perf/x86: Add model numbers for Kabylake CPUs
[deliverable/linux.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 bool flock;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
104 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
105 ceph_decode_need(p, end, info->pool_ns_len, bad);
106 *p += info->pool_ns_len;
107 } else {
108 info->pool_ns_len = 0;
109 }
110
111 return 0;
112 bad:
113 return err;
114 }
115
116 /*
117 * parse a normal reply, which may contain a (dir+)dentry and/or a
118 * target inode.
119 */
120 static int parse_reply_info_trace(void **p, void *end,
121 struct ceph_mds_reply_info_parsed *info,
122 u64 features)
123 {
124 int err;
125
126 if (info->head->is_dentry) {
127 err = parse_reply_info_in(p, end, &info->diri, features);
128 if (err < 0)
129 goto out_bad;
130
131 if (unlikely(*p + sizeof(*info->dirfrag) > end))
132 goto bad;
133 info->dirfrag = *p;
134 *p += sizeof(*info->dirfrag) +
135 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
136 if (unlikely(*p > end))
137 goto bad;
138
139 ceph_decode_32_safe(p, end, info->dname_len, bad);
140 ceph_decode_need(p, end, info->dname_len, bad);
141 info->dname = *p;
142 *p += info->dname_len;
143 info->dlease = *p;
144 *p += sizeof(*info->dlease);
145 }
146
147 if (info->head->is_target) {
148 err = parse_reply_info_in(p, end, &info->targeti, features);
149 if (err < 0)
150 goto out_bad;
151 }
152
153 if (unlikely(*p != end))
154 goto bad;
155 return 0;
156
157 bad:
158 err = -EIO;
159 out_bad:
160 pr_err("problem parsing mds trace %d\n", err);
161 return err;
162 }
163
164 /*
165 * parse readdir results
166 */
167 static int parse_reply_info_dir(void **p, void *end,
168 struct ceph_mds_reply_info_parsed *info,
169 u64 features)
170 {
171 u32 num, i = 0;
172 int err;
173
174 info->dir_dir = *p;
175 if (*p + sizeof(*info->dir_dir) > end)
176 goto bad;
177 *p += sizeof(*info->dir_dir) +
178 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
179 if (*p > end)
180 goto bad;
181
182 ceph_decode_need(p, end, sizeof(num) + 2, bad);
183 num = ceph_decode_32(p);
184 info->dir_end = ceph_decode_8(p);
185 info->dir_complete = ceph_decode_8(p);
186 if (num == 0)
187 goto done;
188
189 BUG_ON(!info->dir_in);
190 info->dir_dname = (void *)(info->dir_in + num);
191 info->dir_dname_len = (void *)(info->dir_dname + num);
192 info->dir_dlease = (void *)(info->dir_dname_len + num);
193 if ((unsigned long)(info->dir_dlease + num) >
194 (unsigned long)info->dir_in + info->dir_buf_size) {
195 pr_err("dir contents are larger than expected\n");
196 WARN_ON(1);
197 goto bad;
198 }
199
200 info->dir_nr = num;
201 while (num) {
202 /* dentry */
203 ceph_decode_need(p, end, sizeof(u32)*2, bad);
204 info->dir_dname_len[i] = ceph_decode_32(p);
205 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
206 info->dir_dname[i] = *p;
207 *p += info->dir_dname_len[i];
208 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
209 info->dir_dname[i]);
210 info->dir_dlease[i] = *p;
211 *p += sizeof(struct ceph_mds_reply_lease);
212
213 /* inode */
214 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
215 if (err < 0)
216 goto out_bad;
217 i++;
218 num--;
219 }
220
221 done:
222 if (*p != end)
223 goto bad;
224 return 0;
225
226 bad:
227 err = -EIO;
228 out_bad:
229 pr_err("problem parsing dir contents %d\n", err);
230 return err;
231 }
232
233 /*
234 * parse fcntl F_GETLK results
235 */
236 static int parse_reply_info_filelock(void **p, void *end,
237 struct ceph_mds_reply_info_parsed *info,
238 u64 features)
239 {
240 if (*p + sizeof(*info->filelock_reply) > end)
241 goto bad;
242
243 info->filelock_reply = *p;
244 *p += sizeof(*info->filelock_reply);
245
246 if (unlikely(*p != end))
247 goto bad;
248 return 0;
249
250 bad:
251 return -EIO;
252 }
253
254 /*
255 * parse create results
256 */
257 static int parse_reply_info_create(void **p, void *end,
258 struct ceph_mds_reply_info_parsed *info,
259 u64 features)
260 {
261 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
262 if (*p == end) {
263 info->has_create_ino = false;
264 } else {
265 info->has_create_ino = true;
266 info->ino = ceph_decode_64(p);
267 }
268 }
269
270 if (unlikely(*p != end))
271 goto bad;
272 return 0;
273
274 bad:
275 return -EIO;
276 }
277
278 /*
279 * parse extra results
280 */
281 static int parse_reply_info_extra(void **p, void *end,
282 struct ceph_mds_reply_info_parsed *info,
283 u64 features)
284 {
285 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
286 return parse_reply_info_filelock(p, end, info, features);
287 else if (info->head->op == CEPH_MDS_OP_READDIR ||
288 info->head->op == CEPH_MDS_OP_LSSNAP)
289 return parse_reply_info_dir(p, end, info, features);
290 else if (info->head->op == CEPH_MDS_OP_CREATE)
291 return parse_reply_info_create(p, end, info, features);
292 else
293 return -EIO;
294 }
295
296 /*
297 * parse entire mds reply
298 */
299 static int parse_reply_info(struct ceph_msg *msg,
300 struct ceph_mds_reply_info_parsed *info,
301 u64 features)
302 {
303 void *p, *end;
304 u32 len;
305 int err;
306
307 info->head = msg->front.iov_base;
308 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
309 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
310
311 /* trace */
312 ceph_decode_32_safe(&p, end, len, bad);
313 if (len > 0) {
314 ceph_decode_need(&p, end, len, bad);
315 err = parse_reply_info_trace(&p, p+len, info, features);
316 if (err < 0)
317 goto out_bad;
318 }
319
320 /* extra */
321 ceph_decode_32_safe(&p, end, len, bad);
322 if (len > 0) {
323 ceph_decode_need(&p, end, len, bad);
324 err = parse_reply_info_extra(&p, p+len, info, features);
325 if (err < 0)
326 goto out_bad;
327 }
328
329 /* snap blob */
330 ceph_decode_32_safe(&p, end, len, bad);
331 info->snapblob_len = len;
332 info->snapblob = p;
333 p += len;
334
335 if (p != end)
336 goto bad;
337 return 0;
338
339 bad:
340 err = -EIO;
341 out_bad:
342 pr_err("mds parse_reply err %d\n", err);
343 return err;
344 }
345
346 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
347 {
348 if (!info->dir_in)
349 return;
350 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
351 }
352
353
354 /*
355 * sessions
356 */
357 const char *ceph_session_state_name(int s)
358 {
359 switch (s) {
360 case CEPH_MDS_SESSION_NEW: return "new";
361 case CEPH_MDS_SESSION_OPENING: return "opening";
362 case CEPH_MDS_SESSION_OPEN: return "open";
363 case CEPH_MDS_SESSION_HUNG: return "hung";
364 case CEPH_MDS_SESSION_CLOSING: return "closing";
365 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
366 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
367 default: return "???";
368 }
369 }
370
371 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
372 {
373 if (atomic_inc_not_zero(&s->s_ref)) {
374 dout("mdsc get_session %p %d -> %d\n", s,
375 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
376 return s;
377 } else {
378 dout("mdsc get_session %p 0 -- FAIL", s);
379 return NULL;
380 }
381 }
382
383 void ceph_put_mds_session(struct ceph_mds_session *s)
384 {
385 dout("mdsc put_session %p %d -> %d\n", s,
386 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
387 if (atomic_dec_and_test(&s->s_ref)) {
388 if (s->s_auth.authorizer)
389 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
390 kfree(s);
391 }
392 }
393
394 /*
395 * called under mdsc->mutex
396 */
397 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
398 int mds)
399 {
400 struct ceph_mds_session *session;
401
402 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
403 return NULL;
404 session = mdsc->sessions[mds];
405 dout("lookup_mds_session %p %d\n", session,
406 atomic_read(&session->s_ref));
407 get_session(session);
408 return session;
409 }
410
411 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
412 {
413 if (mds >= mdsc->max_sessions)
414 return false;
415 return mdsc->sessions[mds];
416 }
417
418 static int __verify_registered_session(struct ceph_mds_client *mdsc,
419 struct ceph_mds_session *s)
420 {
421 if (s->s_mds >= mdsc->max_sessions ||
422 mdsc->sessions[s->s_mds] != s)
423 return -ENOENT;
424 return 0;
425 }
426
427 /*
428 * create+register a new session for given mds.
429 * called under mdsc->mutex.
430 */
431 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
432 int mds)
433 {
434 struct ceph_mds_session *s;
435
436 if (mds >= mdsc->mdsmap->m_max_mds)
437 return ERR_PTR(-EINVAL);
438
439 s = kzalloc(sizeof(*s), GFP_NOFS);
440 if (!s)
441 return ERR_PTR(-ENOMEM);
442 s->s_mdsc = mdsc;
443 s->s_mds = mds;
444 s->s_state = CEPH_MDS_SESSION_NEW;
445 s->s_ttl = 0;
446 s->s_seq = 0;
447 mutex_init(&s->s_mutex);
448
449 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
450
451 spin_lock_init(&s->s_gen_ttl_lock);
452 s->s_cap_gen = 0;
453 s->s_cap_ttl = jiffies - 1;
454
455 spin_lock_init(&s->s_cap_lock);
456 s->s_renew_requested = 0;
457 s->s_renew_seq = 0;
458 INIT_LIST_HEAD(&s->s_caps);
459 s->s_nr_caps = 0;
460 s->s_trim_caps = 0;
461 atomic_set(&s->s_ref, 1);
462 INIT_LIST_HEAD(&s->s_waiting);
463 INIT_LIST_HEAD(&s->s_unsafe);
464 s->s_num_cap_releases = 0;
465 s->s_cap_reconnect = 0;
466 s->s_cap_iterator = NULL;
467 INIT_LIST_HEAD(&s->s_cap_releases);
468 INIT_LIST_HEAD(&s->s_cap_flushing);
469 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
470
471 dout("register_session mds%d\n", mds);
472 if (mds >= mdsc->max_sessions) {
473 int newmax = 1 << get_count_order(mds+1);
474 struct ceph_mds_session **sa;
475
476 dout("register_session realloc to %d\n", newmax);
477 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
478 if (sa == NULL)
479 goto fail_realloc;
480 if (mdsc->sessions) {
481 memcpy(sa, mdsc->sessions,
482 mdsc->max_sessions * sizeof(void *));
483 kfree(mdsc->sessions);
484 }
485 mdsc->sessions = sa;
486 mdsc->max_sessions = newmax;
487 }
488 mdsc->sessions[mds] = s;
489 atomic_inc(&mdsc->num_sessions);
490 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
491
492 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
493 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
494
495 return s;
496
497 fail_realloc:
498 kfree(s);
499 return ERR_PTR(-ENOMEM);
500 }
501
502 /*
503 * called under mdsc->mutex
504 */
505 static void __unregister_session(struct ceph_mds_client *mdsc,
506 struct ceph_mds_session *s)
507 {
508 dout("__unregister_session mds%d %p\n", s->s_mds, s);
509 BUG_ON(mdsc->sessions[s->s_mds] != s);
510 mdsc->sessions[s->s_mds] = NULL;
511 ceph_con_close(&s->s_con);
512 ceph_put_mds_session(s);
513 atomic_dec(&mdsc->num_sessions);
514 }
515
516 /*
517 * drop session refs in request.
518 *
519 * should be last request ref, or hold mdsc->mutex
520 */
521 static void put_request_session(struct ceph_mds_request *req)
522 {
523 if (req->r_session) {
524 ceph_put_mds_session(req->r_session);
525 req->r_session = NULL;
526 }
527 }
528
529 void ceph_mdsc_release_request(struct kref *kref)
530 {
531 struct ceph_mds_request *req = container_of(kref,
532 struct ceph_mds_request,
533 r_kref);
534 destroy_reply_info(&req->r_reply_info);
535 if (req->r_request)
536 ceph_msg_put(req->r_request);
537 if (req->r_reply)
538 ceph_msg_put(req->r_reply);
539 if (req->r_inode) {
540 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
541 iput(req->r_inode);
542 }
543 if (req->r_locked_dir)
544 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
545 iput(req->r_target_inode);
546 if (req->r_dentry)
547 dput(req->r_dentry);
548 if (req->r_old_dentry)
549 dput(req->r_old_dentry);
550 if (req->r_old_dentry_dir) {
551 /*
552 * track (and drop pins for) r_old_dentry_dir
553 * separately, since r_old_dentry's d_parent may have
554 * changed between the dir mutex being dropped and
555 * this request being freed.
556 */
557 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
558 CEPH_CAP_PIN);
559 iput(req->r_old_dentry_dir);
560 }
561 kfree(req->r_path1);
562 kfree(req->r_path2);
563 if (req->r_pagelist)
564 ceph_pagelist_release(req->r_pagelist);
565 put_request_session(req);
566 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
567 kfree(req);
568 }
569
570 /*
571 * lookup session, bump ref if found.
572 *
573 * called under mdsc->mutex.
574 */
575 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
576 u64 tid)
577 {
578 struct ceph_mds_request *req;
579 struct rb_node *n = mdsc->request_tree.rb_node;
580
581 while (n) {
582 req = rb_entry(n, struct ceph_mds_request, r_node);
583 if (tid < req->r_tid)
584 n = n->rb_left;
585 else if (tid > req->r_tid)
586 n = n->rb_right;
587 else {
588 ceph_mdsc_get_request(req);
589 return req;
590 }
591 }
592 return NULL;
593 }
594
595 static void __insert_request(struct ceph_mds_client *mdsc,
596 struct ceph_mds_request *new)
597 {
598 struct rb_node **p = &mdsc->request_tree.rb_node;
599 struct rb_node *parent = NULL;
600 struct ceph_mds_request *req = NULL;
601
602 while (*p) {
603 parent = *p;
604 req = rb_entry(parent, struct ceph_mds_request, r_node);
605 if (new->r_tid < req->r_tid)
606 p = &(*p)->rb_left;
607 else if (new->r_tid > req->r_tid)
608 p = &(*p)->rb_right;
609 else
610 BUG();
611 }
612
613 rb_link_node(&new->r_node, parent, p);
614 rb_insert_color(&new->r_node, &mdsc->request_tree);
615 }
616
617 /*
618 * Register an in-flight request, and assign a tid. Link to directory
619 * are modifying (if any).
620 *
621 * Called under mdsc->mutex.
622 */
623 static void __register_request(struct ceph_mds_client *mdsc,
624 struct ceph_mds_request *req,
625 struct inode *dir)
626 {
627 req->r_tid = ++mdsc->last_tid;
628 if (req->r_num_caps)
629 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
630 req->r_num_caps);
631 dout("__register_request %p tid %lld\n", req, req->r_tid);
632 ceph_mdsc_get_request(req);
633 __insert_request(mdsc, req);
634
635 req->r_uid = current_fsuid();
636 req->r_gid = current_fsgid();
637
638 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
639 mdsc->oldest_tid = req->r_tid;
640
641 if (dir) {
642 ihold(dir);
643 req->r_unsafe_dir = dir;
644 }
645 }
646
647 static void __unregister_request(struct ceph_mds_client *mdsc,
648 struct ceph_mds_request *req)
649 {
650 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
651
652 if (req->r_tid == mdsc->oldest_tid) {
653 struct rb_node *p = rb_next(&req->r_node);
654 mdsc->oldest_tid = 0;
655 while (p) {
656 struct ceph_mds_request *next_req =
657 rb_entry(p, struct ceph_mds_request, r_node);
658 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
659 mdsc->oldest_tid = next_req->r_tid;
660 break;
661 }
662 p = rb_next(p);
663 }
664 }
665
666 rb_erase(&req->r_node, &mdsc->request_tree);
667 RB_CLEAR_NODE(&req->r_node);
668
669 if (req->r_unsafe_dir && req->r_got_unsafe) {
670 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
671 spin_lock(&ci->i_unsafe_lock);
672 list_del_init(&req->r_unsafe_dir_item);
673 spin_unlock(&ci->i_unsafe_lock);
674 }
675 if (req->r_target_inode && req->r_got_unsafe) {
676 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
677 spin_lock(&ci->i_unsafe_lock);
678 list_del_init(&req->r_unsafe_target_item);
679 spin_unlock(&ci->i_unsafe_lock);
680 }
681
682 if (req->r_unsafe_dir) {
683 iput(req->r_unsafe_dir);
684 req->r_unsafe_dir = NULL;
685 }
686
687 complete_all(&req->r_safe_completion);
688
689 ceph_mdsc_put_request(req);
690 }
691
692 /*
693 * Choose mds to send request to next. If there is a hint set in the
694 * request (e.g., due to a prior forward hint from the mds), use that.
695 * Otherwise, consult frag tree and/or caps to identify the
696 * appropriate mds. If all else fails, choose randomly.
697 *
698 * Called under mdsc->mutex.
699 */
700 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
701 {
702 /*
703 * we don't need to worry about protecting the d_parent access
704 * here because we never renaming inside the snapped namespace
705 * except to resplice to another snapdir, and either the old or new
706 * result is a valid result.
707 */
708 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
709 dentry = dentry->d_parent;
710 return dentry;
711 }
712
713 static int __choose_mds(struct ceph_mds_client *mdsc,
714 struct ceph_mds_request *req)
715 {
716 struct inode *inode;
717 struct ceph_inode_info *ci;
718 struct ceph_cap *cap;
719 int mode = req->r_direct_mode;
720 int mds = -1;
721 u32 hash = req->r_direct_hash;
722 bool is_hash = req->r_direct_is_hash;
723
724 /*
725 * is there a specific mds we should try? ignore hint if we have
726 * no session and the mds is not up (active or recovering).
727 */
728 if (req->r_resend_mds >= 0 &&
729 (__have_session(mdsc, req->r_resend_mds) ||
730 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
731 dout("choose_mds using resend_mds mds%d\n",
732 req->r_resend_mds);
733 return req->r_resend_mds;
734 }
735
736 if (mode == USE_RANDOM_MDS)
737 goto random;
738
739 inode = NULL;
740 if (req->r_inode) {
741 inode = req->r_inode;
742 } else if (req->r_dentry) {
743 /* ignore race with rename; old or new d_parent is okay */
744 struct dentry *parent = req->r_dentry->d_parent;
745 struct inode *dir = d_inode(parent);
746
747 if (dir->i_sb != mdsc->fsc->sb) {
748 /* not this fs! */
749 inode = d_inode(req->r_dentry);
750 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
751 /* direct snapped/virtual snapdir requests
752 * based on parent dir inode */
753 struct dentry *dn = get_nonsnap_parent(parent);
754 inode = d_inode(dn);
755 dout("__choose_mds using nonsnap parent %p\n", inode);
756 } else {
757 /* dentry target */
758 inode = d_inode(req->r_dentry);
759 if (!inode || mode == USE_AUTH_MDS) {
760 /* dir + name */
761 inode = dir;
762 hash = ceph_dentry_hash(dir, req->r_dentry);
763 is_hash = true;
764 }
765 }
766 }
767
768 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
769 (int)hash, mode);
770 if (!inode)
771 goto random;
772 ci = ceph_inode(inode);
773
774 if (is_hash && S_ISDIR(inode->i_mode)) {
775 struct ceph_inode_frag frag;
776 int found;
777
778 ceph_choose_frag(ci, hash, &frag, &found);
779 if (found) {
780 if (mode == USE_ANY_MDS && frag.ndist > 0) {
781 u8 r;
782
783 /* choose a random replica */
784 get_random_bytes(&r, 1);
785 r %= frag.ndist;
786 mds = frag.dist[r];
787 dout("choose_mds %p %llx.%llx "
788 "frag %u mds%d (%d/%d)\n",
789 inode, ceph_vinop(inode),
790 frag.frag, mds,
791 (int)r, frag.ndist);
792 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
793 CEPH_MDS_STATE_ACTIVE)
794 return mds;
795 }
796
797 /* since this file/dir wasn't known to be
798 * replicated, then we want to look for the
799 * authoritative mds. */
800 mode = USE_AUTH_MDS;
801 if (frag.mds >= 0) {
802 /* choose auth mds */
803 mds = frag.mds;
804 dout("choose_mds %p %llx.%llx "
805 "frag %u mds%d (auth)\n",
806 inode, ceph_vinop(inode), frag.frag, mds);
807 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
808 CEPH_MDS_STATE_ACTIVE)
809 return mds;
810 }
811 }
812 }
813
814 spin_lock(&ci->i_ceph_lock);
815 cap = NULL;
816 if (mode == USE_AUTH_MDS)
817 cap = ci->i_auth_cap;
818 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
819 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
820 if (!cap) {
821 spin_unlock(&ci->i_ceph_lock);
822 goto random;
823 }
824 mds = cap->session->s_mds;
825 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
826 inode, ceph_vinop(inode), mds,
827 cap == ci->i_auth_cap ? "auth " : "", cap);
828 spin_unlock(&ci->i_ceph_lock);
829 return mds;
830
831 random:
832 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
833 dout("choose_mds chose random mds%d\n", mds);
834 return mds;
835 }
836
837
838 /*
839 * session messages
840 */
841 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
842 {
843 struct ceph_msg *msg;
844 struct ceph_mds_session_head *h;
845
846 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
847 false);
848 if (!msg) {
849 pr_err("create_session_msg ENOMEM creating msg\n");
850 return NULL;
851 }
852 h = msg->front.iov_base;
853 h->op = cpu_to_le32(op);
854 h->seq = cpu_to_le64(seq);
855
856 return msg;
857 }
858
859 /*
860 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
861 * to include additional client metadata fields.
862 */
863 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
864 {
865 struct ceph_msg *msg;
866 struct ceph_mds_session_head *h;
867 int i = -1;
868 int metadata_bytes = 0;
869 int metadata_key_count = 0;
870 struct ceph_options *opt = mdsc->fsc->client->options;
871 void *p;
872
873 const char* metadata[][2] = {
874 {"hostname", utsname()->nodename},
875 {"kernel_version", utsname()->release},
876 {"entity_id", opt->name ? opt->name : ""},
877 {NULL, NULL}
878 };
879
880 /* Calculate serialized length of metadata */
881 metadata_bytes = 4; /* map length */
882 for (i = 0; metadata[i][0] != NULL; ++i) {
883 metadata_bytes += 8 + strlen(metadata[i][0]) +
884 strlen(metadata[i][1]);
885 metadata_key_count++;
886 }
887
888 /* Allocate the message */
889 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
890 GFP_NOFS, false);
891 if (!msg) {
892 pr_err("create_session_msg ENOMEM creating msg\n");
893 return NULL;
894 }
895 h = msg->front.iov_base;
896 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
897 h->seq = cpu_to_le64(seq);
898
899 /*
900 * Serialize client metadata into waiting buffer space, using
901 * the format that userspace expects for map<string, string>
902 *
903 * ClientSession messages with metadata are v2
904 */
905 msg->hdr.version = cpu_to_le16(2);
906 msg->hdr.compat_version = cpu_to_le16(1);
907
908 /* The write pointer, following the session_head structure */
909 p = msg->front.iov_base + sizeof(*h);
910
911 /* Number of entries in the map */
912 ceph_encode_32(&p, metadata_key_count);
913
914 /* Two length-prefixed strings for each entry in the map */
915 for (i = 0; metadata[i][0] != NULL; ++i) {
916 size_t const key_len = strlen(metadata[i][0]);
917 size_t const val_len = strlen(metadata[i][1]);
918
919 ceph_encode_32(&p, key_len);
920 memcpy(p, metadata[i][0], key_len);
921 p += key_len;
922 ceph_encode_32(&p, val_len);
923 memcpy(p, metadata[i][1], val_len);
924 p += val_len;
925 }
926
927 return msg;
928 }
929
930 /*
931 * send session open request.
932 *
933 * called under mdsc->mutex
934 */
935 static int __open_session(struct ceph_mds_client *mdsc,
936 struct ceph_mds_session *session)
937 {
938 struct ceph_msg *msg;
939 int mstate;
940 int mds = session->s_mds;
941
942 /* wait for mds to go active? */
943 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
944 dout("open_session to mds%d (%s)\n", mds,
945 ceph_mds_state_name(mstate));
946 session->s_state = CEPH_MDS_SESSION_OPENING;
947 session->s_renew_requested = jiffies;
948
949 /* send connect message */
950 msg = create_session_open_msg(mdsc, session->s_seq);
951 if (!msg)
952 return -ENOMEM;
953 ceph_con_send(&session->s_con, msg);
954 return 0;
955 }
956
957 /*
958 * open sessions for any export targets for the given mds
959 *
960 * called under mdsc->mutex
961 */
962 static struct ceph_mds_session *
963 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
964 {
965 struct ceph_mds_session *session;
966
967 session = __ceph_lookup_mds_session(mdsc, target);
968 if (!session) {
969 session = register_session(mdsc, target);
970 if (IS_ERR(session))
971 return session;
972 }
973 if (session->s_state == CEPH_MDS_SESSION_NEW ||
974 session->s_state == CEPH_MDS_SESSION_CLOSING)
975 __open_session(mdsc, session);
976
977 return session;
978 }
979
980 struct ceph_mds_session *
981 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
982 {
983 struct ceph_mds_session *session;
984
985 dout("open_export_target_session to mds%d\n", target);
986
987 mutex_lock(&mdsc->mutex);
988 session = __open_export_target_session(mdsc, target);
989 mutex_unlock(&mdsc->mutex);
990
991 return session;
992 }
993
994 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
995 struct ceph_mds_session *session)
996 {
997 struct ceph_mds_info *mi;
998 struct ceph_mds_session *ts;
999 int i, mds = session->s_mds;
1000
1001 if (mds >= mdsc->mdsmap->m_max_mds)
1002 return;
1003
1004 mi = &mdsc->mdsmap->m_info[mds];
1005 dout("open_export_target_sessions for mds%d (%d targets)\n",
1006 session->s_mds, mi->num_export_targets);
1007
1008 for (i = 0; i < mi->num_export_targets; i++) {
1009 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1010 if (!IS_ERR(ts))
1011 ceph_put_mds_session(ts);
1012 }
1013 }
1014
1015 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1016 struct ceph_mds_session *session)
1017 {
1018 mutex_lock(&mdsc->mutex);
1019 __open_export_target_sessions(mdsc, session);
1020 mutex_unlock(&mdsc->mutex);
1021 }
1022
1023 /*
1024 * session caps
1025 */
1026
1027 /* caller holds s_cap_lock, we drop it */
1028 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1029 struct ceph_mds_session *session)
1030 __releases(session->s_cap_lock)
1031 {
1032 LIST_HEAD(tmp_list);
1033 list_splice_init(&session->s_cap_releases, &tmp_list);
1034 session->s_num_cap_releases = 0;
1035 spin_unlock(&session->s_cap_lock);
1036
1037 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1038 while (!list_empty(&tmp_list)) {
1039 struct ceph_cap *cap;
1040 /* zero out the in-progress message */
1041 cap = list_first_entry(&tmp_list,
1042 struct ceph_cap, session_caps);
1043 list_del(&cap->session_caps);
1044 ceph_put_cap(mdsc, cap);
1045 }
1046 }
1047
1048 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1049 struct ceph_mds_session *session)
1050 {
1051 struct ceph_mds_request *req;
1052 struct rb_node *p;
1053
1054 dout("cleanup_session_requests mds%d\n", session->s_mds);
1055 mutex_lock(&mdsc->mutex);
1056 while (!list_empty(&session->s_unsafe)) {
1057 req = list_first_entry(&session->s_unsafe,
1058 struct ceph_mds_request, r_unsafe_item);
1059 list_del_init(&req->r_unsafe_item);
1060 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1061 req->r_tid);
1062 __unregister_request(mdsc, req);
1063 }
1064 /* zero r_attempts, so kick_requests() will re-send requests */
1065 p = rb_first(&mdsc->request_tree);
1066 while (p) {
1067 req = rb_entry(p, struct ceph_mds_request, r_node);
1068 p = rb_next(p);
1069 if (req->r_session &&
1070 req->r_session->s_mds == session->s_mds)
1071 req->r_attempts = 0;
1072 }
1073 mutex_unlock(&mdsc->mutex);
1074 }
1075
1076 /*
1077 * Helper to safely iterate over all caps associated with a session, with
1078 * special care taken to handle a racing __ceph_remove_cap().
1079 *
1080 * Caller must hold session s_mutex.
1081 */
1082 static int iterate_session_caps(struct ceph_mds_session *session,
1083 int (*cb)(struct inode *, struct ceph_cap *,
1084 void *), void *arg)
1085 {
1086 struct list_head *p;
1087 struct ceph_cap *cap;
1088 struct inode *inode, *last_inode = NULL;
1089 struct ceph_cap *old_cap = NULL;
1090 int ret;
1091
1092 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1093 spin_lock(&session->s_cap_lock);
1094 p = session->s_caps.next;
1095 while (p != &session->s_caps) {
1096 cap = list_entry(p, struct ceph_cap, session_caps);
1097 inode = igrab(&cap->ci->vfs_inode);
1098 if (!inode) {
1099 p = p->next;
1100 continue;
1101 }
1102 session->s_cap_iterator = cap;
1103 spin_unlock(&session->s_cap_lock);
1104
1105 if (last_inode) {
1106 iput(last_inode);
1107 last_inode = NULL;
1108 }
1109 if (old_cap) {
1110 ceph_put_cap(session->s_mdsc, old_cap);
1111 old_cap = NULL;
1112 }
1113
1114 ret = cb(inode, cap, arg);
1115 last_inode = inode;
1116
1117 spin_lock(&session->s_cap_lock);
1118 p = p->next;
1119 if (cap->ci == NULL) {
1120 dout("iterate_session_caps finishing cap %p removal\n",
1121 cap);
1122 BUG_ON(cap->session != session);
1123 cap->session = NULL;
1124 list_del_init(&cap->session_caps);
1125 session->s_nr_caps--;
1126 if (cap->queue_release) {
1127 list_add_tail(&cap->session_caps,
1128 &session->s_cap_releases);
1129 session->s_num_cap_releases++;
1130 } else {
1131 old_cap = cap; /* put_cap it w/o locks held */
1132 }
1133 }
1134 if (ret < 0)
1135 goto out;
1136 }
1137 ret = 0;
1138 out:
1139 session->s_cap_iterator = NULL;
1140 spin_unlock(&session->s_cap_lock);
1141
1142 iput(last_inode);
1143 if (old_cap)
1144 ceph_put_cap(session->s_mdsc, old_cap);
1145
1146 return ret;
1147 }
1148
1149 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1150 void *arg)
1151 {
1152 struct ceph_inode_info *ci = ceph_inode(inode);
1153 LIST_HEAD(to_remove);
1154 int drop = 0;
1155
1156 dout("removing cap %p, ci is %p, inode is %p\n",
1157 cap, ci, &ci->vfs_inode);
1158 spin_lock(&ci->i_ceph_lock);
1159 __ceph_remove_cap(cap, false);
1160 if (!ci->i_auth_cap) {
1161 struct ceph_cap_flush *cf;
1162 struct ceph_mds_client *mdsc =
1163 ceph_sb_to_client(inode->i_sb)->mdsc;
1164
1165 while (true) {
1166 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1167 if (!n)
1168 break;
1169 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1170 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1171 list_add(&cf->list, &to_remove);
1172 }
1173
1174 spin_lock(&mdsc->cap_dirty_lock);
1175
1176 list_for_each_entry(cf, &to_remove, list)
1177 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1178
1179 if (!list_empty(&ci->i_dirty_item)) {
1180 pr_warn_ratelimited(
1181 " dropping dirty %s state for %p %lld\n",
1182 ceph_cap_string(ci->i_dirty_caps),
1183 inode, ceph_ino(inode));
1184 ci->i_dirty_caps = 0;
1185 list_del_init(&ci->i_dirty_item);
1186 drop = 1;
1187 }
1188 if (!list_empty(&ci->i_flushing_item)) {
1189 pr_warn_ratelimited(
1190 " dropping dirty+flushing %s state for %p %lld\n",
1191 ceph_cap_string(ci->i_flushing_caps),
1192 inode, ceph_ino(inode));
1193 ci->i_flushing_caps = 0;
1194 list_del_init(&ci->i_flushing_item);
1195 mdsc->num_cap_flushing--;
1196 drop = 1;
1197 }
1198 spin_unlock(&mdsc->cap_dirty_lock);
1199
1200 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1201 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1202 ci->i_prealloc_cap_flush = NULL;
1203 }
1204 }
1205 spin_unlock(&ci->i_ceph_lock);
1206 while (!list_empty(&to_remove)) {
1207 struct ceph_cap_flush *cf;
1208 cf = list_first_entry(&to_remove,
1209 struct ceph_cap_flush, list);
1210 list_del(&cf->list);
1211 ceph_free_cap_flush(cf);
1212 }
1213 while (drop--)
1214 iput(inode);
1215 return 0;
1216 }
1217
1218 /*
1219 * caller must hold session s_mutex
1220 */
1221 static void remove_session_caps(struct ceph_mds_session *session)
1222 {
1223 dout("remove_session_caps on %p\n", session);
1224 iterate_session_caps(session, remove_session_caps_cb, NULL);
1225
1226 spin_lock(&session->s_cap_lock);
1227 if (session->s_nr_caps > 0) {
1228 struct super_block *sb = session->s_mdsc->fsc->sb;
1229 struct inode *inode;
1230 struct ceph_cap *cap, *prev = NULL;
1231 struct ceph_vino vino;
1232 /*
1233 * iterate_session_caps() skips inodes that are being
1234 * deleted, we need to wait until deletions are complete.
1235 * __wait_on_freeing_inode() is designed for the job,
1236 * but it is not exported, so use lookup inode function
1237 * to access it.
1238 */
1239 while (!list_empty(&session->s_caps)) {
1240 cap = list_entry(session->s_caps.next,
1241 struct ceph_cap, session_caps);
1242 if (cap == prev)
1243 break;
1244 prev = cap;
1245 vino = cap->ci->i_vino;
1246 spin_unlock(&session->s_cap_lock);
1247
1248 inode = ceph_find_inode(sb, vino);
1249 iput(inode);
1250
1251 spin_lock(&session->s_cap_lock);
1252 }
1253 }
1254
1255 // drop cap expires and unlock s_cap_lock
1256 cleanup_cap_releases(session->s_mdsc, session);
1257
1258 BUG_ON(session->s_nr_caps > 0);
1259 BUG_ON(!list_empty(&session->s_cap_flushing));
1260 }
1261
1262 /*
1263 * wake up any threads waiting on this session's caps. if the cap is
1264 * old (didn't get renewed on the client reconnect), remove it now.
1265 *
1266 * caller must hold s_mutex.
1267 */
1268 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1269 void *arg)
1270 {
1271 struct ceph_inode_info *ci = ceph_inode(inode);
1272
1273 wake_up_all(&ci->i_cap_wq);
1274 if (arg) {
1275 spin_lock(&ci->i_ceph_lock);
1276 ci->i_wanted_max_size = 0;
1277 ci->i_requested_max_size = 0;
1278 spin_unlock(&ci->i_ceph_lock);
1279 }
1280 return 0;
1281 }
1282
1283 static void wake_up_session_caps(struct ceph_mds_session *session,
1284 int reconnect)
1285 {
1286 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1287 iterate_session_caps(session, wake_up_session_cb,
1288 (void *)(unsigned long)reconnect);
1289 }
1290
1291 /*
1292 * Send periodic message to MDS renewing all currently held caps. The
1293 * ack will reset the expiration for all caps from this session.
1294 *
1295 * caller holds s_mutex
1296 */
1297 static int send_renew_caps(struct ceph_mds_client *mdsc,
1298 struct ceph_mds_session *session)
1299 {
1300 struct ceph_msg *msg;
1301 int state;
1302
1303 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1304 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1305 pr_info("mds%d caps stale\n", session->s_mds);
1306 session->s_renew_requested = jiffies;
1307
1308 /* do not try to renew caps until a recovering mds has reconnected
1309 * with its clients. */
1310 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1311 if (state < CEPH_MDS_STATE_RECONNECT) {
1312 dout("send_renew_caps ignoring mds%d (%s)\n",
1313 session->s_mds, ceph_mds_state_name(state));
1314 return 0;
1315 }
1316
1317 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1318 ceph_mds_state_name(state));
1319 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1320 ++session->s_renew_seq);
1321 if (!msg)
1322 return -ENOMEM;
1323 ceph_con_send(&session->s_con, msg);
1324 return 0;
1325 }
1326
1327 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1328 struct ceph_mds_session *session, u64 seq)
1329 {
1330 struct ceph_msg *msg;
1331
1332 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1333 session->s_mds, ceph_session_state_name(session->s_state), seq);
1334 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1335 if (!msg)
1336 return -ENOMEM;
1337 ceph_con_send(&session->s_con, msg);
1338 return 0;
1339 }
1340
1341
1342 /*
1343 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1344 *
1345 * Called under session->s_mutex
1346 */
1347 static void renewed_caps(struct ceph_mds_client *mdsc,
1348 struct ceph_mds_session *session, int is_renew)
1349 {
1350 int was_stale;
1351 int wake = 0;
1352
1353 spin_lock(&session->s_cap_lock);
1354 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1355
1356 session->s_cap_ttl = session->s_renew_requested +
1357 mdsc->mdsmap->m_session_timeout*HZ;
1358
1359 if (was_stale) {
1360 if (time_before(jiffies, session->s_cap_ttl)) {
1361 pr_info("mds%d caps renewed\n", session->s_mds);
1362 wake = 1;
1363 } else {
1364 pr_info("mds%d caps still stale\n", session->s_mds);
1365 }
1366 }
1367 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1368 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1369 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1370 spin_unlock(&session->s_cap_lock);
1371
1372 if (wake)
1373 wake_up_session_caps(session, 0);
1374 }
1375
1376 /*
1377 * send a session close request
1378 */
1379 static int request_close_session(struct ceph_mds_client *mdsc,
1380 struct ceph_mds_session *session)
1381 {
1382 struct ceph_msg *msg;
1383
1384 dout("request_close_session mds%d state %s seq %lld\n",
1385 session->s_mds, ceph_session_state_name(session->s_state),
1386 session->s_seq);
1387 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1388 if (!msg)
1389 return -ENOMEM;
1390 ceph_con_send(&session->s_con, msg);
1391 return 0;
1392 }
1393
1394 /*
1395 * Called with s_mutex held.
1396 */
1397 static int __close_session(struct ceph_mds_client *mdsc,
1398 struct ceph_mds_session *session)
1399 {
1400 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1401 return 0;
1402 session->s_state = CEPH_MDS_SESSION_CLOSING;
1403 return request_close_session(mdsc, session);
1404 }
1405
1406 /*
1407 * Trim old(er) caps.
1408 *
1409 * Because we can't cache an inode without one or more caps, we do
1410 * this indirectly: if a cap is unused, we prune its aliases, at which
1411 * point the inode will hopefully get dropped to.
1412 *
1413 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1414 * memory pressure from the MDS, though, so it needn't be perfect.
1415 */
1416 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1417 {
1418 struct ceph_mds_session *session = arg;
1419 struct ceph_inode_info *ci = ceph_inode(inode);
1420 int used, wanted, oissued, mine;
1421
1422 if (session->s_trim_caps <= 0)
1423 return -1;
1424
1425 spin_lock(&ci->i_ceph_lock);
1426 mine = cap->issued | cap->implemented;
1427 used = __ceph_caps_used(ci);
1428 wanted = __ceph_caps_file_wanted(ci);
1429 oissued = __ceph_caps_issued_other(ci, cap);
1430
1431 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1432 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1433 ceph_cap_string(used), ceph_cap_string(wanted));
1434 if (cap == ci->i_auth_cap) {
1435 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1436 !list_empty(&ci->i_cap_snaps))
1437 goto out;
1438 if ((used | wanted) & CEPH_CAP_ANY_WR)
1439 goto out;
1440 }
1441 /* The inode has cached pages, but it's no longer used.
1442 * we can safely drop it */
1443 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1444 !(oissued & CEPH_CAP_FILE_CACHE)) {
1445 used = 0;
1446 oissued = 0;
1447 }
1448 if ((used | wanted) & ~oissued & mine)
1449 goto out; /* we need these caps */
1450
1451 session->s_trim_caps--;
1452 if (oissued) {
1453 /* we aren't the only cap.. just remove us */
1454 __ceph_remove_cap(cap, true);
1455 } else {
1456 /* try dropping referring dentries */
1457 spin_unlock(&ci->i_ceph_lock);
1458 d_prune_aliases(inode);
1459 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1460 inode, cap, atomic_read(&inode->i_count));
1461 return 0;
1462 }
1463
1464 out:
1465 spin_unlock(&ci->i_ceph_lock);
1466 return 0;
1467 }
1468
1469 /*
1470 * Trim session cap count down to some max number.
1471 */
1472 static int trim_caps(struct ceph_mds_client *mdsc,
1473 struct ceph_mds_session *session,
1474 int max_caps)
1475 {
1476 int trim_caps = session->s_nr_caps - max_caps;
1477
1478 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1479 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1480 if (trim_caps > 0) {
1481 session->s_trim_caps = trim_caps;
1482 iterate_session_caps(session, trim_caps_cb, session);
1483 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1484 session->s_mds, session->s_nr_caps, max_caps,
1485 trim_caps - session->s_trim_caps);
1486 session->s_trim_caps = 0;
1487 }
1488
1489 ceph_send_cap_releases(mdsc, session);
1490 return 0;
1491 }
1492
1493 static int check_capsnap_flush(struct ceph_inode_info *ci,
1494 u64 want_snap_seq)
1495 {
1496 int ret = 1;
1497 spin_lock(&ci->i_ceph_lock);
1498 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1499 struct ceph_cap_snap *capsnap =
1500 list_first_entry(&ci->i_cap_snaps,
1501 struct ceph_cap_snap, ci_item);
1502 ret = capsnap->follows >= want_snap_seq;
1503 }
1504 spin_unlock(&ci->i_ceph_lock);
1505 return ret;
1506 }
1507
1508 static int check_caps_flush(struct ceph_mds_client *mdsc,
1509 u64 want_flush_tid)
1510 {
1511 struct rb_node *n;
1512 struct ceph_cap_flush *cf;
1513 int ret = 1;
1514
1515 spin_lock(&mdsc->cap_dirty_lock);
1516 n = rb_first(&mdsc->cap_flush_tree);
1517 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1518 if (cf && cf->tid <= want_flush_tid) {
1519 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1520 cf->tid, want_flush_tid);
1521 ret = 0;
1522 }
1523 spin_unlock(&mdsc->cap_dirty_lock);
1524 return ret;
1525 }
1526
1527 /*
1528 * flush all dirty inode data to disk.
1529 *
1530 * returns true if we've flushed through want_flush_tid
1531 */
1532 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1533 u64 want_flush_tid, u64 want_snap_seq)
1534 {
1535 int mds;
1536
1537 dout("check_caps_flush want %llu snap want %llu\n",
1538 want_flush_tid, want_snap_seq);
1539 mutex_lock(&mdsc->mutex);
1540 for (mds = 0; mds < mdsc->max_sessions; ) {
1541 struct ceph_mds_session *session = mdsc->sessions[mds];
1542 struct inode *inode = NULL;
1543
1544 if (!session) {
1545 mds++;
1546 continue;
1547 }
1548 get_session(session);
1549 mutex_unlock(&mdsc->mutex);
1550
1551 mutex_lock(&session->s_mutex);
1552 if (!list_empty(&session->s_cap_snaps_flushing)) {
1553 struct ceph_cap_snap *capsnap =
1554 list_first_entry(&session->s_cap_snaps_flushing,
1555 struct ceph_cap_snap,
1556 flushing_item);
1557 struct ceph_inode_info *ci = capsnap->ci;
1558 if (!check_capsnap_flush(ci, want_snap_seq)) {
1559 dout("check_cap_flush still flushing snap %p "
1560 "follows %lld <= %lld to mds%d\n",
1561 &ci->vfs_inode, capsnap->follows,
1562 want_snap_seq, mds);
1563 inode = igrab(&ci->vfs_inode);
1564 }
1565 }
1566 mutex_unlock(&session->s_mutex);
1567 ceph_put_mds_session(session);
1568
1569 if (inode) {
1570 wait_event(mdsc->cap_flushing_wq,
1571 check_capsnap_flush(ceph_inode(inode),
1572 want_snap_seq));
1573 iput(inode);
1574 } else {
1575 mds++;
1576 }
1577
1578 mutex_lock(&mdsc->mutex);
1579 }
1580 mutex_unlock(&mdsc->mutex);
1581
1582 wait_event(mdsc->cap_flushing_wq,
1583 check_caps_flush(mdsc, want_flush_tid));
1584
1585 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1586 }
1587
1588 /*
1589 * called under s_mutex
1590 */
1591 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1592 struct ceph_mds_session *session)
1593 {
1594 struct ceph_msg *msg = NULL;
1595 struct ceph_mds_cap_release *head;
1596 struct ceph_mds_cap_item *item;
1597 struct ceph_cap *cap;
1598 LIST_HEAD(tmp_list);
1599 int num_cap_releases;
1600
1601 spin_lock(&session->s_cap_lock);
1602 again:
1603 list_splice_init(&session->s_cap_releases, &tmp_list);
1604 num_cap_releases = session->s_num_cap_releases;
1605 session->s_num_cap_releases = 0;
1606 spin_unlock(&session->s_cap_lock);
1607
1608 while (!list_empty(&tmp_list)) {
1609 if (!msg) {
1610 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1611 PAGE_SIZE, GFP_NOFS, false);
1612 if (!msg)
1613 goto out_err;
1614 head = msg->front.iov_base;
1615 head->num = cpu_to_le32(0);
1616 msg->front.iov_len = sizeof(*head);
1617 }
1618 cap = list_first_entry(&tmp_list, struct ceph_cap,
1619 session_caps);
1620 list_del(&cap->session_caps);
1621 num_cap_releases--;
1622
1623 head = msg->front.iov_base;
1624 le32_add_cpu(&head->num, 1);
1625 item = msg->front.iov_base + msg->front.iov_len;
1626 item->ino = cpu_to_le64(cap->cap_ino);
1627 item->cap_id = cpu_to_le64(cap->cap_id);
1628 item->migrate_seq = cpu_to_le32(cap->mseq);
1629 item->seq = cpu_to_le32(cap->issue_seq);
1630 msg->front.iov_len += sizeof(*item);
1631
1632 ceph_put_cap(mdsc, cap);
1633
1634 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1635 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1636 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1637 ceph_con_send(&session->s_con, msg);
1638 msg = NULL;
1639 }
1640 }
1641
1642 BUG_ON(num_cap_releases != 0);
1643
1644 spin_lock(&session->s_cap_lock);
1645 if (!list_empty(&session->s_cap_releases))
1646 goto again;
1647 spin_unlock(&session->s_cap_lock);
1648
1649 if (msg) {
1650 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1651 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1652 ceph_con_send(&session->s_con, msg);
1653 }
1654 return;
1655 out_err:
1656 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1657 session->s_mds);
1658 spin_lock(&session->s_cap_lock);
1659 list_splice(&tmp_list, &session->s_cap_releases);
1660 session->s_num_cap_releases += num_cap_releases;
1661 spin_unlock(&session->s_cap_lock);
1662 }
1663
1664 /*
1665 * requests
1666 */
1667
1668 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1669 struct inode *dir)
1670 {
1671 struct ceph_inode_info *ci = ceph_inode(dir);
1672 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1673 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1674 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1675 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1676 int order, num_entries;
1677
1678 spin_lock(&ci->i_ceph_lock);
1679 num_entries = ci->i_files + ci->i_subdirs;
1680 spin_unlock(&ci->i_ceph_lock);
1681 num_entries = max(num_entries, 1);
1682 num_entries = min(num_entries, opt->max_readdir);
1683
1684 order = get_order(size * num_entries);
1685 while (order >= 0) {
1686 rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL |
1687 __GFP_NOWARN,
1688 order);
1689 if (rinfo->dir_in)
1690 break;
1691 order--;
1692 }
1693 if (!rinfo->dir_in)
1694 return -ENOMEM;
1695
1696 num_entries = (PAGE_SIZE << order) / size;
1697 num_entries = min(num_entries, opt->max_readdir);
1698
1699 rinfo->dir_buf_size = PAGE_SIZE << order;
1700 req->r_num_caps = num_entries + 1;
1701 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1702 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1703 return 0;
1704 }
1705
1706 /*
1707 * Create an mds request.
1708 */
1709 struct ceph_mds_request *
1710 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1711 {
1712 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1713
1714 if (!req)
1715 return ERR_PTR(-ENOMEM);
1716
1717 mutex_init(&req->r_fill_mutex);
1718 req->r_mdsc = mdsc;
1719 req->r_started = jiffies;
1720 req->r_resend_mds = -1;
1721 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1722 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1723 req->r_fmode = -1;
1724 kref_init(&req->r_kref);
1725 INIT_LIST_HEAD(&req->r_wait);
1726 init_completion(&req->r_completion);
1727 init_completion(&req->r_safe_completion);
1728 INIT_LIST_HEAD(&req->r_unsafe_item);
1729
1730 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1731
1732 req->r_op = op;
1733 req->r_direct_mode = mode;
1734 return req;
1735 }
1736
1737 /*
1738 * return oldest (lowest) request, tid in request tree, 0 if none.
1739 *
1740 * called under mdsc->mutex.
1741 */
1742 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1743 {
1744 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1745 return NULL;
1746 return rb_entry(rb_first(&mdsc->request_tree),
1747 struct ceph_mds_request, r_node);
1748 }
1749
1750 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1751 {
1752 return mdsc->oldest_tid;
1753 }
1754
1755 /*
1756 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1757 * on build_path_from_dentry in fs/cifs/dir.c.
1758 *
1759 * If @stop_on_nosnap, generate path relative to the first non-snapped
1760 * inode.
1761 *
1762 * Encode hidden .snap dirs as a double /, i.e.
1763 * foo/.snap/bar -> foo//bar
1764 */
1765 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1766 int stop_on_nosnap)
1767 {
1768 struct dentry *temp;
1769 char *path;
1770 int len, pos;
1771 unsigned seq;
1772
1773 if (dentry == NULL)
1774 return ERR_PTR(-EINVAL);
1775
1776 retry:
1777 len = 0;
1778 seq = read_seqbegin(&rename_lock);
1779 rcu_read_lock();
1780 for (temp = dentry; !IS_ROOT(temp);) {
1781 struct inode *inode = d_inode(temp);
1782 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1783 len++; /* slash only */
1784 else if (stop_on_nosnap && inode &&
1785 ceph_snap(inode) == CEPH_NOSNAP)
1786 break;
1787 else
1788 len += 1 + temp->d_name.len;
1789 temp = temp->d_parent;
1790 }
1791 rcu_read_unlock();
1792 if (len)
1793 len--; /* no leading '/' */
1794
1795 path = kmalloc(len+1, GFP_NOFS);
1796 if (path == NULL)
1797 return ERR_PTR(-ENOMEM);
1798 pos = len;
1799 path[pos] = 0; /* trailing null */
1800 rcu_read_lock();
1801 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1802 struct inode *inode;
1803
1804 spin_lock(&temp->d_lock);
1805 inode = d_inode(temp);
1806 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1807 dout("build_path path+%d: %p SNAPDIR\n",
1808 pos, temp);
1809 } else if (stop_on_nosnap && inode &&
1810 ceph_snap(inode) == CEPH_NOSNAP) {
1811 spin_unlock(&temp->d_lock);
1812 break;
1813 } else {
1814 pos -= temp->d_name.len;
1815 if (pos < 0) {
1816 spin_unlock(&temp->d_lock);
1817 break;
1818 }
1819 strncpy(path + pos, temp->d_name.name,
1820 temp->d_name.len);
1821 }
1822 spin_unlock(&temp->d_lock);
1823 if (pos)
1824 path[--pos] = '/';
1825 temp = temp->d_parent;
1826 }
1827 rcu_read_unlock();
1828 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1829 pr_err("build_path did not end path lookup where "
1830 "expected, namelen is %d, pos is %d\n", len, pos);
1831 /* presumably this is only possible if racing with a
1832 rename of one of the parent directories (we can not
1833 lock the dentries above us to prevent this, but
1834 retrying should be harmless) */
1835 kfree(path);
1836 goto retry;
1837 }
1838
1839 *base = ceph_ino(d_inode(temp));
1840 *plen = len;
1841 dout("build_path on %p %d built %llx '%.*s'\n",
1842 dentry, d_count(dentry), *base, len, path);
1843 return path;
1844 }
1845
1846 static int build_dentry_path(struct dentry *dentry,
1847 const char **ppath, int *ppathlen, u64 *pino,
1848 int *pfreepath)
1849 {
1850 char *path;
1851
1852 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1853 *pino = ceph_ino(d_inode(dentry->d_parent));
1854 *ppath = dentry->d_name.name;
1855 *ppathlen = dentry->d_name.len;
1856 return 0;
1857 }
1858 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1859 if (IS_ERR(path))
1860 return PTR_ERR(path);
1861 *ppath = path;
1862 *pfreepath = 1;
1863 return 0;
1864 }
1865
1866 static int build_inode_path(struct inode *inode,
1867 const char **ppath, int *ppathlen, u64 *pino,
1868 int *pfreepath)
1869 {
1870 struct dentry *dentry;
1871 char *path;
1872
1873 if (ceph_snap(inode) == CEPH_NOSNAP) {
1874 *pino = ceph_ino(inode);
1875 *ppathlen = 0;
1876 return 0;
1877 }
1878 dentry = d_find_alias(inode);
1879 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1880 dput(dentry);
1881 if (IS_ERR(path))
1882 return PTR_ERR(path);
1883 *ppath = path;
1884 *pfreepath = 1;
1885 return 0;
1886 }
1887
1888 /*
1889 * request arguments may be specified via an inode *, a dentry *, or
1890 * an explicit ino+path.
1891 */
1892 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1893 const char *rpath, u64 rino,
1894 const char **ppath, int *pathlen,
1895 u64 *ino, int *freepath)
1896 {
1897 int r = 0;
1898
1899 if (rinode) {
1900 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1901 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1902 ceph_snap(rinode));
1903 } else if (rdentry) {
1904 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1905 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1906 *ppath);
1907 } else if (rpath || rino) {
1908 *ino = rino;
1909 *ppath = rpath;
1910 *pathlen = rpath ? strlen(rpath) : 0;
1911 dout(" path %.*s\n", *pathlen, rpath);
1912 }
1913
1914 return r;
1915 }
1916
1917 /*
1918 * called under mdsc->mutex
1919 */
1920 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1921 struct ceph_mds_request *req,
1922 int mds, bool drop_cap_releases)
1923 {
1924 struct ceph_msg *msg;
1925 struct ceph_mds_request_head *head;
1926 const char *path1 = NULL;
1927 const char *path2 = NULL;
1928 u64 ino1 = 0, ino2 = 0;
1929 int pathlen1 = 0, pathlen2 = 0;
1930 int freepath1 = 0, freepath2 = 0;
1931 int len;
1932 u16 releases;
1933 void *p, *end;
1934 int ret;
1935
1936 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1937 req->r_path1, req->r_ino1.ino,
1938 &path1, &pathlen1, &ino1, &freepath1);
1939 if (ret < 0) {
1940 msg = ERR_PTR(ret);
1941 goto out;
1942 }
1943
1944 ret = set_request_path_attr(NULL, req->r_old_dentry,
1945 req->r_path2, req->r_ino2.ino,
1946 &path2, &pathlen2, &ino2, &freepath2);
1947 if (ret < 0) {
1948 msg = ERR_PTR(ret);
1949 goto out_free1;
1950 }
1951
1952 len = sizeof(*head) +
1953 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1954 sizeof(struct ceph_timespec);
1955
1956 /* calculate (max) length for cap releases */
1957 len += sizeof(struct ceph_mds_request_release) *
1958 (!!req->r_inode_drop + !!req->r_dentry_drop +
1959 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1960 if (req->r_dentry_drop)
1961 len += req->r_dentry->d_name.len;
1962 if (req->r_old_dentry_drop)
1963 len += req->r_old_dentry->d_name.len;
1964
1965 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1966 if (!msg) {
1967 msg = ERR_PTR(-ENOMEM);
1968 goto out_free2;
1969 }
1970
1971 msg->hdr.version = cpu_to_le16(2);
1972 msg->hdr.tid = cpu_to_le64(req->r_tid);
1973
1974 head = msg->front.iov_base;
1975 p = msg->front.iov_base + sizeof(*head);
1976 end = msg->front.iov_base + msg->front.iov_len;
1977
1978 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1979 head->op = cpu_to_le32(req->r_op);
1980 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1981 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1982 head->args = req->r_args;
1983
1984 ceph_encode_filepath(&p, end, ino1, path1);
1985 ceph_encode_filepath(&p, end, ino2, path2);
1986
1987 /* make note of release offset, in case we need to replay */
1988 req->r_request_release_offset = p - msg->front.iov_base;
1989
1990 /* cap releases */
1991 releases = 0;
1992 if (req->r_inode_drop)
1993 releases += ceph_encode_inode_release(&p,
1994 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1995 mds, req->r_inode_drop, req->r_inode_unless, 0);
1996 if (req->r_dentry_drop)
1997 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1998 mds, req->r_dentry_drop, req->r_dentry_unless);
1999 if (req->r_old_dentry_drop)
2000 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
2001 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
2002 if (req->r_old_inode_drop)
2003 releases += ceph_encode_inode_release(&p,
2004 d_inode(req->r_old_dentry),
2005 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2006
2007 if (drop_cap_releases) {
2008 releases = 0;
2009 p = msg->front.iov_base + req->r_request_release_offset;
2010 }
2011
2012 head->num_releases = cpu_to_le16(releases);
2013
2014 /* time stamp */
2015 {
2016 struct ceph_timespec ts;
2017 ceph_encode_timespec(&ts, &req->r_stamp);
2018 ceph_encode_copy(&p, &ts, sizeof(ts));
2019 }
2020
2021 BUG_ON(p > end);
2022 msg->front.iov_len = p - msg->front.iov_base;
2023 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2024
2025 if (req->r_pagelist) {
2026 struct ceph_pagelist *pagelist = req->r_pagelist;
2027 atomic_inc(&pagelist->refcnt);
2028 ceph_msg_data_add_pagelist(msg, pagelist);
2029 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2030 } else {
2031 msg->hdr.data_len = 0;
2032 }
2033
2034 msg->hdr.data_off = cpu_to_le16(0);
2035
2036 out_free2:
2037 if (freepath2)
2038 kfree((char *)path2);
2039 out_free1:
2040 if (freepath1)
2041 kfree((char *)path1);
2042 out:
2043 return msg;
2044 }
2045
2046 /*
2047 * called under mdsc->mutex if error, under no mutex if
2048 * success.
2049 */
2050 static void complete_request(struct ceph_mds_client *mdsc,
2051 struct ceph_mds_request *req)
2052 {
2053 if (req->r_callback)
2054 req->r_callback(mdsc, req);
2055 else
2056 complete_all(&req->r_completion);
2057 }
2058
2059 /*
2060 * called under mdsc->mutex
2061 */
2062 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2063 struct ceph_mds_request *req,
2064 int mds, bool drop_cap_releases)
2065 {
2066 struct ceph_mds_request_head *rhead;
2067 struct ceph_msg *msg;
2068 int flags = 0;
2069
2070 req->r_attempts++;
2071 if (req->r_inode) {
2072 struct ceph_cap *cap =
2073 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2074
2075 if (cap)
2076 req->r_sent_on_mseq = cap->mseq;
2077 else
2078 req->r_sent_on_mseq = -1;
2079 }
2080 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2081 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2082
2083 if (req->r_got_unsafe) {
2084 void *p;
2085 /*
2086 * Replay. Do not regenerate message (and rebuild
2087 * paths, etc.); just use the original message.
2088 * Rebuilding paths will break for renames because
2089 * d_move mangles the src name.
2090 */
2091 msg = req->r_request;
2092 rhead = msg->front.iov_base;
2093
2094 flags = le32_to_cpu(rhead->flags);
2095 flags |= CEPH_MDS_FLAG_REPLAY;
2096 rhead->flags = cpu_to_le32(flags);
2097
2098 if (req->r_target_inode)
2099 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2100
2101 rhead->num_retry = req->r_attempts - 1;
2102
2103 /* remove cap/dentry releases from message */
2104 rhead->num_releases = 0;
2105
2106 /* time stamp */
2107 p = msg->front.iov_base + req->r_request_release_offset;
2108 {
2109 struct ceph_timespec ts;
2110 ceph_encode_timespec(&ts, &req->r_stamp);
2111 ceph_encode_copy(&p, &ts, sizeof(ts));
2112 }
2113
2114 msg->front.iov_len = p - msg->front.iov_base;
2115 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2116 return 0;
2117 }
2118
2119 if (req->r_request) {
2120 ceph_msg_put(req->r_request);
2121 req->r_request = NULL;
2122 }
2123 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2124 if (IS_ERR(msg)) {
2125 req->r_err = PTR_ERR(msg);
2126 return PTR_ERR(msg);
2127 }
2128 req->r_request = msg;
2129
2130 rhead = msg->front.iov_base;
2131 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2132 if (req->r_got_unsafe)
2133 flags |= CEPH_MDS_FLAG_REPLAY;
2134 if (req->r_locked_dir)
2135 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2136 rhead->flags = cpu_to_le32(flags);
2137 rhead->num_fwd = req->r_num_fwd;
2138 rhead->num_retry = req->r_attempts - 1;
2139 rhead->ino = 0;
2140
2141 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2142 return 0;
2143 }
2144
2145 /*
2146 * send request, or put it on the appropriate wait list.
2147 */
2148 static int __do_request(struct ceph_mds_client *mdsc,
2149 struct ceph_mds_request *req)
2150 {
2151 struct ceph_mds_session *session = NULL;
2152 int mds = -1;
2153 int err = 0;
2154
2155 if (req->r_err || req->r_got_result) {
2156 if (req->r_aborted)
2157 __unregister_request(mdsc, req);
2158 goto out;
2159 }
2160
2161 if (req->r_timeout &&
2162 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2163 dout("do_request timed out\n");
2164 err = -EIO;
2165 goto finish;
2166 }
2167 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2168 dout("do_request forced umount\n");
2169 err = -EIO;
2170 goto finish;
2171 }
2172
2173 put_request_session(req);
2174
2175 mds = __choose_mds(mdsc, req);
2176 if (mds < 0 ||
2177 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2178 dout("do_request no mds or not active, waiting for map\n");
2179 list_add(&req->r_wait, &mdsc->waiting_for_map);
2180 goto out;
2181 }
2182
2183 /* get, open session */
2184 session = __ceph_lookup_mds_session(mdsc, mds);
2185 if (!session) {
2186 session = register_session(mdsc, mds);
2187 if (IS_ERR(session)) {
2188 err = PTR_ERR(session);
2189 goto finish;
2190 }
2191 }
2192 req->r_session = get_session(session);
2193
2194 dout("do_request mds%d session %p state %s\n", mds, session,
2195 ceph_session_state_name(session->s_state));
2196 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2197 session->s_state != CEPH_MDS_SESSION_HUNG) {
2198 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2199 session->s_state == CEPH_MDS_SESSION_CLOSING)
2200 __open_session(mdsc, session);
2201 list_add(&req->r_wait, &session->s_waiting);
2202 goto out_session;
2203 }
2204
2205 /* send request */
2206 req->r_resend_mds = -1; /* forget any previous mds hint */
2207
2208 if (req->r_request_started == 0) /* note request start time */
2209 req->r_request_started = jiffies;
2210
2211 err = __prepare_send_request(mdsc, req, mds, false);
2212 if (!err) {
2213 ceph_msg_get(req->r_request);
2214 ceph_con_send(&session->s_con, req->r_request);
2215 }
2216
2217 out_session:
2218 ceph_put_mds_session(session);
2219 finish:
2220 if (err) {
2221 dout("__do_request early error %d\n", err);
2222 req->r_err = err;
2223 complete_request(mdsc, req);
2224 __unregister_request(mdsc, req);
2225 }
2226 out:
2227 return err;
2228 }
2229
2230 /*
2231 * called under mdsc->mutex
2232 */
2233 static void __wake_requests(struct ceph_mds_client *mdsc,
2234 struct list_head *head)
2235 {
2236 struct ceph_mds_request *req;
2237 LIST_HEAD(tmp_list);
2238
2239 list_splice_init(head, &tmp_list);
2240
2241 while (!list_empty(&tmp_list)) {
2242 req = list_entry(tmp_list.next,
2243 struct ceph_mds_request, r_wait);
2244 list_del_init(&req->r_wait);
2245 dout(" wake request %p tid %llu\n", req, req->r_tid);
2246 __do_request(mdsc, req);
2247 }
2248 }
2249
2250 /*
2251 * Wake up threads with requests pending for @mds, so that they can
2252 * resubmit their requests to a possibly different mds.
2253 */
2254 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2255 {
2256 struct ceph_mds_request *req;
2257 struct rb_node *p = rb_first(&mdsc->request_tree);
2258
2259 dout("kick_requests mds%d\n", mds);
2260 while (p) {
2261 req = rb_entry(p, struct ceph_mds_request, r_node);
2262 p = rb_next(p);
2263 if (req->r_got_unsafe)
2264 continue;
2265 if (req->r_attempts > 0)
2266 continue; /* only new requests */
2267 if (req->r_session &&
2268 req->r_session->s_mds == mds) {
2269 dout(" kicking tid %llu\n", req->r_tid);
2270 list_del_init(&req->r_wait);
2271 __do_request(mdsc, req);
2272 }
2273 }
2274 }
2275
2276 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2277 struct ceph_mds_request *req)
2278 {
2279 dout("submit_request on %p\n", req);
2280 mutex_lock(&mdsc->mutex);
2281 __register_request(mdsc, req, NULL);
2282 __do_request(mdsc, req);
2283 mutex_unlock(&mdsc->mutex);
2284 }
2285
2286 /*
2287 * Synchrously perform an mds request. Take care of all of the
2288 * session setup, forwarding, retry details.
2289 */
2290 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2291 struct inode *dir,
2292 struct ceph_mds_request *req)
2293 {
2294 int err;
2295
2296 dout("do_request on %p\n", req);
2297
2298 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2299 if (req->r_inode)
2300 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2301 if (req->r_locked_dir)
2302 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2303 if (req->r_old_dentry_dir)
2304 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2305 CEPH_CAP_PIN);
2306
2307 /* deny access to directories with pool_ns layouts */
2308 if (req->r_inode && S_ISDIR(req->r_inode->i_mode) &&
2309 ceph_inode(req->r_inode)->i_pool_ns_len)
2310 return -EIO;
2311 if (req->r_locked_dir &&
2312 ceph_inode(req->r_locked_dir)->i_pool_ns_len)
2313 return -EIO;
2314
2315 /* issue */
2316 mutex_lock(&mdsc->mutex);
2317 __register_request(mdsc, req, dir);
2318 __do_request(mdsc, req);
2319
2320 if (req->r_err) {
2321 err = req->r_err;
2322 goto out;
2323 }
2324
2325 /* wait */
2326 mutex_unlock(&mdsc->mutex);
2327 dout("do_request waiting\n");
2328 if (!req->r_timeout && req->r_wait_for_completion) {
2329 err = req->r_wait_for_completion(mdsc, req);
2330 } else {
2331 long timeleft = wait_for_completion_killable_timeout(
2332 &req->r_completion,
2333 ceph_timeout_jiffies(req->r_timeout));
2334 if (timeleft > 0)
2335 err = 0;
2336 else if (!timeleft)
2337 err = -EIO; /* timed out */
2338 else
2339 err = timeleft; /* killed */
2340 }
2341 dout("do_request waited, got %d\n", err);
2342 mutex_lock(&mdsc->mutex);
2343
2344 /* only abort if we didn't race with a real reply */
2345 if (req->r_got_result) {
2346 err = le32_to_cpu(req->r_reply_info.head->result);
2347 } else if (err < 0) {
2348 dout("aborted request %lld with %d\n", req->r_tid, err);
2349
2350 /*
2351 * ensure we aren't running concurrently with
2352 * ceph_fill_trace or ceph_readdir_prepopulate, which
2353 * rely on locks (dir mutex) held by our caller.
2354 */
2355 mutex_lock(&req->r_fill_mutex);
2356 req->r_err = err;
2357 req->r_aborted = true;
2358 mutex_unlock(&req->r_fill_mutex);
2359
2360 if (req->r_locked_dir &&
2361 (req->r_op & CEPH_MDS_OP_WRITE))
2362 ceph_invalidate_dir_request(req);
2363 } else {
2364 err = req->r_err;
2365 }
2366
2367 out:
2368 mutex_unlock(&mdsc->mutex);
2369 dout("do_request %p done, result %d\n", req, err);
2370 return err;
2371 }
2372
2373 /*
2374 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2375 * namespace request.
2376 */
2377 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2378 {
2379 struct inode *inode = req->r_locked_dir;
2380
2381 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2382
2383 ceph_dir_clear_complete(inode);
2384 if (req->r_dentry)
2385 ceph_invalidate_dentry_lease(req->r_dentry);
2386 if (req->r_old_dentry)
2387 ceph_invalidate_dentry_lease(req->r_old_dentry);
2388 }
2389
2390 /*
2391 * Handle mds reply.
2392 *
2393 * We take the session mutex and parse and process the reply immediately.
2394 * This preserves the logical ordering of replies, capabilities, etc., sent
2395 * by the MDS as they are applied to our local cache.
2396 */
2397 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2398 {
2399 struct ceph_mds_client *mdsc = session->s_mdsc;
2400 struct ceph_mds_request *req;
2401 struct ceph_mds_reply_head *head = msg->front.iov_base;
2402 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2403 struct ceph_snap_realm *realm;
2404 u64 tid;
2405 int err, result;
2406 int mds = session->s_mds;
2407
2408 if (msg->front.iov_len < sizeof(*head)) {
2409 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2410 ceph_msg_dump(msg);
2411 return;
2412 }
2413
2414 /* get request, session */
2415 tid = le64_to_cpu(msg->hdr.tid);
2416 mutex_lock(&mdsc->mutex);
2417 req = __lookup_request(mdsc, tid);
2418 if (!req) {
2419 dout("handle_reply on unknown tid %llu\n", tid);
2420 mutex_unlock(&mdsc->mutex);
2421 return;
2422 }
2423 dout("handle_reply %p\n", req);
2424
2425 /* correct session? */
2426 if (req->r_session != session) {
2427 pr_err("mdsc_handle_reply got %llu on session mds%d"
2428 " not mds%d\n", tid, session->s_mds,
2429 req->r_session ? req->r_session->s_mds : -1);
2430 mutex_unlock(&mdsc->mutex);
2431 goto out;
2432 }
2433
2434 /* dup? */
2435 if ((req->r_got_unsafe && !head->safe) ||
2436 (req->r_got_safe && head->safe)) {
2437 pr_warn("got a dup %s reply on %llu from mds%d\n",
2438 head->safe ? "safe" : "unsafe", tid, mds);
2439 mutex_unlock(&mdsc->mutex);
2440 goto out;
2441 }
2442 if (req->r_got_safe) {
2443 pr_warn("got unsafe after safe on %llu from mds%d\n",
2444 tid, mds);
2445 mutex_unlock(&mdsc->mutex);
2446 goto out;
2447 }
2448
2449 result = le32_to_cpu(head->result);
2450
2451 /*
2452 * Handle an ESTALE
2453 * if we're not talking to the authority, send to them
2454 * if the authority has changed while we weren't looking,
2455 * send to new authority
2456 * Otherwise we just have to return an ESTALE
2457 */
2458 if (result == -ESTALE) {
2459 dout("got ESTALE on request %llu", req->r_tid);
2460 req->r_resend_mds = -1;
2461 if (req->r_direct_mode != USE_AUTH_MDS) {
2462 dout("not using auth, setting for that now");
2463 req->r_direct_mode = USE_AUTH_MDS;
2464 __do_request(mdsc, req);
2465 mutex_unlock(&mdsc->mutex);
2466 goto out;
2467 } else {
2468 int mds = __choose_mds(mdsc, req);
2469 if (mds >= 0 && mds != req->r_session->s_mds) {
2470 dout("but auth changed, so resending");
2471 __do_request(mdsc, req);
2472 mutex_unlock(&mdsc->mutex);
2473 goto out;
2474 }
2475 }
2476 dout("have to return ESTALE on request %llu", req->r_tid);
2477 }
2478
2479
2480 if (head->safe) {
2481 req->r_got_safe = true;
2482 __unregister_request(mdsc, req);
2483
2484 if (req->r_got_unsafe) {
2485 /*
2486 * We already handled the unsafe response, now do the
2487 * cleanup. No need to examine the response; the MDS
2488 * doesn't include any result info in the safe
2489 * response. And even if it did, there is nothing
2490 * useful we could do with a revised return value.
2491 */
2492 dout("got safe reply %llu, mds%d\n", tid, mds);
2493 list_del_init(&req->r_unsafe_item);
2494
2495 /* last unsafe request during umount? */
2496 if (mdsc->stopping && !__get_oldest_req(mdsc))
2497 complete_all(&mdsc->safe_umount_waiters);
2498 mutex_unlock(&mdsc->mutex);
2499 goto out;
2500 }
2501 } else {
2502 req->r_got_unsafe = true;
2503 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2504 if (req->r_unsafe_dir) {
2505 struct ceph_inode_info *ci =
2506 ceph_inode(req->r_unsafe_dir);
2507 spin_lock(&ci->i_unsafe_lock);
2508 list_add_tail(&req->r_unsafe_dir_item,
2509 &ci->i_unsafe_dirops);
2510 spin_unlock(&ci->i_unsafe_lock);
2511 }
2512 }
2513
2514 dout("handle_reply tid %lld result %d\n", tid, result);
2515 rinfo = &req->r_reply_info;
2516 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2517 mutex_unlock(&mdsc->mutex);
2518
2519 mutex_lock(&session->s_mutex);
2520 if (err < 0) {
2521 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2522 ceph_msg_dump(msg);
2523 goto out_err;
2524 }
2525
2526 /* snap trace */
2527 realm = NULL;
2528 if (rinfo->snapblob_len) {
2529 down_write(&mdsc->snap_rwsem);
2530 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2531 rinfo->snapblob + rinfo->snapblob_len,
2532 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2533 &realm);
2534 downgrade_write(&mdsc->snap_rwsem);
2535 } else {
2536 down_read(&mdsc->snap_rwsem);
2537 }
2538
2539 /* insert trace into our cache */
2540 mutex_lock(&req->r_fill_mutex);
2541 current->journal_info = req;
2542 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2543 if (err == 0) {
2544 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2545 req->r_op == CEPH_MDS_OP_LSSNAP))
2546 ceph_readdir_prepopulate(req, req->r_session);
2547 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2548 }
2549 current->journal_info = NULL;
2550 mutex_unlock(&req->r_fill_mutex);
2551
2552 up_read(&mdsc->snap_rwsem);
2553 if (realm)
2554 ceph_put_snap_realm(mdsc, realm);
2555
2556 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2557 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2558 spin_lock(&ci->i_unsafe_lock);
2559 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2560 spin_unlock(&ci->i_unsafe_lock);
2561 }
2562 out_err:
2563 mutex_lock(&mdsc->mutex);
2564 if (!req->r_aborted) {
2565 if (err) {
2566 req->r_err = err;
2567 } else {
2568 req->r_reply = ceph_msg_get(msg);
2569 req->r_got_result = true;
2570 }
2571 } else {
2572 dout("reply arrived after request %lld was aborted\n", tid);
2573 }
2574 mutex_unlock(&mdsc->mutex);
2575
2576 mutex_unlock(&session->s_mutex);
2577
2578 /* kick calling process */
2579 complete_request(mdsc, req);
2580 out:
2581 ceph_mdsc_put_request(req);
2582 return;
2583 }
2584
2585
2586
2587 /*
2588 * handle mds notification that our request has been forwarded.
2589 */
2590 static void handle_forward(struct ceph_mds_client *mdsc,
2591 struct ceph_mds_session *session,
2592 struct ceph_msg *msg)
2593 {
2594 struct ceph_mds_request *req;
2595 u64 tid = le64_to_cpu(msg->hdr.tid);
2596 u32 next_mds;
2597 u32 fwd_seq;
2598 int err = -EINVAL;
2599 void *p = msg->front.iov_base;
2600 void *end = p + msg->front.iov_len;
2601
2602 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2603 next_mds = ceph_decode_32(&p);
2604 fwd_seq = ceph_decode_32(&p);
2605
2606 mutex_lock(&mdsc->mutex);
2607 req = __lookup_request(mdsc, tid);
2608 if (!req) {
2609 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2610 goto out; /* dup reply? */
2611 }
2612
2613 if (req->r_aborted) {
2614 dout("forward tid %llu aborted, unregistering\n", tid);
2615 __unregister_request(mdsc, req);
2616 } else if (fwd_seq <= req->r_num_fwd) {
2617 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2618 tid, next_mds, req->r_num_fwd, fwd_seq);
2619 } else {
2620 /* resend. forward race not possible; mds would drop */
2621 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2622 BUG_ON(req->r_err);
2623 BUG_ON(req->r_got_result);
2624 req->r_attempts = 0;
2625 req->r_num_fwd = fwd_seq;
2626 req->r_resend_mds = next_mds;
2627 put_request_session(req);
2628 __do_request(mdsc, req);
2629 }
2630 ceph_mdsc_put_request(req);
2631 out:
2632 mutex_unlock(&mdsc->mutex);
2633 return;
2634
2635 bad:
2636 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2637 }
2638
2639 /*
2640 * handle a mds session control message
2641 */
2642 static void handle_session(struct ceph_mds_session *session,
2643 struct ceph_msg *msg)
2644 {
2645 struct ceph_mds_client *mdsc = session->s_mdsc;
2646 u32 op;
2647 u64 seq;
2648 int mds = session->s_mds;
2649 struct ceph_mds_session_head *h = msg->front.iov_base;
2650 int wake = 0;
2651
2652 /* decode */
2653 if (msg->front.iov_len != sizeof(*h))
2654 goto bad;
2655 op = le32_to_cpu(h->op);
2656 seq = le64_to_cpu(h->seq);
2657
2658 mutex_lock(&mdsc->mutex);
2659 if (op == CEPH_SESSION_CLOSE)
2660 __unregister_session(mdsc, session);
2661 /* FIXME: this ttl calculation is generous */
2662 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2663 mutex_unlock(&mdsc->mutex);
2664
2665 mutex_lock(&session->s_mutex);
2666
2667 dout("handle_session mds%d %s %p state %s seq %llu\n",
2668 mds, ceph_session_op_name(op), session,
2669 ceph_session_state_name(session->s_state), seq);
2670
2671 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2672 session->s_state = CEPH_MDS_SESSION_OPEN;
2673 pr_info("mds%d came back\n", session->s_mds);
2674 }
2675
2676 switch (op) {
2677 case CEPH_SESSION_OPEN:
2678 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2679 pr_info("mds%d reconnect success\n", session->s_mds);
2680 session->s_state = CEPH_MDS_SESSION_OPEN;
2681 renewed_caps(mdsc, session, 0);
2682 wake = 1;
2683 if (mdsc->stopping)
2684 __close_session(mdsc, session);
2685 break;
2686
2687 case CEPH_SESSION_RENEWCAPS:
2688 if (session->s_renew_seq == seq)
2689 renewed_caps(mdsc, session, 1);
2690 break;
2691
2692 case CEPH_SESSION_CLOSE:
2693 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2694 pr_info("mds%d reconnect denied\n", session->s_mds);
2695 cleanup_session_requests(mdsc, session);
2696 remove_session_caps(session);
2697 wake = 2; /* for good measure */
2698 wake_up_all(&mdsc->session_close_wq);
2699 break;
2700
2701 case CEPH_SESSION_STALE:
2702 pr_info("mds%d caps went stale, renewing\n",
2703 session->s_mds);
2704 spin_lock(&session->s_gen_ttl_lock);
2705 session->s_cap_gen++;
2706 session->s_cap_ttl = jiffies - 1;
2707 spin_unlock(&session->s_gen_ttl_lock);
2708 send_renew_caps(mdsc, session);
2709 break;
2710
2711 case CEPH_SESSION_RECALL_STATE:
2712 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2713 break;
2714
2715 case CEPH_SESSION_FLUSHMSG:
2716 send_flushmsg_ack(mdsc, session, seq);
2717 break;
2718
2719 case CEPH_SESSION_FORCE_RO:
2720 dout("force_session_readonly %p\n", session);
2721 spin_lock(&session->s_cap_lock);
2722 session->s_readonly = true;
2723 spin_unlock(&session->s_cap_lock);
2724 wake_up_session_caps(session, 0);
2725 break;
2726
2727 default:
2728 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2729 WARN_ON(1);
2730 }
2731
2732 mutex_unlock(&session->s_mutex);
2733 if (wake) {
2734 mutex_lock(&mdsc->mutex);
2735 __wake_requests(mdsc, &session->s_waiting);
2736 if (wake == 2)
2737 kick_requests(mdsc, mds);
2738 mutex_unlock(&mdsc->mutex);
2739 }
2740 return;
2741
2742 bad:
2743 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2744 (int)msg->front.iov_len);
2745 ceph_msg_dump(msg);
2746 return;
2747 }
2748
2749
2750 /*
2751 * called under session->mutex.
2752 */
2753 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2754 struct ceph_mds_session *session)
2755 {
2756 struct ceph_mds_request *req, *nreq;
2757 struct rb_node *p;
2758 int err;
2759
2760 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2761
2762 mutex_lock(&mdsc->mutex);
2763 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2764 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2765 if (!err) {
2766 ceph_msg_get(req->r_request);
2767 ceph_con_send(&session->s_con, req->r_request);
2768 }
2769 }
2770
2771 /*
2772 * also re-send old requests when MDS enters reconnect stage. So that MDS
2773 * can process completed request in clientreplay stage.
2774 */
2775 p = rb_first(&mdsc->request_tree);
2776 while (p) {
2777 req = rb_entry(p, struct ceph_mds_request, r_node);
2778 p = rb_next(p);
2779 if (req->r_got_unsafe)
2780 continue;
2781 if (req->r_attempts == 0)
2782 continue; /* only old requests */
2783 if (req->r_session &&
2784 req->r_session->s_mds == session->s_mds) {
2785 err = __prepare_send_request(mdsc, req,
2786 session->s_mds, true);
2787 if (!err) {
2788 ceph_msg_get(req->r_request);
2789 ceph_con_send(&session->s_con, req->r_request);
2790 }
2791 }
2792 }
2793 mutex_unlock(&mdsc->mutex);
2794 }
2795
2796 /*
2797 * Encode information about a cap for a reconnect with the MDS.
2798 */
2799 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2800 void *arg)
2801 {
2802 union {
2803 struct ceph_mds_cap_reconnect v2;
2804 struct ceph_mds_cap_reconnect_v1 v1;
2805 } rec;
2806 size_t reclen;
2807 struct ceph_inode_info *ci;
2808 struct ceph_reconnect_state *recon_state = arg;
2809 struct ceph_pagelist *pagelist = recon_state->pagelist;
2810 char *path;
2811 int pathlen, err;
2812 u64 pathbase;
2813 struct dentry *dentry;
2814
2815 ci = cap->ci;
2816
2817 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2818 inode, ceph_vinop(inode), cap, cap->cap_id,
2819 ceph_cap_string(cap->issued));
2820 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2821 if (err)
2822 return err;
2823
2824 dentry = d_find_alias(inode);
2825 if (dentry) {
2826 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2827 if (IS_ERR(path)) {
2828 err = PTR_ERR(path);
2829 goto out_dput;
2830 }
2831 } else {
2832 path = NULL;
2833 pathlen = 0;
2834 }
2835 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2836 if (err)
2837 goto out_free;
2838
2839 spin_lock(&ci->i_ceph_lock);
2840 cap->seq = 0; /* reset cap seq */
2841 cap->issue_seq = 0; /* and issue_seq */
2842 cap->mseq = 0; /* and migrate_seq */
2843 cap->cap_gen = cap->session->s_cap_gen;
2844
2845 if (recon_state->flock) {
2846 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2847 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2848 rec.v2.issued = cpu_to_le32(cap->issued);
2849 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2850 rec.v2.pathbase = cpu_to_le64(pathbase);
2851 rec.v2.flock_len = 0;
2852 reclen = sizeof(rec.v2);
2853 } else {
2854 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2855 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2856 rec.v1.issued = cpu_to_le32(cap->issued);
2857 rec.v1.size = cpu_to_le64(inode->i_size);
2858 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2859 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2860 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2861 rec.v1.pathbase = cpu_to_le64(pathbase);
2862 reclen = sizeof(rec.v1);
2863 }
2864 spin_unlock(&ci->i_ceph_lock);
2865
2866 if (recon_state->flock) {
2867 int num_fcntl_locks, num_flock_locks;
2868 struct ceph_filelock *flocks;
2869
2870 encode_again:
2871 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2872 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2873 sizeof(struct ceph_filelock), GFP_NOFS);
2874 if (!flocks) {
2875 err = -ENOMEM;
2876 goto out_free;
2877 }
2878 err = ceph_encode_locks_to_buffer(inode, flocks,
2879 num_fcntl_locks,
2880 num_flock_locks);
2881 if (err) {
2882 kfree(flocks);
2883 if (err == -ENOSPC)
2884 goto encode_again;
2885 goto out_free;
2886 }
2887 /*
2888 * number of encoded locks is stable, so copy to pagelist
2889 */
2890 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2891 (num_fcntl_locks+num_flock_locks) *
2892 sizeof(struct ceph_filelock));
2893 err = ceph_pagelist_append(pagelist, &rec, reclen);
2894 if (!err)
2895 err = ceph_locks_to_pagelist(flocks, pagelist,
2896 num_fcntl_locks,
2897 num_flock_locks);
2898 kfree(flocks);
2899 } else {
2900 err = ceph_pagelist_append(pagelist, &rec, reclen);
2901 }
2902
2903 recon_state->nr_caps++;
2904 out_free:
2905 kfree(path);
2906 out_dput:
2907 dput(dentry);
2908 return err;
2909 }
2910
2911
2912 /*
2913 * If an MDS fails and recovers, clients need to reconnect in order to
2914 * reestablish shared state. This includes all caps issued through
2915 * this session _and_ the snap_realm hierarchy. Because it's not
2916 * clear which snap realms the mds cares about, we send everything we
2917 * know about.. that ensures we'll then get any new info the
2918 * recovering MDS might have.
2919 *
2920 * This is a relatively heavyweight operation, but it's rare.
2921 *
2922 * called with mdsc->mutex held.
2923 */
2924 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2925 struct ceph_mds_session *session)
2926 {
2927 struct ceph_msg *reply;
2928 struct rb_node *p;
2929 int mds = session->s_mds;
2930 int err = -ENOMEM;
2931 int s_nr_caps;
2932 struct ceph_pagelist *pagelist;
2933 struct ceph_reconnect_state recon_state;
2934
2935 pr_info("mds%d reconnect start\n", mds);
2936
2937 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2938 if (!pagelist)
2939 goto fail_nopagelist;
2940 ceph_pagelist_init(pagelist);
2941
2942 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2943 if (!reply)
2944 goto fail_nomsg;
2945
2946 mutex_lock(&session->s_mutex);
2947 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2948 session->s_seq = 0;
2949
2950 dout("session %p state %s\n", session,
2951 ceph_session_state_name(session->s_state));
2952
2953 spin_lock(&session->s_gen_ttl_lock);
2954 session->s_cap_gen++;
2955 spin_unlock(&session->s_gen_ttl_lock);
2956
2957 spin_lock(&session->s_cap_lock);
2958 /* don't know if session is readonly */
2959 session->s_readonly = 0;
2960 /*
2961 * notify __ceph_remove_cap() that we are composing cap reconnect.
2962 * If a cap get released before being added to the cap reconnect,
2963 * __ceph_remove_cap() should skip queuing cap release.
2964 */
2965 session->s_cap_reconnect = 1;
2966 /* drop old cap expires; we're about to reestablish that state */
2967 cleanup_cap_releases(mdsc, session);
2968
2969 /* trim unused caps to reduce MDS's cache rejoin time */
2970 if (mdsc->fsc->sb->s_root)
2971 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2972
2973 ceph_con_close(&session->s_con);
2974 ceph_con_open(&session->s_con,
2975 CEPH_ENTITY_TYPE_MDS, mds,
2976 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2977
2978 /* replay unsafe requests */
2979 replay_unsafe_requests(mdsc, session);
2980
2981 down_read(&mdsc->snap_rwsem);
2982
2983 /* traverse this session's caps */
2984 s_nr_caps = session->s_nr_caps;
2985 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2986 if (err)
2987 goto fail;
2988
2989 recon_state.nr_caps = 0;
2990 recon_state.pagelist = pagelist;
2991 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2992 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2993 if (err < 0)
2994 goto fail;
2995
2996 spin_lock(&session->s_cap_lock);
2997 session->s_cap_reconnect = 0;
2998 spin_unlock(&session->s_cap_lock);
2999
3000 /*
3001 * snaprealms. we provide mds with the ino, seq (version), and
3002 * parent for all of our realms. If the mds has any newer info,
3003 * it will tell us.
3004 */
3005 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
3006 struct ceph_snap_realm *realm =
3007 rb_entry(p, struct ceph_snap_realm, node);
3008 struct ceph_mds_snaprealm_reconnect sr_rec;
3009
3010 dout(" adding snap realm %llx seq %lld parent %llx\n",
3011 realm->ino, realm->seq, realm->parent_ino);
3012 sr_rec.ino = cpu_to_le64(realm->ino);
3013 sr_rec.seq = cpu_to_le64(realm->seq);
3014 sr_rec.parent = cpu_to_le64(realm->parent_ino);
3015 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3016 if (err)
3017 goto fail;
3018 }
3019
3020 if (recon_state.flock)
3021 reply->hdr.version = cpu_to_le16(2);
3022
3023 /* raced with cap release? */
3024 if (s_nr_caps != recon_state.nr_caps) {
3025 struct page *page = list_first_entry(&pagelist->head,
3026 struct page, lru);
3027 __le32 *addr = kmap_atomic(page);
3028 *addr = cpu_to_le32(recon_state.nr_caps);
3029 kunmap_atomic(addr);
3030 }
3031
3032 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3033 ceph_msg_data_add_pagelist(reply, pagelist);
3034
3035 ceph_early_kick_flushing_caps(mdsc, session);
3036
3037 ceph_con_send(&session->s_con, reply);
3038
3039 mutex_unlock(&session->s_mutex);
3040
3041 mutex_lock(&mdsc->mutex);
3042 __wake_requests(mdsc, &session->s_waiting);
3043 mutex_unlock(&mdsc->mutex);
3044
3045 up_read(&mdsc->snap_rwsem);
3046 return;
3047
3048 fail:
3049 ceph_msg_put(reply);
3050 up_read(&mdsc->snap_rwsem);
3051 mutex_unlock(&session->s_mutex);
3052 fail_nomsg:
3053 ceph_pagelist_release(pagelist);
3054 fail_nopagelist:
3055 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3056 return;
3057 }
3058
3059
3060 /*
3061 * compare old and new mdsmaps, kicking requests
3062 * and closing out old connections as necessary
3063 *
3064 * called under mdsc->mutex.
3065 */
3066 static void check_new_map(struct ceph_mds_client *mdsc,
3067 struct ceph_mdsmap *newmap,
3068 struct ceph_mdsmap *oldmap)
3069 {
3070 int i;
3071 int oldstate, newstate;
3072 struct ceph_mds_session *s;
3073
3074 dout("check_new_map new %u old %u\n",
3075 newmap->m_epoch, oldmap->m_epoch);
3076
3077 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3078 if (mdsc->sessions[i] == NULL)
3079 continue;
3080 s = mdsc->sessions[i];
3081 oldstate = ceph_mdsmap_get_state(oldmap, i);
3082 newstate = ceph_mdsmap_get_state(newmap, i);
3083
3084 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3085 i, ceph_mds_state_name(oldstate),
3086 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3087 ceph_mds_state_name(newstate),
3088 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3089 ceph_session_state_name(s->s_state));
3090
3091 if (i >= newmap->m_max_mds ||
3092 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3093 ceph_mdsmap_get_addr(newmap, i),
3094 sizeof(struct ceph_entity_addr))) {
3095 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3096 /* the session never opened, just close it
3097 * out now */
3098 __wake_requests(mdsc, &s->s_waiting);
3099 __unregister_session(mdsc, s);
3100 } else {
3101 /* just close it */
3102 mutex_unlock(&mdsc->mutex);
3103 mutex_lock(&s->s_mutex);
3104 mutex_lock(&mdsc->mutex);
3105 ceph_con_close(&s->s_con);
3106 mutex_unlock(&s->s_mutex);
3107 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3108 }
3109 } else if (oldstate == newstate) {
3110 continue; /* nothing new with this mds */
3111 }
3112
3113 /*
3114 * send reconnect?
3115 */
3116 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3117 newstate >= CEPH_MDS_STATE_RECONNECT) {
3118 mutex_unlock(&mdsc->mutex);
3119 send_mds_reconnect(mdsc, s);
3120 mutex_lock(&mdsc->mutex);
3121 }
3122
3123 /*
3124 * kick request on any mds that has gone active.
3125 */
3126 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3127 newstate >= CEPH_MDS_STATE_ACTIVE) {
3128 if (oldstate != CEPH_MDS_STATE_CREATING &&
3129 oldstate != CEPH_MDS_STATE_STARTING)
3130 pr_info("mds%d recovery completed\n", s->s_mds);
3131 kick_requests(mdsc, i);
3132 ceph_kick_flushing_caps(mdsc, s);
3133 wake_up_session_caps(s, 1);
3134 }
3135 }
3136
3137 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3138 s = mdsc->sessions[i];
3139 if (!s)
3140 continue;
3141 if (!ceph_mdsmap_is_laggy(newmap, i))
3142 continue;
3143 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3144 s->s_state == CEPH_MDS_SESSION_HUNG ||
3145 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3146 dout(" connecting to export targets of laggy mds%d\n",
3147 i);
3148 __open_export_target_sessions(mdsc, s);
3149 }
3150 }
3151 }
3152
3153
3154
3155 /*
3156 * leases
3157 */
3158
3159 /*
3160 * caller must hold session s_mutex, dentry->d_lock
3161 */
3162 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3163 {
3164 struct ceph_dentry_info *di = ceph_dentry(dentry);
3165
3166 ceph_put_mds_session(di->lease_session);
3167 di->lease_session = NULL;
3168 }
3169
3170 static void handle_lease(struct ceph_mds_client *mdsc,
3171 struct ceph_mds_session *session,
3172 struct ceph_msg *msg)
3173 {
3174 struct super_block *sb = mdsc->fsc->sb;
3175 struct inode *inode;
3176 struct dentry *parent, *dentry;
3177 struct ceph_dentry_info *di;
3178 int mds = session->s_mds;
3179 struct ceph_mds_lease *h = msg->front.iov_base;
3180 u32 seq;
3181 struct ceph_vino vino;
3182 struct qstr dname;
3183 int release = 0;
3184
3185 dout("handle_lease from mds%d\n", mds);
3186
3187 /* decode */
3188 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3189 goto bad;
3190 vino.ino = le64_to_cpu(h->ino);
3191 vino.snap = CEPH_NOSNAP;
3192 seq = le32_to_cpu(h->seq);
3193 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3194 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3195 if (dname.len != get_unaligned_le32(h+1))
3196 goto bad;
3197
3198 /* lookup inode */
3199 inode = ceph_find_inode(sb, vino);
3200 dout("handle_lease %s, ino %llx %p %.*s\n",
3201 ceph_lease_op_name(h->action), vino.ino, inode,
3202 dname.len, dname.name);
3203
3204 mutex_lock(&session->s_mutex);
3205 session->s_seq++;
3206
3207 if (inode == NULL) {
3208 dout("handle_lease no inode %llx\n", vino.ino);
3209 goto release;
3210 }
3211
3212 /* dentry */
3213 parent = d_find_alias(inode);
3214 if (!parent) {
3215 dout("no parent dentry on inode %p\n", inode);
3216 WARN_ON(1);
3217 goto release; /* hrm... */
3218 }
3219 dname.hash = full_name_hash(dname.name, dname.len);
3220 dentry = d_lookup(parent, &dname);
3221 dput(parent);
3222 if (!dentry)
3223 goto release;
3224
3225 spin_lock(&dentry->d_lock);
3226 di = ceph_dentry(dentry);
3227 switch (h->action) {
3228 case CEPH_MDS_LEASE_REVOKE:
3229 if (di->lease_session == session) {
3230 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3231 h->seq = cpu_to_le32(di->lease_seq);
3232 __ceph_mdsc_drop_dentry_lease(dentry);
3233 }
3234 release = 1;
3235 break;
3236
3237 case CEPH_MDS_LEASE_RENEW:
3238 if (di->lease_session == session &&
3239 di->lease_gen == session->s_cap_gen &&
3240 di->lease_renew_from &&
3241 di->lease_renew_after == 0) {
3242 unsigned long duration =
3243 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3244
3245 di->lease_seq = seq;
3246 dentry->d_time = di->lease_renew_from + duration;
3247 di->lease_renew_after = di->lease_renew_from +
3248 (duration >> 1);
3249 di->lease_renew_from = 0;
3250 }
3251 break;
3252 }
3253 spin_unlock(&dentry->d_lock);
3254 dput(dentry);
3255
3256 if (!release)
3257 goto out;
3258
3259 release:
3260 /* let's just reuse the same message */
3261 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3262 ceph_msg_get(msg);
3263 ceph_con_send(&session->s_con, msg);
3264
3265 out:
3266 iput(inode);
3267 mutex_unlock(&session->s_mutex);
3268 return;
3269
3270 bad:
3271 pr_err("corrupt lease message\n");
3272 ceph_msg_dump(msg);
3273 }
3274
3275 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3276 struct inode *inode,
3277 struct dentry *dentry, char action,
3278 u32 seq)
3279 {
3280 struct ceph_msg *msg;
3281 struct ceph_mds_lease *lease;
3282 int len = sizeof(*lease) + sizeof(u32);
3283 int dnamelen = 0;
3284
3285 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3286 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3287 dnamelen = dentry->d_name.len;
3288 len += dnamelen;
3289
3290 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3291 if (!msg)
3292 return;
3293 lease = msg->front.iov_base;
3294 lease->action = action;
3295 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3296 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3297 lease->seq = cpu_to_le32(seq);
3298 put_unaligned_le32(dnamelen, lease + 1);
3299 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3300
3301 /*
3302 * if this is a preemptive lease RELEASE, no need to
3303 * flush request stream, since the actual request will
3304 * soon follow.
3305 */
3306 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3307
3308 ceph_con_send(&session->s_con, msg);
3309 }
3310
3311 /*
3312 * Preemptively release a lease we expect to invalidate anyway.
3313 * Pass @inode always, @dentry is optional.
3314 */
3315 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3316 struct dentry *dentry)
3317 {
3318 struct ceph_dentry_info *di;
3319 struct ceph_mds_session *session;
3320 u32 seq;
3321
3322 BUG_ON(inode == NULL);
3323 BUG_ON(dentry == NULL);
3324
3325 /* is dentry lease valid? */
3326 spin_lock(&dentry->d_lock);
3327 di = ceph_dentry(dentry);
3328 if (!di || !di->lease_session ||
3329 di->lease_session->s_mds < 0 ||
3330 di->lease_gen != di->lease_session->s_cap_gen ||
3331 !time_before(jiffies, dentry->d_time)) {
3332 dout("lease_release inode %p dentry %p -- "
3333 "no lease\n",
3334 inode, dentry);
3335 spin_unlock(&dentry->d_lock);
3336 return;
3337 }
3338
3339 /* we do have a lease on this dentry; note mds and seq */
3340 session = ceph_get_mds_session(di->lease_session);
3341 seq = di->lease_seq;
3342 __ceph_mdsc_drop_dentry_lease(dentry);
3343 spin_unlock(&dentry->d_lock);
3344
3345 dout("lease_release inode %p dentry %p to mds%d\n",
3346 inode, dentry, session->s_mds);
3347 ceph_mdsc_lease_send_msg(session, inode, dentry,
3348 CEPH_MDS_LEASE_RELEASE, seq);
3349 ceph_put_mds_session(session);
3350 }
3351
3352 /*
3353 * drop all leases (and dentry refs) in preparation for umount
3354 */
3355 static void drop_leases(struct ceph_mds_client *mdsc)
3356 {
3357 int i;
3358
3359 dout("drop_leases\n");
3360 mutex_lock(&mdsc->mutex);
3361 for (i = 0; i < mdsc->max_sessions; i++) {
3362 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3363 if (!s)
3364 continue;
3365 mutex_unlock(&mdsc->mutex);
3366 mutex_lock(&s->s_mutex);
3367 mutex_unlock(&s->s_mutex);
3368 ceph_put_mds_session(s);
3369 mutex_lock(&mdsc->mutex);
3370 }
3371 mutex_unlock(&mdsc->mutex);
3372 }
3373
3374
3375
3376 /*
3377 * delayed work -- periodically trim expired leases, renew caps with mds
3378 */
3379 static void schedule_delayed(struct ceph_mds_client *mdsc)
3380 {
3381 int delay = 5;
3382 unsigned hz = round_jiffies_relative(HZ * delay);
3383 schedule_delayed_work(&mdsc->delayed_work, hz);
3384 }
3385
3386 static void delayed_work(struct work_struct *work)
3387 {
3388 int i;
3389 struct ceph_mds_client *mdsc =
3390 container_of(work, struct ceph_mds_client, delayed_work.work);
3391 int renew_interval;
3392 int renew_caps;
3393
3394 dout("mdsc delayed_work\n");
3395 ceph_check_delayed_caps(mdsc);
3396
3397 mutex_lock(&mdsc->mutex);
3398 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3399 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3400 mdsc->last_renew_caps);
3401 if (renew_caps)
3402 mdsc->last_renew_caps = jiffies;
3403
3404 for (i = 0; i < mdsc->max_sessions; i++) {
3405 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3406 if (s == NULL)
3407 continue;
3408 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3409 dout("resending session close request for mds%d\n",
3410 s->s_mds);
3411 request_close_session(mdsc, s);
3412 ceph_put_mds_session(s);
3413 continue;
3414 }
3415 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3416 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3417 s->s_state = CEPH_MDS_SESSION_HUNG;
3418 pr_info("mds%d hung\n", s->s_mds);
3419 }
3420 }
3421 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3422 /* this mds is failed or recovering, just wait */
3423 ceph_put_mds_session(s);
3424 continue;
3425 }
3426 mutex_unlock(&mdsc->mutex);
3427
3428 mutex_lock(&s->s_mutex);
3429 if (renew_caps)
3430 send_renew_caps(mdsc, s);
3431 else
3432 ceph_con_keepalive(&s->s_con);
3433 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3434 s->s_state == CEPH_MDS_SESSION_HUNG)
3435 ceph_send_cap_releases(mdsc, s);
3436 mutex_unlock(&s->s_mutex);
3437 ceph_put_mds_session(s);
3438
3439 mutex_lock(&mdsc->mutex);
3440 }
3441 mutex_unlock(&mdsc->mutex);
3442
3443 schedule_delayed(mdsc);
3444 }
3445
3446 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3447
3448 {
3449 struct ceph_mds_client *mdsc;
3450
3451 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3452 if (!mdsc)
3453 return -ENOMEM;
3454 mdsc->fsc = fsc;
3455 fsc->mdsc = mdsc;
3456 mutex_init(&mdsc->mutex);
3457 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3458 if (mdsc->mdsmap == NULL) {
3459 kfree(mdsc);
3460 return -ENOMEM;
3461 }
3462
3463 init_completion(&mdsc->safe_umount_waiters);
3464 init_waitqueue_head(&mdsc->session_close_wq);
3465 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3466 mdsc->sessions = NULL;
3467 atomic_set(&mdsc->num_sessions, 0);
3468 mdsc->max_sessions = 0;
3469 mdsc->stopping = 0;
3470 mdsc->last_snap_seq = 0;
3471 init_rwsem(&mdsc->snap_rwsem);
3472 mdsc->snap_realms = RB_ROOT;
3473 INIT_LIST_HEAD(&mdsc->snap_empty);
3474 spin_lock_init(&mdsc->snap_empty_lock);
3475 mdsc->last_tid = 0;
3476 mdsc->oldest_tid = 0;
3477 mdsc->request_tree = RB_ROOT;
3478 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3479 mdsc->last_renew_caps = jiffies;
3480 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3481 spin_lock_init(&mdsc->cap_delay_lock);
3482 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3483 spin_lock_init(&mdsc->snap_flush_lock);
3484 mdsc->last_cap_flush_tid = 1;
3485 mdsc->cap_flush_tree = RB_ROOT;
3486 INIT_LIST_HEAD(&mdsc->cap_dirty);
3487 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3488 mdsc->num_cap_flushing = 0;
3489 spin_lock_init(&mdsc->cap_dirty_lock);
3490 init_waitqueue_head(&mdsc->cap_flushing_wq);
3491 spin_lock_init(&mdsc->dentry_lru_lock);
3492 INIT_LIST_HEAD(&mdsc->dentry_lru);
3493
3494 ceph_caps_init(mdsc);
3495 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3496
3497 init_rwsem(&mdsc->pool_perm_rwsem);
3498 mdsc->pool_perm_tree = RB_ROOT;
3499
3500 return 0;
3501 }
3502
3503 /*
3504 * Wait for safe replies on open mds requests. If we time out, drop
3505 * all requests from the tree to avoid dangling dentry refs.
3506 */
3507 static void wait_requests(struct ceph_mds_client *mdsc)
3508 {
3509 struct ceph_options *opts = mdsc->fsc->client->options;
3510 struct ceph_mds_request *req;
3511
3512 mutex_lock(&mdsc->mutex);
3513 if (__get_oldest_req(mdsc)) {
3514 mutex_unlock(&mdsc->mutex);
3515
3516 dout("wait_requests waiting for requests\n");
3517 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3518 ceph_timeout_jiffies(opts->mount_timeout));
3519
3520 /* tear down remaining requests */
3521 mutex_lock(&mdsc->mutex);
3522 while ((req = __get_oldest_req(mdsc))) {
3523 dout("wait_requests timed out on tid %llu\n",
3524 req->r_tid);
3525 __unregister_request(mdsc, req);
3526 }
3527 }
3528 mutex_unlock(&mdsc->mutex);
3529 dout("wait_requests done\n");
3530 }
3531
3532 /*
3533 * called before mount is ro, and before dentries are torn down.
3534 * (hmm, does this still race with new lookups?)
3535 */
3536 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3537 {
3538 dout("pre_umount\n");
3539 mdsc->stopping = 1;
3540
3541 drop_leases(mdsc);
3542 ceph_flush_dirty_caps(mdsc);
3543 wait_requests(mdsc);
3544
3545 /*
3546 * wait for reply handlers to drop their request refs and
3547 * their inode/dcache refs
3548 */
3549 ceph_msgr_flush();
3550 }
3551
3552 /*
3553 * wait for all write mds requests to flush.
3554 */
3555 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3556 {
3557 struct ceph_mds_request *req = NULL, *nextreq;
3558 struct rb_node *n;
3559
3560 mutex_lock(&mdsc->mutex);
3561 dout("wait_unsafe_requests want %lld\n", want_tid);
3562 restart:
3563 req = __get_oldest_req(mdsc);
3564 while (req && req->r_tid <= want_tid) {
3565 /* find next request */
3566 n = rb_next(&req->r_node);
3567 if (n)
3568 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3569 else
3570 nextreq = NULL;
3571 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3572 (req->r_op & CEPH_MDS_OP_WRITE)) {
3573 /* write op */
3574 ceph_mdsc_get_request(req);
3575 if (nextreq)
3576 ceph_mdsc_get_request(nextreq);
3577 mutex_unlock(&mdsc->mutex);
3578 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3579 req->r_tid, want_tid);
3580 wait_for_completion(&req->r_safe_completion);
3581 mutex_lock(&mdsc->mutex);
3582 ceph_mdsc_put_request(req);
3583 if (!nextreq)
3584 break; /* next dne before, so we're done! */
3585 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3586 /* next request was removed from tree */
3587 ceph_mdsc_put_request(nextreq);
3588 goto restart;
3589 }
3590 ceph_mdsc_put_request(nextreq); /* won't go away */
3591 }
3592 req = nextreq;
3593 }
3594 mutex_unlock(&mdsc->mutex);
3595 dout("wait_unsafe_requests done\n");
3596 }
3597
3598 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3599 {
3600 u64 want_tid, want_flush, want_snap;
3601
3602 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3603 return;
3604
3605 dout("sync\n");
3606 mutex_lock(&mdsc->mutex);
3607 want_tid = mdsc->last_tid;
3608 mutex_unlock(&mdsc->mutex);
3609
3610 ceph_flush_dirty_caps(mdsc);
3611 spin_lock(&mdsc->cap_dirty_lock);
3612 want_flush = mdsc->last_cap_flush_tid;
3613 spin_unlock(&mdsc->cap_dirty_lock);
3614
3615 down_read(&mdsc->snap_rwsem);
3616 want_snap = mdsc->last_snap_seq;
3617 up_read(&mdsc->snap_rwsem);
3618
3619 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3620 want_tid, want_flush, want_snap);
3621
3622 wait_unsafe_requests(mdsc, want_tid);
3623 wait_caps_flush(mdsc, want_flush, want_snap);
3624 }
3625
3626 /*
3627 * true if all sessions are closed, or we force unmount
3628 */
3629 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3630 {
3631 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3632 return true;
3633 return atomic_read(&mdsc->num_sessions) == 0;
3634 }
3635
3636 /*
3637 * called after sb is ro.
3638 */
3639 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3640 {
3641 struct ceph_options *opts = mdsc->fsc->client->options;
3642 struct ceph_mds_session *session;
3643 int i;
3644
3645 dout("close_sessions\n");
3646
3647 /* close sessions */
3648 mutex_lock(&mdsc->mutex);
3649 for (i = 0; i < mdsc->max_sessions; i++) {
3650 session = __ceph_lookup_mds_session(mdsc, i);
3651 if (!session)
3652 continue;
3653 mutex_unlock(&mdsc->mutex);
3654 mutex_lock(&session->s_mutex);
3655 __close_session(mdsc, session);
3656 mutex_unlock(&session->s_mutex);
3657 ceph_put_mds_session(session);
3658 mutex_lock(&mdsc->mutex);
3659 }
3660 mutex_unlock(&mdsc->mutex);
3661
3662 dout("waiting for sessions to close\n");
3663 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3664 ceph_timeout_jiffies(opts->mount_timeout));
3665
3666 /* tear down remaining sessions */
3667 mutex_lock(&mdsc->mutex);
3668 for (i = 0; i < mdsc->max_sessions; i++) {
3669 if (mdsc->sessions[i]) {
3670 session = get_session(mdsc->sessions[i]);
3671 __unregister_session(mdsc, session);
3672 mutex_unlock(&mdsc->mutex);
3673 mutex_lock(&session->s_mutex);
3674 remove_session_caps(session);
3675 mutex_unlock(&session->s_mutex);
3676 ceph_put_mds_session(session);
3677 mutex_lock(&mdsc->mutex);
3678 }
3679 }
3680 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3681 mutex_unlock(&mdsc->mutex);
3682
3683 ceph_cleanup_empty_realms(mdsc);
3684
3685 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3686
3687 dout("stopped\n");
3688 }
3689
3690 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3691 {
3692 struct ceph_mds_session *session;
3693 int mds;
3694
3695 dout("force umount\n");
3696
3697 mutex_lock(&mdsc->mutex);
3698 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3699 session = __ceph_lookup_mds_session(mdsc, mds);
3700 if (!session)
3701 continue;
3702 mutex_unlock(&mdsc->mutex);
3703 mutex_lock(&session->s_mutex);
3704 __close_session(mdsc, session);
3705 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3706 cleanup_session_requests(mdsc, session);
3707 remove_session_caps(session);
3708 }
3709 mutex_unlock(&session->s_mutex);
3710 ceph_put_mds_session(session);
3711 mutex_lock(&mdsc->mutex);
3712 kick_requests(mdsc, mds);
3713 }
3714 __wake_requests(mdsc, &mdsc->waiting_for_map);
3715 mutex_unlock(&mdsc->mutex);
3716 }
3717
3718 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3719 {
3720 dout("stop\n");
3721 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3722 if (mdsc->mdsmap)
3723 ceph_mdsmap_destroy(mdsc->mdsmap);
3724 kfree(mdsc->sessions);
3725 ceph_caps_finalize(mdsc);
3726 ceph_pool_perm_destroy(mdsc);
3727 }
3728
3729 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3730 {
3731 struct ceph_mds_client *mdsc = fsc->mdsc;
3732
3733 dout("mdsc_destroy %p\n", mdsc);
3734 ceph_mdsc_stop(mdsc);
3735
3736 /* flush out any connection work with references to us */
3737 ceph_msgr_flush();
3738
3739 fsc->mdsc = NULL;
3740 kfree(mdsc);
3741 dout("mdsc_destroy %p done\n", mdsc);
3742 }
3743
3744
3745 /*
3746 * handle mds map update.
3747 */
3748 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3749 {
3750 u32 epoch;
3751 u32 maplen;
3752 void *p = msg->front.iov_base;
3753 void *end = p + msg->front.iov_len;
3754 struct ceph_mdsmap *newmap, *oldmap;
3755 struct ceph_fsid fsid;
3756 int err = -EINVAL;
3757
3758 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3759 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3760 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3761 return;
3762 epoch = ceph_decode_32(&p);
3763 maplen = ceph_decode_32(&p);
3764 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3765
3766 /* do we need it? */
3767 mutex_lock(&mdsc->mutex);
3768 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3769 dout("handle_map epoch %u <= our %u\n",
3770 epoch, mdsc->mdsmap->m_epoch);
3771 mutex_unlock(&mdsc->mutex);
3772 return;
3773 }
3774
3775 newmap = ceph_mdsmap_decode(&p, end);
3776 if (IS_ERR(newmap)) {
3777 err = PTR_ERR(newmap);
3778 goto bad_unlock;
3779 }
3780
3781 /* swap into place */
3782 if (mdsc->mdsmap) {
3783 oldmap = mdsc->mdsmap;
3784 mdsc->mdsmap = newmap;
3785 check_new_map(mdsc, newmap, oldmap);
3786 ceph_mdsmap_destroy(oldmap);
3787 } else {
3788 mdsc->mdsmap = newmap; /* first mds map */
3789 }
3790 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3791
3792 __wake_requests(mdsc, &mdsc->waiting_for_map);
3793 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3794 mdsc->mdsmap->m_epoch);
3795
3796 mutex_unlock(&mdsc->mutex);
3797 schedule_delayed(mdsc);
3798 return;
3799
3800 bad_unlock:
3801 mutex_unlock(&mdsc->mutex);
3802 bad:
3803 pr_err("error decoding mdsmap %d\n", err);
3804 return;
3805 }
3806
3807 static struct ceph_connection *con_get(struct ceph_connection *con)
3808 {
3809 struct ceph_mds_session *s = con->private;
3810
3811 if (get_session(s)) {
3812 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3813 return con;
3814 }
3815 dout("mdsc con_get %p FAIL\n", s);
3816 return NULL;
3817 }
3818
3819 static void con_put(struct ceph_connection *con)
3820 {
3821 struct ceph_mds_session *s = con->private;
3822
3823 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3824 ceph_put_mds_session(s);
3825 }
3826
3827 /*
3828 * if the client is unresponsive for long enough, the mds will kill
3829 * the session entirely.
3830 */
3831 static void peer_reset(struct ceph_connection *con)
3832 {
3833 struct ceph_mds_session *s = con->private;
3834 struct ceph_mds_client *mdsc = s->s_mdsc;
3835
3836 pr_warn("mds%d closed our session\n", s->s_mds);
3837 send_mds_reconnect(mdsc, s);
3838 }
3839
3840 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3841 {
3842 struct ceph_mds_session *s = con->private;
3843 struct ceph_mds_client *mdsc = s->s_mdsc;
3844 int type = le16_to_cpu(msg->hdr.type);
3845
3846 mutex_lock(&mdsc->mutex);
3847 if (__verify_registered_session(mdsc, s) < 0) {
3848 mutex_unlock(&mdsc->mutex);
3849 goto out;
3850 }
3851 mutex_unlock(&mdsc->mutex);
3852
3853 switch (type) {
3854 case CEPH_MSG_MDS_MAP:
3855 ceph_mdsc_handle_map(mdsc, msg);
3856 break;
3857 case CEPH_MSG_CLIENT_SESSION:
3858 handle_session(s, msg);
3859 break;
3860 case CEPH_MSG_CLIENT_REPLY:
3861 handle_reply(s, msg);
3862 break;
3863 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3864 handle_forward(mdsc, s, msg);
3865 break;
3866 case CEPH_MSG_CLIENT_CAPS:
3867 ceph_handle_caps(s, msg);
3868 break;
3869 case CEPH_MSG_CLIENT_SNAP:
3870 ceph_handle_snap(mdsc, s, msg);
3871 break;
3872 case CEPH_MSG_CLIENT_LEASE:
3873 handle_lease(mdsc, s, msg);
3874 break;
3875
3876 default:
3877 pr_err("received unknown message type %d %s\n", type,
3878 ceph_msg_type_name(type));
3879 }
3880 out:
3881 ceph_msg_put(msg);
3882 }
3883
3884 /*
3885 * authentication
3886 */
3887
3888 /*
3889 * Note: returned pointer is the address of a structure that's
3890 * managed separately. Caller must *not* attempt to free it.
3891 */
3892 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3893 int *proto, int force_new)
3894 {
3895 struct ceph_mds_session *s = con->private;
3896 struct ceph_mds_client *mdsc = s->s_mdsc;
3897 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3898 struct ceph_auth_handshake *auth = &s->s_auth;
3899
3900 if (force_new && auth->authorizer) {
3901 ceph_auth_destroy_authorizer(auth->authorizer);
3902 auth->authorizer = NULL;
3903 }
3904 if (!auth->authorizer) {
3905 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3906 auth);
3907 if (ret)
3908 return ERR_PTR(ret);
3909 } else {
3910 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3911 auth);
3912 if (ret)
3913 return ERR_PTR(ret);
3914 }
3915 *proto = ac->protocol;
3916
3917 return auth;
3918 }
3919
3920
3921 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3922 {
3923 struct ceph_mds_session *s = con->private;
3924 struct ceph_mds_client *mdsc = s->s_mdsc;
3925 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3926
3927 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3928 }
3929
3930 static int invalidate_authorizer(struct ceph_connection *con)
3931 {
3932 struct ceph_mds_session *s = con->private;
3933 struct ceph_mds_client *mdsc = s->s_mdsc;
3934 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3935
3936 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3937
3938 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3939 }
3940
3941 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3942 struct ceph_msg_header *hdr, int *skip)
3943 {
3944 struct ceph_msg *msg;
3945 int type = (int) le16_to_cpu(hdr->type);
3946 int front_len = (int) le32_to_cpu(hdr->front_len);
3947
3948 if (con->in_msg)
3949 return con->in_msg;
3950
3951 *skip = 0;
3952 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3953 if (!msg) {
3954 pr_err("unable to allocate msg type %d len %d\n",
3955 type, front_len);
3956 return NULL;
3957 }
3958
3959 return msg;
3960 }
3961
3962 static int mds_sign_message(struct ceph_msg *msg)
3963 {
3964 struct ceph_mds_session *s = msg->con->private;
3965 struct ceph_auth_handshake *auth = &s->s_auth;
3966
3967 return ceph_auth_sign_message(auth, msg);
3968 }
3969
3970 static int mds_check_message_signature(struct ceph_msg *msg)
3971 {
3972 struct ceph_mds_session *s = msg->con->private;
3973 struct ceph_auth_handshake *auth = &s->s_auth;
3974
3975 return ceph_auth_check_message_signature(auth, msg);
3976 }
3977
3978 static const struct ceph_connection_operations mds_con_ops = {
3979 .get = con_get,
3980 .put = con_put,
3981 .dispatch = dispatch,
3982 .get_authorizer = get_authorizer,
3983 .verify_authorizer_reply = verify_authorizer_reply,
3984 .invalidate_authorizer = invalidate_authorizer,
3985 .peer_reset = peer_reset,
3986 .alloc_msg = mds_alloc_msg,
3987 .sign_message = mds_sign_message,
3988 .check_message_signature = mds_check_message_signature,
3989 };
3990
3991 /* eof */
This page took 0.409369 seconds and 5 git commands to generate.