end_io = end_buffer_write_sync;
3103 get_bh(bh);
3104 submit_bh(WRITE, bh);
3105 continue;
3106 }
3107 } else {
3108 if (!buffer_uptodate(bh)) {
3109 bh->b_end_io = end_buffer_read_sync;
3110 get_bh(bh);
3111 submit_bh(rw, bh);
3112 continue;
3113 }
3114 }
3115 unlock_buffer(bh);
3116 }
3117 }
3118 EXPORT_SYMBOL(ll_rw_block);
3119
3120 void write_dirty_buffer(struct buffer_head *bh, int rw)
3121 {
3122 lock_buffer(bh);
3123 if (!test_clear_buffer_dirty(bh)) {
3124 unlock_buffer(bh);
3125 return;
3126 }
3127 bh->b_end_io = end_buffer_write_sync;
3128 get_bh(bh);
3129 submit_bh(rw, bh);
3130 }
3131 EXPORT_SYMBOL(write_dirty_buffer);
3132
3133 /*
3134 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135 * and then start new I/O and then wait upon it. The caller must have a ref on
3136 * the buffer_head.
3137 */
3138 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3139 {
3140 int ret = 0;
3141
3142 WARN_ON(atomic_read(&bh->b_count) < 1);
3143 lock_buffer(bh);
3144 if (test_clear_buffer_dirty(bh)) {
3145 get_bh(bh);
3146 bh->b_end_io = end_buffer_write_sync;
3147 ret = submit_bh(rw, bh);
3148 wait_on_buffer(bh);
3149 if (!ret && !buffer_uptodate(bh))
3150 ret = -EIO;
3151 } else {
3152 unlock_buffer(bh);
3153 }
3154 return ret;
3155 }
3156 EXPORT_SYMBOL(__sync_dirty_buffer);
3157
3158 int sync_dirty_buffer(struct buffer_head *bh)
3159 {
3160 return __sync_dirty_buffer(bh, WRITE_SYNC);
3161 }
3162 EXPORT_SYMBOL(sync_dirty_buffer);
3163
3164 /*
3165 * try_to_free_buffers() checks if all the buffers on this particular page
3166 * are unused, and releases them if so.
3167 *
3168 * Exclusion against try_to_free_buffers may be obtained by either
3169 * locking the page or by holding its mapping's private_lock.
3170 *
3171 * If the page is dirty but all the buffers are clean then we need to
3172 * be sure to mark the page clean as well. This is because the page
3173 * may be against a block device, and a later reattachment of buffers
3174 * to a dirty page will set *all* buffers dirty. Which would corrupt
3175 * filesystem data on the same device.
3176 *
3177 * The same applies to regular filesystem pages: if all the buffers are
3178 * clean then we set the page clean and proceed. To do that, we require
3179 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3180 * private_lock.
3181 *
3182 * try_to_free_buffers() is non-blocking.
3183 */
3184 static inline int buffer_busy(struct buffer_head *bh)
3185 {
3186 return atomic_read(&bh->b_count) |
3187 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3188 }
3189
3190 static int
3191 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3192 {
3193 struct buffer_head *head = page_buffers(page);
3194 struct buffer_head *bh;
3195
3196 bh = head;
3197 do {
3198 if (buffer_write_io_error(bh) && page->mapping)
3199 set_bit(AS_EIO, &page->mapping->flags);
3200 if (buffer_busy(bh))
3201 goto failed;
3202 bh = bh->b_this_page;
3203 } while (bh != head);
3204
3205 do {
3206 struct buffer_head *next = bh->b_this_page;
3207
3208 if (bh->b_assoc_map)
3209 __remove_assoc_queue(bh);
3210 bh = next;
3211 } while (bh != head);
3212 *buffers_to_free = head;
3213 __clear_page_buffers(page);
3214 return 1;
3215 failed:
3216 return 0;
3217 }
3218
3219 int try_to_free_buffers(struct page *page)
3220 {
3221 struct address_space * const mapping = page->mapping;
3222 struct buffer_head *buffers_to_free = NULL;
3223 int ret = 0;
3224
3225 BUG_ON(!PageLocked(page));
3226 if (PageWriteback(page))
3227 return 0;
3228
3229 if (mapping == NULL) { /* can this still happen? */
3230 ret = drop_buffers(page, &buffers_to_free);
3231 goto out;
3232 }
3233
3234 spin_lock(&mapping->private_lock);
3235 ret = drop_buffers(page, &buffers_to_free);
3236
3237 /*
3238 * If the filesystem writes its buffers by hand (eg ext3)
3239 * then we can have clean buffers against a dirty page. We
3240 * clean the page here; otherwise the VM will never notice
3241 * that the filesystem did any IO at all.
3242 *
3243 * Also, during truncate, discard_buffer will have marked all
3244 * the page's buffers clean. We discover that here and clean
3245 * the page also.
3246 *
3247 * private_lock must be held over this entire operation in order
3248 * to synchronise against __set_page_dirty_buffers and prevent the
3249 * dirty bit from being lost.
3250 */
3251 if (ret)
3252 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3253 spin_unlock(&mapping->private_lock);
3254 out:
3255 if (buffers_to_free) {
3256 struct buffer_head *bh = buffers_to_free;
3257
3258 do {
3259 struct buffer_head *next = bh->b_this_page;
3260 free_buffer_head(bh);
3261 bh = next;
3262 } while (bh != buffers_to_free);
3263 }
3264 return ret;
3265 }
3266 EXPORT_SYMBOL(try_to_free_buffers);
3267
3268 /*
3269 * There are no bdflush tunables left. But distributions are
3270 * still running obsolete flush daemons, so we terminate them here.
3271 *
3272 * Use of bdflush() is deprecated and will be removed in a future kernel.
3273 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3274 */
3275 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3276 {
3277 static int msg_count;
3278
3279 if (!capable(CAP_SYS_ADMIN))
3280 return -EPERM;
3281
3282 if (msg_count < 5) {
3283 msg_count++;
3284 printk(KERN_INFO
3285 "warning: process `%s' used the obsolete bdflush"
3286 " system call\n", current->comm);
3287 printk(KERN_INFO "Fix your initscripts?\n");
3288 }
3289
3290 if (func == 1)
3291 do_exit(0);
3292 return 0;
3293 }
3294
3295 /*
3296 * Buffer-head allocation
3297 */
3298 static struct kmem_cache *bh_cachep __read_mostly;
3299
3300 /*
3301 * Once the number of bh's in the machine exceeds this level, we start
3302 * stripping them in writeback.
3303 */
3304 static unsigned long max_buffer_heads;
3305
3306 int buffer_heads_over_limit;
3307
3308 struct bh_accounting {
3309 int nr; /* Number of live bh's */
3310 int ratelimit; /* Limit cacheline bouncing */
3311 };
3312
3313 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3314
3315 static void recalc_bh_state(void)
3316 {
3317 int i;
3318 int tot = 0;
3319
3320 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3321 return;
3322 __this_cpu_write(bh_accounting.ratelimit, 0);
3323 for_each_online_cpu(i)
3324 tot += per_cpu(bh_accounting, i).nr;
3325 buffer_heads_over_limit = (tot > max_buffer_heads);
3326 }
3327
3328 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3329 {
3330 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3331 if (ret) {
3332 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3333 preempt_disable();
3334 __this_cpu_inc(bh_accounting.nr);
3335 recalc_bh_state();
3336 preempt_enable();
3337 }
3338 return ret;
3339 }
3340 EXPORT_SYMBOL(alloc_buffer_head);
3341
3342 void free_buffer_head(struct buffer_head *bh)
3343 {
3344 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3345 kmem_cache_free(bh_cachep, bh);
3346 preempt_disable();
3347 __this_cpu_dec(bh_accounting.nr);
3348 recalc_bh_state();
3349 preempt_enable();
3350 }
3351 EXPORT_SYMBOL(free_buffer_head);
3352
3353 static void buffer_exit_cpu(int cpu)
3354 {
3355 int i;
3356 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3357
3358 for (i = 0; i < BH_LRU_SIZE; i++) {
3359 brelse(b->bhs[i]);
3360 b->bhs[i] = NULL;
3361 }
3362 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3363 per_cpu(bh_accounting, cpu).nr = 0;
3364 }
3365
3366 static int buffer_cpu_notify(struct notifier_block *self,
3367 unsigned long action, void *hcpu)
3368 {
3369 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3370 buffer_exit_cpu((unsigned long)hcpu);
3371 return NOTIFY_OK;
3372 }
3373
3374 /**
3375 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376 * @bh: struct buffer_head
3377 *
3378 * Return true if the buffer is up-to-date and false,
3379 * with the buffer locked, if not.
3380 */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383 if (!buffer_uptodate(bh)) {
3384 lock_buffer(bh);
3385 if (!buffer_uptodate(bh))
3386 return 0;
3387 unlock_buffer(bh);
3388 }
3389 return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392
3393 /**
3394 * bh_submit_read - Submit a locked buffer for reading
3395 * @bh: struct buffer_head
3396 *
3397 * Returns zero on success and -EIO on error.
3398 */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401 BUG_ON(!buffer_locked(bh));
3402
3403 if (buffer_uptodate(bh)) {
3404 unlock_buffer(bh);
3405 return 0;
3406 }
3407
3408 get_bh(bh);
3409 bh->b_end_io = end_buffer_read_sync;
3410 submit_bh(READ, bh);
3411 wait_on_buffer(bh);
3412 if (buffer_uptodate(bh))
3413 return 0;
3414 return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417
3418 void __init buffer_init(void)
3419 {
3420 unsigned long nrpages;
3421
3422 bh_cachep = kmem_cache_create("buffer_head",
3423 sizeof(struct buffer_head), 0,
3424 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3425 SLAB_MEM_SPREAD),
3426 NULL);
3427
3428 /*
3429 * Limit the bh occupancy to 10% of ZONE_NORMAL
3430 */
3431 nrpages = (nr_free_buffer_pages() * 10) / 100;
3432 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3433 hotcpu_notifier(buffer_cpu_notify, 0);
3434 }
This page took 0.109594 seconds and 5 git commands to generate.