rapidio: add definitions of Component Tag fields
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83
84 EXPORT_SYMBOL(rename_lock);
85
86 static struct kmem_cache *dentry_cache __read_mostly;
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
98
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101
102 struct dcache_hash_bucket {
103 struct hlist_bl_head head;
104 };
105 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
106
107 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 unsigned long hash)
109 {
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
116 {
117 bit_spin_lock(0, (unsigned long *)&b->head.first);
118 }
119
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
121 {
122 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
123 }
124
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128 };
129
130 static DEFINE_PER_CPU(unsigned int, nr_dentry);
131
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
134 {
135 int i;
136 int sum = 0;
137 for_each_possible_cpu(i)
138 sum += per_cpu(nr_dentry, i);
139 return sum < 0 ? 0 : sum;
140 }
141
142 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 size_t *lenp, loff_t *ppos)
144 {
145 dentry_stat.nr_dentry = get_nr_dentry();
146 return proc_dointvec(table, write, buffer, lenp, ppos);
147 }
148 #endif
149
150 static void __d_free(struct rcu_head *head)
151 {
152 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
153
154 WARN_ON(!list_empty(&dentry->d_alias));
155 if (dname_external(dentry))
156 kfree(dentry->d_name.name);
157 kmem_cache_free(dentry_cache, dentry);
158 }
159
160 /*
161 * no locks, please.
162 */
163 static void d_free(struct dentry *dentry)
164 {
165 BUG_ON(dentry->d_count);
166 this_cpu_dec(nr_dentry);
167 if (dentry->d_op && dentry->d_op->d_release)
168 dentry->d_op->d_release(dentry);
169
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry->d_hash))
172 __d_free(&dentry->d_u.d_rcu);
173 else
174 call_rcu(&dentry->d_u.d_rcu, __d_free);
175 }
176
177 /**
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * After this call, in-progress rcu-walk path lookup will fail. This
180 * should be called after unhashing, and after changing d_inode (if
181 * the dentry has not already been unhashed).
182 */
183 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
184 {
185 assert_spin_locked(&dentry->d_lock);
186 /* Go through a barrier */
187 write_seqcount_barrier(&dentry->d_seq);
188 }
189
190 /*
191 * Release the dentry's inode, using the filesystem
192 * d_iput() operation if defined. Dentry has no refcount
193 * and is unhashed.
194 */
195 static void dentry_iput(struct dentry * dentry)
196 __releases(dentry->d_lock)
197 __releases(dentry->d_inode->i_lock)
198 {
199 struct inode *inode = dentry->d_inode;
200 if (inode) {
201 dentry->d_inode = NULL;
202 list_del_init(&dentry->d_alias);
203 spin_unlock(&dentry->d_lock);
204 spin_unlock(&inode->i_lock);
205 if (!inode->i_nlink)
206 fsnotify_inoderemove(inode);
207 if (dentry->d_op && dentry->d_op->d_iput)
208 dentry->d_op->d_iput(dentry, inode);
209 else
210 iput(inode);
211 } else {
212 spin_unlock(&dentry->d_lock);
213 }
214 }
215
216 /*
217 * Release the dentry's inode, using the filesystem
218 * d_iput() operation if defined. dentry remains in-use.
219 */
220 static void dentry_unlink_inode(struct dentry * dentry)
221 __releases(dentry->d_lock)
222 __releases(dentry->d_inode->i_lock)
223 {
224 struct inode *inode = dentry->d_inode;
225 dentry->d_inode = NULL;
226 list_del_init(&dentry->d_alias);
227 dentry_rcuwalk_barrier(dentry);
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&inode->i_lock);
230 if (!inode->i_nlink)
231 fsnotify_inoderemove(inode);
232 if (dentry->d_op && dentry->d_op->d_iput)
233 dentry->d_op->d_iput(dentry, inode);
234 else
235 iput(inode);
236 }
237
238 /*
239 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
240 */
241 static void dentry_lru_add(struct dentry *dentry)
242 {
243 if (list_empty(&dentry->d_lru)) {
244 spin_lock(&dcache_lru_lock);
245 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
246 dentry->d_sb->s_nr_dentry_unused++;
247 dentry_stat.nr_unused++;
248 spin_unlock(&dcache_lru_lock);
249 }
250 }
251
252 static void __dentry_lru_del(struct dentry *dentry)
253 {
254 list_del_init(&dentry->d_lru);
255 dentry->d_sb->s_nr_dentry_unused--;
256 dentry_stat.nr_unused--;
257 }
258
259 static void dentry_lru_del(struct dentry *dentry)
260 {
261 if (!list_empty(&dentry->d_lru)) {
262 spin_lock(&dcache_lru_lock);
263 __dentry_lru_del(dentry);
264 spin_unlock(&dcache_lru_lock);
265 }
266 }
267
268 static void dentry_lru_move_tail(struct dentry *dentry)
269 {
270 spin_lock(&dcache_lru_lock);
271 if (list_empty(&dentry->d_lru)) {
272 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
273 dentry->d_sb->s_nr_dentry_unused++;
274 dentry_stat.nr_unused++;
275 } else {
276 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
277 }
278 spin_unlock(&dcache_lru_lock);
279 }
280
281 /**
282 * d_kill - kill dentry and return parent
283 * @dentry: dentry to kill
284 *
285 * The dentry must already be unhashed and removed from the LRU.
286 *
287 * If this is the root of the dentry tree, return NULL.
288 *
289 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
290 * d_kill.
291 */
292 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
293 __releases(dentry->d_lock)
294 __releases(parent->d_lock)
295 __releases(dentry->d_inode->i_lock)
296 {
297 dentry->d_parent = NULL;
298 list_del(&dentry->d_u.d_child);
299 if (parent)
300 spin_unlock(&parent->d_lock);
301 dentry_iput(dentry);
302 /*
303 * dentry_iput drops the locks, at which point nobody (except
304 * transient RCU lookups) can reach this dentry.
305 */
306 d_free(dentry);
307 return parent;
308 }
309
310 /**
311 * d_drop - drop a dentry
312 * @dentry: dentry to drop
313 *
314 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
315 * be found through a VFS lookup any more. Note that this is different from
316 * deleting the dentry - d_delete will try to mark the dentry negative if
317 * possible, giving a successful _negative_ lookup, while d_drop will
318 * just make the cache lookup fail.
319 *
320 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
321 * reason (NFS timeouts or autofs deletes).
322 *
323 * __d_drop requires dentry->d_lock.
324 */
325 void __d_drop(struct dentry *dentry)
326 {
327 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
328 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
329 bit_spin_lock(0,
330 (unsigned long *)&dentry->d_sb->s_anon.first);
331 dentry->d_flags |= DCACHE_UNHASHED;
332 hlist_bl_del_init(&dentry->d_hash);
333 __bit_spin_unlock(0,
334 (unsigned long *)&dentry->d_sb->s_anon.first);
335 } else {
336 struct dcache_hash_bucket *b;
337 b = d_hash(dentry->d_parent, dentry->d_name.hash);
338 spin_lock_bucket(b);
339 /*
340 * We may not actually need to put DCACHE_UNHASHED
341 * manipulations under the hash lock, but follow
342 * the principle of least surprise.
343 */
344 dentry->d_flags |= DCACHE_UNHASHED;
345 hlist_bl_del_rcu(&dentry->d_hash);
346 spin_unlock_bucket(b);
347 dentry_rcuwalk_barrier(dentry);
348 }
349 }
350 }
351 EXPORT_SYMBOL(__d_drop);
352
353 void d_drop(struct dentry *dentry)
354 {
355 spin_lock(&dentry->d_lock);
356 __d_drop(dentry);
357 spin_unlock(&dentry->d_lock);
358 }
359 EXPORT_SYMBOL(d_drop);
360
361 /*
362 * Finish off a dentry we've decided to kill.
363 * dentry->d_lock must be held, returns with it unlocked.
364 * If ref is non-zero, then decrement the refcount too.
365 * Returns dentry requiring refcount drop, or NULL if we're done.
366 */
367 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
368 __releases(dentry->d_lock)
369 {
370 struct inode *inode;
371 struct dentry *parent;
372
373 inode = dentry->d_inode;
374 if (inode && !spin_trylock(&inode->i_lock)) {
375 relock:
376 spin_unlock(&dentry->d_lock);
377 cpu_relax();
378 return dentry; /* try again with same dentry */
379 }
380 if (IS_ROOT(dentry))
381 parent = NULL;
382 else
383 parent = dentry->d_parent;
384 if (parent && !spin_trylock(&parent->d_lock)) {
385 if (inode)
386 spin_unlock(&inode->i_lock);
387 goto relock;
388 }
389
390 if (ref)
391 dentry->d_count--;
392 /* if dentry was on the d_lru list delete it from there */
393 dentry_lru_del(dentry);
394 /* if it was on the hash then remove it */
395 __d_drop(dentry);
396 return d_kill(dentry, parent);
397 }
398
399 /*
400 * This is dput
401 *
402 * This is complicated by the fact that we do not want to put
403 * dentries that are no longer on any hash chain on the unused
404 * list: we'd much rather just get rid of them immediately.
405 *
406 * However, that implies that we have to traverse the dentry
407 * tree upwards to the parents which might _also_ now be
408 * scheduled for deletion (it may have been only waiting for
409 * its last child to go away).
410 *
411 * This tail recursion is done by hand as we don't want to depend
412 * on the compiler to always get this right (gcc generally doesn't).
413 * Real recursion would eat up our stack space.
414 */
415
416 /*
417 * dput - release a dentry
418 * @dentry: dentry to release
419 *
420 * Release a dentry. This will drop the usage count and if appropriate
421 * call the dentry unlink method as well as removing it from the queues and
422 * releasing its resources. If the parent dentries were scheduled for release
423 * they too may now get deleted.
424 */
425 void dput(struct dentry *dentry)
426 {
427 if (!dentry)
428 return;
429
430 repeat:
431 if (dentry->d_count == 1)
432 might_sleep();
433 spin_lock(&dentry->d_lock);
434 BUG_ON(!dentry->d_count);
435 if (dentry->d_count > 1) {
436 dentry->d_count--;
437 spin_unlock(&dentry->d_lock);
438 return;
439 }
440
441 if (dentry->d_flags & DCACHE_OP_DELETE) {
442 if (dentry->d_op->d_delete(dentry))
443 goto kill_it;
444 }
445
446 /* Unreachable? Get rid of it */
447 if (d_unhashed(dentry))
448 goto kill_it;
449
450 /* Otherwise leave it cached and ensure it's on the LRU */
451 dentry->d_flags |= DCACHE_REFERENCED;
452 dentry_lru_add(dentry);
453
454 dentry->d_count--;
455 spin_unlock(&dentry->d_lock);
456 return;
457
458 kill_it:
459 dentry = dentry_kill(dentry, 1);
460 if (dentry)
461 goto repeat;
462 }
463 EXPORT_SYMBOL(dput);
464
465 /**
466 * d_invalidate - invalidate a dentry
467 * @dentry: dentry to invalidate
468 *
469 * Try to invalidate the dentry if it turns out to be
470 * possible. If there are other dentries that can be
471 * reached through this one we can't delete it and we
472 * return -EBUSY. On success we return 0.
473 *
474 * no dcache lock.
475 */
476
477 int d_invalidate(struct dentry * dentry)
478 {
479 /*
480 * If it's already been dropped, return OK.
481 */
482 spin_lock(&dentry->d_lock);
483 if (d_unhashed(dentry)) {
484 spin_unlock(&dentry->d_lock);
485 return 0;
486 }
487 /*
488 * Check whether to do a partial shrink_dcache
489 * to get rid of unused child entries.
490 */
491 if (!list_empty(&dentry->d_subdirs)) {
492 spin_unlock(&dentry->d_lock);
493 shrink_dcache_parent(dentry);
494 spin_lock(&dentry->d_lock);
495 }
496
497 /*
498 * Somebody else still using it?
499 *
500 * If it's a directory, we can't drop it
501 * for fear of somebody re-populating it
502 * with children (even though dropping it
503 * would make it unreachable from the root,
504 * we might still populate it if it was a
505 * working directory or similar).
506 */
507 if (dentry->d_count > 1) {
508 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
509 spin_unlock(&dentry->d_lock);
510 return -EBUSY;
511 }
512 }
513
514 __d_drop(dentry);
515 spin_unlock(&dentry->d_lock);
516 return 0;
517 }
518 EXPORT_SYMBOL(d_invalidate);
519
520 /* This must be called with d_lock held */
521 static inline void __dget_dlock(struct dentry *dentry)
522 {
523 dentry->d_count++;
524 }
525
526 static inline void __dget(struct dentry *dentry)
527 {
528 spin_lock(&dentry->d_lock);
529 __dget_dlock(dentry);
530 spin_unlock(&dentry->d_lock);
531 }
532
533 struct dentry *dget_parent(struct dentry *dentry)
534 {
535 struct dentry *ret;
536
537 repeat:
538 /*
539 * Don't need rcu_dereference because we re-check it was correct under
540 * the lock.
541 */
542 rcu_read_lock();
543 ret = dentry->d_parent;
544 if (!ret) {
545 rcu_read_unlock();
546 goto out;
547 }
548 spin_lock(&ret->d_lock);
549 if (unlikely(ret != dentry->d_parent)) {
550 spin_unlock(&ret->d_lock);
551 rcu_read_unlock();
552 goto repeat;
553 }
554 rcu_read_unlock();
555 BUG_ON(!ret->d_count);
556 ret->d_count++;
557 spin_unlock(&ret->d_lock);
558 out:
559 return ret;
560 }
561 EXPORT_SYMBOL(dget_parent);
562
563 /**
564 * d_find_alias - grab a hashed alias of inode
565 * @inode: inode in question
566 * @want_discon: flag, used by d_splice_alias, to request
567 * that only a DISCONNECTED alias be returned.
568 *
569 * If inode has a hashed alias, or is a directory and has any alias,
570 * acquire the reference to alias and return it. Otherwise return NULL.
571 * Notice that if inode is a directory there can be only one alias and
572 * it can be unhashed only if it has no children, or if it is the root
573 * of a filesystem.
574 *
575 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
576 * any other hashed alias over that one unless @want_discon is set,
577 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
578 */
579 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
580 {
581 struct dentry *alias, *discon_alias;
582
583 again:
584 discon_alias = NULL;
585 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 discon_alias = alias;
591 } else if (!want_discon) {
592 __dget_dlock(alias);
593 spin_unlock(&alias->d_lock);
594 return alias;
595 }
596 }
597 spin_unlock(&alias->d_lock);
598 }
599 if (discon_alias) {
600 alias = discon_alias;
601 spin_lock(&alias->d_lock);
602 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
603 if (IS_ROOT(alias) &&
604 (alias->d_flags & DCACHE_DISCONNECTED)) {
605 __dget_dlock(alias);
606 spin_unlock(&alias->d_lock);
607 return alias;
608 }
609 }
610 spin_unlock(&alias->d_lock);
611 goto again;
612 }
613 return NULL;
614 }
615
616 struct dentry *d_find_alias(struct inode *inode)
617 {
618 struct dentry *de = NULL;
619
620 if (!list_empty(&inode->i_dentry)) {
621 spin_lock(&inode->i_lock);
622 de = __d_find_alias(inode, 0);
623 spin_unlock(&inode->i_lock);
624 }
625 return de;
626 }
627 EXPORT_SYMBOL(d_find_alias);
628
629 /*
630 * Try to kill dentries associated with this inode.
631 * WARNING: you must own a reference to inode.
632 */
633 void d_prune_aliases(struct inode *inode)
634 {
635 struct dentry *dentry;
636 restart:
637 spin_lock(&inode->i_lock);
638 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
639 spin_lock(&dentry->d_lock);
640 if (!dentry->d_count) {
641 __dget_dlock(dentry);
642 __d_drop(dentry);
643 spin_unlock(&dentry->d_lock);
644 spin_unlock(&inode->i_lock);
645 dput(dentry);
646 goto restart;
647 }
648 spin_unlock(&dentry->d_lock);
649 }
650 spin_unlock(&inode->i_lock);
651 }
652 EXPORT_SYMBOL(d_prune_aliases);
653
654 /*
655 * Try to throw away a dentry - free the inode, dput the parent.
656 * Requires dentry->d_lock is held, and dentry->d_count == 0.
657 * Releases dentry->d_lock.
658 *
659 * This may fail if locks cannot be acquired no problem, just try again.
660 */
661 static void try_prune_one_dentry(struct dentry *dentry)
662 __releases(dentry->d_lock)
663 {
664 struct dentry *parent;
665
666 parent = dentry_kill(dentry, 0);
667 /*
668 * If dentry_kill returns NULL, we have nothing more to do.
669 * if it returns the same dentry, trylocks failed. In either
670 * case, just loop again.
671 *
672 * Otherwise, we need to prune ancestors too. This is necessary
673 * to prevent quadratic behavior of shrink_dcache_parent(), but
674 * is also expected to be beneficial in reducing dentry cache
675 * fragmentation.
676 */
677 if (!parent)
678 return;
679 if (parent == dentry)
680 return;
681
682 /* Prune ancestors. */
683 dentry = parent;
684 while (dentry) {
685 spin_lock(&dentry->d_lock);
686 if (dentry->d_count > 1) {
687 dentry->d_count--;
688 spin_unlock(&dentry->d_lock);
689 return;
690 }
691 dentry = dentry_kill(dentry, 1);
692 }
693 }
694
695 static void shrink_dentry_list(struct list_head *list)
696 {
697 struct dentry *dentry;
698
699 rcu_read_lock();
700 for (;;) {
701 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
702 if (&dentry->d_lru == list)
703 break; /* empty */
704 spin_lock(&dentry->d_lock);
705 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
706 spin_unlock(&dentry->d_lock);
707 continue;
708 }
709
710 /*
711 * We found an inuse dentry which was not removed from
712 * the LRU because of laziness during lookup. Do not free
713 * it - just keep it off the LRU list.
714 */
715 if (dentry->d_count) {
716 dentry_lru_del(dentry);
717 spin_unlock(&dentry->d_lock);
718 continue;
719 }
720
721 rcu_read_unlock();
722
723 try_prune_one_dentry(dentry);
724
725 rcu_read_lock();
726 }
727 rcu_read_unlock();
728 }
729
730 /**
731 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
732 * @sb: superblock to shrink dentry LRU.
733 * @count: number of entries to prune
734 * @flags: flags to control the dentry processing
735 *
736 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
737 */
738 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
739 {
740 /* called from prune_dcache() and shrink_dcache_parent() */
741 struct dentry *dentry;
742 LIST_HEAD(referenced);
743 LIST_HEAD(tmp);
744 int cnt = *count;
745
746 relock:
747 spin_lock(&dcache_lru_lock);
748 while (!list_empty(&sb->s_dentry_lru)) {
749 dentry = list_entry(sb->s_dentry_lru.prev,
750 struct dentry, d_lru);
751 BUG_ON(dentry->d_sb != sb);
752
753 if (!spin_trylock(&dentry->d_lock)) {
754 spin_unlock(&dcache_lru_lock);
755 cpu_relax();
756 goto relock;
757 }
758
759 /*
760 * If we are honouring the DCACHE_REFERENCED flag and the
761 * dentry has this flag set, don't free it. Clear the flag
762 * and put it back on the LRU.
763 */
764 if (flags & DCACHE_REFERENCED &&
765 dentry->d_flags & DCACHE_REFERENCED) {
766 dentry->d_flags &= ~DCACHE_REFERENCED;
767 list_move(&dentry->d_lru, &referenced);
768 spin_unlock(&dentry->d_lock);
769 } else {
770 list_move_tail(&dentry->d_lru, &tmp);
771 spin_unlock(&dentry->d_lock);
772 if (!--cnt)
773 break;
774 }
775 cond_resched_lock(&dcache_lru_lock);
776 }
777 if (!list_empty(&referenced))
778 list_splice(&referenced, &sb->s_dentry_lru);
779 spin_unlock(&dcache_lru_lock);
780
781 shrink_dentry_list(&tmp);
782
783 *count = cnt;
784 }
785
786 /**
787 * prune_dcache - shrink the dcache
788 * @count: number of entries to try to free
789 *
790 * Shrink the dcache. This is done when we need more memory, or simply when we
791 * need to unmount something (at which point we need to unuse all dentries).
792 *
793 * This function may fail to free any resources if all the dentries are in use.
794 */
795 static void prune_dcache(int count)
796 {
797 struct super_block *sb, *p = NULL;
798 int w_count;
799 int unused = dentry_stat.nr_unused;
800 int prune_ratio;
801 int pruned;
802
803 if (unused == 0 || count == 0)
804 return;
805 if (count >= unused)
806 prune_ratio = 1;
807 else
808 prune_ratio = unused / count;
809 spin_lock(&sb_lock);
810 list_for_each_entry(sb, &super_blocks, s_list) {
811 if (list_empty(&sb->s_instances))
812 continue;
813 if (sb->s_nr_dentry_unused == 0)
814 continue;
815 sb->s_count++;
816 /* Now, we reclaim unused dentrins with fairness.
817 * We reclaim them same percentage from each superblock.
818 * We calculate number of dentries to scan on this sb
819 * as follows, but the implementation is arranged to avoid
820 * overflows:
821 * number of dentries to scan on this sb =
822 * count * (number of dentries on this sb /
823 * number of dentries in the machine)
824 */
825 spin_unlock(&sb_lock);
826 if (prune_ratio != 1)
827 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
828 else
829 w_count = sb->s_nr_dentry_unused;
830 pruned = w_count;
831 /*
832 * We need to be sure this filesystem isn't being unmounted,
833 * otherwise we could race with generic_shutdown_super(), and
834 * end up holding a reference to an inode while the filesystem
835 * is unmounted. So we try to get s_umount, and make sure
836 * s_root isn't NULL.
837 */
838 if (down_read_trylock(&sb->s_umount)) {
839 if ((sb->s_root != NULL) &&
840 (!list_empty(&sb->s_dentry_lru))) {
841 __shrink_dcache_sb(sb, &w_count,
842 DCACHE_REFERENCED);
843 pruned -= w_count;
844 }
845 up_read(&sb->s_umount);
846 }
847 spin_lock(&sb_lock);
848 if (p)
849 __put_super(p);
850 count -= pruned;
851 p = sb;
852 /* more work left to do? */
853 if (count <= 0)
854 break;
855 }
856 if (p)
857 __put_super(p);
858 spin_unlock(&sb_lock);
859 }
860
861 /**
862 * shrink_dcache_sb - shrink dcache for a superblock
863 * @sb: superblock
864 *
865 * Shrink the dcache for the specified super block. This is used to free
866 * the dcache before unmounting a file system.
867 */
868 void shrink_dcache_sb(struct super_block *sb)
869 {
870 LIST_HEAD(tmp);
871
872 spin_lock(&dcache_lru_lock);
873 while (!list_empty(&sb->s_dentry_lru)) {
874 list_splice_init(&sb->s_dentry_lru, &tmp);
875 spin_unlock(&dcache_lru_lock);
876 shrink_dentry_list(&tmp);
877 spin_lock(&dcache_lru_lock);
878 }
879 spin_unlock(&dcache_lru_lock);
880 }
881 EXPORT_SYMBOL(shrink_dcache_sb);
882
883 /*
884 * destroy a single subtree of dentries for unmount
885 * - see the comments on shrink_dcache_for_umount() for a description of the
886 * locking
887 */
888 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
889 {
890 struct dentry *parent;
891 unsigned detached = 0;
892
893 BUG_ON(!IS_ROOT(dentry));
894
895 /* detach this root from the system */
896 spin_lock(&dentry->d_lock);
897 dentry_lru_del(dentry);
898 __d_drop(dentry);
899 spin_unlock(&dentry->d_lock);
900
901 for (;;) {
902 /* descend to the first leaf in the current subtree */
903 while (!list_empty(&dentry->d_subdirs)) {
904 struct dentry *loop;
905
906 /* this is a branch with children - detach all of them
907 * from the system in one go */
908 spin_lock(&dentry->d_lock);
909 list_for_each_entry(loop, &dentry->d_subdirs,
910 d_u.d_child) {
911 spin_lock_nested(&loop->d_lock,
912 DENTRY_D_LOCK_NESTED);
913 dentry_lru_del(loop);
914 __d_drop(loop);
915 spin_unlock(&loop->d_lock);
916 }
917 spin_unlock(&dentry->d_lock);
918
919 /* move to the first child */
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
922 }
923
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
928
929 if (dentry->d_count != 0) {
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
938 dentry->d_count,
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
942 }
943
944 if (IS_ROOT(dentry)) {
945 parent = NULL;
946 list_del(&dentry->d_u.d_child);
947 } else {
948 parent = dentry->d_parent;
949 spin_lock(&parent->d_lock);
950 parent->d_count--;
951 list_del(&dentry->d_u.d_child);
952 spin_unlock(&parent->d_lock);
953 }
954
955 detached++;
956
957 inode = dentry->d_inode;
958 if (inode) {
959 dentry->d_inode = NULL;
960 list_del_init(&dentry->d_alias);
961 if (dentry->d_op && dentry->d_op->d_iput)
962 dentry->d_op->d_iput(dentry, inode);
963 else
964 iput(inode);
965 }
966
967 d_free(dentry);
968
969 /* finished when we fall off the top of the tree,
970 * otherwise we ascend to the parent and move to the
971 * next sibling if there is one */
972 if (!parent)
973 return;
974 dentry = parent;
975 } while (list_empty(&dentry->d_subdirs));
976
977 dentry = list_entry(dentry->d_subdirs.next,
978 struct dentry, d_u.d_child);
979 }
980 }
981
982 /*
983 * destroy the dentries attached to a superblock on unmounting
984 * - we don't need to use dentry->d_lock because:
985 * - the superblock is detached from all mountings and open files, so the
986 * dentry trees will not be rearranged by the VFS
987 * - s_umount is write-locked, so the memory pressure shrinker will ignore
988 * any dentries belonging to this superblock that it comes across
989 * - the filesystem itself is no longer permitted to rearrange the dentries
990 * in this superblock
991 */
992 void shrink_dcache_for_umount(struct super_block *sb)
993 {
994 struct dentry *dentry;
995
996 if (down_read_trylock(&sb->s_umount))
997 BUG();
998
999 dentry = sb->s_root;
1000 sb->s_root = NULL;
1001 spin_lock(&dentry->d_lock);
1002 dentry->d_count--;
1003 spin_unlock(&dentry->d_lock);
1004 shrink_dcache_for_umount_subtree(dentry);
1005
1006 while (!hlist_bl_empty(&sb->s_anon)) {
1007 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1008 shrink_dcache_for_umount_subtree(dentry);
1009 }
1010 }
1011
1012 /*
1013 * Search for at least 1 mount point in the dentry's subdirs.
1014 * We descend to the next level whenever the d_subdirs
1015 * list is non-empty and continue searching.
1016 */
1017
1018 /**
1019 * have_submounts - check for mounts over a dentry
1020 * @parent: dentry to check.
1021 *
1022 * Return true if the parent or its subdirectories contain
1023 * a mount point
1024 */
1025 int have_submounts(struct dentry *parent)
1026 {
1027 struct dentry *this_parent;
1028 struct list_head *next;
1029 unsigned seq;
1030 int locked = 0;
1031
1032 seq = read_seqbegin(&rename_lock);
1033 again:
1034 this_parent = parent;
1035
1036 if (d_mountpoint(parent))
1037 goto positive;
1038 spin_lock(&this_parent->d_lock);
1039 repeat:
1040 next = this_parent->d_subdirs.next;
1041 resume:
1042 while (next != &this_parent->d_subdirs) {
1043 struct list_head *tmp = next;
1044 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1045 next = tmp->next;
1046
1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048 /* Have we found a mount point ? */
1049 if (d_mountpoint(dentry)) {
1050 spin_unlock(&dentry->d_lock);
1051 spin_unlock(&this_parent->d_lock);
1052 goto positive;
1053 }
1054 if (!list_empty(&dentry->d_subdirs)) {
1055 spin_unlock(&this_parent->d_lock);
1056 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1057 this_parent = dentry;
1058 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1059 goto repeat;
1060 }
1061 spin_unlock(&dentry->d_lock);
1062 }
1063 /*
1064 * All done at this level ... ascend and resume the search.
1065 */
1066 if (this_parent != parent) {
1067 struct dentry *tmp;
1068 struct dentry *child;
1069
1070 tmp = this_parent->d_parent;
1071 rcu_read_lock();
1072 spin_unlock(&this_parent->d_lock);
1073 child = this_parent;
1074 this_parent = tmp;
1075 spin_lock(&this_parent->d_lock);
1076 /* might go back up the wrong parent if we have had a rename
1077 * or deletion */
1078 if (this_parent != child->d_parent ||
1079 (!locked && read_seqretry(&rename_lock, seq))) {
1080 spin_unlock(&this_parent->d_lock);
1081 rcu_read_unlock();
1082 goto rename_retry;
1083 }
1084 rcu_read_unlock();
1085 next = child->d_u.d_child.next;
1086 goto resume;
1087 }
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1100
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1105 }
1106 EXPORT_SYMBOL(have_submounts);
1107
1108 /*
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1114 *
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1121 */
1122 static int select_parent(struct dentry * parent)
1123 {
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1129
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1141
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143
1144 /*
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1147 */
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1153 }
1154
1155 /*
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1159 */
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1163 }
1164
1165 /*
1166 * Descend a level if the d_subdirs list is non-empty.
1167 */
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1174 }
1175
1176 spin_unlock(&dentry->d_lock);
1177 }
1178 /*
1179 * All done at this level ... ascend and resume the search.
1180 */
1181 if (this_parent != parent) {
1182 struct dentry *tmp;
1183 struct dentry *child;
1184
1185 tmp = this_parent->d_parent;
1186 rcu_read_lock();
1187 spin_unlock(&this_parent->d_lock);
1188 child = this_parent;
1189 this_parent = tmp;
1190 spin_lock(&this_parent->d_lock);
1191 /* might go back up the wrong parent if we have had a rename
1192 * or deletion */
1193 if (this_parent != child->d_parent ||
1194 (!locked && read_seqretry(&rename_lock, seq))) {
1195 spin_unlock(&this_parent->d_lock);
1196 rcu_read_unlock();
1197 goto rename_retry;
1198 }
1199 rcu_read_unlock();
1200 next = child->d_u.d_child.next;
1201 goto resume;
1202 }
1203 out:
1204 spin_unlock(&this_parent->d_lock);
1205 if (!locked && read_seqretry(&rename_lock, seq))
1206 goto rename_retry;
1207 if (locked)
1208 write_sequnlock(&rename_lock);
1209 return found;
1210
1211 rename_retry:
1212 if (found)
1213 return found;
1214 locked = 1;
1215 write_seqlock(&rename_lock);
1216 goto again;
1217 }
1218
1219 /**
1220 * shrink_dcache_parent - prune dcache
1221 * @parent: parent of entries to prune
1222 *
1223 * Prune the dcache to remove unused children of the parent dentry.
1224 */
1225
1226 void shrink_dcache_parent(struct dentry * parent)
1227 {
1228 struct super_block *sb = parent->d_sb;
1229 int found;
1230
1231 while ((found = select_parent(parent)) != 0)
1232 __shrink_dcache_sb(sb, &found, 0);
1233 }
1234 EXPORT_SYMBOL(shrink_dcache_parent);
1235
1236 /*
1237 * Scan `nr' dentries and return the number which remain.
1238 *
1239 * We need to avoid reentering the filesystem if the caller is performing a
1240 * GFP_NOFS allocation attempt. One example deadlock is:
1241 *
1242 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1243 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1244 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1245 *
1246 * In this case we return -1 to tell the caller that we baled.
1247 */
1248 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1249 {
1250 if (nr) {
1251 if (!(gfp_mask & __GFP_FS))
1252 return -1;
1253 prune_dcache(nr);
1254 }
1255
1256 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1257 }
1258
1259 static struct shrinker dcache_shrinker = {
1260 .shrink = shrink_dcache_memory,
1261 .seeks = DEFAULT_SEEKS,
1262 };
1263
1264 /**
1265 * d_alloc - allocate a dcache entry
1266 * @parent: parent of entry to allocate
1267 * @name: qstr of the name
1268 *
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1272 */
1273
1274 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1275 {
1276 struct dentry *dentry;
1277 char *dname;
1278
1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1280 if (!dentry)
1281 return NULL;
1282
1283 if (name->len > DNAME_INLINE_LEN-1) {
1284 dname = kmalloc(name->len + 1, GFP_KERNEL);
1285 if (!dname) {
1286 kmem_cache_free(dentry_cache, dentry);
1287 return NULL;
1288 }
1289 } else {
1290 dname = dentry->d_iname;
1291 }
1292 dentry->d_name.name = dname;
1293
1294 dentry->d_name.len = name->len;
1295 dentry->d_name.hash = name->hash;
1296 memcpy(dname, name->name, name->len);
1297 dname[name->len] = 0;
1298
1299 dentry->d_count = 1;
1300 dentry->d_flags = DCACHE_UNHASHED;
1301 spin_lock_init(&dentry->d_lock);
1302 seqcount_init(&dentry->d_seq);
1303 dentry->d_inode = NULL;
1304 dentry->d_parent = NULL;
1305 dentry->d_sb = NULL;
1306 dentry->d_op = NULL;
1307 dentry->d_fsdata = NULL;
1308 INIT_HLIST_BL_NODE(&dentry->d_hash);
1309 INIT_LIST_HEAD(&dentry->d_lru);
1310 INIT_LIST_HEAD(&dentry->d_subdirs);
1311 INIT_LIST_HEAD(&dentry->d_alias);
1312 INIT_LIST_HEAD(&dentry->d_u.d_child);
1313
1314 if (parent) {
1315 spin_lock(&parent->d_lock);
1316 /*
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1319 */
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1322 dentry->d_sb = parent->d_sb;
1323 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1324 spin_unlock(&parent->d_lock);
1325 }
1326
1327 this_cpu_inc(nr_dentry);
1328
1329 return dentry;
1330 }
1331 EXPORT_SYMBOL(d_alloc);
1332
1333 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1334 {
1335 struct dentry *dentry = d_alloc(NULL, name);
1336 if (dentry) {
1337 dentry->d_sb = sb;
1338 dentry->d_parent = dentry;
1339 dentry->d_flags |= DCACHE_DISCONNECTED;
1340 }
1341 return dentry;
1342 }
1343 EXPORT_SYMBOL(d_alloc_pseudo);
1344
1345 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1346 {
1347 struct qstr q;
1348
1349 q.name = name;
1350 q.len = strlen(name);
1351 q.hash = full_name_hash(q.name, q.len);
1352 return d_alloc(parent, &q);
1353 }
1354 EXPORT_SYMBOL(d_alloc_name);
1355
1356 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1357 {
1358 BUG_ON(dentry->d_op);
1359 BUG_ON(dentry->d_flags & (DCACHE_OP_HASH |
1360 DCACHE_OP_COMPARE |
1361 DCACHE_OP_REVALIDATE |
1362 DCACHE_OP_DELETE ));
1363 dentry->d_op = op;
1364 if (!op)
1365 return;
1366 if (op->d_hash)
1367 dentry->d_flags |= DCACHE_OP_HASH;
1368 if (op->d_compare)
1369 dentry->d_flags |= DCACHE_OP_COMPARE;
1370 if (op->d_revalidate)
1371 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1372 if (op->d_delete)
1373 dentry->d_flags |= DCACHE_OP_DELETE;
1374
1375 }
1376 EXPORT_SYMBOL(d_set_d_op);
1377
1378 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1379 {
1380 spin_lock(&dentry->d_lock);
1381 if (inode)
1382 list_add(&dentry->d_alias, &inode->i_dentry);
1383 dentry->d_inode = inode;
1384 dentry_rcuwalk_barrier(dentry);
1385 spin_unlock(&dentry->d_lock);
1386 fsnotify_d_instantiate(dentry, inode);
1387 }
1388
1389 /**
1390 * d_instantiate - fill in inode information for a dentry
1391 * @entry: dentry to complete
1392 * @inode: inode to attach to this dentry
1393 *
1394 * Fill in inode information in the entry.
1395 *
1396 * This turns negative dentries into productive full members
1397 * of society.
1398 *
1399 * NOTE! This assumes that the inode count has been incremented
1400 * (or otherwise set) by the caller to indicate that it is now
1401 * in use by the dcache.
1402 */
1403
1404 void d_instantiate(struct dentry *entry, struct inode * inode)
1405 {
1406 BUG_ON(!list_empty(&entry->d_alias));
1407 if (inode)
1408 spin_lock(&inode->i_lock);
1409 __d_instantiate(entry, inode);
1410 if (inode)
1411 spin_unlock(&inode->i_lock);
1412 security_d_instantiate(entry, inode);
1413 }
1414 EXPORT_SYMBOL(d_instantiate);
1415
1416 /**
1417 * d_instantiate_unique - instantiate a non-aliased dentry
1418 * @entry: dentry to instantiate
1419 * @inode: inode to attach to this dentry
1420 *
1421 * Fill in inode information in the entry. On success, it returns NULL.
1422 * If an unhashed alias of "entry" already exists, then we return the
1423 * aliased dentry instead and drop one reference to inode.
1424 *
1425 * Note that in order to avoid conflicts with rename() etc, the caller
1426 * had better be holding the parent directory semaphore.
1427 *
1428 * This also assumes that the inode count has been incremented
1429 * (or otherwise set) by the caller to indicate that it is now
1430 * in use by the dcache.
1431 */
1432 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1433 struct inode *inode)
1434 {
1435 struct dentry *alias;
1436 int len = entry->d_name.len;
1437 const char *name = entry->d_name.name;
1438 unsigned int hash = entry->d_name.hash;
1439
1440 if (!inode) {
1441 __d_instantiate(entry, NULL);
1442 return NULL;
1443 }
1444
1445 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1446 struct qstr *qstr = &alias->d_name;
1447
1448 /*
1449 * Don't need alias->d_lock here, because aliases with
1450 * d_parent == entry->d_parent are not subject to name or
1451 * parent changes, because the parent inode i_mutex is held.
1452 */
1453 if (qstr->hash != hash)
1454 continue;
1455 if (alias->d_parent != entry->d_parent)
1456 continue;
1457 if (dentry_cmp(qstr->name, qstr->len, name, len))
1458 continue;
1459 __dget(alias);
1460 return alias;
1461 }
1462
1463 __d_instantiate(entry, inode);
1464 return NULL;
1465 }
1466
1467 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1468 {
1469 struct dentry *result;
1470
1471 BUG_ON(!list_empty(&entry->d_alias));
1472
1473 if (inode)
1474 spin_lock(&inode->i_lock);
1475 result = __d_instantiate_unique(entry, inode);
1476 if (inode)
1477 spin_unlock(&inode->i_lock);
1478
1479 if (!result) {
1480 security_d_instantiate(entry, inode);
1481 return NULL;
1482 }
1483
1484 BUG_ON(!d_unhashed(result));
1485 iput(inode);
1486 return result;
1487 }
1488
1489 EXPORT_SYMBOL(d_instantiate_unique);
1490
1491 /**
1492 * d_alloc_root - allocate root dentry
1493 * @root_inode: inode to allocate the root for
1494 *
1495 * Allocate a root ("/") dentry for the inode given. The inode is
1496 * instantiated and returned. %NULL is returned if there is insufficient
1497 * memory or the inode passed is %NULL.
1498 */
1499
1500 struct dentry * d_alloc_root(struct inode * root_inode)
1501 {
1502 struct dentry *res = NULL;
1503
1504 if (root_inode) {
1505 static const struct qstr name = { .name = "/", .len = 1 };
1506
1507 res = d_alloc(NULL, &name);
1508 if (res) {
1509 res->d_sb = root_inode->i_sb;
1510 res->d_parent = res;
1511 d_instantiate(res, root_inode);
1512 }
1513 }
1514 return res;
1515 }
1516 EXPORT_SYMBOL(d_alloc_root);
1517
1518 /**
1519 * d_obtain_alias - find or allocate a dentry for a given inode
1520 * @inode: inode to allocate the dentry for
1521 *
1522 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1523 * similar open by handle operations. The returned dentry may be anonymous,
1524 * or may have a full name (if the inode was already in the cache).
1525 *
1526 * When called on a directory inode, we must ensure that the inode only ever
1527 * has one dentry. If a dentry is found, that is returned instead of
1528 * allocating a new one.
1529 *
1530 * On successful return, the reference to the inode has been transferred
1531 * to the dentry. In case of an error the reference on the inode is released.
1532 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1533 * be passed in and will be the error will be propagate to the return value,
1534 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1535 */
1536 struct dentry *d_obtain_alias(struct inode *inode)
1537 {
1538 static const struct qstr anonstring = { .name = "" };
1539 struct dentry *tmp;
1540 struct dentry *res;
1541
1542 if (!inode)
1543 return ERR_PTR(-ESTALE);
1544 if (IS_ERR(inode))
1545 return ERR_CAST(inode);
1546
1547 res = d_find_alias(inode);
1548 if (res)
1549 goto out_iput;
1550
1551 tmp = d_alloc(NULL, &anonstring);
1552 if (!tmp) {
1553 res = ERR_PTR(-ENOMEM);
1554 goto out_iput;
1555 }
1556 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1557
1558
1559 spin_lock(&inode->i_lock);
1560 res = __d_find_alias(inode, 0);
1561 if (res) {
1562 spin_unlock(&inode->i_lock);
1563 dput(tmp);
1564 goto out_iput;
1565 }
1566
1567 /* attach a disconnected dentry */
1568 spin_lock(&tmp->d_lock);
1569 tmp->d_sb = inode->i_sb;
1570 tmp->d_inode = inode;
1571 tmp->d_flags |= DCACHE_DISCONNECTED;
1572 list_add(&tmp->d_alias, &inode->i_dentry);
1573 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1574 tmp->d_flags &= ~DCACHE_UNHASHED;
1575 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1576 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1577 spin_unlock(&tmp->d_lock);
1578 spin_unlock(&inode->i_lock);
1579
1580 return tmp;
1581
1582 out_iput:
1583 iput(inode);
1584 return res;
1585 }
1586 EXPORT_SYMBOL(d_obtain_alias);
1587
1588 /**
1589 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1590 * @inode: the inode which may have a disconnected dentry
1591 * @dentry: a negative dentry which we want to point to the inode.
1592 *
1593 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1594 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1595 * and return it, else simply d_add the inode to the dentry and return NULL.
1596 *
1597 * This is needed in the lookup routine of any filesystem that is exportable
1598 * (via knfsd) so that we can build dcache paths to directories effectively.
1599 *
1600 * If a dentry was found and moved, then it is returned. Otherwise NULL
1601 * is returned. This matches the expected return value of ->lookup.
1602 *
1603 */
1604 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1605 {
1606 struct dentry *new = NULL;
1607
1608 if (inode && S_ISDIR(inode->i_mode)) {
1609 spin_lock(&inode->i_lock);
1610 new = __d_find_alias(inode, 1);
1611 if (new) {
1612 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1613 spin_unlock(&inode->i_lock);
1614 security_d_instantiate(new, inode);
1615 d_move(new, dentry);
1616 iput(inode);
1617 } else {
1618 /* already taking inode->i_lock, so d_add() by hand */
1619 __d_instantiate(dentry, inode);
1620 spin_unlock(&inode->i_lock);
1621 security_d_instantiate(dentry, inode);
1622 d_rehash(dentry);
1623 }
1624 } else
1625 d_add(dentry, inode);
1626 return new;
1627 }
1628 EXPORT_SYMBOL(d_splice_alias);
1629
1630 /**
1631 * d_add_ci - lookup or allocate new dentry with case-exact name
1632 * @inode: the inode case-insensitive lookup has found
1633 * @dentry: the negative dentry that was passed to the parent's lookup func
1634 * @name: the case-exact name to be associated with the returned dentry
1635 *
1636 * This is to avoid filling the dcache with case-insensitive names to the
1637 * same inode, only the actual correct case is stored in the dcache for
1638 * case-insensitive filesystems.
1639 *
1640 * For a case-insensitive lookup match and if the the case-exact dentry
1641 * already exists in in the dcache, use it and return it.
1642 *
1643 * If no entry exists with the exact case name, allocate new dentry with
1644 * the exact case, and return the spliced entry.
1645 */
1646 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1647 struct qstr *name)
1648 {
1649 int error;
1650 struct dentry *found;
1651 struct dentry *new;
1652
1653 /*
1654 * First check if a dentry matching the name already exists,
1655 * if not go ahead and create it now.
1656 */
1657 found = d_hash_and_lookup(dentry->d_parent, name);
1658 if (!found) {
1659 new = d_alloc(dentry->d_parent, name);
1660 if (!new) {
1661 error = -ENOMEM;
1662 goto err_out;
1663 }
1664
1665 found = d_splice_alias(inode, new);
1666 if (found) {
1667 dput(new);
1668 return found;
1669 }
1670 return new;
1671 }
1672
1673 /*
1674 * If a matching dentry exists, and it's not negative use it.
1675 *
1676 * Decrement the reference count to balance the iget() done
1677 * earlier on.
1678 */
1679 if (found->d_inode) {
1680 if (unlikely(found->d_inode != inode)) {
1681 /* This can't happen because bad inodes are unhashed. */
1682 BUG_ON(!is_bad_inode(inode));
1683 BUG_ON(!is_bad_inode(found->d_inode));
1684 }
1685 iput(inode);
1686 return found;
1687 }
1688
1689 /*
1690 * Negative dentry: instantiate it unless the inode is a directory and
1691 * already has a dentry.
1692 */
1693 spin_lock(&inode->i_lock);
1694 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1695 __d_instantiate(found, inode);
1696 spin_unlock(&inode->i_lock);
1697 security_d_instantiate(found, inode);
1698 return found;
1699 }
1700
1701 /*
1702 * In case a directory already has a (disconnected) entry grab a
1703 * reference to it, move it in place and use it.
1704 */
1705 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1706 __dget(new);
1707 spin_unlock(&inode->i_lock);
1708 security_d_instantiate(found, inode);
1709 d_move(new, found);
1710 iput(inode);
1711 dput(found);
1712 return new;
1713
1714 err_out:
1715 iput(inode);
1716 return ERR_PTR(error);
1717 }
1718 EXPORT_SYMBOL(d_add_ci);
1719
1720 /**
1721 * __d_lookup_rcu - search for a dentry (racy, store-free)
1722 * @parent: parent dentry
1723 * @name: qstr of name we wish to find
1724 * @seq: returns d_seq value at the point where the dentry was found
1725 * @inode: returns dentry->d_inode when the inode was found valid.
1726 * Returns: dentry, or NULL
1727 *
1728 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1729 * resolution (store-free path walking) design described in
1730 * Documentation/filesystems/path-lookup.txt.
1731 *
1732 * This is not to be used outside core vfs.
1733 *
1734 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1735 * held, and rcu_read_lock held. The returned dentry must not be stored into
1736 * without taking d_lock and checking d_seq sequence count against @seq
1737 * returned here.
1738 *
1739 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1740 * function.
1741 *
1742 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1743 * the returned dentry, so long as its parent's seqlock is checked after the
1744 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1745 * is formed, giving integrity down the path walk.
1746 */
1747 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1748 unsigned *seq, struct inode **inode)
1749 {
1750 unsigned int len = name->len;
1751 unsigned int hash = name->hash;
1752 const unsigned char *str = name->name;
1753 struct dcache_hash_bucket *b = d_hash(parent, hash);
1754 struct hlist_bl_node *node;
1755 struct dentry *dentry;
1756
1757 /*
1758 * Note: There is significant duplication with __d_lookup_rcu which is
1759 * required to prevent single threaded performance regressions
1760 * especially on architectures where smp_rmb (in seqcounts) are costly.
1761 * Keep the two functions in sync.
1762 */
1763
1764 /*
1765 * The hash list is protected using RCU.
1766 *
1767 * Carefully use d_seq when comparing a candidate dentry, to avoid
1768 * races with d_move().
1769 *
1770 * It is possible that concurrent renames can mess up our list
1771 * walk here and result in missing our dentry, resulting in the
1772 * false-negative result. d_lookup() protects against concurrent
1773 * renames using rename_lock seqlock.
1774 *
1775 * See Documentation/vfs/dcache-locking.txt for more details.
1776 */
1777 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1778 struct inode *i;
1779 const char *tname;
1780 int tlen;
1781
1782 if (dentry->d_name.hash != hash)
1783 continue;
1784
1785 seqretry:
1786 *seq = read_seqcount_begin(&dentry->d_seq);
1787 if (dentry->d_parent != parent)
1788 continue;
1789 if (d_unhashed(dentry))
1790 continue;
1791 tlen = dentry->d_name.len;
1792 tname = dentry->d_name.name;
1793 i = dentry->d_inode;
1794 prefetch(tname);
1795 if (i)
1796 prefetch(i);
1797 /*
1798 * This seqcount check is required to ensure name and
1799 * len are loaded atomically, so as not to walk off the
1800 * edge of memory when walking. If we could load this
1801 * atomically some other way, we could drop this check.
1802 */
1803 if (read_seqcount_retry(&dentry->d_seq, *seq))
1804 goto seqretry;
1805 if (parent->d_flags & DCACHE_OP_COMPARE) {
1806 if (parent->d_op->d_compare(parent, *inode,
1807 dentry, i,
1808 tlen, tname, name))
1809 continue;
1810 } else {
1811 if (dentry_cmp(tname, tlen, str, len))
1812 continue;
1813 }
1814 /*
1815 * No extra seqcount check is required after the name
1816 * compare. The caller must perform a seqcount check in
1817 * order to do anything useful with the returned dentry
1818 * anyway.
1819 */
1820 *inode = i;
1821 return dentry;
1822 }
1823 return NULL;
1824 }
1825
1826 /**
1827 * d_lookup - search for a dentry
1828 * @parent: parent dentry
1829 * @name: qstr of name we wish to find
1830 * Returns: dentry, or NULL
1831 *
1832 * d_lookup searches the children of the parent dentry for the name in
1833 * question. If the dentry is found its reference count is incremented and the
1834 * dentry is returned. The caller must use dput to free the entry when it has
1835 * finished using it. %NULL is returned if the dentry does not exist.
1836 */
1837 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1838 {
1839 struct dentry *dentry;
1840 unsigned seq;
1841
1842 do {
1843 seq = read_seqbegin(&rename_lock);
1844 dentry = __d_lookup(parent, name);
1845 if (dentry)
1846 break;
1847 } while (read_seqretry(&rename_lock, seq));
1848 return dentry;
1849 }
1850 EXPORT_SYMBOL(d_lookup);
1851
1852 /**
1853 * __d_lookup - search for a dentry (racy)
1854 * @parent: parent dentry
1855 * @name: qstr of name we wish to find
1856 * Returns: dentry, or NULL
1857 *
1858 * __d_lookup is like d_lookup, however it may (rarely) return a
1859 * false-negative result due to unrelated rename activity.
1860 *
1861 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1862 * however it must be used carefully, eg. with a following d_lookup in
1863 * the case of failure.
1864 *
1865 * __d_lookup callers must be commented.
1866 */
1867 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1868 {
1869 unsigned int len = name->len;
1870 unsigned int hash = name->hash;
1871 const unsigned char *str = name->name;
1872 struct dcache_hash_bucket *b = d_hash(parent, hash);
1873 struct hlist_bl_node *node;
1874 struct dentry *found = NULL;
1875 struct dentry *dentry;
1876
1877 /*
1878 * Note: There is significant duplication with __d_lookup_rcu which is
1879 * required to prevent single threaded performance regressions
1880 * especially on architectures where smp_rmb (in seqcounts) are costly.
1881 * Keep the two functions in sync.
1882 */
1883
1884 /*
1885 * The hash list is protected using RCU.
1886 *
1887 * Take d_lock when comparing a candidate dentry, to avoid races
1888 * with d_move().
1889 *
1890 * It is possible that concurrent renames can mess up our list
1891 * walk here and result in missing our dentry, resulting in the
1892 * false-negative result. d_lookup() protects against concurrent
1893 * renames using rename_lock seqlock.
1894 *
1895 * See Documentation/vfs/dcache-locking.txt for more details.
1896 */
1897 rcu_read_lock();
1898
1899 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1900 const char *tname;
1901 int tlen;
1902
1903 if (dentry->d_name.hash != hash)
1904 continue;
1905
1906 spin_lock(&dentry->d_lock);
1907 if (dentry->d_parent != parent)
1908 goto next;
1909 if (d_unhashed(dentry))
1910 goto next;
1911
1912 /*
1913 * It is safe to compare names since d_move() cannot
1914 * change the qstr (protected by d_lock).
1915 */
1916 tlen = dentry->d_name.len;
1917 tname = dentry->d_name.name;
1918 if (parent->d_flags & DCACHE_OP_COMPARE) {
1919 if (parent->d_op->d_compare(parent, parent->d_inode,
1920 dentry, dentry->d_inode,
1921 tlen, tname, name))
1922 goto next;
1923 } else {
1924 if (dentry_cmp(tname, tlen, str, len))
1925 goto next;
1926 }
1927
1928 dentry->d_count++;
1929 found = dentry;
1930 spin_unlock(&dentry->d_lock);
1931 break;
1932 next:
1933 spin_unlock(&dentry->d_lock);
1934 }
1935 rcu_read_unlock();
1936
1937 return found;
1938 }
1939
1940 /**
1941 * d_hash_and_lookup - hash the qstr then search for a dentry
1942 * @dir: Directory to search in
1943 * @name: qstr of name we wish to find
1944 *
1945 * On hash failure or on lookup failure NULL is returned.
1946 */
1947 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1948 {
1949 struct dentry *dentry = NULL;
1950
1951 /*
1952 * Check for a fs-specific hash function. Note that we must
1953 * calculate the standard hash first, as the d_op->d_hash()
1954 * routine may choose to leave the hash value unchanged.
1955 */
1956 name->hash = full_name_hash(name->name, name->len);
1957 if (dir->d_flags & DCACHE_OP_HASH) {
1958 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1959 goto out;
1960 }
1961 dentry = d_lookup(dir, name);
1962 out:
1963 return dentry;
1964 }
1965
1966 /**
1967 * d_validate - verify dentry provided from insecure source (deprecated)
1968 * @dentry: The dentry alleged to be valid child of @dparent
1969 * @dparent: The parent dentry (known to be valid)
1970 *
1971 * An insecure source has sent us a dentry, here we verify it and dget() it.
1972 * This is used by ncpfs in its readdir implementation.
1973 * Zero is returned in the dentry is invalid.
1974 *
1975 * This function is slow for big directories, and deprecated, do not use it.
1976 */
1977 int d_validate(struct dentry *dentry, struct dentry *dparent)
1978 {
1979 struct dentry *child;
1980
1981 spin_lock(&dparent->d_lock);
1982 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1983 if (dentry == child) {
1984 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1985 __dget_dlock(dentry);
1986 spin_unlock(&dentry->d_lock);
1987 spin_unlock(&dparent->d_lock);
1988 return 1;
1989 }
1990 }
1991 spin_unlock(&dparent->d_lock);
1992
1993 return 0;
1994 }
1995 EXPORT_SYMBOL(d_validate);
1996
1997 /*
1998 * When a file is deleted, we have two options:
1999 * - turn this dentry into a negative dentry
2000 * - unhash this dentry and free it.
2001 *
2002 * Usually, we want to just turn this into
2003 * a negative dentry, but if anybody else is
2004 * currently using the dentry or the inode
2005 * we can't do that and we fall back on removing
2006 * it from the hash queues and waiting for
2007 * it to be deleted later when it has no users
2008 */
2009
2010 /**
2011 * d_delete - delete a dentry
2012 * @dentry: The dentry to delete
2013 *
2014 * Turn the dentry into a negative dentry if possible, otherwise
2015 * remove it from the hash queues so it can be deleted later
2016 */
2017
2018 void d_delete(struct dentry * dentry)
2019 {
2020 struct inode *inode;
2021 int isdir = 0;
2022 /*
2023 * Are we the only user?
2024 */
2025 again:
2026 spin_lock(&dentry->d_lock);
2027 inode = dentry->d_inode;
2028 isdir = S_ISDIR(inode->i_mode);
2029 if (dentry->d_count == 1) {
2030 if (inode && !spin_trylock(&inode->i_lock)) {
2031 spin_unlock(&dentry->d_lock);
2032 cpu_relax();
2033 goto again;
2034 }
2035 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2036 dentry_unlink_inode(dentry);
2037 fsnotify_nameremove(dentry, isdir);
2038 return;
2039 }
2040
2041 if (!d_unhashed(dentry))
2042 __d_drop(dentry);
2043
2044 spin_unlock(&dentry->d_lock);
2045
2046 fsnotify_nameremove(dentry, isdir);
2047 }
2048 EXPORT_SYMBOL(d_delete);
2049
2050 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2051 {
2052 BUG_ON(!d_unhashed(entry));
2053 spin_lock_bucket(b);
2054 entry->d_flags &= ~DCACHE_UNHASHED;
2055 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2056 spin_unlock_bucket(b);
2057 }
2058
2059 static void _d_rehash(struct dentry * entry)
2060 {
2061 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2062 }
2063
2064 /**
2065 * d_rehash - add an entry back to the hash
2066 * @entry: dentry to add to the hash
2067 *
2068 * Adds a dentry to the hash according to its name.
2069 */
2070
2071 void d_rehash(struct dentry * entry)
2072 {
2073 spin_lock(&entry->d_lock);
2074 _d_rehash(entry);
2075 spin_unlock(&entry->d_lock);
2076 }
2077 EXPORT_SYMBOL(d_rehash);
2078
2079 /**
2080 * dentry_update_name_case - update case insensitive dentry with a new name
2081 * @dentry: dentry to be updated
2082 * @name: new name
2083 *
2084 * Update a case insensitive dentry with new case of name.
2085 *
2086 * dentry must have been returned by d_lookup with name @name. Old and new
2087 * name lengths must match (ie. no d_compare which allows mismatched name
2088 * lengths).
2089 *
2090 * Parent inode i_mutex must be held over d_lookup and into this call (to
2091 * keep renames and concurrent inserts, and readdir(2) away).
2092 */
2093 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2094 {
2095 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2096 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2097
2098 spin_lock(&dentry->d_lock);
2099 write_seqcount_begin(&dentry->d_seq);
2100 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2101 write_seqcount_end(&dentry->d_seq);
2102 spin_unlock(&dentry->d_lock);
2103 }
2104 EXPORT_SYMBOL(dentry_update_name_case);
2105
2106 static void switch_names(struct dentry *dentry, struct dentry *target)
2107 {
2108 if (dname_external(target)) {
2109 if (dname_external(dentry)) {
2110 /*
2111 * Both external: swap the pointers
2112 */
2113 swap(target->d_name.name, dentry->d_name.name);
2114 } else {
2115 /*
2116 * dentry:internal, target:external. Steal target's
2117 * storage and make target internal.
2118 */
2119 memcpy(target->d_iname, dentry->d_name.name,
2120 dentry->d_name.len + 1);
2121 dentry->d_name.name = target->d_name.name;
2122 target->d_name.name = target->d_iname;
2123 }
2124 } else {
2125 if (dname_external(dentry)) {
2126 /*
2127 * dentry:external, target:internal. Give dentry's
2128 * storage to target and make dentry internal
2129 */
2130 memcpy(dentry->d_iname, target->d_name.name,
2131 target->d_name.len + 1);
2132 target->d_name.name = dentry->d_name.name;
2133 dentry->d_name.name = dentry->d_iname;
2134 } else {
2135 /*
2136 * Both are internal. Just copy target to dentry
2137 */
2138 memcpy(dentry->d_iname, target->d_name.name,
2139 target->d_name.len + 1);
2140 dentry->d_name.len = target->d_name.len;
2141 return;
2142 }
2143 }
2144 swap(dentry->d_name.len, target->d_name.len);
2145 }
2146
2147 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2148 {
2149 /*
2150 * XXXX: do we really need to take target->d_lock?
2151 */
2152 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2153 spin_lock(&target->d_parent->d_lock);
2154 else {
2155 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2156 spin_lock(&dentry->d_parent->d_lock);
2157 spin_lock_nested(&target->d_parent->d_lock,
2158 DENTRY_D_LOCK_NESTED);
2159 } else {
2160 spin_lock(&target->d_parent->d_lock);
2161 spin_lock_nested(&dentry->d_parent->d_lock,
2162 DENTRY_D_LOCK_NESTED);
2163 }
2164 }
2165 if (target < dentry) {
2166 spin_lock_nested(&target->d_lock, 2);
2167 spin_lock_nested(&dentry->d_lock, 3);
2168 } else {
2169 spin_lock_nested(&dentry->d_lock, 2);
2170 spin_lock_nested(&target->d_lock, 3);
2171 }
2172 }
2173
2174 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2175 struct dentry *target)
2176 {
2177 if (target->d_parent != dentry->d_parent)
2178 spin_unlock(&dentry->d_parent->d_lock);
2179 if (target->d_parent != target)
2180 spin_unlock(&target->d_parent->d_lock);
2181 }
2182
2183 /*
2184 * When switching names, the actual string doesn't strictly have to
2185 * be preserved in the target - because we're dropping the target
2186 * anyway. As such, we can just do a simple memcpy() to copy over
2187 * the new name before we switch.
2188 *
2189 * Note that we have to be a lot more careful about getting the hash
2190 * switched - we have to switch the hash value properly even if it
2191 * then no longer matches the actual (corrupted) string of the target.
2192 * The hash value has to match the hash queue that the dentry is on..
2193 */
2194 /*
2195 * d_move - move a dentry
2196 * @dentry: entry to move
2197 * @target: new dentry
2198 *
2199 * Update the dcache to reflect the move of a file name. Negative
2200 * dcache entries should not be moved in this way.
2201 */
2202 void d_move(struct dentry * dentry, struct dentry * target)
2203 {
2204 if (!dentry->d_inode)
2205 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2206
2207 BUG_ON(d_ancestor(dentry, target));
2208 BUG_ON(d_ancestor(target, dentry));
2209
2210 write_seqlock(&rename_lock);
2211
2212 dentry_lock_for_move(dentry, target);
2213
2214 write_seqcount_begin(&dentry->d_seq);
2215 write_seqcount_begin(&target->d_seq);
2216
2217 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2218
2219 /*
2220 * Move the dentry to the target hash queue. Don't bother checking
2221 * for the same hash queue because of how unlikely it is.
2222 */
2223 __d_drop(dentry);
2224 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2225
2226 /* Unhash the target: dput() will then get rid of it */
2227 __d_drop(target);
2228
2229 list_del(&dentry->d_u.d_child);
2230 list_del(&target->d_u.d_child);
2231
2232 /* Switch the names.. */
2233 switch_names(dentry, target);
2234 swap(dentry->d_name.hash, target->d_name.hash);
2235
2236 /* ... and switch the parents */
2237 if (IS_ROOT(dentry)) {
2238 dentry->d_parent = target->d_parent;
2239 target->d_parent = target;
2240 INIT_LIST_HEAD(&target->d_u.d_child);
2241 } else {
2242 swap(dentry->d_parent, target->d_parent);
2243
2244 /* And add them back to the (new) parent lists */
2245 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2246 }
2247
2248 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2249
2250 write_seqcount_end(&target->d_seq);
2251 write_seqcount_end(&dentry->d_seq);
2252
2253 dentry_unlock_parents_for_move(dentry, target);
2254 spin_unlock(&target->d_lock);
2255 fsnotify_d_move(dentry);
2256 spin_unlock(&dentry->d_lock);
2257 write_sequnlock(&rename_lock);
2258 }
2259 EXPORT_SYMBOL(d_move);
2260
2261 /**
2262 * d_ancestor - search for an ancestor
2263 * @p1: ancestor dentry
2264 * @p2: child dentry
2265 *
2266 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2267 * an ancestor of p2, else NULL.
2268 */
2269 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2270 {
2271 struct dentry *p;
2272
2273 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2274 if (p->d_parent == p1)
2275 return p;
2276 }
2277 return NULL;
2278 }
2279
2280 /*
2281 * This helper attempts to cope with remotely renamed directories
2282 *
2283 * It assumes that the caller is already holding
2284 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2285 *
2286 * Note: If ever the locking in lock_rename() changes, then please
2287 * remember to update this too...
2288 */
2289 static struct dentry *__d_unalias(struct inode *inode,
2290 struct dentry *dentry, struct dentry *alias)
2291 {
2292 struct mutex *m1 = NULL, *m2 = NULL;
2293 struct dentry *ret;
2294
2295 /* If alias and dentry share a parent, then no extra locks required */
2296 if (alias->d_parent == dentry->d_parent)
2297 goto out_unalias;
2298
2299 /* Check for loops */
2300 ret = ERR_PTR(-ELOOP);
2301 if (d_ancestor(alias, dentry))
2302 goto out_err;
2303
2304 /* See lock_rename() */
2305 ret = ERR_PTR(-EBUSY);
2306 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2307 goto out_err;
2308 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2309 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2310 goto out_err;
2311 m2 = &alias->d_parent->d_inode->i_mutex;
2312 out_unalias:
2313 d_move(alias, dentry);
2314 ret = alias;
2315 out_err:
2316 spin_unlock(&inode->i_lock);
2317 if (m2)
2318 mutex_unlock(m2);
2319 if (m1)
2320 mutex_unlock(m1);
2321 return ret;
2322 }
2323
2324 /*
2325 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2326 * named dentry in place of the dentry to be replaced.
2327 * returns with anon->d_lock held!
2328 */
2329 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2330 {
2331 struct dentry *dparent, *aparent;
2332
2333 dentry_lock_for_move(anon, dentry);
2334
2335 write_seqcount_begin(&dentry->d_seq);
2336 write_seqcount_begin(&anon->d_seq);
2337
2338 dparent = dentry->d_parent;
2339 aparent = anon->d_parent;
2340
2341 switch_names(dentry, anon);
2342 swap(dentry->d_name.hash, anon->d_name.hash);
2343
2344 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2345 list_del(&dentry->d_u.d_child);
2346 if (!IS_ROOT(dentry))
2347 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2348 else
2349 INIT_LIST_HEAD(&dentry->d_u.d_child);
2350
2351 anon->d_parent = (dparent == dentry) ? anon : dparent;
2352 list_del(&anon->d_u.d_child);
2353 if (!IS_ROOT(anon))
2354 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2355 else
2356 INIT_LIST_HEAD(&anon->d_u.d_child);
2357
2358 write_seqcount_end(&dentry->d_seq);
2359 write_seqcount_end(&anon->d_seq);
2360
2361 dentry_unlock_parents_for_move(anon, dentry);
2362 spin_unlock(&dentry->d_lock);
2363
2364 /* anon->d_lock still locked, returns locked */
2365 anon->d_flags &= ~DCACHE_DISCONNECTED;
2366 }
2367
2368 /**
2369 * d_materialise_unique - introduce an inode into the tree
2370 * @dentry: candidate dentry
2371 * @inode: inode to bind to the dentry, to which aliases may be attached
2372 *
2373 * Introduces an dentry into the tree, substituting an extant disconnected
2374 * root directory alias in its place if there is one
2375 */
2376 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2377 {
2378 struct dentry *actual;
2379
2380 BUG_ON(!d_unhashed(dentry));
2381
2382 if (!inode) {
2383 actual = dentry;
2384 __d_instantiate(dentry, NULL);
2385 d_rehash(actual);
2386 goto out_nolock;
2387 }
2388
2389 spin_lock(&inode->i_lock);
2390
2391 if (S_ISDIR(inode->i_mode)) {
2392 struct dentry *alias;
2393
2394 /* Does an aliased dentry already exist? */
2395 alias = __d_find_alias(inode, 0);
2396 if (alias) {
2397 actual = alias;
2398 /* Is this an anonymous mountpoint that we could splice
2399 * into our tree? */
2400 if (IS_ROOT(alias)) {
2401 __d_materialise_dentry(dentry, alias);
2402 __d_drop(alias);
2403 goto found;
2404 }
2405 /* Nope, but we must(!) avoid directory aliasing */
2406 actual = __d_unalias(inode, dentry, alias);
2407 if (IS_ERR(actual))
2408 dput(alias);
2409 goto out_nolock;
2410 }
2411 }
2412
2413 /* Add a unique reference */
2414 actual = __d_instantiate_unique(dentry, inode);
2415 if (!actual)
2416 actual = dentry;
2417 else
2418 BUG_ON(!d_unhashed(actual));
2419
2420 spin_lock(&actual->d_lock);
2421 found:
2422 _d_rehash(actual);
2423 spin_unlock(&actual->d_lock);
2424 spin_unlock(&inode->i_lock);
2425 out_nolock:
2426 if (actual == dentry) {
2427 security_d_instantiate(dentry, inode);
2428 return NULL;
2429 }
2430
2431 iput(inode);
2432 return actual;
2433 }
2434 EXPORT_SYMBOL_GPL(d_materialise_unique);
2435
2436 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2437 {
2438 *buflen -= namelen;
2439 if (*buflen < 0)
2440 return -ENAMETOOLONG;
2441 *buffer -= namelen;
2442 memcpy(*buffer, str, namelen);
2443 return 0;
2444 }
2445
2446 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2447 {
2448 return prepend(buffer, buflen, name->name, name->len);
2449 }
2450
2451 /**
2452 * Prepend path string to a buffer
2453 *
2454 * @path: the dentry/vfsmount to report
2455 * @root: root vfsmnt/dentry (may be modified by this function)
2456 * @buffer: pointer to the end of the buffer
2457 * @buflen: pointer to buffer length
2458 *
2459 * Caller holds the rename_lock.
2460 *
2461 * If path is not reachable from the supplied root, then the value of
2462 * root is changed (without modifying refcounts).
2463 */
2464 static int prepend_path(const struct path *path, struct path *root,
2465 char **buffer, int *buflen)
2466 {
2467 struct dentry *dentry = path->dentry;
2468 struct vfsmount *vfsmnt = path->mnt;
2469 bool slash = false;
2470 int error = 0;
2471
2472 br_read_lock(vfsmount_lock);
2473 while (dentry != root->dentry || vfsmnt != root->mnt) {
2474 struct dentry * parent;
2475
2476 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2477 /* Global root? */
2478 if (vfsmnt->mnt_parent == vfsmnt) {
2479 goto global_root;
2480 }
2481 dentry = vfsmnt->mnt_mountpoint;
2482 vfsmnt = vfsmnt->mnt_parent;
2483 continue;
2484 }
2485 parent = dentry->d_parent;
2486 prefetch(parent);
2487 spin_lock(&dentry->d_lock);
2488 error = prepend_name(buffer, buflen, &dentry->d_name);
2489 spin_unlock(&dentry->d_lock);
2490 if (!error)
2491 error = prepend(buffer, buflen, "/", 1);
2492 if (error)
2493 break;
2494
2495 slash = true;
2496 dentry = parent;
2497 }
2498
2499 out:
2500 if (!error && !slash)
2501 error = prepend(buffer, buflen, "/", 1);
2502
2503 br_read_unlock(vfsmount_lock);
2504 return error;
2505
2506 global_root:
2507 /*
2508 * Filesystems needing to implement special "root names"
2509 * should do so with ->d_dname()
2510 */
2511 if (IS_ROOT(dentry) &&
2512 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2513 WARN(1, "Root dentry has weird name <%.*s>\n",
2514 (int) dentry->d_name.len, dentry->d_name.name);
2515 }
2516 root->mnt = vfsmnt;
2517 root->dentry = dentry;
2518 goto out;
2519 }
2520
2521 /**
2522 * __d_path - return the path of a dentry
2523 * @path: the dentry/vfsmount to report
2524 * @root: root vfsmnt/dentry (may be modified by this function)
2525 * @buf: buffer to return value in
2526 * @buflen: buffer length
2527 *
2528 * Convert a dentry into an ASCII path name.
2529 *
2530 * Returns a pointer into the buffer or an error code if the
2531 * path was too long.
2532 *
2533 * "buflen" should be positive.
2534 *
2535 * If path is not reachable from the supplied root, then the value of
2536 * root is changed (without modifying refcounts).
2537 */
2538 char *__d_path(const struct path *path, struct path *root,
2539 char *buf, int buflen)
2540 {
2541 char *res = buf + buflen;
2542 int error;
2543
2544 prepend(&res, &buflen, "\0", 1);
2545 write_seqlock(&rename_lock);
2546 error = prepend_path(path, root, &res, &buflen);
2547 write_sequnlock(&rename_lock);
2548
2549 if (error)
2550 return ERR_PTR(error);
2551 return res;
2552 }
2553
2554 /*
2555 * same as __d_path but appends "(deleted)" for unlinked files.
2556 */
2557 static int path_with_deleted(const struct path *path, struct path *root,
2558 char **buf, int *buflen)
2559 {
2560 prepend(buf, buflen, "\0", 1);
2561 if (d_unlinked(path->dentry)) {
2562 int error = prepend(buf, buflen, " (deleted)", 10);
2563 if (error)
2564 return error;
2565 }
2566
2567 return prepend_path(path, root, buf, buflen);
2568 }
2569
2570 static int prepend_unreachable(char **buffer, int *buflen)
2571 {
2572 return prepend(buffer, buflen, "(unreachable)", 13);
2573 }
2574
2575 /**
2576 * d_path - return the path of a dentry
2577 * @path: path to report
2578 * @buf: buffer to return value in
2579 * @buflen: buffer length
2580 *
2581 * Convert a dentry into an ASCII path name. If the entry has been deleted
2582 * the string " (deleted)" is appended. Note that this is ambiguous.
2583 *
2584 * Returns a pointer into the buffer or an error code if the path was
2585 * too long. Note: Callers should use the returned pointer, not the passed
2586 * in buffer, to use the name! The implementation often starts at an offset
2587 * into the buffer, and may leave 0 bytes at the start.
2588 *
2589 * "buflen" should be positive.
2590 */
2591 char *d_path(const struct path *path, char *buf, int buflen)
2592 {
2593 char *res = buf + buflen;
2594 struct path root;
2595 struct path tmp;
2596 int error;
2597
2598 /*
2599 * We have various synthetic filesystems that never get mounted. On
2600 * these filesystems dentries are never used for lookup purposes, and
2601 * thus don't need to be hashed. They also don't need a name until a
2602 * user wants to identify the object in /proc/pid/fd/. The little hack
2603 * below allows us to generate a name for these objects on demand:
2604 */
2605 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2606 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2607
2608 get_fs_root(current->fs, &root);
2609 write_seqlock(&rename_lock);
2610 tmp = root;
2611 error = path_with_deleted(path, &tmp, &res, &buflen);
2612 if (error)
2613 res = ERR_PTR(error);
2614 write_sequnlock(&rename_lock);
2615 path_put(&root);
2616 return res;
2617 }
2618 EXPORT_SYMBOL(d_path);
2619
2620 /**
2621 * d_path_with_unreachable - return the path of a dentry
2622 * @path: path to report
2623 * @buf: buffer to return value in
2624 * @buflen: buffer length
2625 *
2626 * The difference from d_path() is that this prepends "(unreachable)"
2627 * to paths which are unreachable from the current process' root.
2628 */
2629 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2630 {
2631 char *res = buf + buflen;
2632 struct path root;
2633 struct path tmp;
2634 int error;
2635
2636 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2637 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2638
2639 get_fs_root(current->fs, &root);
2640 write_seqlock(&rename_lock);
2641 tmp = root;
2642 error = path_with_deleted(path, &tmp, &res, &buflen);
2643 if (!error && !path_equal(&tmp, &root))
2644 error = prepend_unreachable(&res, &buflen);
2645 write_sequnlock(&rename_lock);
2646 path_put(&root);
2647 if (error)
2648 res = ERR_PTR(error);
2649
2650 return res;
2651 }
2652
2653 /*
2654 * Helper function for dentry_operations.d_dname() members
2655 */
2656 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2657 const char *fmt, ...)
2658 {
2659 va_list args;
2660 char temp[64];
2661 int sz;
2662
2663 va_start(args, fmt);
2664 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2665 va_end(args);
2666
2667 if (sz > sizeof(temp) || sz > buflen)
2668 return ERR_PTR(-ENAMETOOLONG);
2669
2670 buffer += buflen - sz;
2671 return memcpy(buffer, temp, sz);
2672 }
2673
2674 /*
2675 * Write full pathname from the root of the filesystem into the buffer.
2676 */
2677 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2678 {
2679 char *end = buf + buflen;
2680 char *retval;
2681
2682 prepend(&end, &buflen, "\0", 1);
2683 if (buflen < 1)
2684 goto Elong;
2685 /* Get '/' right */
2686 retval = end-1;
2687 *retval = '/';
2688
2689 while (!IS_ROOT(dentry)) {
2690 struct dentry *parent = dentry->d_parent;
2691 int error;
2692
2693 prefetch(parent);
2694 spin_lock(&dentry->d_lock);
2695 error = prepend_name(&end, &buflen, &dentry->d_name);
2696 spin_unlock(&dentry->d_lock);
2697 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2698 goto Elong;
2699
2700 retval = end;
2701 dentry = parent;
2702 }
2703 return retval;
2704 Elong:
2705 return ERR_PTR(-ENAMETOOLONG);
2706 }
2707
2708 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2709 {
2710 char *retval;
2711
2712 write_seqlock(&rename_lock);
2713 retval = __dentry_path(dentry, buf, buflen);
2714 write_sequnlock(&rename_lock);
2715
2716 return retval;
2717 }
2718 EXPORT_SYMBOL(dentry_path_raw);
2719
2720 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2721 {
2722 char *p = NULL;
2723 char *retval;
2724
2725 write_seqlock(&rename_lock);
2726 if (d_unlinked(dentry)) {
2727 p = buf + buflen;
2728 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2729 goto Elong;
2730 buflen++;
2731 }
2732 retval = __dentry_path(dentry, buf, buflen);
2733 write_sequnlock(&rename_lock);
2734 if (!IS_ERR(retval) && p)
2735 *p = '/'; /* restore '/' overriden with '\0' */
2736 return retval;
2737 Elong:
2738 return ERR_PTR(-ENAMETOOLONG);
2739 }
2740
2741 /*
2742 * NOTE! The user-level library version returns a
2743 * character pointer. The kernel system call just
2744 * returns the length of the buffer filled (which
2745 * includes the ending '\0' character), or a negative
2746 * error value. So libc would do something like
2747 *
2748 * char *getcwd(char * buf, size_t size)
2749 * {
2750 * int retval;
2751 *
2752 * retval = sys_getcwd(buf, size);
2753 * if (retval >= 0)
2754 * return buf;
2755 * errno = -retval;
2756 * return NULL;
2757 * }
2758 */
2759 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2760 {
2761 int error;
2762 struct path pwd, root;
2763 char *page = (char *) __get_free_page(GFP_USER);
2764
2765 if (!page)
2766 return -ENOMEM;
2767
2768 get_fs_root_and_pwd(current->fs, &root, &pwd);
2769
2770 error = -ENOENT;
2771 write_seqlock(&rename_lock);
2772 if (!d_unlinked(pwd.dentry)) {
2773 unsigned long len;
2774 struct path tmp = root;
2775 char *cwd = page + PAGE_SIZE;
2776 int buflen = PAGE_SIZE;
2777
2778 prepend(&cwd, &buflen, "\0", 1);
2779 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2780 write_sequnlock(&rename_lock);
2781
2782 if (error)
2783 goto out;
2784
2785 /* Unreachable from current root */
2786 if (!path_equal(&tmp, &root)) {
2787 error = prepend_unreachable(&cwd, &buflen);
2788 if (error)
2789 goto out;
2790 }
2791
2792 error = -ERANGE;
2793 len = PAGE_SIZE + page - cwd;
2794 if (len <= size) {
2795 error = len;
2796 if (copy_to_user(buf, cwd, len))
2797 error = -EFAULT;
2798 }
2799 } else {
2800 write_sequnlock(&rename_lock);
2801 }
2802
2803 out:
2804 path_put(&pwd);
2805 path_put(&root);
2806 free_page((unsigned long) page);
2807 return error;
2808 }
2809
2810 /*
2811 * Test whether new_dentry is a subdirectory of old_dentry.
2812 *
2813 * Trivially implemented using the dcache structure
2814 */
2815
2816 /**
2817 * is_subdir - is new dentry a subdirectory of old_dentry
2818 * @new_dentry: new dentry
2819 * @old_dentry: old dentry
2820 *
2821 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2822 * Returns 0 otherwise.
2823 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2824 */
2825
2826 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2827 {
2828 int result;
2829 unsigned seq;
2830
2831 if (new_dentry == old_dentry)
2832 return 1;
2833
2834 do {
2835 /* for restarting inner loop in case of seq retry */
2836 seq = read_seqbegin(&rename_lock);
2837 /*
2838 * Need rcu_readlock to protect against the d_parent trashing
2839 * due to d_move
2840 */
2841 rcu_read_lock();
2842 if (d_ancestor(old_dentry, new_dentry))
2843 result = 1;
2844 else
2845 result = 0;
2846 rcu_read_unlock();
2847 } while (read_seqretry(&rename_lock, seq));
2848
2849 return result;
2850 }
2851
2852 int path_is_under(struct path *path1, struct path *path2)
2853 {
2854 struct vfsmount *mnt = path1->mnt;
2855 struct dentry *dentry = path1->dentry;
2856 int res;
2857
2858 br_read_lock(vfsmount_lock);
2859 if (mnt != path2->mnt) {
2860 for (;;) {
2861 if (mnt->mnt_parent == mnt) {
2862 br_read_unlock(vfsmount_lock);
2863 return 0;
2864 }
2865 if (mnt->mnt_parent == path2->mnt)
2866 break;
2867 mnt = mnt->mnt_parent;
2868 }
2869 dentry = mnt->mnt_mountpoint;
2870 }
2871 res = is_subdir(dentry, path2->dentry);
2872 br_read_unlock(vfsmount_lock);
2873 return res;
2874 }
2875 EXPORT_SYMBOL(path_is_under);
2876
2877 void d_genocide(struct dentry *root)
2878 {
2879 struct dentry *this_parent;
2880 struct list_head *next;
2881 unsigned seq;
2882 int locked = 0;
2883
2884 seq = read_seqbegin(&rename_lock);
2885 again:
2886 this_parent = root;
2887 spin_lock(&this_parent->d_lock);
2888 repeat:
2889 next = this_parent->d_subdirs.next;
2890 resume:
2891 while (next != &this_parent->d_subdirs) {
2892 struct list_head *tmp = next;
2893 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2894 next = tmp->next;
2895
2896 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2897 if (d_unhashed(dentry) || !dentry->d_inode) {
2898 spin_unlock(&dentry->d_lock);
2899 continue;
2900 }
2901 if (!list_empty(&dentry->d_subdirs)) {
2902 spin_unlock(&this_parent->d_lock);
2903 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2904 this_parent = dentry;
2905 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2906 goto repeat;
2907 }
2908 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2909 dentry->d_flags |= DCACHE_GENOCIDE;
2910 dentry->d_count--;
2911 }
2912 spin_unlock(&dentry->d_lock);
2913 }
2914 if (this_parent != root) {
2915 struct dentry *tmp;
2916 struct dentry *child;
2917
2918 tmp = this_parent->d_parent;
2919 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2920 this_parent->d_flags |= DCACHE_GENOCIDE;
2921 this_parent->d_count--;
2922 }
2923 rcu_read_lock();
2924 spin_unlock(&this_parent->d_lock);
2925 child = this_parent;
2926 this_parent = tmp;
2927 spin_lock(&this_parent->d_lock);
2928 /* might go back up the wrong parent if we have had a rename
2929 * or deletion */
2930 if (this_parent != child->d_parent ||
2931 (!locked && read_seqretry(&rename_lock, seq))) {
2932 spin_unlock(&this_parent->d_lock);
2933 rcu_read_unlock();
2934 goto rename_retry;
2935 }
2936 rcu_read_unlock();
2937 next = child->d_u.d_child.next;
2938 goto resume;
2939 }
2940 spin_unlock(&this_parent->d_lock);
2941 if (!locked && read_seqretry(&rename_lock, seq))
2942 goto rename_retry;
2943 if (locked)
2944 write_sequnlock(&rename_lock);
2945 return;
2946
2947 rename_retry:
2948 locked = 1;
2949 write_seqlock(&rename_lock);
2950 goto again;
2951 }
2952
2953 /**
2954 * find_inode_number - check for dentry with name
2955 * @dir: directory to check
2956 * @name: Name to find.
2957 *
2958 * Check whether a dentry already exists for the given name,
2959 * and return the inode number if it has an inode. Otherwise
2960 * 0 is returned.
2961 *
2962 * This routine is used to post-process directory listings for
2963 * filesystems using synthetic inode numbers, and is necessary
2964 * to keep getcwd() working.
2965 */
2966
2967 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2968 {
2969 struct dentry * dentry;
2970 ino_t ino = 0;
2971
2972 dentry = d_hash_and_lookup(dir, name);
2973 if (dentry) {
2974 if (dentry->d_inode)
2975 ino = dentry->d_inode->i_ino;
2976 dput(dentry);
2977 }
2978 return ino;
2979 }
2980 EXPORT_SYMBOL(find_inode_number);
2981
2982 static __initdata unsigned long dhash_entries;
2983 static int __init set_dhash_entries(char *str)
2984 {
2985 if (!str)
2986 return 0;
2987 dhash_entries = simple_strtoul(str, &str, 0);
2988 return 1;
2989 }
2990 __setup("dhash_entries=", set_dhash_entries);
2991
2992 static void __init dcache_init_early(void)
2993 {
2994 int loop;
2995
2996 /* If hashes are distributed across NUMA nodes, defer
2997 * hash allocation until vmalloc space is available.
2998 */
2999 if (hashdist)
3000 return;
3001
3002 dentry_hashtable =
3003 alloc_large_system_hash("Dentry cache",
3004 sizeof(struct dcache_hash_bucket),
3005 dhash_entries,
3006 13,
3007 HASH_EARLY,
3008 &d_hash_shift,
3009 &d_hash_mask,
3010 0);
3011
3012 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3013 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3014 }
3015
3016 static void __init dcache_init(void)
3017 {
3018 int loop;
3019
3020 /*
3021 * A constructor could be added for stable state like the lists,
3022 * but it is probably not worth it because of the cache nature
3023 * of the dcache.
3024 */
3025 dentry_cache = KMEM_CACHE(dentry,
3026 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3027
3028 register_shrinker(&dcache_shrinker);
3029
3030 /* Hash may have been set up in dcache_init_early */
3031 if (!hashdist)
3032 return;
3033
3034 dentry_hashtable =
3035 alloc_large_system_hash("Dentry cache",
3036 sizeof(struct dcache_hash_bucket),
3037 dhash_entries,
3038 13,
3039 0,
3040 &d_hash_shift,
3041 &d_hash_mask,
3042 0);
3043
3044 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3045 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3046 }
3047
3048 /* SLAB cache for __getname() consumers */
3049 struct kmem_cache *names_cachep __read_mostly;
3050 EXPORT_SYMBOL(names_cachep);
3051
3052 EXPORT_SYMBOL(d_genocide);
3053
3054 void __init vfs_caches_init_early(void)
3055 {
3056 dcache_init_early();
3057 inode_init_early();
3058 }
3059
3060 void __init vfs_caches_init(unsigned long mempages)
3061 {
3062 unsigned long reserve;
3063
3064 /* Base hash sizes on available memory, with a reserve equal to
3065 150% of current kernel size */
3066
3067 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3068 mempages -= reserve;
3069
3070 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3071 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3072
3073 dcache_init();
3074 inode_init();
3075 files_init(mempages);
3076 mnt_init();
3077 bdev_cache_init();
3078 chrdev_init();
3079 }
This page took 0.111162 seconds and 5 git commands to generate.