Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 unsigned msg_version;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 info->pool_ns_len = 0;
104 info->pool_ns_data = NULL;
105 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
106 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
107 if (info->pool_ns_len > 0) {
108 ceph_decode_need(p, end, info->pool_ns_len, bad);
109 info->pool_ns_data = *p;
110 *p += info->pool_ns_len;
111 }
112 }
113
114 return 0;
115 bad:
116 return err;
117 }
118
119 /*
120 * parse a normal reply, which may contain a (dir+)dentry and/or a
121 * target inode.
122 */
123 static int parse_reply_info_trace(void **p, void *end,
124 struct ceph_mds_reply_info_parsed *info,
125 u64 features)
126 {
127 int err;
128
129 if (info->head->is_dentry) {
130 err = parse_reply_info_in(p, end, &info->diri, features);
131 if (err < 0)
132 goto out_bad;
133
134 if (unlikely(*p + sizeof(*info->dirfrag) > end))
135 goto bad;
136 info->dirfrag = *p;
137 *p += sizeof(*info->dirfrag) +
138 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
139 if (unlikely(*p > end))
140 goto bad;
141
142 ceph_decode_32_safe(p, end, info->dname_len, bad);
143 ceph_decode_need(p, end, info->dname_len, bad);
144 info->dname = *p;
145 *p += info->dname_len;
146 info->dlease = *p;
147 *p += sizeof(*info->dlease);
148 }
149
150 if (info->head->is_target) {
151 err = parse_reply_info_in(p, end, &info->targeti, features);
152 if (err < 0)
153 goto out_bad;
154 }
155
156 if (unlikely(*p != end))
157 goto bad;
158 return 0;
159
160 bad:
161 err = -EIO;
162 out_bad:
163 pr_err("problem parsing mds trace %d\n", err);
164 return err;
165 }
166
167 /*
168 * parse readdir results
169 */
170 static int parse_reply_info_dir(void **p, void *end,
171 struct ceph_mds_reply_info_parsed *info,
172 u64 features)
173 {
174 u32 num, i = 0;
175 int err;
176
177 info->dir_dir = *p;
178 if (*p + sizeof(*info->dir_dir) > end)
179 goto bad;
180 *p += sizeof(*info->dir_dir) +
181 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
182 if (*p > end)
183 goto bad;
184
185 ceph_decode_need(p, end, sizeof(num) + 2, bad);
186 num = ceph_decode_32(p);
187 {
188 u16 flags = ceph_decode_16(p);
189 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
190 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
191 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
192 }
193 if (num == 0)
194 goto done;
195
196 BUG_ON(!info->dir_entries);
197 if ((unsigned long)(info->dir_entries + num) >
198 (unsigned long)info->dir_entries + info->dir_buf_size) {
199 pr_err("dir contents are larger than expected\n");
200 WARN_ON(1);
201 goto bad;
202 }
203
204 info->dir_nr = num;
205 while (num) {
206 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
207 /* dentry */
208 ceph_decode_need(p, end, sizeof(u32)*2, bad);
209 rde->name_len = ceph_decode_32(p);
210 ceph_decode_need(p, end, rde->name_len, bad);
211 rde->name = *p;
212 *p += rde->name_len;
213 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
214 rde->lease = *p;
215 *p += sizeof(struct ceph_mds_reply_lease);
216
217 /* inode */
218 err = parse_reply_info_in(p, end, &rde->inode, features);
219 if (err < 0)
220 goto out_bad;
221 /* ceph_readdir_prepopulate() will update it */
222 rde->offset = 0;
223 i++;
224 num--;
225 }
226
227 done:
228 if (*p != end)
229 goto bad;
230 return 0;
231
232 bad:
233 err = -EIO;
234 out_bad:
235 pr_err("problem parsing dir contents %d\n", err);
236 return err;
237 }
238
239 /*
240 * parse fcntl F_GETLK results
241 */
242 static int parse_reply_info_filelock(void **p, void *end,
243 struct ceph_mds_reply_info_parsed *info,
244 u64 features)
245 {
246 if (*p + sizeof(*info->filelock_reply) > end)
247 goto bad;
248
249 info->filelock_reply = *p;
250 *p += sizeof(*info->filelock_reply);
251
252 if (unlikely(*p != end))
253 goto bad;
254 return 0;
255
256 bad:
257 return -EIO;
258 }
259
260 /*
261 * parse create results
262 */
263 static int parse_reply_info_create(void **p, void *end,
264 struct ceph_mds_reply_info_parsed *info,
265 u64 features)
266 {
267 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
268 if (*p == end) {
269 info->has_create_ino = false;
270 } else {
271 info->has_create_ino = true;
272 info->ino = ceph_decode_64(p);
273 }
274 }
275
276 if (unlikely(*p != end))
277 goto bad;
278 return 0;
279
280 bad:
281 return -EIO;
282 }
283
284 /*
285 * parse extra results
286 */
287 static int parse_reply_info_extra(void **p, void *end,
288 struct ceph_mds_reply_info_parsed *info,
289 u64 features)
290 {
291 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
292 return parse_reply_info_filelock(p, end, info, features);
293 else if (info->head->op == CEPH_MDS_OP_READDIR ||
294 info->head->op == CEPH_MDS_OP_LSSNAP)
295 return parse_reply_info_dir(p, end, info, features);
296 else if (info->head->op == CEPH_MDS_OP_CREATE)
297 return parse_reply_info_create(p, end, info, features);
298 else
299 return -EIO;
300 }
301
302 /*
303 * parse entire mds reply
304 */
305 static int parse_reply_info(struct ceph_msg *msg,
306 struct ceph_mds_reply_info_parsed *info,
307 u64 features)
308 {
309 void *p, *end;
310 u32 len;
311 int err;
312
313 info->head = msg->front.iov_base;
314 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
315 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
316
317 /* trace */
318 ceph_decode_32_safe(&p, end, len, bad);
319 if (len > 0) {
320 ceph_decode_need(&p, end, len, bad);
321 err = parse_reply_info_trace(&p, p+len, info, features);
322 if (err < 0)
323 goto out_bad;
324 }
325
326 /* extra */
327 ceph_decode_32_safe(&p, end, len, bad);
328 if (len > 0) {
329 ceph_decode_need(&p, end, len, bad);
330 err = parse_reply_info_extra(&p, p+len, info, features);
331 if (err < 0)
332 goto out_bad;
333 }
334
335 /* snap blob */
336 ceph_decode_32_safe(&p, end, len, bad);
337 info->snapblob_len = len;
338 info->snapblob = p;
339 p += len;
340
341 if (p != end)
342 goto bad;
343 return 0;
344
345 bad:
346 err = -EIO;
347 out_bad:
348 pr_err("mds parse_reply err %d\n", err);
349 return err;
350 }
351
352 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
353 {
354 if (!info->dir_entries)
355 return;
356 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
357 }
358
359
360 /*
361 * sessions
362 */
363 const char *ceph_session_state_name(int s)
364 {
365 switch (s) {
366 case CEPH_MDS_SESSION_NEW: return "new";
367 case CEPH_MDS_SESSION_OPENING: return "opening";
368 case CEPH_MDS_SESSION_OPEN: return "open";
369 case CEPH_MDS_SESSION_HUNG: return "hung";
370 case CEPH_MDS_SESSION_CLOSING: return "closing";
371 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
372 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
373 default: return "???";
374 }
375 }
376
377 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
378 {
379 if (atomic_inc_not_zero(&s->s_ref)) {
380 dout("mdsc get_session %p %d -> %d\n", s,
381 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
382 return s;
383 } else {
384 dout("mdsc get_session %p 0 -- FAIL", s);
385 return NULL;
386 }
387 }
388
389 void ceph_put_mds_session(struct ceph_mds_session *s)
390 {
391 dout("mdsc put_session %p %d -> %d\n", s,
392 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
393 if (atomic_dec_and_test(&s->s_ref)) {
394 if (s->s_auth.authorizer)
395 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
396 kfree(s);
397 }
398 }
399
400 /*
401 * called under mdsc->mutex
402 */
403 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
404 int mds)
405 {
406 struct ceph_mds_session *session;
407
408 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
409 return NULL;
410 session = mdsc->sessions[mds];
411 dout("lookup_mds_session %p %d\n", session,
412 atomic_read(&session->s_ref));
413 get_session(session);
414 return session;
415 }
416
417 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
418 {
419 if (mds >= mdsc->max_sessions)
420 return false;
421 return mdsc->sessions[mds];
422 }
423
424 static int __verify_registered_session(struct ceph_mds_client *mdsc,
425 struct ceph_mds_session *s)
426 {
427 if (s->s_mds >= mdsc->max_sessions ||
428 mdsc->sessions[s->s_mds] != s)
429 return -ENOENT;
430 return 0;
431 }
432
433 /*
434 * create+register a new session for given mds.
435 * called under mdsc->mutex.
436 */
437 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
438 int mds)
439 {
440 struct ceph_mds_session *s;
441
442 if (mds >= mdsc->mdsmap->m_max_mds)
443 return ERR_PTR(-EINVAL);
444
445 s = kzalloc(sizeof(*s), GFP_NOFS);
446 if (!s)
447 return ERR_PTR(-ENOMEM);
448 s->s_mdsc = mdsc;
449 s->s_mds = mds;
450 s->s_state = CEPH_MDS_SESSION_NEW;
451 s->s_ttl = 0;
452 s->s_seq = 0;
453 mutex_init(&s->s_mutex);
454
455 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
456
457 spin_lock_init(&s->s_gen_ttl_lock);
458 s->s_cap_gen = 0;
459 s->s_cap_ttl = jiffies - 1;
460
461 spin_lock_init(&s->s_cap_lock);
462 s->s_renew_requested = 0;
463 s->s_renew_seq = 0;
464 INIT_LIST_HEAD(&s->s_caps);
465 s->s_nr_caps = 0;
466 s->s_trim_caps = 0;
467 atomic_set(&s->s_ref, 1);
468 INIT_LIST_HEAD(&s->s_waiting);
469 INIT_LIST_HEAD(&s->s_unsafe);
470 s->s_num_cap_releases = 0;
471 s->s_cap_reconnect = 0;
472 s->s_cap_iterator = NULL;
473 INIT_LIST_HEAD(&s->s_cap_releases);
474 INIT_LIST_HEAD(&s->s_cap_flushing);
475
476 dout("register_session mds%d\n", mds);
477 if (mds >= mdsc->max_sessions) {
478 int newmax = 1 << get_count_order(mds+1);
479 struct ceph_mds_session **sa;
480
481 dout("register_session realloc to %d\n", newmax);
482 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
483 if (sa == NULL)
484 goto fail_realloc;
485 if (mdsc->sessions) {
486 memcpy(sa, mdsc->sessions,
487 mdsc->max_sessions * sizeof(void *));
488 kfree(mdsc->sessions);
489 }
490 mdsc->sessions = sa;
491 mdsc->max_sessions = newmax;
492 }
493 mdsc->sessions[mds] = s;
494 atomic_inc(&mdsc->num_sessions);
495 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
496
497 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
498 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
499
500 return s;
501
502 fail_realloc:
503 kfree(s);
504 return ERR_PTR(-ENOMEM);
505 }
506
507 /*
508 * called under mdsc->mutex
509 */
510 static void __unregister_session(struct ceph_mds_client *mdsc,
511 struct ceph_mds_session *s)
512 {
513 dout("__unregister_session mds%d %p\n", s->s_mds, s);
514 BUG_ON(mdsc->sessions[s->s_mds] != s);
515 mdsc->sessions[s->s_mds] = NULL;
516 ceph_con_close(&s->s_con);
517 ceph_put_mds_session(s);
518 atomic_dec(&mdsc->num_sessions);
519 }
520
521 /*
522 * drop session refs in request.
523 *
524 * should be last request ref, or hold mdsc->mutex
525 */
526 static void put_request_session(struct ceph_mds_request *req)
527 {
528 if (req->r_session) {
529 ceph_put_mds_session(req->r_session);
530 req->r_session = NULL;
531 }
532 }
533
534 void ceph_mdsc_release_request(struct kref *kref)
535 {
536 struct ceph_mds_request *req = container_of(kref,
537 struct ceph_mds_request,
538 r_kref);
539 destroy_reply_info(&req->r_reply_info);
540 if (req->r_request)
541 ceph_msg_put(req->r_request);
542 if (req->r_reply)
543 ceph_msg_put(req->r_reply);
544 if (req->r_inode) {
545 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
546 iput(req->r_inode);
547 }
548 if (req->r_locked_dir)
549 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
550 iput(req->r_target_inode);
551 if (req->r_dentry)
552 dput(req->r_dentry);
553 if (req->r_old_dentry)
554 dput(req->r_old_dentry);
555 if (req->r_old_dentry_dir) {
556 /*
557 * track (and drop pins for) r_old_dentry_dir
558 * separately, since r_old_dentry's d_parent may have
559 * changed between the dir mutex being dropped and
560 * this request being freed.
561 */
562 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
563 CEPH_CAP_PIN);
564 iput(req->r_old_dentry_dir);
565 }
566 kfree(req->r_path1);
567 kfree(req->r_path2);
568 if (req->r_pagelist)
569 ceph_pagelist_release(req->r_pagelist);
570 put_request_session(req);
571 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
572 kfree(req);
573 }
574
575 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
576
577 /*
578 * lookup session, bump ref if found.
579 *
580 * called under mdsc->mutex.
581 */
582 static struct ceph_mds_request *
583 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
584 {
585 struct ceph_mds_request *req;
586
587 req = lookup_request(&mdsc->request_tree, tid);
588 if (req)
589 ceph_mdsc_get_request(req);
590
591 return req;
592 }
593
594 /*
595 * Register an in-flight request, and assign a tid. Link to directory
596 * are modifying (if any).
597 *
598 * Called under mdsc->mutex.
599 */
600 static void __register_request(struct ceph_mds_client *mdsc,
601 struct ceph_mds_request *req,
602 struct inode *dir)
603 {
604 req->r_tid = ++mdsc->last_tid;
605 if (req->r_num_caps)
606 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
607 req->r_num_caps);
608 dout("__register_request %p tid %lld\n", req, req->r_tid);
609 ceph_mdsc_get_request(req);
610 insert_request(&mdsc->request_tree, req);
611
612 req->r_uid = current_fsuid();
613 req->r_gid = current_fsgid();
614
615 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
616 mdsc->oldest_tid = req->r_tid;
617
618 if (dir) {
619 ihold(dir);
620 req->r_unsafe_dir = dir;
621 }
622 }
623
624 static void __unregister_request(struct ceph_mds_client *mdsc,
625 struct ceph_mds_request *req)
626 {
627 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
628
629 if (req->r_tid == mdsc->oldest_tid) {
630 struct rb_node *p = rb_next(&req->r_node);
631 mdsc->oldest_tid = 0;
632 while (p) {
633 struct ceph_mds_request *next_req =
634 rb_entry(p, struct ceph_mds_request, r_node);
635 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
636 mdsc->oldest_tid = next_req->r_tid;
637 break;
638 }
639 p = rb_next(p);
640 }
641 }
642
643 erase_request(&mdsc->request_tree, req);
644
645 if (req->r_unsafe_dir && req->r_got_unsafe) {
646 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
647 spin_lock(&ci->i_unsafe_lock);
648 list_del_init(&req->r_unsafe_dir_item);
649 spin_unlock(&ci->i_unsafe_lock);
650 }
651 if (req->r_target_inode && req->r_got_unsafe) {
652 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
653 spin_lock(&ci->i_unsafe_lock);
654 list_del_init(&req->r_unsafe_target_item);
655 spin_unlock(&ci->i_unsafe_lock);
656 }
657
658 if (req->r_unsafe_dir) {
659 iput(req->r_unsafe_dir);
660 req->r_unsafe_dir = NULL;
661 }
662
663 complete_all(&req->r_safe_completion);
664
665 ceph_mdsc_put_request(req);
666 }
667
668 /*
669 * Choose mds to send request to next. If there is a hint set in the
670 * request (e.g., due to a prior forward hint from the mds), use that.
671 * Otherwise, consult frag tree and/or caps to identify the
672 * appropriate mds. If all else fails, choose randomly.
673 *
674 * Called under mdsc->mutex.
675 */
676 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
677 {
678 /*
679 * we don't need to worry about protecting the d_parent access
680 * here because we never renaming inside the snapped namespace
681 * except to resplice to another snapdir, and either the old or new
682 * result is a valid result.
683 */
684 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
685 dentry = dentry->d_parent;
686 return dentry;
687 }
688
689 static int __choose_mds(struct ceph_mds_client *mdsc,
690 struct ceph_mds_request *req)
691 {
692 struct inode *inode;
693 struct ceph_inode_info *ci;
694 struct ceph_cap *cap;
695 int mode = req->r_direct_mode;
696 int mds = -1;
697 u32 hash = req->r_direct_hash;
698 bool is_hash = req->r_direct_is_hash;
699
700 /*
701 * is there a specific mds we should try? ignore hint if we have
702 * no session and the mds is not up (active or recovering).
703 */
704 if (req->r_resend_mds >= 0 &&
705 (__have_session(mdsc, req->r_resend_mds) ||
706 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
707 dout("choose_mds using resend_mds mds%d\n",
708 req->r_resend_mds);
709 return req->r_resend_mds;
710 }
711
712 if (mode == USE_RANDOM_MDS)
713 goto random;
714
715 inode = NULL;
716 if (req->r_inode) {
717 inode = req->r_inode;
718 } else if (req->r_dentry) {
719 /* ignore race with rename; old or new d_parent is okay */
720 struct dentry *parent = req->r_dentry->d_parent;
721 struct inode *dir = d_inode(parent);
722
723 if (dir->i_sb != mdsc->fsc->sb) {
724 /* not this fs! */
725 inode = d_inode(req->r_dentry);
726 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
727 /* direct snapped/virtual snapdir requests
728 * based on parent dir inode */
729 struct dentry *dn = get_nonsnap_parent(parent);
730 inode = d_inode(dn);
731 dout("__choose_mds using nonsnap parent %p\n", inode);
732 } else {
733 /* dentry target */
734 inode = d_inode(req->r_dentry);
735 if (!inode || mode == USE_AUTH_MDS) {
736 /* dir + name */
737 inode = dir;
738 hash = ceph_dentry_hash(dir, req->r_dentry);
739 is_hash = true;
740 }
741 }
742 }
743
744 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
745 (int)hash, mode);
746 if (!inode)
747 goto random;
748 ci = ceph_inode(inode);
749
750 if (is_hash && S_ISDIR(inode->i_mode)) {
751 struct ceph_inode_frag frag;
752 int found;
753
754 ceph_choose_frag(ci, hash, &frag, &found);
755 if (found) {
756 if (mode == USE_ANY_MDS && frag.ndist > 0) {
757 u8 r;
758
759 /* choose a random replica */
760 get_random_bytes(&r, 1);
761 r %= frag.ndist;
762 mds = frag.dist[r];
763 dout("choose_mds %p %llx.%llx "
764 "frag %u mds%d (%d/%d)\n",
765 inode, ceph_vinop(inode),
766 frag.frag, mds,
767 (int)r, frag.ndist);
768 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
769 CEPH_MDS_STATE_ACTIVE)
770 return mds;
771 }
772
773 /* since this file/dir wasn't known to be
774 * replicated, then we want to look for the
775 * authoritative mds. */
776 mode = USE_AUTH_MDS;
777 if (frag.mds >= 0) {
778 /* choose auth mds */
779 mds = frag.mds;
780 dout("choose_mds %p %llx.%llx "
781 "frag %u mds%d (auth)\n",
782 inode, ceph_vinop(inode), frag.frag, mds);
783 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
784 CEPH_MDS_STATE_ACTIVE)
785 return mds;
786 }
787 }
788 }
789
790 spin_lock(&ci->i_ceph_lock);
791 cap = NULL;
792 if (mode == USE_AUTH_MDS)
793 cap = ci->i_auth_cap;
794 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
795 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
796 if (!cap) {
797 spin_unlock(&ci->i_ceph_lock);
798 goto random;
799 }
800 mds = cap->session->s_mds;
801 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
802 inode, ceph_vinop(inode), mds,
803 cap == ci->i_auth_cap ? "auth " : "", cap);
804 spin_unlock(&ci->i_ceph_lock);
805 return mds;
806
807 random:
808 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
809 dout("choose_mds chose random mds%d\n", mds);
810 return mds;
811 }
812
813
814 /*
815 * session messages
816 */
817 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
818 {
819 struct ceph_msg *msg;
820 struct ceph_mds_session_head *h;
821
822 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
823 false);
824 if (!msg) {
825 pr_err("create_session_msg ENOMEM creating msg\n");
826 return NULL;
827 }
828 h = msg->front.iov_base;
829 h->op = cpu_to_le32(op);
830 h->seq = cpu_to_le64(seq);
831
832 return msg;
833 }
834
835 /*
836 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
837 * to include additional client metadata fields.
838 */
839 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
840 {
841 struct ceph_msg *msg;
842 struct ceph_mds_session_head *h;
843 int i = -1;
844 int metadata_bytes = 0;
845 int metadata_key_count = 0;
846 struct ceph_options *opt = mdsc->fsc->client->options;
847 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
848 void *p;
849
850 const char* metadata[][2] = {
851 {"hostname", utsname()->nodename},
852 {"kernel_version", utsname()->release},
853 {"entity_id", opt->name ? : ""},
854 {"root", fsopt->server_path ? : "/"},
855 {NULL, NULL}
856 };
857
858 /* Calculate serialized length of metadata */
859 metadata_bytes = 4; /* map length */
860 for (i = 0; metadata[i][0] != NULL; ++i) {
861 metadata_bytes += 8 + strlen(metadata[i][0]) +
862 strlen(metadata[i][1]);
863 metadata_key_count++;
864 }
865
866 /* Allocate the message */
867 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
868 GFP_NOFS, false);
869 if (!msg) {
870 pr_err("create_session_msg ENOMEM creating msg\n");
871 return NULL;
872 }
873 h = msg->front.iov_base;
874 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
875 h->seq = cpu_to_le64(seq);
876
877 /*
878 * Serialize client metadata into waiting buffer space, using
879 * the format that userspace expects for map<string, string>
880 *
881 * ClientSession messages with metadata are v2
882 */
883 msg->hdr.version = cpu_to_le16(2);
884 msg->hdr.compat_version = cpu_to_le16(1);
885
886 /* The write pointer, following the session_head structure */
887 p = msg->front.iov_base + sizeof(*h);
888
889 /* Number of entries in the map */
890 ceph_encode_32(&p, metadata_key_count);
891
892 /* Two length-prefixed strings for each entry in the map */
893 for (i = 0; metadata[i][0] != NULL; ++i) {
894 size_t const key_len = strlen(metadata[i][0]);
895 size_t const val_len = strlen(metadata[i][1]);
896
897 ceph_encode_32(&p, key_len);
898 memcpy(p, metadata[i][0], key_len);
899 p += key_len;
900 ceph_encode_32(&p, val_len);
901 memcpy(p, metadata[i][1], val_len);
902 p += val_len;
903 }
904
905 return msg;
906 }
907
908 /*
909 * send session open request.
910 *
911 * called under mdsc->mutex
912 */
913 static int __open_session(struct ceph_mds_client *mdsc,
914 struct ceph_mds_session *session)
915 {
916 struct ceph_msg *msg;
917 int mstate;
918 int mds = session->s_mds;
919
920 /* wait for mds to go active? */
921 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
922 dout("open_session to mds%d (%s)\n", mds,
923 ceph_mds_state_name(mstate));
924 session->s_state = CEPH_MDS_SESSION_OPENING;
925 session->s_renew_requested = jiffies;
926
927 /* send connect message */
928 msg = create_session_open_msg(mdsc, session->s_seq);
929 if (!msg)
930 return -ENOMEM;
931 ceph_con_send(&session->s_con, msg);
932 return 0;
933 }
934
935 /*
936 * open sessions for any export targets for the given mds
937 *
938 * called under mdsc->mutex
939 */
940 static struct ceph_mds_session *
941 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
942 {
943 struct ceph_mds_session *session;
944
945 session = __ceph_lookup_mds_session(mdsc, target);
946 if (!session) {
947 session = register_session(mdsc, target);
948 if (IS_ERR(session))
949 return session;
950 }
951 if (session->s_state == CEPH_MDS_SESSION_NEW ||
952 session->s_state == CEPH_MDS_SESSION_CLOSING)
953 __open_session(mdsc, session);
954
955 return session;
956 }
957
958 struct ceph_mds_session *
959 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
960 {
961 struct ceph_mds_session *session;
962
963 dout("open_export_target_session to mds%d\n", target);
964
965 mutex_lock(&mdsc->mutex);
966 session = __open_export_target_session(mdsc, target);
967 mutex_unlock(&mdsc->mutex);
968
969 return session;
970 }
971
972 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
973 struct ceph_mds_session *session)
974 {
975 struct ceph_mds_info *mi;
976 struct ceph_mds_session *ts;
977 int i, mds = session->s_mds;
978
979 if (mds >= mdsc->mdsmap->m_max_mds)
980 return;
981
982 mi = &mdsc->mdsmap->m_info[mds];
983 dout("open_export_target_sessions for mds%d (%d targets)\n",
984 session->s_mds, mi->num_export_targets);
985
986 for (i = 0; i < mi->num_export_targets; i++) {
987 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
988 if (!IS_ERR(ts))
989 ceph_put_mds_session(ts);
990 }
991 }
992
993 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
994 struct ceph_mds_session *session)
995 {
996 mutex_lock(&mdsc->mutex);
997 __open_export_target_sessions(mdsc, session);
998 mutex_unlock(&mdsc->mutex);
999 }
1000
1001 /*
1002 * session caps
1003 */
1004
1005 /* caller holds s_cap_lock, we drop it */
1006 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1007 struct ceph_mds_session *session)
1008 __releases(session->s_cap_lock)
1009 {
1010 LIST_HEAD(tmp_list);
1011 list_splice_init(&session->s_cap_releases, &tmp_list);
1012 session->s_num_cap_releases = 0;
1013 spin_unlock(&session->s_cap_lock);
1014
1015 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1016 while (!list_empty(&tmp_list)) {
1017 struct ceph_cap *cap;
1018 /* zero out the in-progress message */
1019 cap = list_first_entry(&tmp_list,
1020 struct ceph_cap, session_caps);
1021 list_del(&cap->session_caps);
1022 ceph_put_cap(mdsc, cap);
1023 }
1024 }
1025
1026 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1027 struct ceph_mds_session *session)
1028 {
1029 struct ceph_mds_request *req;
1030 struct rb_node *p;
1031
1032 dout("cleanup_session_requests mds%d\n", session->s_mds);
1033 mutex_lock(&mdsc->mutex);
1034 while (!list_empty(&session->s_unsafe)) {
1035 req = list_first_entry(&session->s_unsafe,
1036 struct ceph_mds_request, r_unsafe_item);
1037 list_del_init(&req->r_unsafe_item);
1038 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1039 req->r_tid);
1040 __unregister_request(mdsc, req);
1041 }
1042 /* zero r_attempts, so kick_requests() will re-send requests */
1043 p = rb_first(&mdsc->request_tree);
1044 while (p) {
1045 req = rb_entry(p, struct ceph_mds_request, r_node);
1046 p = rb_next(p);
1047 if (req->r_session &&
1048 req->r_session->s_mds == session->s_mds)
1049 req->r_attempts = 0;
1050 }
1051 mutex_unlock(&mdsc->mutex);
1052 }
1053
1054 /*
1055 * Helper to safely iterate over all caps associated with a session, with
1056 * special care taken to handle a racing __ceph_remove_cap().
1057 *
1058 * Caller must hold session s_mutex.
1059 */
1060 static int iterate_session_caps(struct ceph_mds_session *session,
1061 int (*cb)(struct inode *, struct ceph_cap *,
1062 void *), void *arg)
1063 {
1064 struct list_head *p;
1065 struct ceph_cap *cap;
1066 struct inode *inode, *last_inode = NULL;
1067 struct ceph_cap *old_cap = NULL;
1068 int ret;
1069
1070 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1071 spin_lock(&session->s_cap_lock);
1072 p = session->s_caps.next;
1073 while (p != &session->s_caps) {
1074 cap = list_entry(p, struct ceph_cap, session_caps);
1075 inode = igrab(&cap->ci->vfs_inode);
1076 if (!inode) {
1077 p = p->next;
1078 continue;
1079 }
1080 session->s_cap_iterator = cap;
1081 spin_unlock(&session->s_cap_lock);
1082
1083 if (last_inode) {
1084 iput(last_inode);
1085 last_inode = NULL;
1086 }
1087 if (old_cap) {
1088 ceph_put_cap(session->s_mdsc, old_cap);
1089 old_cap = NULL;
1090 }
1091
1092 ret = cb(inode, cap, arg);
1093 last_inode = inode;
1094
1095 spin_lock(&session->s_cap_lock);
1096 p = p->next;
1097 if (cap->ci == NULL) {
1098 dout("iterate_session_caps finishing cap %p removal\n",
1099 cap);
1100 BUG_ON(cap->session != session);
1101 cap->session = NULL;
1102 list_del_init(&cap->session_caps);
1103 session->s_nr_caps--;
1104 if (cap->queue_release) {
1105 list_add_tail(&cap->session_caps,
1106 &session->s_cap_releases);
1107 session->s_num_cap_releases++;
1108 } else {
1109 old_cap = cap; /* put_cap it w/o locks held */
1110 }
1111 }
1112 if (ret < 0)
1113 goto out;
1114 }
1115 ret = 0;
1116 out:
1117 session->s_cap_iterator = NULL;
1118 spin_unlock(&session->s_cap_lock);
1119
1120 iput(last_inode);
1121 if (old_cap)
1122 ceph_put_cap(session->s_mdsc, old_cap);
1123
1124 return ret;
1125 }
1126
1127 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1128 void *arg)
1129 {
1130 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1131 struct ceph_inode_info *ci = ceph_inode(inode);
1132 LIST_HEAD(to_remove);
1133 bool drop = false;
1134 bool invalidate = false;
1135
1136 dout("removing cap %p, ci is %p, inode is %p\n",
1137 cap, ci, &ci->vfs_inode);
1138 spin_lock(&ci->i_ceph_lock);
1139 __ceph_remove_cap(cap, false);
1140 if (!ci->i_auth_cap) {
1141 struct ceph_cap_flush *cf;
1142 struct ceph_mds_client *mdsc = fsc->mdsc;
1143
1144 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1145
1146 if (ci->i_wrbuffer_ref > 0 &&
1147 ACCESS_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1148 invalidate = true;
1149
1150 while (!list_empty(&ci->i_cap_flush_list)) {
1151 cf = list_first_entry(&ci->i_cap_flush_list,
1152 struct ceph_cap_flush, i_list);
1153 list_del(&cf->i_list);
1154 list_add(&cf->i_list, &to_remove);
1155 }
1156
1157 spin_lock(&mdsc->cap_dirty_lock);
1158
1159 list_for_each_entry(cf, &to_remove, i_list)
1160 list_del(&cf->g_list);
1161
1162 if (!list_empty(&ci->i_dirty_item)) {
1163 pr_warn_ratelimited(
1164 " dropping dirty %s state for %p %lld\n",
1165 ceph_cap_string(ci->i_dirty_caps),
1166 inode, ceph_ino(inode));
1167 ci->i_dirty_caps = 0;
1168 list_del_init(&ci->i_dirty_item);
1169 drop = true;
1170 }
1171 if (!list_empty(&ci->i_flushing_item)) {
1172 pr_warn_ratelimited(
1173 " dropping dirty+flushing %s state for %p %lld\n",
1174 ceph_cap_string(ci->i_flushing_caps),
1175 inode, ceph_ino(inode));
1176 ci->i_flushing_caps = 0;
1177 list_del_init(&ci->i_flushing_item);
1178 mdsc->num_cap_flushing--;
1179 drop = true;
1180 }
1181 spin_unlock(&mdsc->cap_dirty_lock);
1182
1183 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1184 list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove);
1185 ci->i_prealloc_cap_flush = NULL;
1186 }
1187 }
1188 spin_unlock(&ci->i_ceph_lock);
1189 while (!list_empty(&to_remove)) {
1190 struct ceph_cap_flush *cf;
1191 cf = list_first_entry(&to_remove,
1192 struct ceph_cap_flush, i_list);
1193 list_del(&cf->i_list);
1194 ceph_free_cap_flush(cf);
1195 }
1196
1197 wake_up_all(&ci->i_cap_wq);
1198 if (invalidate)
1199 ceph_queue_invalidate(inode);
1200 if (drop)
1201 iput(inode);
1202 return 0;
1203 }
1204
1205 /*
1206 * caller must hold session s_mutex
1207 */
1208 static void remove_session_caps(struct ceph_mds_session *session)
1209 {
1210 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1211 struct super_block *sb = fsc->sb;
1212 dout("remove_session_caps on %p\n", session);
1213 iterate_session_caps(session, remove_session_caps_cb, fsc);
1214
1215 wake_up_all(&fsc->mdsc->cap_flushing_wq);
1216
1217 spin_lock(&session->s_cap_lock);
1218 if (session->s_nr_caps > 0) {
1219 struct inode *inode;
1220 struct ceph_cap *cap, *prev = NULL;
1221 struct ceph_vino vino;
1222 /*
1223 * iterate_session_caps() skips inodes that are being
1224 * deleted, we need to wait until deletions are complete.
1225 * __wait_on_freeing_inode() is designed for the job,
1226 * but it is not exported, so use lookup inode function
1227 * to access it.
1228 */
1229 while (!list_empty(&session->s_caps)) {
1230 cap = list_entry(session->s_caps.next,
1231 struct ceph_cap, session_caps);
1232 if (cap == prev)
1233 break;
1234 prev = cap;
1235 vino = cap->ci->i_vino;
1236 spin_unlock(&session->s_cap_lock);
1237
1238 inode = ceph_find_inode(sb, vino);
1239 iput(inode);
1240
1241 spin_lock(&session->s_cap_lock);
1242 }
1243 }
1244
1245 // drop cap expires and unlock s_cap_lock
1246 cleanup_cap_releases(session->s_mdsc, session);
1247
1248 BUG_ON(session->s_nr_caps > 0);
1249 BUG_ON(!list_empty(&session->s_cap_flushing));
1250 }
1251
1252 /*
1253 * wake up any threads waiting on this session's caps. if the cap is
1254 * old (didn't get renewed on the client reconnect), remove it now.
1255 *
1256 * caller must hold s_mutex.
1257 */
1258 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1259 void *arg)
1260 {
1261 struct ceph_inode_info *ci = ceph_inode(inode);
1262
1263 if (arg) {
1264 spin_lock(&ci->i_ceph_lock);
1265 ci->i_wanted_max_size = 0;
1266 ci->i_requested_max_size = 0;
1267 spin_unlock(&ci->i_ceph_lock);
1268 }
1269 wake_up_all(&ci->i_cap_wq);
1270 return 0;
1271 }
1272
1273 static void wake_up_session_caps(struct ceph_mds_session *session,
1274 int reconnect)
1275 {
1276 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1277 iterate_session_caps(session, wake_up_session_cb,
1278 (void *)(unsigned long)reconnect);
1279 }
1280
1281 /*
1282 * Send periodic message to MDS renewing all currently held caps. The
1283 * ack will reset the expiration for all caps from this session.
1284 *
1285 * caller holds s_mutex
1286 */
1287 static int send_renew_caps(struct ceph_mds_client *mdsc,
1288 struct ceph_mds_session *session)
1289 {
1290 struct ceph_msg *msg;
1291 int state;
1292
1293 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1294 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1295 pr_info("mds%d caps stale\n", session->s_mds);
1296 session->s_renew_requested = jiffies;
1297
1298 /* do not try to renew caps until a recovering mds has reconnected
1299 * with its clients. */
1300 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1301 if (state < CEPH_MDS_STATE_RECONNECT) {
1302 dout("send_renew_caps ignoring mds%d (%s)\n",
1303 session->s_mds, ceph_mds_state_name(state));
1304 return 0;
1305 }
1306
1307 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1308 ceph_mds_state_name(state));
1309 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1310 ++session->s_renew_seq);
1311 if (!msg)
1312 return -ENOMEM;
1313 ceph_con_send(&session->s_con, msg);
1314 return 0;
1315 }
1316
1317 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1318 struct ceph_mds_session *session, u64 seq)
1319 {
1320 struct ceph_msg *msg;
1321
1322 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1323 session->s_mds, ceph_session_state_name(session->s_state), seq);
1324 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1325 if (!msg)
1326 return -ENOMEM;
1327 ceph_con_send(&session->s_con, msg);
1328 return 0;
1329 }
1330
1331
1332 /*
1333 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1334 *
1335 * Called under session->s_mutex
1336 */
1337 static void renewed_caps(struct ceph_mds_client *mdsc,
1338 struct ceph_mds_session *session, int is_renew)
1339 {
1340 int was_stale;
1341 int wake = 0;
1342
1343 spin_lock(&session->s_cap_lock);
1344 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1345
1346 session->s_cap_ttl = session->s_renew_requested +
1347 mdsc->mdsmap->m_session_timeout*HZ;
1348
1349 if (was_stale) {
1350 if (time_before(jiffies, session->s_cap_ttl)) {
1351 pr_info("mds%d caps renewed\n", session->s_mds);
1352 wake = 1;
1353 } else {
1354 pr_info("mds%d caps still stale\n", session->s_mds);
1355 }
1356 }
1357 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1358 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1359 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1360 spin_unlock(&session->s_cap_lock);
1361
1362 if (wake)
1363 wake_up_session_caps(session, 0);
1364 }
1365
1366 /*
1367 * send a session close request
1368 */
1369 static int request_close_session(struct ceph_mds_client *mdsc,
1370 struct ceph_mds_session *session)
1371 {
1372 struct ceph_msg *msg;
1373
1374 dout("request_close_session mds%d state %s seq %lld\n",
1375 session->s_mds, ceph_session_state_name(session->s_state),
1376 session->s_seq);
1377 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1378 if (!msg)
1379 return -ENOMEM;
1380 ceph_con_send(&session->s_con, msg);
1381 return 0;
1382 }
1383
1384 /*
1385 * Called with s_mutex held.
1386 */
1387 static int __close_session(struct ceph_mds_client *mdsc,
1388 struct ceph_mds_session *session)
1389 {
1390 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1391 return 0;
1392 session->s_state = CEPH_MDS_SESSION_CLOSING;
1393 return request_close_session(mdsc, session);
1394 }
1395
1396 /*
1397 * Trim old(er) caps.
1398 *
1399 * Because we can't cache an inode without one or more caps, we do
1400 * this indirectly: if a cap is unused, we prune its aliases, at which
1401 * point the inode will hopefully get dropped to.
1402 *
1403 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1404 * memory pressure from the MDS, though, so it needn't be perfect.
1405 */
1406 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1407 {
1408 struct ceph_mds_session *session = arg;
1409 struct ceph_inode_info *ci = ceph_inode(inode);
1410 int used, wanted, oissued, mine;
1411
1412 if (session->s_trim_caps <= 0)
1413 return -1;
1414
1415 spin_lock(&ci->i_ceph_lock);
1416 mine = cap->issued | cap->implemented;
1417 used = __ceph_caps_used(ci);
1418 wanted = __ceph_caps_file_wanted(ci);
1419 oissued = __ceph_caps_issued_other(ci, cap);
1420
1421 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1422 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1423 ceph_cap_string(used), ceph_cap_string(wanted));
1424 if (cap == ci->i_auth_cap) {
1425 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1426 !list_empty(&ci->i_cap_snaps))
1427 goto out;
1428 if ((used | wanted) & CEPH_CAP_ANY_WR)
1429 goto out;
1430 }
1431 /* The inode has cached pages, but it's no longer used.
1432 * we can safely drop it */
1433 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1434 !(oissued & CEPH_CAP_FILE_CACHE)) {
1435 used = 0;
1436 oissued = 0;
1437 }
1438 if ((used | wanted) & ~oissued & mine)
1439 goto out; /* we need these caps */
1440
1441 session->s_trim_caps--;
1442 if (oissued) {
1443 /* we aren't the only cap.. just remove us */
1444 __ceph_remove_cap(cap, true);
1445 } else {
1446 /* try dropping referring dentries */
1447 spin_unlock(&ci->i_ceph_lock);
1448 d_prune_aliases(inode);
1449 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1450 inode, cap, atomic_read(&inode->i_count));
1451 return 0;
1452 }
1453
1454 out:
1455 spin_unlock(&ci->i_ceph_lock);
1456 return 0;
1457 }
1458
1459 /*
1460 * Trim session cap count down to some max number.
1461 */
1462 static int trim_caps(struct ceph_mds_client *mdsc,
1463 struct ceph_mds_session *session,
1464 int max_caps)
1465 {
1466 int trim_caps = session->s_nr_caps - max_caps;
1467
1468 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1469 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1470 if (trim_caps > 0) {
1471 session->s_trim_caps = trim_caps;
1472 iterate_session_caps(session, trim_caps_cb, session);
1473 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1474 session->s_mds, session->s_nr_caps, max_caps,
1475 trim_caps - session->s_trim_caps);
1476 session->s_trim_caps = 0;
1477 }
1478
1479 ceph_send_cap_releases(mdsc, session);
1480 return 0;
1481 }
1482
1483 static int check_caps_flush(struct ceph_mds_client *mdsc,
1484 u64 want_flush_tid)
1485 {
1486 int ret = 1;
1487
1488 spin_lock(&mdsc->cap_dirty_lock);
1489 if (!list_empty(&mdsc->cap_flush_list)) {
1490 struct ceph_cap_flush *cf =
1491 list_first_entry(&mdsc->cap_flush_list,
1492 struct ceph_cap_flush, g_list);
1493 if (cf->tid <= want_flush_tid) {
1494 dout("check_caps_flush still flushing tid "
1495 "%llu <= %llu\n", cf->tid, want_flush_tid);
1496 ret = 0;
1497 }
1498 }
1499 spin_unlock(&mdsc->cap_dirty_lock);
1500 return ret;
1501 }
1502
1503 /*
1504 * flush all dirty inode data to disk.
1505 *
1506 * returns true if we've flushed through want_flush_tid
1507 */
1508 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1509 u64 want_flush_tid)
1510 {
1511 dout("check_caps_flush want %llu\n", want_flush_tid);
1512
1513 wait_event(mdsc->cap_flushing_wq,
1514 check_caps_flush(mdsc, want_flush_tid));
1515
1516 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1517 }
1518
1519 /*
1520 * called under s_mutex
1521 */
1522 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1523 struct ceph_mds_session *session)
1524 {
1525 struct ceph_msg *msg = NULL;
1526 struct ceph_mds_cap_release *head;
1527 struct ceph_mds_cap_item *item;
1528 struct ceph_cap *cap;
1529 LIST_HEAD(tmp_list);
1530 int num_cap_releases;
1531
1532 spin_lock(&session->s_cap_lock);
1533 again:
1534 list_splice_init(&session->s_cap_releases, &tmp_list);
1535 num_cap_releases = session->s_num_cap_releases;
1536 session->s_num_cap_releases = 0;
1537 spin_unlock(&session->s_cap_lock);
1538
1539 while (!list_empty(&tmp_list)) {
1540 if (!msg) {
1541 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1542 PAGE_SIZE, GFP_NOFS, false);
1543 if (!msg)
1544 goto out_err;
1545 head = msg->front.iov_base;
1546 head->num = cpu_to_le32(0);
1547 msg->front.iov_len = sizeof(*head);
1548 }
1549 cap = list_first_entry(&tmp_list, struct ceph_cap,
1550 session_caps);
1551 list_del(&cap->session_caps);
1552 num_cap_releases--;
1553
1554 head = msg->front.iov_base;
1555 le32_add_cpu(&head->num, 1);
1556 item = msg->front.iov_base + msg->front.iov_len;
1557 item->ino = cpu_to_le64(cap->cap_ino);
1558 item->cap_id = cpu_to_le64(cap->cap_id);
1559 item->migrate_seq = cpu_to_le32(cap->mseq);
1560 item->seq = cpu_to_le32(cap->issue_seq);
1561 msg->front.iov_len += sizeof(*item);
1562
1563 ceph_put_cap(mdsc, cap);
1564
1565 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1566 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1567 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1568 ceph_con_send(&session->s_con, msg);
1569 msg = NULL;
1570 }
1571 }
1572
1573 BUG_ON(num_cap_releases != 0);
1574
1575 spin_lock(&session->s_cap_lock);
1576 if (!list_empty(&session->s_cap_releases))
1577 goto again;
1578 spin_unlock(&session->s_cap_lock);
1579
1580 if (msg) {
1581 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1582 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1583 ceph_con_send(&session->s_con, msg);
1584 }
1585 return;
1586 out_err:
1587 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1588 session->s_mds);
1589 spin_lock(&session->s_cap_lock);
1590 list_splice(&tmp_list, &session->s_cap_releases);
1591 session->s_num_cap_releases += num_cap_releases;
1592 spin_unlock(&session->s_cap_lock);
1593 }
1594
1595 /*
1596 * requests
1597 */
1598
1599 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1600 struct inode *dir)
1601 {
1602 struct ceph_inode_info *ci = ceph_inode(dir);
1603 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1604 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1605 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1606 int order, num_entries;
1607
1608 spin_lock(&ci->i_ceph_lock);
1609 num_entries = ci->i_files + ci->i_subdirs;
1610 spin_unlock(&ci->i_ceph_lock);
1611 num_entries = max(num_entries, 1);
1612 num_entries = min(num_entries, opt->max_readdir);
1613
1614 order = get_order(size * num_entries);
1615 while (order >= 0) {
1616 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1617 __GFP_NOWARN,
1618 order);
1619 if (rinfo->dir_entries)
1620 break;
1621 order--;
1622 }
1623 if (!rinfo->dir_entries)
1624 return -ENOMEM;
1625
1626 num_entries = (PAGE_SIZE << order) / size;
1627 num_entries = min(num_entries, opt->max_readdir);
1628
1629 rinfo->dir_buf_size = PAGE_SIZE << order;
1630 req->r_num_caps = num_entries + 1;
1631 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1632 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1633 return 0;
1634 }
1635
1636 /*
1637 * Create an mds request.
1638 */
1639 struct ceph_mds_request *
1640 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1641 {
1642 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1643
1644 if (!req)
1645 return ERR_PTR(-ENOMEM);
1646
1647 mutex_init(&req->r_fill_mutex);
1648 req->r_mdsc = mdsc;
1649 req->r_started = jiffies;
1650 req->r_resend_mds = -1;
1651 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1652 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1653 req->r_fmode = -1;
1654 kref_init(&req->r_kref);
1655 RB_CLEAR_NODE(&req->r_node);
1656 INIT_LIST_HEAD(&req->r_wait);
1657 init_completion(&req->r_completion);
1658 init_completion(&req->r_safe_completion);
1659 INIT_LIST_HEAD(&req->r_unsafe_item);
1660
1661 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1662
1663 req->r_op = op;
1664 req->r_direct_mode = mode;
1665 return req;
1666 }
1667
1668 /*
1669 * return oldest (lowest) request, tid in request tree, 0 if none.
1670 *
1671 * called under mdsc->mutex.
1672 */
1673 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1674 {
1675 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1676 return NULL;
1677 return rb_entry(rb_first(&mdsc->request_tree),
1678 struct ceph_mds_request, r_node);
1679 }
1680
1681 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1682 {
1683 return mdsc->oldest_tid;
1684 }
1685
1686 /*
1687 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1688 * on build_path_from_dentry in fs/cifs/dir.c.
1689 *
1690 * If @stop_on_nosnap, generate path relative to the first non-snapped
1691 * inode.
1692 *
1693 * Encode hidden .snap dirs as a double /, i.e.
1694 * foo/.snap/bar -> foo//bar
1695 */
1696 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1697 int stop_on_nosnap)
1698 {
1699 struct dentry *temp;
1700 char *path;
1701 int len, pos;
1702 unsigned seq;
1703
1704 if (dentry == NULL)
1705 return ERR_PTR(-EINVAL);
1706
1707 retry:
1708 len = 0;
1709 seq = read_seqbegin(&rename_lock);
1710 rcu_read_lock();
1711 for (temp = dentry; !IS_ROOT(temp);) {
1712 struct inode *inode = d_inode(temp);
1713 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1714 len++; /* slash only */
1715 else if (stop_on_nosnap && inode &&
1716 ceph_snap(inode) == CEPH_NOSNAP)
1717 break;
1718 else
1719 len += 1 + temp->d_name.len;
1720 temp = temp->d_parent;
1721 }
1722 rcu_read_unlock();
1723 if (len)
1724 len--; /* no leading '/' */
1725
1726 path = kmalloc(len+1, GFP_NOFS);
1727 if (path == NULL)
1728 return ERR_PTR(-ENOMEM);
1729 pos = len;
1730 path[pos] = 0; /* trailing null */
1731 rcu_read_lock();
1732 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1733 struct inode *inode;
1734
1735 spin_lock(&temp->d_lock);
1736 inode = d_inode(temp);
1737 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1738 dout("build_path path+%d: %p SNAPDIR\n",
1739 pos, temp);
1740 } else if (stop_on_nosnap && inode &&
1741 ceph_snap(inode) == CEPH_NOSNAP) {
1742 spin_unlock(&temp->d_lock);
1743 break;
1744 } else {
1745 pos -= temp->d_name.len;
1746 if (pos < 0) {
1747 spin_unlock(&temp->d_lock);
1748 break;
1749 }
1750 strncpy(path + pos, temp->d_name.name,
1751 temp->d_name.len);
1752 }
1753 spin_unlock(&temp->d_lock);
1754 if (pos)
1755 path[--pos] = '/';
1756 temp = temp->d_parent;
1757 }
1758 rcu_read_unlock();
1759 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1760 pr_err("build_path did not end path lookup where "
1761 "expected, namelen is %d, pos is %d\n", len, pos);
1762 /* presumably this is only possible if racing with a
1763 rename of one of the parent directories (we can not
1764 lock the dentries above us to prevent this, but
1765 retrying should be harmless) */
1766 kfree(path);
1767 goto retry;
1768 }
1769
1770 *base = ceph_ino(d_inode(temp));
1771 *plen = len;
1772 dout("build_path on %p %d built %llx '%.*s'\n",
1773 dentry, d_count(dentry), *base, len, path);
1774 return path;
1775 }
1776
1777 static int build_dentry_path(struct dentry *dentry,
1778 const char **ppath, int *ppathlen, u64 *pino,
1779 int *pfreepath)
1780 {
1781 char *path;
1782
1783 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1784 *pino = ceph_ino(d_inode(dentry->d_parent));
1785 *ppath = dentry->d_name.name;
1786 *ppathlen = dentry->d_name.len;
1787 return 0;
1788 }
1789 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1790 if (IS_ERR(path))
1791 return PTR_ERR(path);
1792 *ppath = path;
1793 *pfreepath = 1;
1794 return 0;
1795 }
1796
1797 static int build_inode_path(struct inode *inode,
1798 const char **ppath, int *ppathlen, u64 *pino,
1799 int *pfreepath)
1800 {
1801 struct dentry *dentry;
1802 char *path;
1803
1804 if (ceph_snap(inode) == CEPH_NOSNAP) {
1805 *pino = ceph_ino(inode);
1806 *ppathlen = 0;
1807 return 0;
1808 }
1809 dentry = d_find_alias(inode);
1810 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1811 dput(dentry);
1812 if (IS_ERR(path))
1813 return PTR_ERR(path);
1814 *ppath = path;
1815 *pfreepath = 1;
1816 return 0;
1817 }
1818
1819 /*
1820 * request arguments may be specified via an inode *, a dentry *, or
1821 * an explicit ino+path.
1822 */
1823 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1824 const char *rpath, u64 rino,
1825 const char **ppath, int *pathlen,
1826 u64 *ino, int *freepath)
1827 {
1828 int r = 0;
1829
1830 if (rinode) {
1831 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1832 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1833 ceph_snap(rinode));
1834 } else if (rdentry) {
1835 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1836 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1837 *ppath);
1838 } else if (rpath || rino) {
1839 *ino = rino;
1840 *ppath = rpath;
1841 *pathlen = rpath ? strlen(rpath) : 0;
1842 dout(" path %.*s\n", *pathlen, rpath);
1843 }
1844
1845 return r;
1846 }
1847
1848 /*
1849 * called under mdsc->mutex
1850 */
1851 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1852 struct ceph_mds_request *req,
1853 int mds, bool drop_cap_releases)
1854 {
1855 struct ceph_msg *msg;
1856 struct ceph_mds_request_head *head;
1857 const char *path1 = NULL;
1858 const char *path2 = NULL;
1859 u64 ino1 = 0, ino2 = 0;
1860 int pathlen1 = 0, pathlen2 = 0;
1861 int freepath1 = 0, freepath2 = 0;
1862 int len;
1863 u16 releases;
1864 void *p, *end;
1865 int ret;
1866
1867 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1868 req->r_path1, req->r_ino1.ino,
1869 &path1, &pathlen1, &ino1, &freepath1);
1870 if (ret < 0) {
1871 msg = ERR_PTR(ret);
1872 goto out;
1873 }
1874
1875 ret = set_request_path_attr(NULL, req->r_old_dentry,
1876 req->r_path2, req->r_ino2.ino,
1877 &path2, &pathlen2, &ino2, &freepath2);
1878 if (ret < 0) {
1879 msg = ERR_PTR(ret);
1880 goto out_free1;
1881 }
1882
1883 len = sizeof(*head) +
1884 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1885 sizeof(struct ceph_timespec);
1886
1887 /* calculate (max) length for cap releases */
1888 len += sizeof(struct ceph_mds_request_release) *
1889 (!!req->r_inode_drop + !!req->r_dentry_drop +
1890 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1891 if (req->r_dentry_drop)
1892 len += req->r_dentry->d_name.len;
1893 if (req->r_old_dentry_drop)
1894 len += req->r_old_dentry->d_name.len;
1895
1896 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1897 if (!msg) {
1898 msg = ERR_PTR(-ENOMEM);
1899 goto out_free2;
1900 }
1901
1902 msg->hdr.version = cpu_to_le16(2);
1903 msg->hdr.tid = cpu_to_le64(req->r_tid);
1904
1905 head = msg->front.iov_base;
1906 p = msg->front.iov_base + sizeof(*head);
1907 end = msg->front.iov_base + msg->front.iov_len;
1908
1909 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1910 head->op = cpu_to_le32(req->r_op);
1911 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1912 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1913 head->args = req->r_args;
1914
1915 ceph_encode_filepath(&p, end, ino1, path1);
1916 ceph_encode_filepath(&p, end, ino2, path2);
1917
1918 /* make note of release offset, in case we need to replay */
1919 req->r_request_release_offset = p - msg->front.iov_base;
1920
1921 /* cap releases */
1922 releases = 0;
1923 if (req->r_inode_drop)
1924 releases += ceph_encode_inode_release(&p,
1925 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1926 mds, req->r_inode_drop, req->r_inode_unless, 0);
1927 if (req->r_dentry_drop)
1928 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1929 mds, req->r_dentry_drop, req->r_dentry_unless);
1930 if (req->r_old_dentry_drop)
1931 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1932 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1933 if (req->r_old_inode_drop)
1934 releases += ceph_encode_inode_release(&p,
1935 d_inode(req->r_old_dentry),
1936 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1937
1938 if (drop_cap_releases) {
1939 releases = 0;
1940 p = msg->front.iov_base + req->r_request_release_offset;
1941 }
1942
1943 head->num_releases = cpu_to_le16(releases);
1944
1945 /* time stamp */
1946 {
1947 struct ceph_timespec ts;
1948 ceph_encode_timespec(&ts, &req->r_stamp);
1949 ceph_encode_copy(&p, &ts, sizeof(ts));
1950 }
1951
1952 BUG_ON(p > end);
1953 msg->front.iov_len = p - msg->front.iov_base;
1954 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1955
1956 if (req->r_pagelist) {
1957 struct ceph_pagelist *pagelist = req->r_pagelist;
1958 atomic_inc(&pagelist->refcnt);
1959 ceph_msg_data_add_pagelist(msg, pagelist);
1960 msg->hdr.data_len = cpu_to_le32(pagelist->length);
1961 } else {
1962 msg->hdr.data_len = 0;
1963 }
1964
1965 msg->hdr.data_off = cpu_to_le16(0);
1966
1967 out_free2:
1968 if (freepath2)
1969 kfree((char *)path2);
1970 out_free1:
1971 if (freepath1)
1972 kfree((char *)path1);
1973 out:
1974 return msg;
1975 }
1976
1977 /*
1978 * called under mdsc->mutex if error, under no mutex if
1979 * success.
1980 */
1981 static void complete_request(struct ceph_mds_client *mdsc,
1982 struct ceph_mds_request *req)
1983 {
1984 if (req->r_callback)
1985 req->r_callback(mdsc, req);
1986 else
1987 complete_all(&req->r_completion);
1988 }
1989
1990 /*
1991 * called under mdsc->mutex
1992 */
1993 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1994 struct ceph_mds_request *req,
1995 int mds, bool drop_cap_releases)
1996 {
1997 struct ceph_mds_request_head *rhead;
1998 struct ceph_msg *msg;
1999 int flags = 0;
2000
2001 req->r_attempts++;
2002 if (req->r_inode) {
2003 struct ceph_cap *cap =
2004 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2005
2006 if (cap)
2007 req->r_sent_on_mseq = cap->mseq;
2008 else
2009 req->r_sent_on_mseq = -1;
2010 }
2011 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2012 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2013
2014 if (req->r_got_unsafe) {
2015 void *p;
2016 /*
2017 * Replay. Do not regenerate message (and rebuild
2018 * paths, etc.); just use the original message.
2019 * Rebuilding paths will break for renames because
2020 * d_move mangles the src name.
2021 */
2022 msg = req->r_request;
2023 rhead = msg->front.iov_base;
2024
2025 flags = le32_to_cpu(rhead->flags);
2026 flags |= CEPH_MDS_FLAG_REPLAY;
2027 rhead->flags = cpu_to_le32(flags);
2028
2029 if (req->r_target_inode)
2030 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2031
2032 rhead->num_retry = req->r_attempts - 1;
2033
2034 /* remove cap/dentry releases from message */
2035 rhead->num_releases = 0;
2036
2037 /* time stamp */
2038 p = msg->front.iov_base + req->r_request_release_offset;
2039 {
2040 struct ceph_timespec ts;
2041 ceph_encode_timespec(&ts, &req->r_stamp);
2042 ceph_encode_copy(&p, &ts, sizeof(ts));
2043 }
2044
2045 msg->front.iov_len = p - msg->front.iov_base;
2046 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2047 return 0;
2048 }
2049
2050 if (req->r_request) {
2051 ceph_msg_put(req->r_request);
2052 req->r_request = NULL;
2053 }
2054 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2055 if (IS_ERR(msg)) {
2056 req->r_err = PTR_ERR(msg);
2057 return PTR_ERR(msg);
2058 }
2059 req->r_request = msg;
2060
2061 rhead = msg->front.iov_base;
2062 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2063 if (req->r_got_unsafe)
2064 flags |= CEPH_MDS_FLAG_REPLAY;
2065 if (req->r_locked_dir)
2066 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2067 rhead->flags = cpu_to_le32(flags);
2068 rhead->num_fwd = req->r_num_fwd;
2069 rhead->num_retry = req->r_attempts - 1;
2070 rhead->ino = 0;
2071
2072 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2073 return 0;
2074 }
2075
2076 /*
2077 * send request, or put it on the appropriate wait list.
2078 */
2079 static int __do_request(struct ceph_mds_client *mdsc,
2080 struct ceph_mds_request *req)
2081 {
2082 struct ceph_mds_session *session = NULL;
2083 int mds = -1;
2084 int err = 0;
2085
2086 if (req->r_err || req->r_got_result) {
2087 if (req->r_aborted)
2088 __unregister_request(mdsc, req);
2089 goto out;
2090 }
2091
2092 if (req->r_timeout &&
2093 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2094 dout("do_request timed out\n");
2095 err = -EIO;
2096 goto finish;
2097 }
2098 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2099 dout("do_request forced umount\n");
2100 err = -EIO;
2101 goto finish;
2102 }
2103
2104 put_request_session(req);
2105
2106 mds = __choose_mds(mdsc, req);
2107 if (mds < 0 ||
2108 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2109 if (mdsc->mdsmap_err) {
2110 err = mdsc->mdsmap_err;
2111 dout("do_request mdsmap err %d\n", err);
2112 goto finish;
2113 }
2114 dout("do_request no mds or not active, waiting for map\n");
2115 list_add(&req->r_wait, &mdsc->waiting_for_map);
2116 goto out;
2117 }
2118
2119 /* get, open session */
2120 session = __ceph_lookup_mds_session(mdsc, mds);
2121 if (!session) {
2122 session = register_session(mdsc, mds);
2123 if (IS_ERR(session)) {
2124 err = PTR_ERR(session);
2125 goto finish;
2126 }
2127 }
2128 req->r_session = get_session(session);
2129
2130 dout("do_request mds%d session %p state %s\n", mds, session,
2131 ceph_session_state_name(session->s_state));
2132 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2133 session->s_state != CEPH_MDS_SESSION_HUNG) {
2134 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2135 session->s_state == CEPH_MDS_SESSION_CLOSING)
2136 __open_session(mdsc, session);
2137 list_add(&req->r_wait, &session->s_waiting);
2138 goto out_session;
2139 }
2140
2141 /* send request */
2142 req->r_resend_mds = -1; /* forget any previous mds hint */
2143
2144 if (req->r_request_started == 0) /* note request start time */
2145 req->r_request_started = jiffies;
2146
2147 err = __prepare_send_request(mdsc, req, mds, false);
2148 if (!err) {
2149 ceph_msg_get(req->r_request);
2150 ceph_con_send(&session->s_con, req->r_request);
2151 }
2152
2153 out_session:
2154 ceph_put_mds_session(session);
2155 finish:
2156 if (err) {
2157 dout("__do_request early error %d\n", err);
2158 req->r_err = err;
2159 complete_request(mdsc, req);
2160 __unregister_request(mdsc, req);
2161 }
2162 out:
2163 return err;
2164 }
2165
2166 /*
2167 * called under mdsc->mutex
2168 */
2169 static void __wake_requests(struct ceph_mds_client *mdsc,
2170 struct list_head *head)
2171 {
2172 struct ceph_mds_request *req;
2173 LIST_HEAD(tmp_list);
2174
2175 list_splice_init(head, &tmp_list);
2176
2177 while (!list_empty(&tmp_list)) {
2178 req = list_entry(tmp_list.next,
2179 struct ceph_mds_request, r_wait);
2180 list_del_init(&req->r_wait);
2181 dout(" wake request %p tid %llu\n", req, req->r_tid);
2182 __do_request(mdsc, req);
2183 }
2184 }
2185
2186 /*
2187 * Wake up threads with requests pending for @mds, so that they can
2188 * resubmit their requests to a possibly different mds.
2189 */
2190 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2191 {
2192 struct ceph_mds_request *req;
2193 struct rb_node *p = rb_first(&mdsc->request_tree);
2194
2195 dout("kick_requests mds%d\n", mds);
2196 while (p) {
2197 req = rb_entry(p, struct ceph_mds_request, r_node);
2198 p = rb_next(p);
2199 if (req->r_got_unsafe)
2200 continue;
2201 if (req->r_attempts > 0)
2202 continue; /* only new requests */
2203 if (req->r_session &&
2204 req->r_session->s_mds == mds) {
2205 dout(" kicking tid %llu\n", req->r_tid);
2206 list_del_init(&req->r_wait);
2207 __do_request(mdsc, req);
2208 }
2209 }
2210 }
2211
2212 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2213 struct ceph_mds_request *req)
2214 {
2215 dout("submit_request on %p\n", req);
2216 mutex_lock(&mdsc->mutex);
2217 __register_request(mdsc, req, NULL);
2218 __do_request(mdsc, req);
2219 mutex_unlock(&mdsc->mutex);
2220 }
2221
2222 /*
2223 * Synchrously perform an mds request. Take care of all of the
2224 * session setup, forwarding, retry details.
2225 */
2226 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2227 struct inode *dir,
2228 struct ceph_mds_request *req)
2229 {
2230 int err;
2231
2232 dout("do_request on %p\n", req);
2233
2234 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2235 if (req->r_inode)
2236 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2237 if (req->r_locked_dir)
2238 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2239 if (req->r_old_dentry_dir)
2240 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2241 CEPH_CAP_PIN);
2242
2243 /* issue */
2244 mutex_lock(&mdsc->mutex);
2245 __register_request(mdsc, req, dir);
2246 __do_request(mdsc, req);
2247
2248 if (req->r_err) {
2249 err = req->r_err;
2250 goto out;
2251 }
2252
2253 /* wait */
2254 mutex_unlock(&mdsc->mutex);
2255 dout("do_request waiting\n");
2256 if (!req->r_timeout && req->r_wait_for_completion) {
2257 err = req->r_wait_for_completion(mdsc, req);
2258 } else {
2259 long timeleft = wait_for_completion_killable_timeout(
2260 &req->r_completion,
2261 ceph_timeout_jiffies(req->r_timeout));
2262 if (timeleft > 0)
2263 err = 0;
2264 else if (!timeleft)
2265 err = -EIO; /* timed out */
2266 else
2267 err = timeleft; /* killed */
2268 }
2269 dout("do_request waited, got %d\n", err);
2270 mutex_lock(&mdsc->mutex);
2271
2272 /* only abort if we didn't race with a real reply */
2273 if (req->r_got_result) {
2274 err = le32_to_cpu(req->r_reply_info.head->result);
2275 } else if (err < 0) {
2276 dout("aborted request %lld with %d\n", req->r_tid, err);
2277
2278 /*
2279 * ensure we aren't running concurrently with
2280 * ceph_fill_trace or ceph_readdir_prepopulate, which
2281 * rely on locks (dir mutex) held by our caller.
2282 */
2283 mutex_lock(&req->r_fill_mutex);
2284 req->r_err = err;
2285 req->r_aborted = true;
2286 mutex_unlock(&req->r_fill_mutex);
2287
2288 if (req->r_locked_dir &&
2289 (req->r_op & CEPH_MDS_OP_WRITE))
2290 ceph_invalidate_dir_request(req);
2291 } else {
2292 err = req->r_err;
2293 }
2294
2295 out:
2296 mutex_unlock(&mdsc->mutex);
2297 dout("do_request %p done, result %d\n", req, err);
2298 return err;
2299 }
2300
2301 /*
2302 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2303 * namespace request.
2304 */
2305 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2306 {
2307 struct inode *inode = req->r_locked_dir;
2308
2309 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2310
2311 ceph_dir_clear_complete(inode);
2312 if (req->r_dentry)
2313 ceph_invalidate_dentry_lease(req->r_dentry);
2314 if (req->r_old_dentry)
2315 ceph_invalidate_dentry_lease(req->r_old_dentry);
2316 }
2317
2318 /*
2319 * Handle mds reply.
2320 *
2321 * We take the session mutex and parse and process the reply immediately.
2322 * This preserves the logical ordering of replies, capabilities, etc., sent
2323 * by the MDS as they are applied to our local cache.
2324 */
2325 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2326 {
2327 struct ceph_mds_client *mdsc = session->s_mdsc;
2328 struct ceph_mds_request *req;
2329 struct ceph_mds_reply_head *head = msg->front.iov_base;
2330 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2331 struct ceph_snap_realm *realm;
2332 u64 tid;
2333 int err, result;
2334 int mds = session->s_mds;
2335
2336 if (msg->front.iov_len < sizeof(*head)) {
2337 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2338 ceph_msg_dump(msg);
2339 return;
2340 }
2341
2342 /* get request, session */
2343 tid = le64_to_cpu(msg->hdr.tid);
2344 mutex_lock(&mdsc->mutex);
2345 req = lookup_get_request(mdsc, tid);
2346 if (!req) {
2347 dout("handle_reply on unknown tid %llu\n", tid);
2348 mutex_unlock(&mdsc->mutex);
2349 return;
2350 }
2351 dout("handle_reply %p\n", req);
2352
2353 /* correct session? */
2354 if (req->r_session != session) {
2355 pr_err("mdsc_handle_reply got %llu on session mds%d"
2356 " not mds%d\n", tid, session->s_mds,
2357 req->r_session ? req->r_session->s_mds : -1);
2358 mutex_unlock(&mdsc->mutex);
2359 goto out;
2360 }
2361
2362 /* dup? */
2363 if ((req->r_got_unsafe && !head->safe) ||
2364 (req->r_got_safe && head->safe)) {
2365 pr_warn("got a dup %s reply on %llu from mds%d\n",
2366 head->safe ? "safe" : "unsafe", tid, mds);
2367 mutex_unlock(&mdsc->mutex);
2368 goto out;
2369 }
2370 if (req->r_got_safe) {
2371 pr_warn("got unsafe after safe on %llu from mds%d\n",
2372 tid, mds);
2373 mutex_unlock(&mdsc->mutex);
2374 goto out;
2375 }
2376
2377 result = le32_to_cpu(head->result);
2378
2379 /*
2380 * Handle an ESTALE
2381 * if we're not talking to the authority, send to them
2382 * if the authority has changed while we weren't looking,
2383 * send to new authority
2384 * Otherwise we just have to return an ESTALE
2385 */
2386 if (result == -ESTALE) {
2387 dout("got ESTALE on request %llu", req->r_tid);
2388 req->r_resend_mds = -1;
2389 if (req->r_direct_mode != USE_AUTH_MDS) {
2390 dout("not using auth, setting for that now");
2391 req->r_direct_mode = USE_AUTH_MDS;
2392 __do_request(mdsc, req);
2393 mutex_unlock(&mdsc->mutex);
2394 goto out;
2395 } else {
2396 int mds = __choose_mds(mdsc, req);
2397 if (mds >= 0 && mds != req->r_session->s_mds) {
2398 dout("but auth changed, so resending");
2399 __do_request(mdsc, req);
2400 mutex_unlock(&mdsc->mutex);
2401 goto out;
2402 }
2403 }
2404 dout("have to return ESTALE on request %llu", req->r_tid);
2405 }
2406
2407
2408 if (head->safe) {
2409 req->r_got_safe = true;
2410 __unregister_request(mdsc, req);
2411
2412 if (req->r_got_unsafe) {
2413 /*
2414 * We already handled the unsafe response, now do the
2415 * cleanup. No need to examine the response; the MDS
2416 * doesn't include any result info in the safe
2417 * response. And even if it did, there is nothing
2418 * useful we could do with a revised return value.
2419 */
2420 dout("got safe reply %llu, mds%d\n", tid, mds);
2421 list_del_init(&req->r_unsafe_item);
2422
2423 /* last unsafe request during umount? */
2424 if (mdsc->stopping && !__get_oldest_req(mdsc))
2425 complete_all(&mdsc->safe_umount_waiters);
2426 mutex_unlock(&mdsc->mutex);
2427 goto out;
2428 }
2429 } else {
2430 req->r_got_unsafe = true;
2431 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2432 if (req->r_unsafe_dir) {
2433 struct ceph_inode_info *ci =
2434 ceph_inode(req->r_unsafe_dir);
2435 spin_lock(&ci->i_unsafe_lock);
2436 list_add_tail(&req->r_unsafe_dir_item,
2437 &ci->i_unsafe_dirops);
2438 spin_unlock(&ci->i_unsafe_lock);
2439 }
2440 }
2441
2442 dout("handle_reply tid %lld result %d\n", tid, result);
2443 rinfo = &req->r_reply_info;
2444 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2445 mutex_unlock(&mdsc->mutex);
2446
2447 mutex_lock(&session->s_mutex);
2448 if (err < 0) {
2449 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2450 ceph_msg_dump(msg);
2451 goto out_err;
2452 }
2453
2454 /* snap trace */
2455 realm = NULL;
2456 if (rinfo->snapblob_len) {
2457 down_write(&mdsc->snap_rwsem);
2458 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2459 rinfo->snapblob + rinfo->snapblob_len,
2460 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2461 &realm);
2462 downgrade_write(&mdsc->snap_rwsem);
2463 } else {
2464 down_read(&mdsc->snap_rwsem);
2465 }
2466
2467 /* insert trace into our cache */
2468 mutex_lock(&req->r_fill_mutex);
2469 current->journal_info = req;
2470 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2471 if (err == 0) {
2472 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2473 req->r_op == CEPH_MDS_OP_LSSNAP))
2474 ceph_readdir_prepopulate(req, req->r_session);
2475 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2476 }
2477 current->journal_info = NULL;
2478 mutex_unlock(&req->r_fill_mutex);
2479
2480 up_read(&mdsc->snap_rwsem);
2481 if (realm)
2482 ceph_put_snap_realm(mdsc, realm);
2483
2484 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2485 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2486 spin_lock(&ci->i_unsafe_lock);
2487 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2488 spin_unlock(&ci->i_unsafe_lock);
2489 }
2490 out_err:
2491 mutex_lock(&mdsc->mutex);
2492 if (!req->r_aborted) {
2493 if (err) {
2494 req->r_err = err;
2495 } else {
2496 req->r_reply = ceph_msg_get(msg);
2497 req->r_got_result = true;
2498 }
2499 } else {
2500 dout("reply arrived after request %lld was aborted\n", tid);
2501 }
2502 mutex_unlock(&mdsc->mutex);
2503
2504 mutex_unlock(&session->s_mutex);
2505
2506 /* kick calling process */
2507 complete_request(mdsc, req);
2508 out:
2509 ceph_mdsc_put_request(req);
2510 return;
2511 }
2512
2513
2514
2515 /*
2516 * handle mds notification that our request has been forwarded.
2517 */
2518 static void handle_forward(struct ceph_mds_client *mdsc,
2519 struct ceph_mds_session *session,
2520 struct ceph_msg *msg)
2521 {
2522 struct ceph_mds_request *req;
2523 u64 tid = le64_to_cpu(msg->hdr.tid);
2524 u32 next_mds;
2525 u32 fwd_seq;
2526 int err = -EINVAL;
2527 void *p = msg->front.iov_base;
2528 void *end = p + msg->front.iov_len;
2529
2530 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2531 next_mds = ceph_decode_32(&p);
2532 fwd_seq = ceph_decode_32(&p);
2533
2534 mutex_lock(&mdsc->mutex);
2535 req = lookup_get_request(mdsc, tid);
2536 if (!req) {
2537 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2538 goto out; /* dup reply? */
2539 }
2540
2541 if (req->r_aborted) {
2542 dout("forward tid %llu aborted, unregistering\n", tid);
2543 __unregister_request(mdsc, req);
2544 } else if (fwd_seq <= req->r_num_fwd) {
2545 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2546 tid, next_mds, req->r_num_fwd, fwd_seq);
2547 } else {
2548 /* resend. forward race not possible; mds would drop */
2549 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2550 BUG_ON(req->r_err);
2551 BUG_ON(req->r_got_result);
2552 req->r_attempts = 0;
2553 req->r_num_fwd = fwd_seq;
2554 req->r_resend_mds = next_mds;
2555 put_request_session(req);
2556 __do_request(mdsc, req);
2557 }
2558 ceph_mdsc_put_request(req);
2559 out:
2560 mutex_unlock(&mdsc->mutex);
2561 return;
2562
2563 bad:
2564 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2565 }
2566
2567 /*
2568 * handle a mds session control message
2569 */
2570 static void handle_session(struct ceph_mds_session *session,
2571 struct ceph_msg *msg)
2572 {
2573 struct ceph_mds_client *mdsc = session->s_mdsc;
2574 u32 op;
2575 u64 seq;
2576 int mds = session->s_mds;
2577 struct ceph_mds_session_head *h = msg->front.iov_base;
2578 int wake = 0;
2579
2580 /* decode */
2581 if (msg->front.iov_len != sizeof(*h))
2582 goto bad;
2583 op = le32_to_cpu(h->op);
2584 seq = le64_to_cpu(h->seq);
2585
2586 mutex_lock(&mdsc->mutex);
2587 if (op == CEPH_SESSION_CLOSE)
2588 __unregister_session(mdsc, session);
2589 /* FIXME: this ttl calculation is generous */
2590 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2591 mutex_unlock(&mdsc->mutex);
2592
2593 mutex_lock(&session->s_mutex);
2594
2595 dout("handle_session mds%d %s %p state %s seq %llu\n",
2596 mds, ceph_session_op_name(op), session,
2597 ceph_session_state_name(session->s_state), seq);
2598
2599 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2600 session->s_state = CEPH_MDS_SESSION_OPEN;
2601 pr_info("mds%d came back\n", session->s_mds);
2602 }
2603
2604 switch (op) {
2605 case CEPH_SESSION_OPEN:
2606 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2607 pr_info("mds%d reconnect success\n", session->s_mds);
2608 session->s_state = CEPH_MDS_SESSION_OPEN;
2609 renewed_caps(mdsc, session, 0);
2610 wake = 1;
2611 if (mdsc->stopping)
2612 __close_session(mdsc, session);
2613 break;
2614
2615 case CEPH_SESSION_RENEWCAPS:
2616 if (session->s_renew_seq == seq)
2617 renewed_caps(mdsc, session, 1);
2618 break;
2619
2620 case CEPH_SESSION_CLOSE:
2621 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2622 pr_info("mds%d reconnect denied\n", session->s_mds);
2623 cleanup_session_requests(mdsc, session);
2624 remove_session_caps(session);
2625 wake = 2; /* for good measure */
2626 wake_up_all(&mdsc->session_close_wq);
2627 break;
2628
2629 case CEPH_SESSION_STALE:
2630 pr_info("mds%d caps went stale, renewing\n",
2631 session->s_mds);
2632 spin_lock(&session->s_gen_ttl_lock);
2633 session->s_cap_gen++;
2634 session->s_cap_ttl = jiffies - 1;
2635 spin_unlock(&session->s_gen_ttl_lock);
2636 send_renew_caps(mdsc, session);
2637 break;
2638
2639 case CEPH_SESSION_RECALL_STATE:
2640 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2641 break;
2642
2643 case CEPH_SESSION_FLUSHMSG:
2644 send_flushmsg_ack(mdsc, session, seq);
2645 break;
2646
2647 case CEPH_SESSION_FORCE_RO:
2648 dout("force_session_readonly %p\n", session);
2649 spin_lock(&session->s_cap_lock);
2650 session->s_readonly = true;
2651 spin_unlock(&session->s_cap_lock);
2652 wake_up_session_caps(session, 0);
2653 break;
2654
2655 default:
2656 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2657 WARN_ON(1);
2658 }
2659
2660 mutex_unlock(&session->s_mutex);
2661 if (wake) {
2662 mutex_lock(&mdsc->mutex);
2663 __wake_requests(mdsc, &session->s_waiting);
2664 if (wake == 2)
2665 kick_requests(mdsc, mds);
2666 mutex_unlock(&mdsc->mutex);
2667 }
2668 return;
2669
2670 bad:
2671 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2672 (int)msg->front.iov_len);
2673 ceph_msg_dump(msg);
2674 return;
2675 }
2676
2677
2678 /*
2679 * called under session->mutex.
2680 */
2681 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2682 struct ceph_mds_session *session)
2683 {
2684 struct ceph_mds_request *req, *nreq;
2685 struct rb_node *p;
2686 int err;
2687
2688 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2689
2690 mutex_lock(&mdsc->mutex);
2691 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2692 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2693 if (!err) {
2694 ceph_msg_get(req->r_request);
2695 ceph_con_send(&session->s_con, req->r_request);
2696 }
2697 }
2698
2699 /*
2700 * also re-send old requests when MDS enters reconnect stage. So that MDS
2701 * can process completed request in clientreplay stage.
2702 */
2703 p = rb_first(&mdsc->request_tree);
2704 while (p) {
2705 req = rb_entry(p, struct ceph_mds_request, r_node);
2706 p = rb_next(p);
2707 if (req->r_got_unsafe)
2708 continue;
2709 if (req->r_attempts == 0)
2710 continue; /* only old requests */
2711 if (req->r_session &&
2712 req->r_session->s_mds == session->s_mds) {
2713 err = __prepare_send_request(mdsc, req,
2714 session->s_mds, true);
2715 if (!err) {
2716 ceph_msg_get(req->r_request);
2717 ceph_con_send(&session->s_con, req->r_request);
2718 }
2719 }
2720 }
2721 mutex_unlock(&mdsc->mutex);
2722 }
2723
2724 /*
2725 * Encode information about a cap for a reconnect with the MDS.
2726 */
2727 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2728 void *arg)
2729 {
2730 union {
2731 struct ceph_mds_cap_reconnect v2;
2732 struct ceph_mds_cap_reconnect_v1 v1;
2733 } rec;
2734 struct ceph_inode_info *ci;
2735 struct ceph_reconnect_state *recon_state = arg;
2736 struct ceph_pagelist *pagelist = recon_state->pagelist;
2737 char *path;
2738 int pathlen, err;
2739 u64 pathbase;
2740 u64 snap_follows;
2741 struct dentry *dentry;
2742
2743 ci = cap->ci;
2744
2745 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2746 inode, ceph_vinop(inode), cap, cap->cap_id,
2747 ceph_cap_string(cap->issued));
2748 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2749 if (err)
2750 return err;
2751
2752 dentry = d_find_alias(inode);
2753 if (dentry) {
2754 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2755 if (IS_ERR(path)) {
2756 err = PTR_ERR(path);
2757 goto out_dput;
2758 }
2759 } else {
2760 path = NULL;
2761 pathlen = 0;
2762 pathbase = 0;
2763 }
2764
2765 spin_lock(&ci->i_ceph_lock);
2766 cap->seq = 0; /* reset cap seq */
2767 cap->issue_seq = 0; /* and issue_seq */
2768 cap->mseq = 0; /* and migrate_seq */
2769 cap->cap_gen = cap->session->s_cap_gen;
2770
2771 if (recon_state->msg_version >= 2) {
2772 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2773 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2774 rec.v2.issued = cpu_to_le32(cap->issued);
2775 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2776 rec.v2.pathbase = cpu_to_le64(pathbase);
2777 rec.v2.flock_len = 0;
2778 } else {
2779 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2780 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2781 rec.v1.issued = cpu_to_le32(cap->issued);
2782 rec.v1.size = cpu_to_le64(inode->i_size);
2783 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2784 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2785 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2786 rec.v1.pathbase = cpu_to_le64(pathbase);
2787 }
2788
2789 if (list_empty(&ci->i_cap_snaps)) {
2790 snap_follows = 0;
2791 } else {
2792 struct ceph_cap_snap *capsnap =
2793 list_first_entry(&ci->i_cap_snaps,
2794 struct ceph_cap_snap, ci_item);
2795 snap_follows = capsnap->follows;
2796 }
2797 spin_unlock(&ci->i_ceph_lock);
2798
2799 if (recon_state->msg_version >= 2) {
2800 int num_fcntl_locks, num_flock_locks;
2801 struct ceph_filelock *flocks;
2802 size_t struct_len, total_len = 0;
2803 u8 struct_v = 0;
2804
2805 encode_again:
2806 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2807 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2808 sizeof(struct ceph_filelock), GFP_NOFS);
2809 if (!flocks) {
2810 err = -ENOMEM;
2811 goto out_free;
2812 }
2813 err = ceph_encode_locks_to_buffer(inode, flocks,
2814 num_fcntl_locks,
2815 num_flock_locks);
2816 if (err) {
2817 kfree(flocks);
2818 if (err == -ENOSPC)
2819 goto encode_again;
2820 goto out_free;
2821 }
2822
2823 if (recon_state->msg_version >= 3) {
2824 /* version, compat_version and struct_len */
2825 total_len = 2 * sizeof(u8) + sizeof(u32);
2826 struct_v = 2;
2827 }
2828 /*
2829 * number of encoded locks is stable, so copy to pagelist
2830 */
2831 struct_len = 2 * sizeof(u32) +
2832 (num_fcntl_locks + num_flock_locks) *
2833 sizeof(struct ceph_filelock);
2834 rec.v2.flock_len = cpu_to_le32(struct_len);
2835
2836 struct_len += sizeof(rec.v2);
2837 struct_len += sizeof(u32) + pathlen;
2838
2839 if (struct_v >= 2)
2840 struct_len += sizeof(u64); /* snap_follows */
2841
2842 total_len += struct_len;
2843 err = ceph_pagelist_reserve(pagelist, total_len);
2844
2845 if (!err) {
2846 if (recon_state->msg_version >= 3) {
2847 ceph_pagelist_encode_8(pagelist, struct_v);
2848 ceph_pagelist_encode_8(pagelist, 1);
2849 ceph_pagelist_encode_32(pagelist, struct_len);
2850 }
2851 ceph_pagelist_encode_string(pagelist, path, pathlen);
2852 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
2853 ceph_locks_to_pagelist(flocks, pagelist,
2854 num_fcntl_locks,
2855 num_flock_locks);
2856 if (struct_v >= 2)
2857 ceph_pagelist_encode_64(pagelist, snap_follows);
2858 }
2859 kfree(flocks);
2860 } else {
2861 size_t size = sizeof(u32) + pathlen + sizeof(rec.v1);
2862 err = ceph_pagelist_reserve(pagelist, size);
2863 if (!err) {
2864 ceph_pagelist_encode_string(pagelist, path, pathlen);
2865 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
2866 }
2867 }
2868
2869 recon_state->nr_caps++;
2870 out_free:
2871 kfree(path);
2872 out_dput:
2873 dput(dentry);
2874 return err;
2875 }
2876
2877
2878 /*
2879 * If an MDS fails and recovers, clients need to reconnect in order to
2880 * reestablish shared state. This includes all caps issued through
2881 * this session _and_ the snap_realm hierarchy. Because it's not
2882 * clear which snap realms the mds cares about, we send everything we
2883 * know about.. that ensures we'll then get any new info the
2884 * recovering MDS might have.
2885 *
2886 * This is a relatively heavyweight operation, but it's rare.
2887 *
2888 * called with mdsc->mutex held.
2889 */
2890 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2891 struct ceph_mds_session *session)
2892 {
2893 struct ceph_msg *reply;
2894 struct rb_node *p;
2895 int mds = session->s_mds;
2896 int err = -ENOMEM;
2897 int s_nr_caps;
2898 struct ceph_pagelist *pagelist;
2899 struct ceph_reconnect_state recon_state;
2900
2901 pr_info("mds%d reconnect start\n", mds);
2902
2903 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2904 if (!pagelist)
2905 goto fail_nopagelist;
2906 ceph_pagelist_init(pagelist);
2907
2908 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2909 if (!reply)
2910 goto fail_nomsg;
2911
2912 mutex_lock(&session->s_mutex);
2913 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2914 session->s_seq = 0;
2915
2916 dout("session %p state %s\n", session,
2917 ceph_session_state_name(session->s_state));
2918
2919 spin_lock(&session->s_gen_ttl_lock);
2920 session->s_cap_gen++;
2921 spin_unlock(&session->s_gen_ttl_lock);
2922
2923 spin_lock(&session->s_cap_lock);
2924 /* don't know if session is readonly */
2925 session->s_readonly = 0;
2926 /*
2927 * notify __ceph_remove_cap() that we are composing cap reconnect.
2928 * If a cap get released before being added to the cap reconnect,
2929 * __ceph_remove_cap() should skip queuing cap release.
2930 */
2931 session->s_cap_reconnect = 1;
2932 /* drop old cap expires; we're about to reestablish that state */
2933 cleanup_cap_releases(mdsc, session);
2934
2935 /* trim unused caps to reduce MDS's cache rejoin time */
2936 if (mdsc->fsc->sb->s_root)
2937 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2938
2939 ceph_con_close(&session->s_con);
2940 ceph_con_open(&session->s_con,
2941 CEPH_ENTITY_TYPE_MDS, mds,
2942 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2943
2944 /* replay unsafe requests */
2945 replay_unsafe_requests(mdsc, session);
2946
2947 down_read(&mdsc->snap_rwsem);
2948
2949 /* traverse this session's caps */
2950 s_nr_caps = session->s_nr_caps;
2951 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2952 if (err)
2953 goto fail;
2954
2955 recon_state.nr_caps = 0;
2956 recon_state.pagelist = pagelist;
2957 if (session->s_con.peer_features & CEPH_FEATURE_MDSENC)
2958 recon_state.msg_version = 3;
2959 else if (session->s_con.peer_features & CEPH_FEATURE_FLOCK)
2960 recon_state.msg_version = 2;
2961 else
2962 recon_state.msg_version = 1;
2963 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2964 if (err < 0)
2965 goto fail;
2966
2967 spin_lock(&session->s_cap_lock);
2968 session->s_cap_reconnect = 0;
2969 spin_unlock(&session->s_cap_lock);
2970
2971 /*
2972 * snaprealms. we provide mds with the ino, seq (version), and
2973 * parent for all of our realms. If the mds has any newer info,
2974 * it will tell us.
2975 */
2976 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2977 struct ceph_snap_realm *realm =
2978 rb_entry(p, struct ceph_snap_realm, node);
2979 struct ceph_mds_snaprealm_reconnect sr_rec;
2980
2981 dout(" adding snap realm %llx seq %lld parent %llx\n",
2982 realm->ino, realm->seq, realm->parent_ino);
2983 sr_rec.ino = cpu_to_le64(realm->ino);
2984 sr_rec.seq = cpu_to_le64(realm->seq);
2985 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2986 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2987 if (err)
2988 goto fail;
2989 }
2990
2991 reply->hdr.version = cpu_to_le16(recon_state.msg_version);
2992
2993 /* raced with cap release? */
2994 if (s_nr_caps != recon_state.nr_caps) {
2995 struct page *page = list_first_entry(&pagelist->head,
2996 struct page, lru);
2997 __le32 *addr = kmap_atomic(page);
2998 *addr = cpu_to_le32(recon_state.nr_caps);
2999 kunmap_atomic(addr);
3000 }
3001
3002 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3003 ceph_msg_data_add_pagelist(reply, pagelist);
3004
3005 ceph_early_kick_flushing_caps(mdsc, session);
3006
3007 ceph_con_send(&session->s_con, reply);
3008
3009 mutex_unlock(&session->s_mutex);
3010
3011 mutex_lock(&mdsc->mutex);
3012 __wake_requests(mdsc, &session->s_waiting);
3013 mutex_unlock(&mdsc->mutex);
3014
3015 up_read(&mdsc->snap_rwsem);
3016 return;
3017
3018 fail:
3019 ceph_msg_put(reply);
3020 up_read(&mdsc->snap_rwsem);
3021 mutex_unlock(&session->s_mutex);
3022 fail_nomsg:
3023 ceph_pagelist_release(pagelist);
3024 fail_nopagelist:
3025 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3026 return;
3027 }
3028
3029
3030 /*
3031 * compare old and new mdsmaps, kicking requests
3032 * and closing out old connections as necessary
3033 *
3034 * called under mdsc->mutex.
3035 */
3036 static void check_new_map(struct ceph_mds_client *mdsc,
3037 struct ceph_mdsmap *newmap,
3038 struct ceph_mdsmap *oldmap)
3039 {
3040 int i;
3041 int oldstate, newstate;
3042 struct ceph_mds_session *s;
3043
3044 dout("check_new_map new %u old %u\n",
3045 newmap->m_epoch, oldmap->m_epoch);
3046
3047 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3048 if (mdsc->sessions[i] == NULL)
3049 continue;
3050 s = mdsc->sessions[i];
3051 oldstate = ceph_mdsmap_get_state(oldmap, i);
3052 newstate = ceph_mdsmap_get_state(newmap, i);
3053
3054 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3055 i, ceph_mds_state_name(oldstate),
3056 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3057 ceph_mds_state_name(newstate),
3058 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3059 ceph_session_state_name(s->s_state));
3060
3061 if (i >= newmap->m_max_mds ||
3062 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3063 ceph_mdsmap_get_addr(newmap, i),
3064 sizeof(struct ceph_entity_addr))) {
3065 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3066 /* the session never opened, just close it
3067 * out now */
3068 __wake_requests(mdsc, &s->s_waiting);
3069 __unregister_session(mdsc, s);
3070 } else {
3071 /* just close it */
3072 mutex_unlock(&mdsc->mutex);
3073 mutex_lock(&s->s_mutex);
3074 mutex_lock(&mdsc->mutex);
3075 ceph_con_close(&s->s_con);
3076 mutex_unlock(&s->s_mutex);
3077 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3078 }
3079 } else if (oldstate == newstate) {
3080 continue; /* nothing new with this mds */
3081 }
3082
3083 /*
3084 * send reconnect?
3085 */
3086 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3087 newstate >= CEPH_MDS_STATE_RECONNECT) {
3088 mutex_unlock(&mdsc->mutex);
3089 send_mds_reconnect(mdsc, s);
3090 mutex_lock(&mdsc->mutex);
3091 }
3092
3093 /*
3094 * kick request on any mds that has gone active.
3095 */
3096 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3097 newstate >= CEPH_MDS_STATE_ACTIVE) {
3098 if (oldstate != CEPH_MDS_STATE_CREATING &&
3099 oldstate != CEPH_MDS_STATE_STARTING)
3100 pr_info("mds%d recovery completed\n", s->s_mds);
3101 kick_requests(mdsc, i);
3102 ceph_kick_flushing_caps(mdsc, s);
3103 wake_up_session_caps(s, 1);
3104 }
3105 }
3106
3107 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3108 s = mdsc->sessions[i];
3109 if (!s)
3110 continue;
3111 if (!ceph_mdsmap_is_laggy(newmap, i))
3112 continue;
3113 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3114 s->s_state == CEPH_MDS_SESSION_HUNG ||
3115 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3116 dout(" connecting to export targets of laggy mds%d\n",
3117 i);
3118 __open_export_target_sessions(mdsc, s);
3119 }
3120 }
3121 }
3122
3123
3124
3125 /*
3126 * leases
3127 */
3128
3129 /*
3130 * caller must hold session s_mutex, dentry->d_lock
3131 */
3132 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3133 {
3134 struct ceph_dentry_info *di = ceph_dentry(dentry);
3135
3136 ceph_put_mds_session(di->lease_session);
3137 di->lease_session = NULL;
3138 }
3139
3140 static void handle_lease(struct ceph_mds_client *mdsc,
3141 struct ceph_mds_session *session,
3142 struct ceph_msg *msg)
3143 {
3144 struct super_block *sb = mdsc->fsc->sb;
3145 struct inode *inode;
3146 struct dentry *parent, *dentry;
3147 struct ceph_dentry_info *di;
3148 int mds = session->s_mds;
3149 struct ceph_mds_lease *h = msg->front.iov_base;
3150 u32 seq;
3151 struct ceph_vino vino;
3152 struct qstr dname;
3153 int release = 0;
3154
3155 dout("handle_lease from mds%d\n", mds);
3156
3157 /* decode */
3158 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3159 goto bad;
3160 vino.ino = le64_to_cpu(h->ino);
3161 vino.snap = CEPH_NOSNAP;
3162 seq = le32_to_cpu(h->seq);
3163 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3164 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3165 if (dname.len != get_unaligned_le32(h+1))
3166 goto bad;
3167
3168 /* lookup inode */
3169 inode = ceph_find_inode(sb, vino);
3170 dout("handle_lease %s, ino %llx %p %.*s\n",
3171 ceph_lease_op_name(h->action), vino.ino, inode,
3172 dname.len, dname.name);
3173
3174 mutex_lock(&session->s_mutex);
3175 session->s_seq++;
3176
3177 if (inode == NULL) {
3178 dout("handle_lease no inode %llx\n", vino.ino);
3179 goto release;
3180 }
3181
3182 /* dentry */
3183 parent = d_find_alias(inode);
3184 if (!parent) {
3185 dout("no parent dentry on inode %p\n", inode);
3186 WARN_ON(1);
3187 goto release; /* hrm... */
3188 }
3189 dname.hash = full_name_hash(parent, dname.name, dname.len);
3190 dentry = d_lookup(parent, &dname);
3191 dput(parent);
3192 if (!dentry)
3193 goto release;
3194
3195 spin_lock(&dentry->d_lock);
3196 di = ceph_dentry(dentry);
3197 switch (h->action) {
3198 case CEPH_MDS_LEASE_REVOKE:
3199 if (di->lease_session == session) {
3200 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3201 h->seq = cpu_to_le32(di->lease_seq);
3202 __ceph_mdsc_drop_dentry_lease(dentry);
3203 }
3204 release = 1;
3205 break;
3206
3207 case CEPH_MDS_LEASE_RENEW:
3208 if (di->lease_session == session &&
3209 di->lease_gen == session->s_cap_gen &&
3210 di->lease_renew_from &&
3211 di->lease_renew_after == 0) {
3212 unsigned long duration =
3213 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3214
3215 di->lease_seq = seq;
3216 di->time = di->lease_renew_from + duration;
3217 di->lease_renew_after = di->lease_renew_from +
3218 (duration >> 1);
3219 di->lease_renew_from = 0;
3220 }
3221 break;
3222 }
3223 spin_unlock(&dentry->d_lock);
3224 dput(dentry);
3225
3226 if (!release)
3227 goto out;
3228
3229 release:
3230 /* let's just reuse the same message */
3231 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3232 ceph_msg_get(msg);
3233 ceph_con_send(&session->s_con, msg);
3234
3235 out:
3236 iput(inode);
3237 mutex_unlock(&session->s_mutex);
3238 return;
3239
3240 bad:
3241 pr_err("corrupt lease message\n");
3242 ceph_msg_dump(msg);
3243 }
3244
3245 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3246 struct inode *inode,
3247 struct dentry *dentry, char action,
3248 u32 seq)
3249 {
3250 struct ceph_msg *msg;
3251 struct ceph_mds_lease *lease;
3252 int len = sizeof(*lease) + sizeof(u32);
3253 int dnamelen = 0;
3254
3255 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3256 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3257 dnamelen = dentry->d_name.len;
3258 len += dnamelen;
3259
3260 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3261 if (!msg)
3262 return;
3263 lease = msg->front.iov_base;
3264 lease->action = action;
3265 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3266 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3267 lease->seq = cpu_to_le32(seq);
3268 put_unaligned_le32(dnamelen, lease + 1);
3269 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3270
3271 /*
3272 * if this is a preemptive lease RELEASE, no need to
3273 * flush request stream, since the actual request will
3274 * soon follow.
3275 */
3276 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3277
3278 ceph_con_send(&session->s_con, msg);
3279 }
3280
3281 /*
3282 * drop all leases (and dentry refs) in preparation for umount
3283 */
3284 static void drop_leases(struct ceph_mds_client *mdsc)
3285 {
3286 int i;
3287
3288 dout("drop_leases\n");
3289 mutex_lock(&mdsc->mutex);
3290 for (i = 0; i < mdsc->max_sessions; i++) {
3291 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3292 if (!s)
3293 continue;
3294 mutex_unlock(&mdsc->mutex);
3295 mutex_lock(&s->s_mutex);
3296 mutex_unlock(&s->s_mutex);
3297 ceph_put_mds_session(s);
3298 mutex_lock(&mdsc->mutex);
3299 }
3300 mutex_unlock(&mdsc->mutex);
3301 }
3302
3303
3304
3305 /*
3306 * delayed work -- periodically trim expired leases, renew caps with mds
3307 */
3308 static void schedule_delayed(struct ceph_mds_client *mdsc)
3309 {
3310 int delay = 5;
3311 unsigned hz = round_jiffies_relative(HZ * delay);
3312 schedule_delayed_work(&mdsc->delayed_work, hz);
3313 }
3314
3315 static void delayed_work(struct work_struct *work)
3316 {
3317 int i;
3318 struct ceph_mds_client *mdsc =
3319 container_of(work, struct ceph_mds_client, delayed_work.work);
3320 int renew_interval;
3321 int renew_caps;
3322
3323 dout("mdsc delayed_work\n");
3324 ceph_check_delayed_caps(mdsc);
3325
3326 mutex_lock(&mdsc->mutex);
3327 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3328 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3329 mdsc->last_renew_caps);
3330 if (renew_caps)
3331 mdsc->last_renew_caps = jiffies;
3332
3333 for (i = 0; i < mdsc->max_sessions; i++) {
3334 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3335 if (s == NULL)
3336 continue;
3337 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3338 dout("resending session close request for mds%d\n",
3339 s->s_mds);
3340 request_close_session(mdsc, s);
3341 ceph_put_mds_session(s);
3342 continue;
3343 }
3344 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3345 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3346 s->s_state = CEPH_MDS_SESSION_HUNG;
3347 pr_info("mds%d hung\n", s->s_mds);
3348 }
3349 }
3350 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3351 /* this mds is failed or recovering, just wait */
3352 ceph_put_mds_session(s);
3353 continue;
3354 }
3355 mutex_unlock(&mdsc->mutex);
3356
3357 mutex_lock(&s->s_mutex);
3358 if (renew_caps)
3359 send_renew_caps(mdsc, s);
3360 else
3361 ceph_con_keepalive(&s->s_con);
3362 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3363 s->s_state == CEPH_MDS_SESSION_HUNG)
3364 ceph_send_cap_releases(mdsc, s);
3365 mutex_unlock(&s->s_mutex);
3366 ceph_put_mds_session(s);
3367
3368 mutex_lock(&mdsc->mutex);
3369 }
3370 mutex_unlock(&mdsc->mutex);
3371
3372 schedule_delayed(mdsc);
3373 }
3374
3375 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3376
3377 {
3378 struct ceph_mds_client *mdsc;
3379
3380 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3381 if (!mdsc)
3382 return -ENOMEM;
3383 mdsc->fsc = fsc;
3384 fsc->mdsc = mdsc;
3385 mutex_init(&mdsc->mutex);
3386 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3387 if (mdsc->mdsmap == NULL) {
3388 kfree(mdsc);
3389 return -ENOMEM;
3390 }
3391
3392 init_completion(&mdsc->safe_umount_waiters);
3393 init_waitqueue_head(&mdsc->session_close_wq);
3394 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3395 mdsc->sessions = NULL;
3396 atomic_set(&mdsc->num_sessions, 0);
3397 mdsc->max_sessions = 0;
3398 mdsc->stopping = 0;
3399 mdsc->last_snap_seq = 0;
3400 init_rwsem(&mdsc->snap_rwsem);
3401 mdsc->snap_realms = RB_ROOT;
3402 INIT_LIST_HEAD(&mdsc->snap_empty);
3403 spin_lock_init(&mdsc->snap_empty_lock);
3404 mdsc->last_tid = 0;
3405 mdsc->oldest_tid = 0;
3406 mdsc->request_tree = RB_ROOT;
3407 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3408 mdsc->last_renew_caps = jiffies;
3409 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3410 spin_lock_init(&mdsc->cap_delay_lock);
3411 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3412 spin_lock_init(&mdsc->snap_flush_lock);
3413 mdsc->last_cap_flush_tid = 1;
3414 INIT_LIST_HEAD(&mdsc->cap_flush_list);
3415 INIT_LIST_HEAD(&mdsc->cap_dirty);
3416 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3417 mdsc->num_cap_flushing = 0;
3418 spin_lock_init(&mdsc->cap_dirty_lock);
3419 init_waitqueue_head(&mdsc->cap_flushing_wq);
3420 spin_lock_init(&mdsc->dentry_lru_lock);
3421 INIT_LIST_HEAD(&mdsc->dentry_lru);
3422
3423 ceph_caps_init(mdsc);
3424 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3425
3426 init_rwsem(&mdsc->pool_perm_rwsem);
3427 mdsc->pool_perm_tree = RB_ROOT;
3428
3429 return 0;
3430 }
3431
3432 /*
3433 * Wait for safe replies on open mds requests. If we time out, drop
3434 * all requests from the tree to avoid dangling dentry refs.
3435 */
3436 static void wait_requests(struct ceph_mds_client *mdsc)
3437 {
3438 struct ceph_options *opts = mdsc->fsc->client->options;
3439 struct ceph_mds_request *req;
3440
3441 mutex_lock(&mdsc->mutex);
3442 if (__get_oldest_req(mdsc)) {
3443 mutex_unlock(&mdsc->mutex);
3444
3445 dout("wait_requests waiting for requests\n");
3446 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3447 ceph_timeout_jiffies(opts->mount_timeout));
3448
3449 /* tear down remaining requests */
3450 mutex_lock(&mdsc->mutex);
3451 while ((req = __get_oldest_req(mdsc))) {
3452 dout("wait_requests timed out on tid %llu\n",
3453 req->r_tid);
3454 __unregister_request(mdsc, req);
3455 }
3456 }
3457 mutex_unlock(&mdsc->mutex);
3458 dout("wait_requests done\n");
3459 }
3460
3461 /*
3462 * called before mount is ro, and before dentries are torn down.
3463 * (hmm, does this still race with new lookups?)
3464 */
3465 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3466 {
3467 dout("pre_umount\n");
3468 mdsc->stopping = 1;
3469
3470 drop_leases(mdsc);
3471 ceph_flush_dirty_caps(mdsc);
3472 wait_requests(mdsc);
3473
3474 /*
3475 * wait for reply handlers to drop their request refs and
3476 * their inode/dcache refs
3477 */
3478 ceph_msgr_flush();
3479 }
3480
3481 /*
3482 * wait for all write mds requests to flush.
3483 */
3484 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3485 {
3486 struct ceph_mds_request *req = NULL, *nextreq;
3487 struct rb_node *n;
3488
3489 mutex_lock(&mdsc->mutex);
3490 dout("wait_unsafe_requests want %lld\n", want_tid);
3491 restart:
3492 req = __get_oldest_req(mdsc);
3493 while (req && req->r_tid <= want_tid) {
3494 /* find next request */
3495 n = rb_next(&req->r_node);
3496 if (n)
3497 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3498 else
3499 nextreq = NULL;
3500 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3501 (req->r_op & CEPH_MDS_OP_WRITE)) {
3502 /* write op */
3503 ceph_mdsc_get_request(req);
3504 if (nextreq)
3505 ceph_mdsc_get_request(nextreq);
3506 mutex_unlock(&mdsc->mutex);
3507 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3508 req->r_tid, want_tid);
3509 wait_for_completion(&req->r_safe_completion);
3510 mutex_lock(&mdsc->mutex);
3511 ceph_mdsc_put_request(req);
3512 if (!nextreq)
3513 break; /* next dne before, so we're done! */
3514 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3515 /* next request was removed from tree */
3516 ceph_mdsc_put_request(nextreq);
3517 goto restart;
3518 }
3519 ceph_mdsc_put_request(nextreq); /* won't go away */
3520 }
3521 req = nextreq;
3522 }
3523 mutex_unlock(&mdsc->mutex);
3524 dout("wait_unsafe_requests done\n");
3525 }
3526
3527 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3528 {
3529 u64 want_tid, want_flush;
3530
3531 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3532 return;
3533
3534 dout("sync\n");
3535 mutex_lock(&mdsc->mutex);
3536 want_tid = mdsc->last_tid;
3537 mutex_unlock(&mdsc->mutex);
3538
3539 ceph_flush_dirty_caps(mdsc);
3540 spin_lock(&mdsc->cap_dirty_lock);
3541 want_flush = mdsc->last_cap_flush_tid;
3542 if (!list_empty(&mdsc->cap_flush_list)) {
3543 struct ceph_cap_flush *cf =
3544 list_last_entry(&mdsc->cap_flush_list,
3545 struct ceph_cap_flush, g_list);
3546 cf->wake = true;
3547 }
3548 spin_unlock(&mdsc->cap_dirty_lock);
3549
3550 dout("sync want tid %lld flush_seq %lld\n",
3551 want_tid, want_flush);
3552
3553 wait_unsafe_requests(mdsc, want_tid);
3554 wait_caps_flush(mdsc, want_flush);
3555 }
3556
3557 /*
3558 * true if all sessions are closed, or we force unmount
3559 */
3560 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3561 {
3562 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3563 return true;
3564 return atomic_read(&mdsc->num_sessions) == 0;
3565 }
3566
3567 /*
3568 * called after sb is ro.
3569 */
3570 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3571 {
3572 struct ceph_options *opts = mdsc->fsc->client->options;
3573 struct ceph_mds_session *session;
3574 int i;
3575
3576 dout("close_sessions\n");
3577
3578 /* close sessions */
3579 mutex_lock(&mdsc->mutex);
3580 for (i = 0; i < mdsc->max_sessions; i++) {
3581 session = __ceph_lookup_mds_session(mdsc, i);
3582 if (!session)
3583 continue;
3584 mutex_unlock(&mdsc->mutex);
3585 mutex_lock(&session->s_mutex);
3586 __close_session(mdsc, session);
3587 mutex_unlock(&session->s_mutex);
3588 ceph_put_mds_session(session);
3589 mutex_lock(&mdsc->mutex);
3590 }
3591 mutex_unlock(&mdsc->mutex);
3592
3593 dout("waiting for sessions to close\n");
3594 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3595 ceph_timeout_jiffies(opts->mount_timeout));
3596
3597 /* tear down remaining sessions */
3598 mutex_lock(&mdsc->mutex);
3599 for (i = 0; i < mdsc->max_sessions; i++) {
3600 if (mdsc->sessions[i]) {
3601 session = get_session(mdsc->sessions[i]);
3602 __unregister_session(mdsc, session);
3603 mutex_unlock(&mdsc->mutex);
3604 mutex_lock(&session->s_mutex);
3605 remove_session_caps(session);
3606 mutex_unlock(&session->s_mutex);
3607 ceph_put_mds_session(session);
3608 mutex_lock(&mdsc->mutex);
3609 }
3610 }
3611 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3612 mutex_unlock(&mdsc->mutex);
3613
3614 ceph_cleanup_empty_realms(mdsc);
3615
3616 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3617
3618 dout("stopped\n");
3619 }
3620
3621 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3622 {
3623 struct ceph_mds_session *session;
3624 int mds;
3625
3626 dout("force umount\n");
3627
3628 mutex_lock(&mdsc->mutex);
3629 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3630 session = __ceph_lookup_mds_session(mdsc, mds);
3631 if (!session)
3632 continue;
3633 mutex_unlock(&mdsc->mutex);
3634 mutex_lock(&session->s_mutex);
3635 __close_session(mdsc, session);
3636 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3637 cleanup_session_requests(mdsc, session);
3638 remove_session_caps(session);
3639 }
3640 mutex_unlock(&session->s_mutex);
3641 ceph_put_mds_session(session);
3642 mutex_lock(&mdsc->mutex);
3643 kick_requests(mdsc, mds);
3644 }
3645 __wake_requests(mdsc, &mdsc->waiting_for_map);
3646 mutex_unlock(&mdsc->mutex);
3647 }
3648
3649 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3650 {
3651 dout("stop\n");
3652 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3653 if (mdsc->mdsmap)
3654 ceph_mdsmap_destroy(mdsc->mdsmap);
3655 kfree(mdsc->sessions);
3656 ceph_caps_finalize(mdsc);
3657 ceph_pool_perm_destroy(mdsc);
3658 }
3659
3660 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3661 {
3662 struct ceph_mds_client *mdsc = fsc->mdsc;
3663
3664 dout("mdsc_destroy %p\n", mdsc);
3665 ceph_mdsc_stop(mdsc);
3666
3667 /* flush out any connection work with references to us */
3668 ceph_msgr_flush();
3669
3670 fsc->mdsc = NULL;
3671 kfree(mdsc);
3672 dout("mdsc_destroy %p done\n", mdsc);
3673 }
3674
3675 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3676 {
3677 struct ceph_fs_client *fsc = mdsc->fsc;
3678 const char *mds_namespace = fsc->mount_options->mds_namespace;
3679 void *p = msg->front.iov_base;
3680 void *end = p + msg->front.iov_len;
3681 u32 epoch;
3682 u32 map_len;
3683 u32 num_fs;
3684 u32 mount_fscid = (u32)-1;
3685 u8 struct_v, struct_cv;
3686 int err = -EINVAL;
3687
3688 ceph_decode_need(&p, end, sizeof(u32), bad);
3689 epoch = ceph_decode_32(&p);
3690
3691 dout("handle_fsmap epoch %u\n", epoch);
3692
3693 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3694 struct_v = ceph_decode_8(&p);
3695 struct_cv = ceph_decode_8(&p);
3696 map_len = ceph_decode_32(&p);
3697
3698 ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3699 p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3700
3701 num_fs = ceph_decode_32(&p);
3702 while (num_fs-- > 0) {
3703 void *info_p, *info_end;
3704 u32 info_len;
3705 u8 info_v, info_cv;
3706 u32 fscid, namelen;
3707
3708 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3709 info_v = ceph_decode_8(&p);
3710 info_cv = ceph_decode_8(&p);
3711 info_len = ceph_decode_32(&p);
3712 ceph_decode_need(&p, end, info_len, bad);
3713 info_p = p;
3714 info_end = p + info_len;
3715 p = info_end;
3716
3717 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3718 fscid = ceph_decode_32(&info_p);
3719 namelen = ceph_decode_32(&info_p);
3720 ceph_decode_need(&info_p, info_end, namelen, bad);
3721
3722 if (mds_namespace &&
3723 strlen(mds_namespace) == namelen &&
3724 !strncmp(mds_namespace, (char *)info_p, namelen)) {
3725 mount_fscid = fscid;
3726 break;
3727 }
3728 }
3729
3730 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3731 if (mount_fscid != (u32)-1) {
3732 fsc->client->monc.fs_cluster_id = mount_fscid;
3733 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3734 0, true);
3735 ceph_monc_renew_subs(&fsc->client->monc);
3736 } else {
3737 err = -ENOENT;
3738 goto err_out;
3739 }
3740 return;
3741 bad:
3742 pr_err("error decoding fsmap\n");
3743 err_out:
3744 mutex_lock(&mdsc->mutex);
3745 mdsc->mdsmap_err = -ENOENT;
3746 __wake_requests(mdsc, &mdsc->waiting_for_map);
3747 mutex_unlock(&mdsc->mutex);
3748 return;
3749 }
3750
3751 /*
3752 * handle mds map update.
3753 */
3754 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3755 {
3756 u32 epoch;
3757 u32 maplen;
3758 void *p = msg->front.iov_base;
3759 void *end = p + msg->front.iov_len;
3760 struct ceph_mdsmap *newmap, *oldmap;
3761 struct ceph_fsid fsid;
3762 int err = -EINVAL;
3763
3764 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3765 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3766 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3767 return;
3768 epoch = ceph_decode_32(&p);
3769 maplen = ceph_decode_32(&p);
3770 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3771
3772 /* do we need it? */
3773 mutex_lock(&mdsc->mutex);
3774 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3775 dout("handle_map epoch %u <= our %u\n",
3776 epoch, mdsc->mdsmap->m_epoch);
3777 mutex_unlock(&mdsc->mutex);
3778 return;
3779 }
3780
3781 newmap = ceph_mdsmap_decode(&p, end);
3782 if (IS_ERR(newmap)) {
3783 err = PTR_ERR(newmap);
3784 goto bad_unlock;
3785 }
3786
3787 /* swap into place */
3788 if (mdsc->mdsmap) {
3789 oldmap = mdsc->mdsmap;
3790 mdsc->mdsmap = newmap;
3791 check_new_map(mdsc, newmap, oldmap);
3792 ceph_mdsmap_destroy(oldmap);
3793 } else {
3794 mdsc->mdsmap = newmap; /* first mds map */
3795 }
3796 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3797
3798 __wake_requests(mdsc, &mdsc->waiting_for_map);
3799 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3800 mdsc->mdsmap->m_epoch);
3801
3802 mutex_unlock(&mdsc->mutex);
3803 schedule_delayed(mdsc);
3804 return;
3805
3806 bad_unlock:
3807 mutex_unlock(&mdsc->mutex);
3808 bad:
3809 pr_err("error decoding mdsmap %d\n", err);
3810 return;
3811 }
3812
3813 static struct ceph_connection *con_get(struct ceph_connection *con)
3814 {
3815 struct ceph_mds_session *s = con->private;
3816
3817 if (get_session(s)) {
3818 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3819 return con;
3820 }
3821 dout("mdsc con_get %p FAIL\n", s);
3822 return NULL;
3823 }
3824
3825 static void con_put(struct ceph_connection *con)
3826 {
3827 struct ceph_mds_session *s = con->private;
3828
3829 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3830 ceph_put_mds_session(s);
3831 }
3832
3833 /*
3834 * if the client is unresponsive for long enough, the mds will kill
3835 * the session entirely.
3836 */
3837 static void peer_reset(struct ceph_connection *con)
3838 {
3839 struct ceph_mds_session *s = con->private;
3840 struct ceph_mds_client *mdsc = s->s_mdsc;
3841
3842 pr_warn("mds%d closed our session\n", s->s_mds);
3843 send_mds_reconnect(mdsc, s);
3844 }
3845
3846 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3847 {
3848 struct ceph_mds_session *s = con->private;
3849 struct ceph_mds_client *mdsc = s->s_mdsc;
3850 int type = le16_to_cpu(msg->hdr.type);
3851
3852 mutex_lock(&mdsc->mutex);
3853 if (__verify_registered_session(mdsc, s) < 0) {
3854 mutex_unlock(&mdsc->mutex);
3855 goto out;
3856 }
3857 mutex_unlock(&mdsc->mutex);
3858
3859 switch (type) {
3860 case CEPH_MSG_MDS_MAP:
3861 ceph_mdsc_handle_mdsmap(mdsc, msg);
3862 break;
3863 case CEPH_MSG_FS_MAP_USER:
3864 ceph_mdsc_handle_fsmap(mdsc, msg);
3865 break;
3866 case CEPH_MSG_CLIENT_SESSION:
3867 handle_session(s, msg);
3868 break;
3869 case CEPH_MSG_CLIENT_REPLY:
3870 handle_reply(s, msg);
3871 break;
3872 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3873 handle_forward(mdsc, s, msg);
3874 break;
3875 case CEPH_MSG_CLIENT_CAPS:
3876 ceph_handle_caps(s, msg);
3877 break;
3878 case CEPH_MSG_CLIENT_SNAP:
3879 ceph_handle_snap(mdsc, s, msg);
3880 break;
3881 case CEPH_MSG_CLIENT_LEASE:
3882 handle_lease(mdsc, s, msg);
3883 break;
3884
3885 default:
3886 pr_err("received unknown message type %d %s\n", type,
3887 ceph_msg_type_name(type));
3888 }
3889 out:
3890 ceph_msg_put(msg);
3891 }
3892
3893 /*
3894 * authentication
3895 */
3896
3897 /*
3898 * Note: returned pointer is the address of a structure that's
3899 * managed separately. Caller must *not* attempt to free it.
3900 */
3901 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3902 int *proto, int force_new)
3903 {
3904 struct ceph_mds_session *s = con->private;
3905 struct ceph_mds_client *mdsc = s->s_mdsc;
3906 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3907 struct ceph_auth_handshake *auth = &s->s_auth;
3908
3909 if (force_new && auth->authorizer) {
3910 ceph_auth_destroy_authorizer(auth->authorizer);
3911 auth->authorizer = NULL;
3912 }
3913 if (!auth->authorizer) {
3914 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3915 auth);
3916 if (ret)
3917 return ERR_PTR(ret);
3918 } else {
3919 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3920 auth);
3921 if (ret)
3922 return ERR_PTR(ret);
3923 }
3924 *proto = ac->protocol;
3925
3926 return auth;
3927 }
3928
3929
3930 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3931 {
3932 struct ceph_mds_session *s = con->private;
3933 struct ceph_mds_client *mdsc = s->s_mdsc;
3934 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3935
3936 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3937 }
3938
3939 static int invalidate_authorizer(struct ceph_connection *con)
3940 {
3941 struct ceph_mds_session *s = con->private;
3942 struct ceph_mds_client *mdsc = s->s_mdsc;
3943 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3944
3945 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3946
3947 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3948 }
3949
3950 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3951 struct ceph_msg_header *hdr, int *skip)
3952 {
3953 struct ceph_msg *msg;
3954 int type = (int) le16_to_cpu(hdr->type);
3955 int front_len = (int) le32_to_cpu(hdr->front_len);
3956
3957 if (con->in_msg)
3958 return con->in_msg;
3959
3960 *skip = 0;
3961 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3962 if (!msg) {
3963 pr_err("unable to allocate msg type %d len %d\n",
3964 type, front_len);
3965 return NULL;
3966 }
3967
3968 return msg;
3969 }
3970
3971 static int mds_sign_message(struct ceph_msg *msg)
3972 {
3973 struct ceph_mds_session *s = msg->con->private;
3974 struct ceph_auth_handshake *auth = &s->s_auth;
3975
3976 return ceph_auth_sign_message(auth, msg);
3977 }
3978
3979 static int mds_check_message_signature(struct ceph_msg *msg)
3980 {
3981 struct ceph_mds_session *s = msg->con->private;
3982 struct ceph_auth_handshake *auth = &s->s_auth;
3983
3984 return ceph_auth_check_message_signature(auth, msg);
3985 }
3986
3987 static const struct ceph_connection_operations mds_con_ops = {
3988 .get = con_get,
3989 .put = con_put,
3990 .dispatch = dispatch,
3991 .get_authorizer = get_authorizer,
3992 .verify_authorizer_reply = verify_authorizer_reply,
3993 .invalidate_authorizer = invalidate_authorizer,
3994 .peer_reset = peer_reset,
3995 .alloc_msg = mds_alloc_msg,
3996 .sign_message = mds_sign_message,
3997 .check_message_signature = mds_check_message_signature,
3998 };
3999
4000 /* eof */
This page took 0.11885 seconds and 5 git commands to generate.