mm: introduce single zone pcplists drain
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121
122 /*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
134 static long get_nr_dentry(void)
135 {
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141 }
142
143 static long get_nr_dentry_unused(void)
144 {
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150 }
151
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
154 {
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160
161 /*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166
167 #include <asm/word-at-a-time.h>
168 /*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 unsigned long a,b,mask;
180
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
196 }
197
198 #else
199
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210 }
211
212 #endif
213
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 const unsigned char *cs;
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
236 }
237
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244 };
245
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250
251 static void __d_free(struct rcu_head *head)
252 {
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 kmem_cache_free(dentry_cache, dentry);
257 }
258
259 static void __d_free_external(struct rcu_head *head)
260 {
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
272 static void dentry_free(struct dentry *dentry)
273 {
274 if (unlikely(dname_external(dentry))) {
275 struct external_name *p = external_name(dentry);
276 if (likely(atomic_dec_and_test(&p->u.count))) {
277 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
278 return;
279 }
280 }
281 /* if dentry was never visible to RCU, immediate free is OK */
282 if (!(dentry->d_flags & DCACHE_RCUACCESS))
283 __d_free(&dentry->d_u.d_rcu);
284 else
285 call_rcu(&dentry->d_u.d_rcu, __d_free);
286 }
287
288 /**
289 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
290 * @dentry: the target dentry
291 * After this call, in-progress rcu-walk path lookup will fail. This
292 * should be called after unhashing, and after changing d_inode (if
293 * the dentry has not already been unhashed).
294 */
295 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
296 {
297 assert_spin_locked(&dentry->d_lock);
298 /* Go through a barrier */
299 write_seqcount_barrier(&dentry->d_seq);
300 }
301
302 /*
303 * Release the dentry's inode, using the filesystem
304 * d_iput() operation if defined. Dentry has no refcount
305 * and is unhashed.
306 */
307 static void dentry_iput(struct dentry * dentry)
308 __releases(dentry->d_lock)
309 __releases(dentry->d_inode->i_lock)
310 {
311 struct inode *inode = dentry->d_inode;
312 if (inode) {
313 dentry->d_inode = NULL;
314 hlist_del_init(&dentry->d_alias);
315 spin_unlock(&dentry->d_lock);
316 spin_unlock(&inode->i_lock);
317 if (!inode->i_nlink)
318 fsnotify_inoderemove(inode);
319 if (dentry->d_op && dentry->d_op->d_iput)
320 dentry->d_op->d_iput(dentry, inode);
321 else
322 iput(inode);
323 } else {
324 spin_unlock(&dentry->d_lock);
325 }
326 }
327
328 /*
329 * Release the dentry's inode, using the filesystem
330 * d_iput() operation if defined. dentry remains in-use.
331 */
332 static void dentry_unlink_inode(struct dentry * dentry)
333 __releases(dentry->d_lock)
334 __releases(dentry->d_inode->i_lock)
335 {
336 struct inode *inode = dentry->d_inode;
337 __d_clear_type(dentry);
338 dentry->d_inode = NULL;
339 hlist_del_init(&dentry->d_alias);
340 dentry_rcuwalk_barrier(dentry);
341 spin_unlock(&dentry->d_lock);
342 spin_unlock(&inode->i_lock);
343 if (!inode->i_nlink)
344 fsnotify_inoderemove(inode);
345 if (dentry->d_op && dentry->d_op->d_iput)
346 dentry->d_op->d_iput(dentry, inode);
347 else
348 iput(inode);
349 }
350
351 /*
352 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
353 * is in use - which includes both the "real" per-superblock
354 * LRU list _and_ the DCACHE_SHRINK_LIST use.
355 *
356 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
357 * on the shrink list (ie not on the superblock LRU list).
358 *
359 * The per-cpu "nr_dentry_unused" counters are updated with
360 * the DCACHE_LRU_LIST bit.
361 *
362 * These helper functions make sure we always follow the
363 * rules. d_lock must be held by the caller.
364 */
365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
366 static void d_lru_add(struct dentry *dentry)
367 {
368 D_FLAG_VERIFY(dentry, 0);
369 dentry->d_flags |= DCACHE_LRU_LIST;
370 this_cpu_inc(nr_dentry_unused);
371 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
372 }
373
374 static void d_lru_del(struct dentry *dentry)
375 {
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380 }
381
382 static void d_shrink_del(struct dentry *dentry)
383 {
384 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
385 list_del_init(&dentry->d_lru);
386 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
387 this_cpu_dec(nr_dentry_unused);
388 }
389
390 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
391 {
392 D_FLAG_VERIFY(dentry, 0);
393 list_add(&dentry->d_lru, list);
394 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
395 this_cpu_inc(nr_dentry_unused);
396 }
397
398 /*
399 * These can only be called under the global LRU lock, ie during the
400 * callback for freeing the LRU list. "isolate" removes it from the
401 * LRU lists entirely, while shrink_move moves it to the indicated
402 * private list.
403 */
404 static void d_lru_isolate(struct dentry *dentry)
405 {
406 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
407 dentry->d_flags &= ~DCACHE_LRU_LIST;
408 this_cpu_dec(nr_dentry_unused);
409 list_del_init(&dentry->d_lru);
410 }
411
412 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
413 {
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags |= DCACHE_SHRINK_LIST;
416 list_move_tail(&dentry->d_lru, list);
417 }
418
419 /*
420 * dentry_lru_(add|del)_list) must be called with d_lock held.
421 */
422 static void dentry_lru_add(struct dentry *dentry)
423 {
424 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
425 d_lru_add(dentry);
426 }
427
428 /**
429 * d_drop - drop a dentry
430 * @dentry: dentry to drop
431 *
432 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
433 * be found through a VFS lookup any more. Note that this is different from
434 * deleting the dentry - d_delete will try to mark the dentry negative if
435 * possible, giving a successful _negative_ lookup, while d_drop will
436 * just make the cache lookup fail.
437 *
438 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
439 * reason (NFS timeouts or autofs deletes).
440 *
441 * __d_drop requires dentry->d_lock.
442 */
443 void __d_drop(struct dentry *dentry)
444 {
445 if (!d_unhashed(dentry)) {
446 struct hlist_bl_head *b;
447 /*
448 * Hashed dentries are normally on the dentry hashtable,
449 * with the exception of those newly allocated by
450 * d_obtain_alias, which are always IS_ROOT:
451 */
452 if (unlikely(IS_ROOT(dentry)))
453 b = &dentry->d_sb->s_anon;
454 else
455 b = d_hash(dentry->d_parent, dentry->d_name.hash);
456
457 hlist_bl_lock(b);
458 __hlist_bl_del(&dentry->d_hash);
459 dentry->d_hash.pprev = NULL;
460 hlist_bl_unlock(b);
461 dentry_rcuwalk_barrier(dentry);
462 }
463 }
464 EXPORT_SYMBOL(__d_drop);
465
466 void d_drop(struct dentry *dentry)
467 {
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 spin_unlock(&dentry->d_lock);
471 }
472 EXPORT_SYMBOL(d_drop);
473
474 static void __dentry_kill(struct dentry *dentry)
475 {
476 struct dentry *parent = NULL;
477 bool can_free = true;
478 if (!IS_ROOT(dentry))
479 parent = dentry->d_parent;
480
481 /*
482 * The dentry is now unrecoverably dead to the world.
483 */
484 lockref_mark_dead(&dentry->d_lockref);
485
486 /*
487 * inform the fs via d_prune that this dentry is about to be
488 * unhashed and destroyed.
489 */
490 if (dentry->d_flags & DCACHE_OP_PRUNE)
491 dentry->d_op->d_prune(dentry);
492
493 if (dentry->d_flags & DCACHE_LRU_LIST) {
494 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 d_lru_del(dentry);
496 }
497 /* if it was on the hash then remove it */
498 __d_drop(dentry);
499 list_del(&dentry->d_u.d_child);
500 /*
501 * Inform d_walk() that we are no longer attached to the
502 * dentry tree
503 */
504 dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 if (parent)
506 spin_unlock(&parent->d_lock);
507 dentry_iput(dentry);
508 /*
509 * dentry_iput drops the locks, at which point nobody (except
510 * transient RCU lookups) can reach this dentry.
511 */
512 BUG_ON((int)dentry->d_lockref.count > 0);
513 this_cpu_dec(nr_dentry);
514 if (dentry->d_op && dentry->d_op->d_release)
515 dentry->d_op->d_release(dentry);
516
517 spin_lock(&dentry->d_lock);
518 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 dentry->d_flags |= DCACHE_MAY_FREE;
520 can_free = false;
521 }
522 spin_unlock(&dentry->d_lock);
523 if (likely(can_free))
524 dentry_free(dentry);
525 }
526
527 /*
528 * Finish off a dentry we've decided to kill.
529 * dentry->d_lock must be held, returns with it unlocked.
530 * If ref is non-zero, then decrement the refcount too.
531 * Returns dentry requiring refcount drop, or NULL if we're done.
532 */
533 static struct dentry *dentry_kill(struct dentry *dentry)
534 __releases(dentry->d_lock)
535 {
536 struct inode *inode = dentry->d_inode;
537 struct dentry *parent = NULL;
538
539 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
540 goto failed;
541
542 if (!IS_ROOT(dentry)) {
543 parent = dentry->d_parent;
544 if (unlikely(!spin_trylock(&parent->d_lock))) {
545 if (inode)
546 spin_unlock(&inode->i_lock);
547 goto failed;
548 }
549 }
550
551 __dentry_kill(dentry);
552 return parent;
553
554 failed:
555 spin_unlock(&dentry->d_lock);
556 cpu_relax();
557 return dentry; /* try again with same dentry */
558 }
559
560 static inline struct dentry *lock_parent(struct dentry *dentry)
561 {
562 struct dentry *parent = dentry->d_parent;
563 if (IS_ROOT(dentry))
564 return NULL;
565 if (unlikely((int)dentry->d_lockref.count < 0))
566 return NULL;
567 if (likely(spin_trylock(&parent->d_lock)))
568 return parent;
569 rcu_read_lock();
570 spin_unlock(&dentry->d_lock);
571 again:
572 parent = ACCESS_ONCE(dentry->d_parent);
573 spin_lock(&parent->d_lock);
574 /*
575 * We can't blindly lock dentry until we are sure
576 * that we won't violate the locking order.
577 * Any changes of dentry->d_parent must have
578 * been done with parent->d_lock held, so
579 * spin_lock() above is enough of a barrier
580 * for checking if it's still our child.
581 */
582 if (unlikely(parent != dentry->d_parent)) {
583 spin_unlock(&parent->d_lock);
584 goto again;
585 }
586 rcu_read_unlock();
587 if (parent != dentry)
588 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
589 else
590 parent = NULL;
591 return parent;
592 }
593
594 /*
595 * This is dput
596 *
597 * This is complicated by the fact that we do not want to put
598 * dentries that are no longer on any hash chain on the unused
599 * list: we'd much rather just get rid of them immediately.
600 *
601 * However, that implies that we have to traverse the dentry
602 * tree upwards to the parents which might _also_ now be
603 * scheduled for deletion (it may have been only waiting for
604 * its last child to go away).
605 *
606 * This tail recursion is done by hand as we don't want to depend
607 * on the compiler to always get this right (gcc generally doesn't).
608 * Real recursion would eat up our stack space.
609 */
610
611 /*
612 * dput - release a dentry
613 * @dentry: dentry to release
614 *
615 * Release a dentry. This will drop the usage count and if appropriate
616 * call the dentry unlink method as well as removing it from the queues and
617 * releasing its resources. If the parent dentries were scheduled for release
618 * they too may now get deleted.
619 */
620 void dput(struct dentry *dentry)
621 {
622 if (unlikely(!dentry))
623 return;
624
625 repeat:
626 if (lockref_put_or_lock(&dentry->d_lockref))
627 return;
628
629 /* Unreachable? Get rid of it */
630 if (unlikely(d_unhashed(dentry)))
631 goto kill_it;
632
633 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 if (dentry->d_op->d_delete(dentry))
635 goto kill_it;
636 }
637
638 if (!(dentry->d_flags & DCACHE_REFERENCED))
639 dentry->d_flags |= DCACHE_REFERENCED;
640 dentry_lru_add(dentry);
641
642 dentry->d_lockref.count--;
643 spin_unlock(&dentry->d_lock);
644 return;
645
646 kill_it:
647 dentry = dentry_kill(dentry);
648 if (dentry)
649 goto repeat;
650 }
651 EXPORT_SYMBOL(dput);
652
653
654 /* This must be called with d_lock held */
655 static inline void __dget_dlock(struct dentry *dentry)
656 {
657 dentry->d_lockref.count++;
658 }
659
660 static inline void __dget(struct dentry *dentry)
661 {
662 lockref_get(&dentry->d_lockref);
663 }
664
665 struct dentry *dget_parent(struct dentry *dentry)
666 {
667 int gotref;
668 struct dentry *ret;
669
670 /*
671 * Do optimistic parent lookup without any
672 * locking.
673 */
674 rcu_read_lock();
675 ret = ACCESS_ONCE(dentry->d_parent);
676 gotref = lockref_get_not_zero(&ret->d_lockref);
677 rcu_read_unlock();
678 if (likely(gotref)) {
679 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
680 return ret;
681 dput(ret);
682 }
683
684 repeat:
685 /*
686 * Don't need rcu_dereference because we re-check it was correct under
687 * the lock.
688 */
689 rcu_read_lock();
690 ret = dentry->d_parent;
691 spin_lock(&ret->d_lock);
692 if (unlikely(ret != dentry->d_parent)) {
693 spin_unlock(&ret->d_lock);
694 rcu_read_unlock();
695 goto repeat;
696 }
697 rcu_read_unlock();
698 BUG_ON(!ret->d_lockref.count);
699 ret->d_lockref.count++;
700 spin_unlock(&ret->d_lock);
701 return ret;
702 }
703 EXPORT_SYMBOL(dget_parent);
704
705 /**
706 * d_find_alias - grab a hashed alias of inode
707 * @inode: inode in question
708 *
709 * If inode has a hashed alias, or is a directory and has any alias,
710 * acquire the reference to alias and return it. Otherwise return NULL.
711 * Notice that if inode is a directory there can be only one alias and
712 * it can be unhashed only if it has no children, or if it is the root
713 * of a filesystem, or if the directory was renamed and d_revalidate
714 * was the first vfs operation to notice.
715 *
716 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
717 * any other hashed alias over that one.
718 */
719 static struct dentry *__d_find_alias(struct inode *inode)
720 {
721 struct dentry *alias, *discon_alias;
722
723 again:
724 discon_alias = NULL;
725 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
726 spin_lock(&alias->d_lock);
727 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
728 if (IS_ROOT(alias) &&
729 (alias->d_flags & DCACHE_DISCONNECTED)) {
730 discon_alias = alias;
731 } else {
732 __dget_dlock(alias);
733 spin_unlock(&alias->d_lock);
734 return alias;
735 }
736 }
737 spin_unlock(&alias->d_lock);
738 }
739 if (discon_alias) {
740 alias = discon_alias;
741 spin_lock(&alias->d_lock);
742 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
743 __dget_dlock(alias);
744 spin_unlock(&alias->d_lock);
745 return alias;
746 }
747 spin_unlock(&alias->d_lock);
748 goto again;
749 }
750 return NULL;
751 }
752
753 struct dentry *d_find_alias(struct inode *inode)
754 {
755 struct dentry *de = NULL;
756
757 if (!hlist_empty(&inode->i_dentry)) {
758 spin_lock(&inode->i_lock);
759 de = __d_find_alias(inode);
760 spin_unlock(&inode->i_lock);
761 }
762 return de;
763 }
764 EXPORT_SYMBOL(d_find_alias);
765
766 /*
767 * Try to kill dentries associated with this inode.
768 * WARNING: you must own a reference to inode.
769 */
770 void d_prune_aliases(struct inode *inode)
771 {
772 struct dentry *dentry;
773 restart:
774 spin_lock(&inode->i_lock);
775 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
776 spin_lock(&dentry->d_lock);
777 if (!dentry->d_lockref.count) {
778 struct dentry *parent = lock_parent(dentry);
779 if (likely(!dentry->d_lockref.count)) {
780 __dentry_kill(dentry);
781 dput(parent);
782 goto restart;
783 }
784 if (parent)
785 spin_unlock(&parent->d_lock);
786 }
787 spin_unlock(&dentry->d_lock);
788 }
789 spin_unlock(&inode->i_lock);
790 }
791 EXPORT_SYMBOL(d_prune_aliases);
792
793 static void shrink_dentry_list(struct list_head *list)
794 {
795 struct dentry *dentry, *parent;
796
797 while (!list_empty(list)) {
798 struct inode *inode;
799 dentry = list_entry(list->prev, struct dentry, d_lru);
800 spin_lock(&dentry->d_lock);
801 parent = lock_parent(dentry);
802
803 /*
804 * The dispose list is isolated and dentries are not accounted
805 * to the LRU here, so we can simply remove it from the list
806 * here regardless of whether it is referenced or not.
807 */
808 d_shrink_del(dentry);
809
810 /*
811 * We found an inuse dentry which was not removed from
812 * the LRU because of laziness during lookup. Do not free it.
813 */
814 if ((int)dentry->d_lockref.count > 0) {
815 spin_unlock(&dentry->d_lock);
816 if (parent)
817 spin_unlock(&parent->d_lock);
818 continue;
819 }
820
821
822 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
823 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
824 spin_unlock(&dentry->d_lock);
825 if (parent)
826 spin_unlock(&parent->d_lock);
827 if (can_free)
828 dentry_free(dentry);
829 continue;
830 }
831
832 inode = dentry->d_inode;
833 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
834 d_shrink_add(dentry, list);
835 spin_unlock(&dentry->d_lock);
836 if (parent)
837 spin_unlock(&parent->d_lock);
838 continue;
839 }
840
841 __dentry_kill(dentry);
842
843 /*
844 * We need to prune ancestors too. This is necessary to prevent
845 * quadratic behavior of shrink_dcache_parent(), but is also
846 * expected to be beneficial in reducing dentry cache
847 * fragmentation.
848 */
849 dentry = parent;
850 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
851 parent = lock_parent(dentry);
852 if (dentry->d_lockref.count != 1) {
853 dentry->d_lockref.count--;
854 spin_unlock(&dentry->d_lock);
855 if (parent)
856 spin_unlock(&parent->d_lock);
857 break;
858 }
859 inode = dentry->d_inode; /* can't be NULL */
860 if (unlikely(!spin_trylock(&inode->i_lock))) {
861 spin_unlock(&dentry->d_lock);
862 if (parent)
863 spin_unlock(&parent->d_lock);
864 cpu_relax();
865 continue;
866 }
867 __dentry_kill(dentry);
868 dentry = parent;
869 }
870 }
871 }
872
873 static enum lru_status
874 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
875 {
876 struct list_head *freeable = arg;
877 struct dentry *dentry = container_of(item, struct dentry, d_lru);
878
879
880 /*
881 * we are inverting the lru lock/dentry->d_lock here,
882 * so use a trylock. If we fail to get the lock, just skip
883 * it
884 */
885 if (!spin_trylock(&dentry->d_lock))
886 return LRU_SKIP;
887
888 /*
889 * Referenced dentries are still in use. If they have active
890 * counts, just remove them from the LRU. Otherwise give them
891 * another pass through the LRU.
892 */
893 if (dentry->d_lockref.count) {
894 d_lru_isolate(dentry);
895 spin_unlock(&dentry->d_lock);
896 return LRU_REMOVED;
897 }
898
899 if (dentry->d_flags & DCACHE_REFERENCED) {
900 dentry->d_flags &= ~DCACHE_REFERENCED;
901 spin_unlock(&dentry->d_lock);
902
903 /*
904 * The list move itself will be made by the common LRU code. At
905 * this point, we've dropped the dentry->d_lock but keep the
906 * lru lock. This is safe to do, since every list movement is
907 * protected by the lru lock even if both locks are held.
908 *
909 * This is guaranteed by the fact that all LRU management
910 * functions are intermediated by the LRU API calls like
911 * list_lru_add and list_lru_del. List movement in this file
912 * only ever occur through this functions or through callbacks
913 * like this one, that are called from the LRU API.
914 *
915 * The only exceptions to this are functions like
916 * shrink_dentry_list, and code that first checks for the
917 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
918 * operating only with stack provided lists after they are
919 * properly isolated from the main list. It is thus, always a
920 * local access.
921 */
922 return LRU_ROTATE;
923 }
924
925 d_lru_shrink_move(dentry, freeable);
926 spin_unlock(&dentry->d_lock);
927
928 return LRU_REMOVED;
929 }
930
931 /**
932 * prune_dcache_sb - shrink the dcache
933 * @sb: superblock
934 * @nr_to_scan : number of entries to try to free
935 * @nid: which node to scan for freeable entities
936 *
937 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
938 * done when we need more memory an called from the superblock shrinker
939 * function.
940 *
941 * This function may fail to free any resources if all the dentries are in
942 * use.
943 */
944 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
945 int nid)
946 {
947 LIST_HEAD(dispose);
948 long freed;
949
950 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
951 &dispose, &nr_to_scan);
952 shrink_dentry_list(&dispose);
953 return freed;
954 }
955
956 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
957 spinlock_t *lru_lock, void *arg)
958 {
959 struct list_head *freeable = arg;
960 struct dentry *dentry = container_of(item, struct dentry, d_lru);
961
962 /*
963 * we are inverting the lru lock/dentry->d_lock here,
964 * so use a trylock. If we fail to get the lock, just skip
965 * it
966 */
967 if (!spin_trylock(&dentry->d_lock))
968 return LRU_SKIP;
969
970 d_lru_shrink_move(dentry, freeable);
971 spin_unlock(&dentry->d_lock);
972
973 return LRU_REMOVED;
974 }
975
976
977 /**
978 * shrink_dcache_sb - shrink dcache for a superblock
979 * @sb: superblock
980 *
981 * Shrink the dcache for the specified super block. This is used to free
982 * the dcache before unmounting a file system.
983 */
984 void shrink_dcache_sb(struct super_block *sb)
985 {
986 long freed;
987
988 do {
989 LIST_HEAD(dispose);
990
991 freed = list_lru_walk(&sb->s_dentry_lru,
992 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
993
994 this_cpu_sub(nr_dentry_unused, freed);
995 shrink_dentry_list(&dispose);
996 } while (freed > 0);
997 }
998 EXPORT_SYMBOL(shrink_dcache_sb);
999
1000 /**
1001 * enum d_walk_ret - action to talke during tree walk
1002 * @D_WALK_CONTINUE: contrinue walk
1003 * @D_WALK_QUIT: quit walk
1004 * @D_WALK_NORETRY: quit when retry is needed
1005 * @D_WALK_SKIP: skip this dentry and its children
1006 */
1007 enum d_walk_ret {
1008 D_WALK_CONTINUE,
1009 D_WALK_QUIT,
1010 D_WALK_NORETRY,
1011 D_WALK_SKIP,
1012 };
1013
1014 /**
1015 * d_walk - walk the dentry tree
1016 * @parent: start of walk
1017 * @data: data passed to @enter() and @finish()
1018 * @enter: callback when first entering the dentry
1019 * @finish: callback when successfully finished the walk
1020 *
1021 * The @enter() and @finish() callbacks are called with d_lock held.
1022 */
1023 static void d_walk(struct dentry *parent, void *data,
1024 enum d_walk_ret (*enter)(void *, struct dentry *),
1025 void (*finish)(void *))
1026 {
1027 struct dentry *this_parent;
1028 struct list_head *next;
1029 unsigned seq = 0;
1030 enum d_walk_ret ret;
1031 bool retry = true;
1032
1033 again:
1034 read_seqbegin_or_lock(&rename_lock, &seq);
1035 this_parent = parent;
1036 spin_lock(&this_parent->d_lock);
1037
1038 ret = enter(data, this_parent);
1039 switch (ret) {
1040 case D_WALK_CONTINUE:
1041 break;
1042 case D_WALK_QUIT:
1043 case D_WALK_SKIP:
1044 goto out_unlock;
1045 case D_WALK_NORETRY:
1046 retry = false;
1047 break;
1048 }
1049 repeat:
1050 next = this_parent->d_subdirs.next;
1051 resume:
1052 while (next != &this_parent->d_subdirs) {
1053 struct list_head *tmp = next;
1054 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1055 next = tmp->next;
1056
1057 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1058
1059 ret = enter(data, dentry);
1060 switch (ret) {
1061 case D_WALK_CONTINUE:
1062 break;
1063 case D_WALK_QUIT:
1064 spin_unlock(&dentry->d_lock);
1065 goto out_unlock;
1066 case D_WALK_NORETRY:
1067 retry = false;
1068 break;
1069 case D_WALK_SKIP:
1070 spin_unlock(&dentry->d_lock);
1071 continue;
1072 }
1073
1074 if (!list_empty(&dentry->d_subdirs)) {
1075 spin_unlock(&this_parent->d_lock);
1076 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1077 this_parent = dentry;
1078 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1079 goto repeat;
1080 }
1081 spin_unlock(&dentry->d_lock);
1082 }
1083 /*
1084 * All done at this level ... ascend and resume the search.
1085 */
1086 if (this_parent != parent) {
1087 struct dentry *child = this_parent;
1088 this_parent = child->d_parent;
1089
1090 rcu_read_lock();
1091 spin_unlock(&child->d_lock);
1092 spin_lock(&this_parent->d_lock);
1093
1094 /*
1095 * might go back up the wrong parent if we have had a rename
1096 * or deletion
1097 */
1098 if (this_parent != child->d_parent ||
1099 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1100 need_seqretry(&rename_lock, seq)) {
1101 spin_unlock(&this_parent->d_lock);
1102 rcu_read_unlock();
1103 goto rename_retry;
1104 }
1105 rcu_read_unlock();
1106 next = child->d_u.d_child.next;
1107 goto resume;
1108 }
1109 if (need_seqretry(&rename_lock, seq)) {
1110 spin_unlock(&this_parent->d_lock);
1111 goto rename_retry;
1112 }
1113 if (finish)
1114 finish(data);
1115
1116 out_unlock:
1117 spin_unlock(&this_parent->d_lock);
1118 done_seqretry(&rename_lock, seq);
1119 return;
1120
1121 rename_retry:
1122 if (!retry)
1123 return;
1124 seq = 1;
1125 goto again;
1126 }
1127
1128 /*
1129 * Search for at least 1 mount point in the dentry's subdirs.
1130 * We descend to the next level whenever the d_subdirs
1131 * list is non-empty and continue searching.
1132 */
1133
1134 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1135 {
1136 int *ret = data;
1137 if (d_mountpoint(dentry)) {
1138 *ret = 1;
1139 return D_WALK_QUIT;
1140 }
1141 return D_WALK_CONTINUE;
1142 }
1143
1144 /**
1145 * have_submounts - check for mounts over a dentry
1146 * @parent: dentry to check.
1147 *
1148 * Return true if the parent or its subdirectories contain
1149 * a mount point
1150 */
1151 int have_submounts(struct dentry *parent)
1152 {
1153 int ret = 0;
1154
1155 d_walk(parent, &ret, check_mount, NULL);
1156
1157 return ret;
1158 }
1159 EXPORT_SYMBOL(have_submounts);
1160
1161 /*
1162 * Called by mount code to set a mountpoint and check if the mountpoint is
1163 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1164 * subtree can become unreachable).
1165 *
1166 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1167 * this reason take rename_lock and d_lock on dentry and ancestors.
1168 */
1169 int d_set_mounted(struct dentry *dentry)
1170 {
1171 struct dentry *p;
1172 int ret = -ENOENT;
1173 write_seqlock(&rename_lock);
1174 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1175 /* Need exclusion wrt. d_invalidate() */
1176 spin_lock(&p->d_lock);
1177 if (unlikely(d_unhashed(p))) {
1178 spin_unlock(&p->d_lock);
1179 goto out;
1180 }
1181 spin_unlock(&p->d_lock);
1182 }
1183 spin_lock(&dentry->d_lock);
1184 if (!d_unlinked(dentry)) {
1185 dentry->d_flags |= DCACHE_MOUNTED;
1186 ret = 0;
1187 }
1188 spin_unlock(&dentry->d_lock);
1189 out:
1190 write_sequnlock(&rename_lock);
1191 return ret;
1192 }
1193
1194 /*
1195 * Search the dentry child list of the specified parent,
1196 * and move any unused dentries to the end of the unused
1197 * list for prune_dcache(). We descend to the next level
1198 * whenever the d_subdirs list is non-empty and continue
1199 * searching.
1200 *
1201 * It returns zero iff there are no unused children,
1202 * otherwise it returns the number of children moved to
1203 * the end of the unused list. This may not be the total
1204 * number of unused children, because select_parent can
1205 * drop the lock and return early due to latency
1206 * constraints.
1207 */
1208
1209 struct select_data {
1210 struct dentry *start;
1211 struct list_head dispose;
1212 int found;
1213 };
1214
1215 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1216 {
1217 struct select_data *data = _data;
1218 enum d_walk_ret ret = D_WALK_CONTINUE;
1219
1220 if (data->start == dentry)
1221 goto out;
1222
1223 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1224 data->found++;
1225 } else {
1226 if (dentry->d_flags & DCACHE_LRU_LIST)
1227 d_lru_del(dentry);
1228 if (!dentry->d_lockref.count) {
1229 d_shrink_add(dentry, &data->dispose);
1230 data->found++;
1231 }
1232 }
1233 /*
1234 * We can return to the caller if we have found some (this
1235 * ensures forward progress). We'll be coming back to find
1236 * the rest.
1237 */
1238 if (!list_empty(&data->dispose))
1239 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1240 out:
1241 return ret;
1242 }
1243
1244 /**
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1247 *
1248 * Prune the dcache to remove unused children of the parent dentry.
1249 */
1250 void shrink_dcache_parent(struct dentry *parent)
1251 {
1252 for (;;) {
1253 struct select_data data;
1254
1255 INIT_LIST_HEAD(&data.dispose);
1256 data.start = parent;
1257 data.found = 0;
1258
1259 d_walk(parent, &data, select_collect, NULL);
1260 if (!data.found)
1261 break;
1262
1263 shrink_dentry_list(&data.dispose);
1264 cond_resched();
1265 }
1266 }
1267 EXPORT_SYMBOL(shrink_dcache_parent);
1268
1269 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1270 {
1271 /* it has busy descendents; complain about those instead */
1272 if (!list_empty(&dentry->d_subdirs))
1273 return D_WALK_CONTINUE;
1274
1275 /* root with refcount 1 is fine */
1276 if (dentry == _data && dentry->d_lockref.count == 1)
1277 return D_WALK_CONTINUE;
1278
1279 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1280 " still in use (%d) [unmount of %s %s]\n",
1281 dentry,
1282 dentry->d_inode ?
1283 dentry->d_inode->i_ino : 0UL,
1284 dentry,
1285 dentry->d_lockref.count,
1286 dentry->d_sb->s_type->name,
1287 dentry->d_sb->s_id);
1288 WARN_ON(1);
1289 return D_WALK_CONTINUE;
1290 }
1291
1292 static void do_one_tree(struct dentry *dentry)
1293 {
1294 shrink_dcache_parent(dentry);
1295 d_walk(dentry, dentry, umount_check, NULL);
1296 d_drop(dentry);
1297 dput(dentry);
1298 }
1299
1300 /*
1301 * destroy the dentries attached to a superblock on unmounting
1302 */
1303 void shrink_dcache_for_umount(struct super_block *sb)
1304 {
1305 struct dentry *dentry;
1306
1307 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1308
1309 dentry = sb->s_root;
1310 sb->s_root = NULL;
1311 do_one_tree(dentry);
1312
1313 while (!hlist_bl_empty(&sb->s_anon)) {
1314 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1315 do_one_tree(dentry);
1316 }
1317 }
1318
1319 struct detach_data {
1320 struct select_data select;
1321 struct dentry *mountpoint;
1322 };
1323 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1324 {
1325 struct detach_data *data = _data;
1326
1327 if (d_mountpoint(dentry)) {
1328 __dget_dlock(dentry);
1329 data->mountpoint = dentry;
1330 return D_WALK_QUIT;
1331 }
1332
1333 return select_collect(&data->select, dentry);
1334 }
1335
1336 static void check_and_drop(void *_data)
1337 {
1338 struct detach_data *data = _data;
1339
1340 if (!data->mountpoint && !data->select.found)
1341 __d_drop(data->select.start);
1342 }
1343
1344 /**
1345 * d_invalidate - detach submounts, prune dcache, and drop
1346 * @dentry: dentry to invalidate (aka detach, prune and drop)
1347 *
1348 * no dcache lock.
1349 *
1350 * The final d_drop is done as an atomic operation relative to
1351 * rename_lock ensuring there are no races with d_set_mounted. This
1352 * ensures there are no unhashed dentries on the path to a mountpoint.
1353 */
1354 void d_invalidate(struct dentry *dentry)
1355 {
1356 /*
1357 * If it's already been dropped, return OK.
1358 */
1359 spin_lock(&dentry->d_lock);
1360 if (d_unhashed(dentry)) {
1361 spin_unlock(&dentry->d_lock);
1362 return;
1363 }
1364 spin_unlock(&dentry->d_lock);
1365
1366 /* Negative dentries can be dropped without further checks */
1367 if (!dentry->d_inode) {
1368 d_drop(dentry);
1369 return;
1370 }
1371
1372 for (;;) {
1373 struct detach_data data;
1374
1375 data.mountpoint = NULL;
1376 INIT_LIST_HEAD(&data.select.dispose);
1377 data.select.start = dentry;
1378 data.select.found = 0;
1379
1380 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1381
1382 if (data.select.found)
1383 shrink_dentry_list(&data.select.dispose);
1384
1385 if (data.mountpoint) {
1386 detach_mounts(data.mountpoint);
1387 dput(data.mountpoint);
1388 }
1389
1390 if (!data.mountpoint && !data.select.found)
1391 break;
1392
1393 cond_resched();
1394 }
1395 }
1396 EXPORT_SYMBOL(d_invalidate);
1397
1398 /**
1399 * __d_alloc - allocate a dcache entry
1400 * @sb: filesystem it will belong to
1401 * @name: qstr of the name
1402 *
1403 * Allocates a dentry. It returns %NULL if there is insufficient memory
1404 * available. On a success the dentry is returned. The name passed in is
1405 * copied and the copy passed in may be reused after this call.
1406 */
1407
1408 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1409 {
1410 struct dentry *dentry;
1411 char *dname;
1412
1413 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1414 if (!dentry)
1415 return NULL;
1416
1417 /*
1418 * We guarantee that the inline name is always NUL-terminated.
1419 * This way the memcpy() done by the name switching in rename
1420 * will still always have a NUL at the end, even if we might
1421 * be overwriting an internal NUL character
1422 */
1423 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1424 if (name->len > DNAME_INLINE_LEN-1) {
1425 size_t size = offsetof(struct external_name, name[1]);
1426 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1427 if (!p) {
1428 kmem_cache_free(dentry_cache, dentry);
1429 return NULL;
1430 }
1431 atomic_set(&p->u.count, 1);
1432 dname = p->name;
1433 } else {
1434 dname = dentry->d_iname;
1435 }
1436
1437 dentry->d_name.len = name->len;
1438 dentry->d_name.hash = name->hash;
1439 memcpy(dname, name->name, name->len);
1440 dname[name->len] = 0;
1441
1442 /* Make sure we always see the terminating NUL character */
1443 smp_wmb();
1444 dentry->d_name.name = dname;
1445
1446 dentry->d_lockref.count = 1;
1447 dentry->d_flags = 0;
1448 spin_lock_init(&dentry->d_lock);
1449 seqcount_init(&dentry->d_seq);
1450 dentry->d_inode = NULL;
1451 dentry->d_parent = dentry;
1452 dentry->d_sb = sb;
1453 dentry->d_op = NULL;
1454 dentry->d_fsdata = NULL;
1455 INIT_HLIST_BL_NODE(&dentry->d_hash);
1456 INIT_LIST_HEAD(&dentry->d_lru);
1457 INIT_LIST_HEAD(&dentry->d_subdirs);
1458 INIT_HLIST_NODE(&dentry->d_alias);
1459 INIT_LIST_HEAD(&dentry->d_u.d_child);
1460 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1461
1462 this_cpu_inc(nr_dentry);
1463
1464 return dentry;
1465 }
1466
1467 /**
1468 * d_alloc - allocate a dcache entry
1469 * @parent: parent of entry to allocate
1470 * @name: qstr of the name
1471 *
1472 * Allocates a dentry. It returns %NULL if there is insufficient memory
1473 * available. On a success the dentry is returned. The name passed in is
1474 * copied and the copy passed in may be reused after this call.
1475 */
1476 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1477 {
1478 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1479 if (!dentry)
1480 return NULL;
1481
1482 spin_lock(&parent->d_lock);
1483 /*
1484 * don't need child lock because it is not subject
1485 * to concurrency here
1486 */
1487 __dget_dlock(parent);
1488 dentry->d_parent = parent;
1489 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1490 spin_unlock(&parent->d_lock);
1491
1492 return dentry;
1493 }
1494 EXPORT_SYMBOL(d_alloc);
1495
1496 /**
1497 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1498 * @sb: the superblock
1499 * @name: qstr of the name
1500 *
1501 * For a filesystem that just pins its dentries in memory and never
1502 * performs lookups at all, return an unhashed IS_ROOT dentry.
1503 */
1504 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1505 {
1506 return __d_alloc(sb, name);
1507 }
1508 EXPORT_SYMBOL(d_alloc_pseudo);
1509
1510 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1511 {
1512 struct qstr q;
1513
1514 q.name = name;
1515 q.len = strlen(name);
1516 q.hash = full_name_hash(q.name, q.len);
1517 return d_alloc(parent, &q);
1518 }
1519 EXPORT_SYMBOL(d_alloc_name);
1520
1521 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1522 {
1523 WARN_ON_ONCE(dentry->d_op);
1524 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1525 DCACHE_OP_COMPARE |
1526 DCACHE_OP_REVALIDATE |
1527 DCACHE_OP_WEAK_REVALIDATE |
1528 DCACHE_OP_DELETE ));
1529 dentry->d_op = op;
1530 if (!op)
1531 return;
1532 if (op->d_hash)
1533 dentry->d_flags |= DCACHE_OP_HASH;
1534 if (op->d_compare)
1535 dentry->d_flags |= DCACHE_OP_COMPARE;
1536 if (op->d_revalidate)
1537 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1538 if (op->d_weak_revalidate)
1539 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1540 if (op->d_delete)
1541 dentry->d_flags |= DCACHE_OP_DELETE;
1542 if (op->d_prune)
1543 dentry->d_flags |= DCACHE_OP_PRUNE;
1544
1545 }
1546 EXPORT_SYMBOL(d_set_d_op);
1547
1548 static unsigned d_flags_for_inode(struct inode *inode)
1549 {
1550 unsigned add_flags = DCACHE_FILE_TYPE;
1551
1552 if (!inode)
1553 return DCACHE_MISS_TYPE;
1554
1555 if (S_ISDIR(inode->i_mode)) {
1556 add_flags = DCACHE_DIRECTORY_TYPE;
1557 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1558 if (unlikely(!inode->i_op->lookup))
1559 add_flags = DCACHE_AUTODIR_TYPE;
1560 else
1561 inode->i_opflags |= IOP_LOOKUP;
1562 }
1563 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1564 if (unlikely(inode->i_op->follow_link))
1565 add_flags = DCACHE_SYMLINK_TYPE;
1566 else
1567 inode->i_opflags |= IOP_NOFOLLOW;
1568 }
1569
1570 if (unlikely(IS_AUTOMOUNT(inode)))
1571 add_flags |= DCACHE_NEED_AUTOMOUNT;
1572 return add_flags;
1573 }
1574
1575 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1576 {
1577 unsigned add_flags = d_flags_for_inode(inode);
1578
1579 spin_lock(&dentry->d_lock);
1580 __d_set_type(dentry, add_flags);
1581 if (inode)
1582 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1583 dentry->d_inode = inode;
1584 dentry_rcuwalk_barrier(dentry);
1585 spin_unlock(&dentry->d_lock);
1586 fsnotify_d_instantiate(dentry, inode);
1587 }
1588
1589 /**
1590 * d_instantiate - fill in inode information for a dentry
1591 * @entry: dentry to complete
1592 * @inode: inode to attach to this dentry
1593 *
1594 * Fill in inode information in the entry.
1595 *
1596 * This turns negative dentries into productive full members
1597 * of society.
1598 *
1599 * NOTE! This assumes that the inode count has been incremented
1600 * (or otherwise set) by the caller to indicate that it is now
1601 * in use by the dcache.
1602 */
1603
1604 void d_instantiate(struct dentry *entry, struct inode * inode)
1605 {
1606 BUG_ON(!hlist_unhashed(&entry->d_alias));
1607 if (inode)
1608 spin_lock(&inode->i_lock);
1609 __d_instantiate(entry, inode);
1610 if (inode)
1611 spin_unlock(&inode->i_lock);
1612 security_d_instantiate(entry, inode);
1613 }
1614 EXPORT_SYMBOL(d_instantiate);
1615
1616 /**
1617 * d_instantiate_unique - instantiate a non-aliased dentry
1618 * @entry: dentry to instantiate
1619 * @inode: inode to attach to this dentry
1620 *
1621 * Fill in inode information in the entry. On success, it returns NULL.
1622 * If an unhashed alias of "entry" already exists, then we return the
1623 * aliased dentry instead and drop one reference to inode.
1624 *
1625 * Note that in order to avoid conflicts with rename() etc, the caller
1626 * had better be holding the parent directory semaphore.
1627 *
1628 * This also assumes that the inode count has been incremented
1629 * (or otherwise set) by the caller to indicate that it is now
1630 * in use by the dcache.
1631 */
1632 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1633 struct inode *inode)
1634 {
1635 struct dentry *alias;
1636 int len = entry->d_name.len;
1637 const char *name = entry->d_name.name;
1638 unsigned int hash = entry->d_name.hash;
1639
1640 if (!inode) {
1641 __d_instantiate(entry, NULL);
1642 return NULL;
1643 }
1644
1645 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1646 /*
1647 * Don't need alias->d_lock here, because aliases with
1648 * d_parent == entry->d_parent are not subject to name or
1649 * parent changes, because the parent inode i_mutex is held.
1650 */
1651 if (alias->d_name.hash != hash)
1652 continue;
1653 if (alias->d_parent != entry->d_parent)
1654 continue;
1655 if (alias->d_name.len != len)
1656 continue;
1657 if (dentry_cmp(alias, name, len))
1658 continue;
1659 __dget(alias);
1660 return alias;
1661 }
1662
1663 __d_instantiate(entry, inode);
1664 return NULL;
1665 }
1666
1667 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1668 {
1669 struct dentry *result;
1670
1671 BUG_ON(!hlist_unhashed(&entry->d_alias));
1672
1673 if (inode)
1674 spin_lock(&inode->i_lock);
1675 result = __d_instantiate_unique(entry, inode);
1676 if (inode)
1677 spin_unlock(&inode->i_lock);
1678
1679 if (!result) {
1680 security_d_instantiate(entry, inode);
1681 return NULL;
1682 }
1683
1684 BUG_ON(!d_unhashed(result));
1685 iput(inode);
1686 return result;
1687 }
1688
1689 EXPORT_SYMBOL(d_instantiate_unique);
1690
1691 /**
1692 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1693 * @entry: dentry to complete
1694 * @inode: inode to attach to this dentry
1695 *
1696 * Fill in inode information in the entry. If a directory alias is found, then
1697 * return an error (and drop inode). Together with d_materialise_unique() this
1698 * guarantees that a directory inode may never have more than one alias.
1699 */
1700 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1701 {
1702 BUG_ON(!hlist_unhashed(&entry->d_alias));
1703
1704 spin_lock(&inode->i_lock);
1705 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1706 spin_unlock(&inode->i_lock);
1707 iput(inode);
1708 return -EBUSY;
1709 }
1710 __d_instantiate(entry, inode);
1711 spin_unlock(&inode->i_lock);
1712 security_d_instantiate(entry, inode);
1713
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(d_instantiate_no_diralias);
1717
1718 struct dentry *d_make_root(struct inode *root_inode)
1719 {
1720 struct dentry *res = NULL;
1721
1722 if (root_inode) {
1723 static const struct qstr name = QSTR_INIT("/", 1);
1724
1725 res = __d_alloc(root_inode->i_sb, &name);
1726 if (res)
1727 d_instantiate(res, root_inode);
1728 else
1729 iput(root_inode);
1730 }
1731 return res;
1732 }
1733 EXPORT_SYMBOL(d_make_root);
1734
1735 static struct dentry * __d_find_any_alias(struct inode *inode)
1736 {
1737 struct dentry *alias;
1738
1739 if (hlist_empty(&inode->i_dentry))
1740 return NULL;
1741 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1742 __dget(alias);
1743 return alias;
1744 }
1745
1746 /**
1747 * d_find_any_alias - find any alias for a given inode
1748 * @inode: inode to find an alias for
1749 *
1750 * If any aliases exist for the given inode, take and return a
1751 * reference for one of them. If no aliases exist, return %NULL.
1752 */
1753 struct dentry *d_find_any_alias(struct inode *inode)
1754 {
1755 struct dentry *de;
1756
1757 spin_lock(&inode->i_lock);
1758 de = __d_find_any_alias(inode);
1759 spin_unlock(&inode->i_lock);
1760 return de;
1761 }
1762 EXPORT_SYMBOL(d_find_any_alias);
1763
1764 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1765 {
1766 static const struct qstr anonstring = QSTR_INIT("/", 1);
1767 struct dentry *tmp;
1768 struct dentry *res;
1769 unsigned add_flags;
1770
1771 if (!inode)
1772 return ERR_PTR(-ESTALE);
1773 if (IS_ERR(inode))
1774 return ERR_CAST(inode);
1775
1776 res = d_find_any_alias(inode);
1777 if (res)
1778 goto out_iput;
1779
1780 tmp = __d_alloc(inode->i_sb, &anonstring);
1781 if (!tmp) {
1782 res = ERR_PTR(-ENOMEM);
1783 goto out_iput;
1784 }
1785
1786 spin_lock(&inode->i_lock);
1787 res = __d_find_any_alias(inode);
1788 if (res) {
1789 spin_unlock(&inode->i_lock);
1790 dput(tmp);
1791 goto out_iput;
1792 }
1793
1794 /* attach a disconnected dentry */
1795 add_flags = d_flags_for_inode(inode);
1796
1797 if (disconnected)
1798 add_flags |= DCACHE_DISCONNECTED;
1799
1800 spin_lock(&tmp->d_lock);
1801 tmp->d_inode = inode;
1802 tmp->d_flags |= add_flags;
1803 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1804 hlist_bl_lock(&tmp->d_sb->s_anon);
1805 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1806 hlist_bl_unlock(&tmp->d_sb->s_anon);
1807 spin_unlock(&tmp->d_lock);
1808 spin_unlock(&inode->i_lock);
1809 security_d_instantiate(tmp, inode);
1810
1811 return tmp;
1812
1813 out_iput:
1814 if (res && !IS_ERR(res))
1815 security_d_instantiate(res, inode);
1816 iput(inode);
1817 return res;
1818 }
1819
1820 /**
1821 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1822 * @inode: inode to allocate the dentry for
1823 *
1824 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1825 * similar open by handle operations. The returned dentry may be anonymous,
1826 * or may have a full name (if the inode was already in the cache).
1827 *
1828 * When called on a directory inode, we must ensure that the inode only ever
1829 * has one dentry. If a dentry is found, that is returned instead of
1830 * allocating a new one.
1831 *
1832 * On successful return, the reference to the inode has been transferred
1833 * to the dentry. In case of an error the reference on the inode is released.
1834 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1835 * be passed in and the error will be propagated to the return value,
1836 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1837 */
1838 struct dentry *d_obtain_alias(struct inode *inode)
1839 {
1840 return __d_obtain_alias(inode, 1);
1841 }
1842 EXPORT_SYMBOL(d_obtain_alias);
1843
1844 /**
1845 * d_obtain_root - find or allocate a dentry for a given inode
1846 * @inode: inode to allocate the dentry for
1847 *
1848 * Obtain an IS_ROOT dentry for the root of a filesystem.
1849 *
1850 * We must ensure that directory inodes only ever have one dentry. If a
1851 * dentry is found, that is returned instead of allocating a new one.
1852 *
1853 * On successful return, the reference to the inode has been transferred
1854 * to the dentry. In case of an error the reference on the inode is
1855 * released. A %NULL or IS_ERR inode may be passed in and will be the
1856 * error will be propagate to the return value, with a %NULL @inode
1857 * replaced by ERR_PTR(-ESTALE).
1858 */
1859 struct dentry *d_obtain_root(struct inode *inode)
1860 {
1861 return __d_obtain_alias(inode, 0);
1862 }
1863 EXPORT_SYMBOL(d_obtain_root);
1864
1865 /**
1866 * d_add_ci - lookup or allocate new dentry with case-exact name
1867 * @inode: the inode case-insensitive lookup has found
1868 * @dentry: the negative dentry that was passed to the parent's lookup func
1869 * @name: the case-exact name to be associated with the returned dentry
1870 *
1871 * This is to avoid filling the dcache with case-insensitive names to the
1872 * same inode, only the actual correct case is stored in the dcache for
1873 * case-insensitive filesystems.
1874 *
1875 * For a case-insensitive lookup match and if the the case-exact dentry
1876 * already exists in in the dcache, use it and return it.
1877 *
1878 * If no entry exists with the exact case name, allocate new dentry with
1879 * the exact case, and return the spliced entry.
1880 */
1881 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1882 struct qstr *name)
1883 {
1884 struct dentry *found;
1885 struct dentry *new;
1886
1887 /*
1888 * First check if a dentry matching the name already exists,
1889 * if not go ahead and create it now.
1890 */
1891 found = d_hash_and_lookup(dentry->d_parent, name);
1892 if (unlikely(IS_ERR(found)))
1893 goto err_out;
1894 if (!found) {
1895 new = d_alloc(dentry->d_parent, name);
1896 if (!new) {
1897 found = ERR_PTR(-ENOMEM);
1898 goto err_out;
1899 }
1900
1901 found = d_splice_alias(inode, new);
1902 if (found) {
1903 dput(new);
1904 return found;
1905 }
1906 return new;
1907 }
1908
1909 /*
1910 * If a matching dentry exists, and it's not negative use it.
1911 *
1912 * Decrement the reference count to balance the iget() done
1913 * earlier on.
1914 */
1915 if (found->d_inode) {
1916 if (unlikely(found->d_inode != inode)) {
1917 /* This can't happen because bad inodes are unhashed. */
1918 BUG_ON(!is_bad_inode(inode));
1919 BUG_ON(!is_bad_inode(found->d_inode));
1920 }
1921 iput(inode);
1922 return found;
1923 }
1924
1925 /*
1926 * Negative dentry: instantiate it unless the inode is a directory and
1927 * already has a dentry.
1928 */
1929 new = d_splice_alias(inode, found);
1930 if (new) {
1931 dput(found);
1932 found = new;
1933 }
1934 return found;
1935
1936 err_out:
1937 iput(inode);
1938 return found;
1939 }
1940 EXPORT_SYMBOL(d_add_ci);
1941
1942 /*
1943 * Do the slow-case of the dentry name compare.
1944 *
1945 * Unlike the dentry_cmp() function, we need to atomically
1946 * load the name and length information, so that the
1947 * filesystem can rely on them, and can use the 'name' and
1948 * 'len' information without worrying about walking off the
1949 * end of memory etc.
1950 *
1951 * Thus the read_seqcount_retry() and the "duplicate" info
1952 * in arguments (the low-level filesystem should not look
1953 * at the dentry inode or name contents directly, since
1954 * rename can change them while we're in RCU mode).
1955 */
1956 enum slow_d_compare {
1957 D_COMP_OK,
1958 D_COMP_NOMATCH,
1959 D_COMP_SEQRETRY,
1960 };
1961
1962 static noinline enum slow_d_compare slow_dentry_cmp(
1963 const struct dentry *parent,
1964 struct dentry *dentry,
1965 unsigned int seq,
1966 const struct qstr *name)
1967 {
1968 int tlen = dentry->d_name.len;
1969 const char *tname = dentry->d_name.name;
1970
1971 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1972 cpu_relax();
1973 return D_COMP_SEQRETRY;
1974 }
1975 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1976 return D_COMP_NOMATCH;
1977 return D_COMP_OK;
1978 }
1979
1980 /**
1981 * __d_lookup_rcu - search for a dentry (racy, store-free)
1982 * @parent: parent dentry
1983 * @name: qstr of name we wish to find
1984 * @seqp: returns d_seq value at the point where the dentry was found
1985 * Returns: dentry, or NULL
1986 *
1987 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1988 * resolution (store-free path walking) design described in
1989 * Documentation/filesystems/path-lookup.txt.
1990 *
1991 * This is not to be used outside core vfs.
1992 *
1993 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1994 * held, and rcu_read_lock held. The returned dentry must not be stored into
1995 * without taking d_lock and checking d_seq sequence count against @seq
1996 * returned here.
1997 *
1998 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1999 * function.
2000 *
2001 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2002 * the returned dentry, so long as its parent's seqlock is checked after the
2003 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2004 * is formed, giving integrity down the path walk.
2005 *
2006 * NOTE! The caller *has* to check the resulting dentry against the sequence
2007 * number we've returned before using any of the resulting dentry state!
2008 */
2009 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2010 const struct qstr *name,
2011 unsigned *seqp)
2012 {
2013 u64 hashlen = name->hash_len;
2014 const unsigned char *str = name->name;
2015 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2016 struct hlist_bl_node *node;
2017 struct dentry *dentry;
2018
2019 /*
2020 * Note: There is significant duplication with __d_lookup_rcu which is
2021 * required to prevent single threaded performance regressions
2022 * especially on architectures where smp_rmb (in seqcounts) are costly.
2023 * Keep the two functions in sync.
2024 */
2025
2026 /*
2027 * The hash list is protected using RCU.
2028 *
2029 * Carefully use d_seq when comparing a candidate dentry, to avoid
2030 * races with d_move().
2031 *
2032 * It is possible that concurrent renames can mess up our list
2033 * walk here and result in missing our dentry, resulting in the
2034 * false-negative result. d_lookup() protects against concurrent
2035 * renames using rename_lock seqlock.
2036 *
2037 * See Documentation/filesystems/path-lookup.txt for more details.
2038 */
2039 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2040 unsigned seq;
2041
2042 seqretry:
2043 /*
2044 * The dentry sequence count protects us from concurrent
2045 * renames, and thus protects parent and name fields.
2046 *
2047 * The caller must perform a seqcount check in order
2048 * to do anything useful with the returned dentry.
2049 *
2050 * NOTE! We do a "raw" seqcount_begin here. That means that
2051 * we don't wait for the sequence count to stabilize if it
2052 * is in the middle of a sequence change. If we do the slow
2053 * dentry compare, we will do seqretries until it is stable,
2054 * and if we end up with a successful lookup, we actually
2055 * want to exit RCU lookup anyway.
2056 */
2057 seq = raw_seqcount_begin(&dentry->d_seq);
2058 if (dentry->d_parent != parent)
2059 continue;
2060 if (d_unhashed(dentry))
2061 continue;
2062
2063 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2064 if (dentry->d_name.hash != hashlen_hash(hashlen))
2065 continue;
2066 *seqp = seq;
2067 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2068 case D_COMP_OK:
2069 return dentry;
2070 case D_COMP_NOMATCH:
2071 continue;
2072 default:
2073 goto seqretry;
2074 }
2075 }
2076
2077 if (dentry->d_name.hash_len != hashlen)
2078 continue;
2079 *seqp = seq;
2080 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2081 return dentry;
2082 }
2083 return NULL;
2084 }
2085
2086 /**
2087 * d_lookup - search for a dentry
2088 * @parent: parent dentry
2089 * @name: qstr of name we wish to find
2090 * Returns: dentry, or NULL
2091 *
2092 * d_lookup searches the children of the parent dentry for the name in
2093 * question. If the dentry is found its reference count is incremented and the
2094 * dentry is returned. The caller must use dput to free the entry when it has
2095 * finished using it. %NULL is returned if the dentry does not exist.
2096 */
2097 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2098 {
2099 struct dentry *dentry;
2100 unsigned seq;
2101
2102 do {
2103 seq = read_seqbegin(&rename_lock);
2104 dentry = __d_lookup(parent, name);
2105 if (dentry)
2106 break;
2107 } while (read_seqretry(&rename_lock, seq));
2108 return dentry;
2109 }
2110 EXPORT_SYMBOL(d_lookup);
2111
2112 /**
2113 * __d_lookup - search for a dentry (racy)
2114 * @parent: parent dentry
2115 * @name: qstr of name we wish to find
2116 * Returns: dentry, or NULL
2117 *
2118 * __d_lookup is like d_lookup, however it may (rarely) return a
2119 * false-negative result due to unrelated rename activity.
2120 *
2121 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2122 * however it must be used carefully, eg. with a following d_lookup in
2123 * the case of failure.
2124 *
2125 * __d_lookup callers must be commented.
2126 */
2127 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2128 {
2129 unsigned int len = name->len;
2130 unsigned int hash = name->hash;
2131 const unsigned char *str = name->name;
2132 struct hlist_bl_head *b = d_hash(parent, hash);
2133 struct hlist_bl_node *node;
2134 struct dentry *found = NULL;
2135 struct dentry *dentry;
2136
2137 /*
2138 * Note: There is significant duplication with __d_lookup_rcu which is
2139 * required to prevent single threaded performance regressions
2140 * especially on architectures where smp_rmb (in seqcounts) are costly.
2141 * Keep the two functions in sync.
2142 */
2143
2144 /*
2145 * The hash list is protected using RCU.
2146 *
2147 * Take d_lock when comparing a candidate dentry, to avoid races
2148 * with d_move().
2149 *
2150 * It is possible that concurrent renames can mess up our list
2151 * walk here and result in missing our dentry, resulting in the
2152 * false-negative result. d_lookup() protects against concurrent
2153 * renames using rename_lock seqlock.
2154 *
2155 * See Documentation/filesystems/path-lookup.txt for more details.
2156 */
2157 rcu_read_lock();
2158
2159 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2160
2161 if (dentry->d_name.hash != hash)
2162 continue;
2163
2164 spin_lock(&dentry->d_lock);
2165 if (dentry->d_parent != parent)
2166 goto next;
2167 if (d_unhashed(dentry))
2168 goto next;
2169
2170 /*
2171 * It is safe to compare names since d_move() cannot
2172 * change the qstr (protected by d_lock).
2173 */
2174 if (parent->d_flags & DCACHE_OP_COMPARE) {
2175 int tlen = dentry->d_name.len;
2176 const char *tname = dentry->d_name.name;
2177 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2178 goto next;
2179 } else {
2180 if (dentry->d_name.len != len)
2181 goto next;
2182 if (dentry_cmp(dentry, str, len))
2183 goto next;
2184 }
2185
2186 dentry->d_lockref.count++;
2187 found = dentry;
2188 spin_unlock(&dentry->d_lock);
2189 break;
2190 next:
2191 spin_unlock(&dentry->d_lock);
2192 }
2193 rcu_read_unlock();
2194
2195 return found;
2196 }
2197
2198 /**
2199 * d_hash_and_lookup - hash the qstr then search for a dentry
2200 * @dir: Directory to search in
2201 * @name: qstr of name we wish to find
2202 *
2203 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2204 */
2205 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2206 {
2207 /*
2208 * Check for a fs-specific hash function. Note that we must
2209 * calculate the standard hash first, as the d_op->d_hash()
2210 * routine may choose to leave the hash value unchanged.
2211 */
2212 name->hash = full_name_hash(name->name, name->len);
2213 if (dir->d_flags & DCACHE_OP_HASH) {
2214 int err = dir->d_op->d_hash(dir, name);
2215 if (unlikely(err < 0))
2216 return ERR_PTR(err);
2217 }
2218 return d_lookup(dir, name);
2219 }
2220 EXPORT_SYMBOL(d_hash_and_lookup);
2221
2222 /**
2223 * d_validate - verify dentry provided from insecure source (deprecated)
2224 * @dentry: The dentry alleged to be valid child of @dparent
2225 * @dparent: The parent dentry (known to be valid)
2226 *
2227 * An insecure source has sent us a dentry, here we verify it and dget() it.
2228 * This is used by ncpfs in its readdir implementation.
2229 * Zero is returned in the dentry is invalid.
2230 *
2231 * This function is slow for big directories, and deprecated, do not use it.
2232 */
2233 int d_validate(struct dentry *dentry, struct dentry *dparent)
2234 {
2235 struct dentry *child;
2236
2237 spin_lock(&dparent->d_lock);
2238 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2239 if (dentry == child) {
2240 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2241 __dget_dlock(dentry);
2242 spin_unlock(&dentry->d_lock);
2243 spin_unlock(&dparent->d_lock);
2244 return 1;
2245 }
2246 }
2247 spin_unlock(&dparent->d_lock);
2248
2249 return 0;
2250 }
2251 EXPORT_SYMBOL(d_validate);
2252
2253 /*
2254 * When a file is deleted, we have two options:
2255 * - turn this dentry into a negative dentry
2256 * - unhash this dentry and free it.
2257 *
2258 * Usually, we want to just turn this into
2259 * a negative dentry, but if anybody else is
2260 * currently using the dentry or the inode
2261 * we can't do that and we fall back on removing
2262 * it from the hash queues and waiting for
2263 * it to be deleted later when it has no users
2264 */
2265
2266 /**
2267 * d_delete - delete a dentry
2268 * @dentry: The dentry to delete
2269 *
2270 * Turn the dentry into a negative dentry if possible, otherwise
2271 * remove it from the hash queues so it can be deleted later
2272 */
2273
2274 void d_delete(struct dentry * dentry)
2275 {
2276 struct inode *inode;
2277 int isdir = 0;
2278 /*
2279 * Are we the only user?
2280 */
2281 again:
2282 spin_lock(&dentry->d_lock);
2283 inode = dentry->d_inode;
2284 isdir = S_ISDIR(inode->i_mode);
2285 if (dentry->d_lockref.count == 1) {
2286 if (!spin_trylock(&inode->i_lock)) {
2287 spin_unlock(&dentry->d_lock);
2288 cpu_relax();
2289 goto again;
2290 }
2291 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2292 dentry_unlink_inode(dentry);
2293 fsnotify_nameremove(dentry, isdir);
2294 return;
2295 }
2296
2297 if (!d_unhashed(dentry))
2298 __d_drop(dentry);
2299
2300 spin_unlock(&dentry->d_lock);
2301
2302 fsnotify_nameremove(dentry, isdir);
2303 }
2304 EXPORT_SYMBOL(d_delete);
2305
2306 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2307 {
2308 BUG_ON(!d_unhashed(entry));
2309 hlist_bl_lock(b);
2310 entry->d_flags |= DCACHE_RCUACCESS;
2311 hlist_bl_add_head_rcu(&entry->d_hash, b);
2312 hlist_bl_unlock(b);
2313 }
2314
2315 static void _d_rehash(struct dentry * entry)
2316 {
2317 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2318 }
2319
2320 /**
2321 * d_rehash - add an entry back to the hash
2322 * @entry: dentry to add to the hash
2323 *
2324 * Adds a dentry to the hash according to its name.
2325 */
2326
2327 void d_rehash(struct dentry * entry)
2328 {
2329 spin_lock(&entry->d_lock);
2330 _d_rehash(entry);
2331 spin_unlock(&entry->d_lock);
2332 }
2333 EXPORT_SYMBOL(d_rehash);
2334
2335 /**
2336 * dentry_update_name_case - update case insensitive dentry with a new name
2337 * @dentry: dentry to be updated
2338 * @name: new name
2339 *
2340 * Update a case insensitive dentry with new case of name.
2341 *
2342 * dentry must have been returned by d_lookup with name @name. Old and new
2343 * name lengths must match (ie. no d_compare which allows mismatched name
2344 * lengths).
2345 *
2346 * Parent inode i_mutex must be held over d_lookup and into this call (to
2347 * keep renames and concurrent inserts, and readdir(2) away).
2348 */
2349 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2350 {
2351 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2352 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2353
2354 spin_lock(&dentry->d_lock);
2355 write_seqcount_begin(&dentry->d_seq);
2356 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2357 write_seqcount_end(&dentry->d_seq);
2358 spin_unlock(&dentry->d_lock);
2359 }
2360 EXPORT_SYMBOL(dentry_update_name_case);
2361
2362 static void swap_names(struct dentry *dentry, struct dentry *target)
2363 {
2364 if (unlikely(dname_external(target))) {
2365 if (unlikely(dname_external(dentry))) {
2366 /*
2367 * Both external: swap the pointers
2368 */
2369 swap(target->d_name.name, dentry->d_name.name);
2370 } else {
2371 /*
2372 * dentry:internal, target:external. Steal target's
2373 * storage and make target internal.
2374 */
2375 memcpy(target->d_iname, dentry->d_name.name,
2376 dentry->d_name.len + 1);
2377 dentry->d_name.name = target->d_name.name;
2378 target->d_name.name = target->d_iname;
2379 }
2380 } else {
2381 if (unlikely(dname_external(dentry))) {
2382 /*
2383 * dentry:external, target:internal. Give dentry's
2384 * storage to target and make dentry internal
2385 */
2386 memcpy(dentry->d_iname, target->d_name.name,
2387 target->d_name.len + 1);
2388 target->d_name.name = dentry->d_name.name;
2389 dentry->d_name.name = dentry->d_iname;
2390 } else {
2391 /*
2392 * Both are internal.
2393 */
2394 unsigned int i;
2395 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2396 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2397 swap(((long *) &dentry->d_iname)[i],
2398 ((long *) &target->d_iname)[i]);
2399 }
2400 }
2401 }
2402 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2403 }
2404
2405 static void copy_name(struct dentry *dentry, struct dentry *target)
2406 {
2407 struct external_name *old_name = NULL;
2408 if (unlikely(dname_external(dentry)))
2409 old_name = external_name(dentry);
2410 if (unlikely(dname_external(target))) {
2411 atomic_inc(&external_name(target)->u.count);
2412 dentry->d_name = target->d_name;
2413 } else {
2414 memcpy(dentry->d_iname, target->d_name.name,
2415 target->d_name.len + 1);
2416 dentry->d_name.name = dentry->d_iname;
2417 dentry->d_name.hash_len = target->d_name.hash_len;
2418 }
2419 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2420 kfree_rcu(old_name, u.head);
2421 }
2422
2423 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2424 {
2425 /*
2426 * XXXX: do we really need to take target->d_lock?
2427 */
2428 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2429 spin_lock(&target->d_parent->d_lock);
2430 else {
2431 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2432 spin_lock(&dentry->d_parent->d_lock);
2433 spin_lock_nested(&target->d_parent->d_lock,
2434 DENTRY_D_LOCK_NESTED);
2435 } else {
2436 spin_lock(&target->d_parent->d_lock);
2437 spin_lock_nested(&dentry->d_parent->d_lock,
2438 DENTRY_D_LOCK_NESTED);
2439 }
2440 }
2441 if (target < dentry) {
2442 spin_lock_nested(&target->d_lock, 2);
2443 spin_lock_nested(&dentry->d_lock, 3);
2444 } else {
2445 spin_lock_nested(&dentry->d_lock, 2);
2446 spin_lock_nested(&target->d_lock, 3);
2447 }
2448 }
2449
2450 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2451 {
2452 if (target->d_parent != dentry->d_parent)
2453 spin_unlock(&dentry->d_parent->d_lock);
2454 if (target->d_parent != target)
2455 spin_unlock(&target->d_parent->d_lock);
2456 spin_unlock(&target->d_lock);
2457 spin_unlock(&dentry->d_lock);
2458 }
2459
2460 /*
2461 * When switching names, the actual string doesn't strictly have to
2462 * be preserved in the target - because we're dropping the target
2463 * anyway. As such, we can just do a simple memcpy() to copy over
2464 * the new name before we switch, unless we are going to rehash
2465 * it. Note that if we *do* unhash the target, we are not allowed
2466 * to rehash it without giving it a new name/hash key - whether
2467 * we swap or overwrite the names here, resulting name won't match
2468 * the reality in filesystem; it's only there for d_path() purposes.
2469 * Note that all of this is happening under rename_lock, so the
2470 * any hash lookup seeing it in the middle of manipulations will
2471 * be discarded anyway. So we do not care what happens to the hash
2472 * key in that case.
2473 */
2474 /*
2475 * __d_move - move a dentry
2476 * @dentry: entry to move
2477 * @target: new dentry
2478 * @exchange: exchange the two dentries
2479 *
2480 * Update the dcache to reflect the move of a file name. Negative
2481 * dcache entries should not be moved in this way. Caller must hold
2482 * rename_lock, the i_mutex of the source and target directories,
2483 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2484 */
2485 static void __d_move(struct dentry *dentry, struct dentry *target,
2486 bool exchange)
2487 {
2488 if (!dentry->d_inode)
2489 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2490
2491 BUG_ON(d_ancestor(dentry, target));
2492 BUG_ON(d_ancestor(target, dentry));
2493
2494 dentry_lock_for_move(dentry, target);
2495
2496 write_seqcount_begin(&dentry->d_seq);
2497 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2498
2499 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2500
2501 /*
2502 * Move the dentry to the target hash queue. Don't bother checking
2503 * for the same hash queue because of how unlikely it is.
2504 */
2505 __d_drop(dentry);
2506 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2507
2508 /*
2509 * Unhash the target (d_delete() is not usable here). If exchanging
2510 * the two dentries, then rehash onto the other's hash queue.
2511 */
2512 __d_drop(target);
2513 if (exchange) {
2514 __d_rehash(target,
2515 d_hash(dentry->d_parent, dentry->d_name.hash));
2516 }
2517
2518 /* Switch the names.. */
2519 if (exchange)
2520 swap_names(dentry, target);
2521 else
2522 copy_name(dentry, target);
2523
2524 /* ... and switch them in the tree */
2525 if (IS_ROOT(dentry)) {
2526 /* splicing a tree */
2527 dentry->d_parent = target->d_parent;
2528 target->d_parent = target;
2529 list_del_init(&target->d_u.d_child);
2530 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2531 } else {
2532 /* swapping two dentries */
2533 swap(dentry->d_parent, target->d_parent);
2534 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2535 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2536 if (exchange)
2537 fsnotify_d_move(target);
2538 fsnotify_d_move(dentry);
2539 }
2540
2541 write_seqcount_end(&target->d_seq);
2542 write_seqcount_end(&dentry->d_seq);
2543
2544 dentry_unlock_for_move(dentry, target);
2545 }
2546
2547 /*
2548 * d_move - move a dentry
2549 * @dentry: entry to move
2550 * @target: new dentry
2551 *
2552 * Update the dcache to reflect the move of a file name. Negative
2553 * dcache entries should not be moved in this way. See the locking
2554 * requirements for __d_move.
2555 */
2556 void d_move(struct dentry *dentry, struct dentry *target)
2557 {
2558 write_seqlock(&rename_lock);
2559 __d_move(dentry, target, false);
2560 write_sequnlock(&rename_lock);
2561 }
2562 EXPORT_SYMBOL(d_move);
2563
2564 /*
2565 * d_exchange - exchange two dentries
2566 * @dentry1: first dentry
2567 * @dentry2: second dentry
2568 */
2569 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2570 {
2571 write_seqlock(&rename_lock);
2572
2573 WARN_ON(!dentry1->d_inode);
2574 WARN_ON(!dentry2->d_inode);
2575 WARN_ON(IS_ROOT(dentry1));
2576 WARN_ON(IS_ROOT(dentry2));
2577
2578 __d_move(dentry1, dentry2, true);
2579
2580 write_sequnlock(&rename_lock);
2581 }
2582
2583 /**
2584 * d_ancestor - search for an ancestor
2585 * @p1: ancestor dentry
2586 * @p2: child dentry
2587 *
2588 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2589 * an ancestor of p2, else NULL.
2590 */
2591 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2592 {
2593 struct dentry *p;
2594
2595 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2596 if (p->d_parent == p1)
2597 return p;
2598 }
2599 return NULL;
2600 }
2601
2602 /*
2603 * This helper attempts to cope with remotely renamed directories
2604 *
2605 * It assumes that the caller is already holding
2606 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2607 *
2608 * Note: If ever the locking in lock_rename() changes, then please
2609 * remember to update this too...
2610 */
2611 static struct dentry *__d_unalias(struct inode *inode,
2612 struct dentry *dentry, struct dentry *alias)
2613 {
2614 struct mutex *m1 = NULL, *m2 = NULL;
2615 struct dentry *ret = ERR_PTR(-EBUSY);
2616
2617 /* If alias and dentry share a parent, then no extra locks required */
2618 if (alias->d_parent == dentry->d_parent)
2619 goto out_unalias;
2620
2621 /* See lock_rename() */
2622 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2623 goto out_err;
2624 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2625 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2626 goto out_err;
2627 m2 = &alias->d_parent->d_inode->i_mutex;
2628 out_unalias:
2629 __d_move(alias, dentry, false);
2630 ret = alias;
2631 out_err:
2632 spin_unlock(&inode->i_lock);
2633 if (m2)
2634 mutex_unlock(m2);
2635 if (m1)
2636 mutex_unlock(m1);
2637 return ret;
2638 }
2639
2640 /**
2641 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2642 * @inode: the inode which may have a disconnected dentry
2643 * @dentry: a negative dentry which we want to point to the inode.
2644 *
2645 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2646 * place of the given dentry and return it, else simply d_add the inode
2647 * to the dentry and return NULL.
2648 *
2649 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2650 * we should error out: directories can't have multiple aliases.
2651 *
2652 * This is needed in the lookup routine of any filesystem that is exportable
2653 * (via knfsd) so that we can build dcache paths to directories effectively.
2654 *
2655 * If a dentry was found and moved, then it is returned. Otherwise NULL
2656 * is returned. This matches the expected return value of ->lookup.
2657 *
2658 * Cluster filesystems may call this function with a negative, hashed dentry.
2659 * In that case, we know that the inode will be a regular file, and also this
2660 * will only occur during atomic_open. So we need to check for the dentry
2661 * being already hashed only in the final case.
2662 */
2663 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2664 {
2665 struct dentry *new = NULL;
2666
2667 if (IS_ERR(inode))
2668 return ERR_CAST(inode);
2669
2670 if (inode && S_ISDIR(inode->i_mode)) {
2671 spin_lock(&inode->i_lock);
2672 new = __d_find_any_alias(inode);
2673 if (new) {
2674 if (!IS_ROOT(new)) {
2675 spin_unlock(&inode->i_lock);
2676 dput(new);
2677 iput(inode);
2678 return ERR_PTR(-EIO);
2679 }
2680 if (d_ancestor(new, dentry)) {
2681 spin_unlock(&inode->i_lock);
2682 dput(new);
2683 iput(inode);
2684 return ERR_PTR(-EIO);
2685 }
2686 write_seqlock(&rename_lock);
2687 __d_move(new, dentry, false);
2688 write_sequnlock(&rename_lock);
2689 spin_unlock(&inode->i_lock);
2690 security_d_instantiate(new, inode);
2691 iput(inode);
2692 } else {
2693 /* already taking inode->i_lock, so d_add() by hand */
2694 __d_instantiate(dentry, inode);
2695 spin_unlock(&inode->i_lock);
2696 security_d_instantiate(dentry, inode);
2697 d_rehash(dentry);
2698 }
2699 } else {
2700 d_instantiate(dentry, inode);
2701 if (d_unhashed(dentry))
2702 d_rehash(dentry);
2703 }
2704 return new;
2705 }
2706 EXPORT_SYMBOL(d_splice_alias);
2707
2708 /**
2709 * d_materialise_unique - introduce an inode into the tree
2710 * @dentry: candidate dentry
2711 * @inode: inode to bind to the dentry, to which aliases may be attached
2712 *
2713 * Introduces an dentry into the tree, substituting an extant disconnected
2714 * root directory alias in its place if there is one. Caller must hold the
2715 * i_mutex of the parent directory.
2716 */
2717 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2718 {
2719 struct dentry *actual;
2720
2721 BUG_ON(!d_unhashed(dentry));
2722
2723 if (!inode) {
2724 actual = dentry;
2725 __d_instantiate(dentry, NULL);
2726 d_rehash(actual);
2727 goto out_nolock;
2728 }
2729
2730 spin_lock(&inode->i_lock);
2731
2732 if (S_ISDIR(inode->i_mode)) {
2733 struct dentry *alias;
2734
2735 /* Does an aliased dentry already exist? */
2736 alias = __d_find_alias(inode);
2737 if (alias) {
2738 actual = alias;
2739 write_seqlock(&rename_lock);
2740
2741 if (d_ancestor(alias, dentry)) {
2742 /* Check for loops */
2743 actual = ERR_PTR(-ELOOP);
2744 spin_unlock(&inode->i_lock);
2745 } else if (IS_ROOT(alias)) {
2746 /* Is this an anonymous mountpoint that we
2747 * could splice into our tree? */
2748 __d_move(alias, dentry, false);
2749 write_sequnlock(&rename_lock);
2750 goto found;
2751 } else {
2752 /* Nope, but we must(!) avoid directory
2753 * aliasing. This drops inode->i_lock */
2754 actual = __d_unalias(inode, dentry, alias);
2755 }
2756 write_sequnlock(&rename_lock);
2757 if (IS_ERR(actual)) {
2758 if (PTR_ERR(actual) == -ELOOP)
2759 pr_warn_ratelimited(
2760 "VFS: Lookup of '%s' in %s %s"
2761 " would have caused loop\n",
2762 dentry->d_name.name,
2763 inode->i_sb->s_type->name,
2764 inode->i_sb->s_id);
2765 dput(alias);
2766 }
2767 goto out_nolock;
2768 }
2769 }
2770
2771 /* Add a unique reference */
2772 actual = __d_instantiate_unique(dentry, inode);
2773 if (!actual)
2774 actual = dentry;
2775
2776 d_rehash(actual);
2777 found:
2778 spin_unlock(&inode->i_lock);
2779 out_nolock:
2780 if (actual == dentry) {
2781 security_d_instantiate(dentry, inode);
2782 return NULL;
2783 }
2784
2785 iput(inode);
2786 return actual;
2787 }
2788 EXPORT_SYMBOL_GPL(d_materialise_unique);
2789
2790 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2791 {
2792 *buflen -= namelen;
2793 if (*buflen < 0)
2794 return -ENAMETOOLONG;
2795 *buffer -= namelen;
2796 memcpy(*buffer, str, namelen);
2797 return 0;
2798 }
2799
2800 /**
2801 * prepend_name - prepend a pathname in front of current buffer pointer
2802 * @buffer: buffer pointer
2803 * @buflen: allocated length of the buffer
2804 * @name: name string and length qstr structure
2805 *
2806 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2807 * make sure that either the old or the new name pointer and length are
2808 * fetched. However, there may be mismatch between length and pointer.
2809 * The length cannot be trusted, we need to copy it byte-by-byte until
2810 * the length is reached or a null byte is found. It also prepends "/" at
2811 * the beginning of the name. The sequence number check at the caller will
2812 * retry it again when a d_move() does happen. So any garbage in the buffer
2813 * due to mismatched pointer and length will be discarded.
2814 *
2815 * Data dependency barrier is needed to make sure that we see that terminating
2816 * NUL. Alpha strikes again, film at 11...
2817 */
2818 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2819 {
2820 const char *dname = ACCESS_ONCE(name->name);
2821 u32 dlen = ACCESS_ONCE(name->len);
2822 char *p;
2823
2824 smp_read_barrier_depends();
2825
2826 *buflen -= dlen + 1;
2827 if (*buflen < 0)
2828 return -ENAMETOOLONG;
2829 p = *buffer -= dlen + 1;
2830 *p++ = '/';
2831 while (dlen--) {
2832 char c = *dname++;
2833 if (!c)
2834 break;
2835 *p++ = c;
2836 }
2837 return 0;
2838 }
2839
2840 /**
2841 * prepend_path - Prepend path string to a buffer
2842 * @path: the dentry/vfsmount to report
2843 * @root: root vfsmnt/dentry
2844 * @buffer: pointer to the end of the buffer
2845 * @buflen: pointer to buffer length
2846 *
2847 * The function will first try to write out the pathname without taking any
2848 * lock other than the RCU read lock to make sure that dentries won't go away.
2849 * It only checks the sequence number of the global rename_lock as any change
2850 * in the dentry's d_seq will be preceded by changes in the rename_lock
2851 * sequence number. If the sequence number had been changed, it will restart
2852 * the whole pathname back-tracing sequence again by taking the rename_lock.
2853 * In this case, there is no need to take the RCU read lock as the recursive
2854 * parent pointer references will keep the dentry chain alive as long as no
2855 * rename operation is performed.
2856 */
2857 static int prepend_path(const struct path *path,
2858 const struct path *root,
2859 char **buffer, int *buflen)
2860 {
2861 struct dentry *dentry;
2862 struct vfsmount *vfsmnt;
2863 struct mount *mnt;
2864 int error = 0;
2865 unsigned seq, m_seq = 0;
2866 char *bptr;
2867 int blen;
2868
2869 rcu_read_lock();
2870 restart_mnt:
2871 read_seqbegin_or_lock(&mount_lock, &m_seq);
2872 seq = 0;
2873 rcu_read_lock();
2874 restart:
2875 bptr = *buffer;
2876 blen = *buflen;
2877 error = 0;
2878 dentry = path->dentry;
2879 vfsmnt = path->mnt;
2880 mnt = real_mount(vfsmnt);
2881 read_seqbegin_or_lock(&rename_lock, &seq);
2882 while (dentry != root->dentry || vfsmnt != root->mnt) {
2883 struct dentry * parent;
2884
2885 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2886 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2887 /* Global root? */
2888 if (mnt != parent) {
2889 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2890 mnt = parent;
2891 vfsmnt = &mnt->mnt;
2892 continue;
2893 }
2894 /*
2895 * Filesystems needing to implement special "root names"
2896 * should do so with ->d_dname()
2897 */
2898 if (IS_ROOT(dentry) &&
2899 (dentry->d_name.len != 1 ||
2900 dentry->d_name.name[0] != '/')) {
2901 WARN(1, "Root dentry has weird name <%.*s>\n",
2902 (int) dentry->d_name.len,
2903 dentry->d_name.name);
2904 }
2905 if (!error)
2906 error = is_mounted(vfsmnt) ? 1 : 2;
2907 break;
2908 }
2909 parent = dentry->d_parent;
2910 prefetch(parent);
2911 error = prepend_name(&bptr, &blen, &dentry->d_name);
2912 if (error)
2913 break;
2914
2915 dentry = parent;
2916 }
2917 if (!(seq & 1))
2918 rcu_read_unlock();
2919 if (need_seqretry(&rename_lock, seq)) {
2920 seq = 1;
2921 goto restart;
2922 }
2923 done_seqretry(&rename_lock, seq);
2924
2925 if (!(m_seq & 1))
2926 rcu_read_unlock();
2927 if (need_seqretry(&mount_lock, m_seq)) {
2928 m_seq = 1;
2929 goto restart_mnt;
2930 }
2931 done_seqretry(&mount_lock, m_seq);
2932
2933 if (error >= 0 && bptr == *buffer) {
2934 if (--blen < 0)
2935 error = -ENAMETOOLONG;
2936 else
2937 *--bptr = '/';
2938 }
2939 *buffer = bptr;
2940 *buflen = blen;
2941 return error;
2942 }
2943
2944 /**
2945 * __d_path - return the path of a dentry
2946 * @path: the dentry/vfsmount to report
2947 * @root: root vfsmnt/dentry
2948 * @buf: buffer to return value in
2949 * @buflen: buffer length
2950 *
2951 * Convert a dentry into an ASCII path name.
2952 *
2953 * Returns a pointer into the buffer or an error code if the
2954 * path was too long.
2955 *
2956 * "buflen" should be positive.
2957 *
2958 * If the path is not reachable from the supplied root, return %NULL.
2959 */
2960 char *__d_path(const struct path *path,
2961 const struct path *root,
2962 char *buf, int buflen)
2963 {
2964 char *res = buf + buflen;
2965 int error;
2966
2967 prepend(&res, &buflen, "\0", 1);
2968 error = prepend_path(path, root, &res, &buflen);
2969
2970 if (error < 0)
2971 return ERR_PTR(error);
2972 if (error > 0)
2973 return NULL;
2974 return res;
2975 }
2976
2977 char *d_absolute_path(const struct path *path,
2978 char *buf, int buflen)
2979 {
2980 struct path root = {};
2981 char *res = buf + buflen;
2982 int error;
2983
2984 prepend(&res, &buflen, "\0", 1);
2985 error = prepend_path(path, &root, &res, &buflen);
2986
2987 if (error > 1)
2988 error = -EINVAL;
2989 if (error < 0)
2990 return ERR_PTR(error);
2991 return res;
2992 }
2993
2994 /*
2995 * same as __d_path but appends "(deleted)" for unlinked files.
2996 */
2997 static int path_with_deleted(const struct path *path,
2998 const struct path *root,
2999 char **buf, int *buflen)
3000 {
3001 prepend(buf, buflen, "\0", 1);
3002 if (d_unlinked(path->dentry)) {
3003 int error = prepend(buf, buflen, " (deleted)", 10);
3004 if (error)
3005 return error;
3006 }
3007
3008 return prepend_path(path, root, buf, buflen);
3009 }
3010
3011 static int prepend_unreachable(char **buffer, int *buflen)
3012 {
3013 return prepend(buffer, buflen, "(unreachable)", 13);
3014 }
3015
3016 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3017 {
3018 unsigned seq;
3019
3020 do {
3021 seq = read_seqcount_begin(&fs->seq);
3022 *root = fs->root;
3023 } while (read_seqcount_retry(&fs->seq, seq));
3024 }
3025
3026 /**
3027 * d_path - return the path of a dentry
3028 * @path: path to report
3029 * @buf: buffer to return value in
3030 * @buflen: buffer length
3031 *
3032 * Convert a dentry into an ASCII path name. If the entry has been deleted
3033 * the string " (deleted)" is appended. Note that this is ambiguous.
3034 *
3035 * Returns a pointer into the buffer or an error code if the path was
3036 * too long. Note: Callers should use the returned pointer, not the passed
3037 * in buffer, to use the name! The implementation often starts at an offset
3038 * into the buffer, and may leave 0 bytes at the start.
3039 *
3040 * "buflen" should be positive.
3041 */
3042 char *d_path(const struct path *path, char *buf, int buflen)
3043 {
3044 char *res = buf + buflen;
3045 struct path root;
3046 int error;
3047
3048 /*
3049 * We have various synthetic filesystems that never get mounted. On
3050 * these filesystems dentries are never used for lookup purposes, and
3051 * thus don't need to be hashed. They also don't need a name until a
3052 * user wants to identify the object in /proc/pid/fd/. The little hack
3053 * below allows us to generate a name for these objects on demand:
3054 *
3055 * Some pseudo inodes are mountable. When they are mounted
3056 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3057 * and instead have d_path return the mounted path.
3058 */
3059 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3060 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3061 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3062
3063 rcu_read_lock();
3064 get_fs_root_rcu(current->fs, &root);
3065 error = path_with_deleted(path, &root, &res, &buflen);
3066 rcu_read_unlock();
3067
3068 if (error < 0)
3069 res = ERR_PTR(error);
3070 return res;
3071 }
3072 EXPORT_SYMBOL(d_path);
3073
3074 /*
3075 * Helper function for dentry_operations.d_dname() members
3076 */
3077 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3078 const char *fmt, ...)
3079 {
3080 va_list args;
3081 char temp[64];
3082 int sz;
3083
3084 va_start(args, fmt);
3085 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3086 va_end(args);
3087
3088 if (sz > sizeof(temp) || sz > buflen)
3089 return ERR_PTR(-ENAMETOOLONG);
3090
3091 buffer += buflen - sz;
3092 return memcpy(buffer, temp, sz);
3093 }
3094
3095 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3096 {
3097 char *end = buffer + buflen;
3098 /* these dentries are never renamed, so d_lock is not needed */
3099 if (prepend(&end, &buflen, " (deleted)", 11) ||
3100 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3101 prepend(&end, &buflen, "/", 1))
3102 end = ERR_PTR(-ENAMETOOLONG);
3103 return end;
3104 }
3105 EXPORT_SYMBOL(simple_dname);
3106
3107 /*
3108 * Write full pathname from the root of the filesystem into the buffer.
3109 */
3110 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3111 {
3112 struct dentry *dentry;
3113 char *end, *retval;
3114 int len, seq = 0;
3115 int error = 0;
3116
3117 if (buflen < 2)
3118 goto Elong;
3119
3120 rcu_read_lock();
3121 restart:
3122 dentry = d;
3123 end = buf + buflen;
3124 len = buflen;
3125 prepend(&end, &len, "\0", 1);
3126 /* Get '/' right */
3127 retval = end-1;
3128 *retval = '/';
3129 read_seqbegin_or_lock(&rename_lock, &seq);
3130 while (!IS_ROOT(dentry)) {
3131 struct dentry *parent = dentry->d_parent;
3132
3133 prefetch(parent);
3134 error = prepend_name(&end, &len, &dentry->d_name);
3135 if (error)
3136 break;
3137
3138 retval = end;
3139 dentry = parent;
3140 }
3141 if (!(seq & 1))
3142 rcu_read_unlock();
3143 if (need_seqretry(&rename_lock, seq)) {
3144 seq = 1;
3145 goto restart;
3146 }
3147 done_seqretry(&rename_lock, seq);
3148 if (error)
3149 goto Elong;
3150 return retval;
3151 Elong:
3152 return ERR_PTR(-ENAMETOOLONG);
3153 }
3154
3155 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3156 {
3157 return __dentry_path(dentry, buf, buflen);
3158 }
3159 EXPORT_SYMBOL(dentry_path_raw);
3160
3161 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3162 {
3163 char *p = NULL;
3164 char *retval;
3165
3166 if (d_unlinked(dentry)) {
3167 p = buf + buflen;
3168 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3169 goto Elong;
3170 buflen++;
3171 }
3172 retval = __dentry_path(dentry, buf, buflen);
3173 if (!IS_ERR(retval) && p)
3174 *p = '/'; /* restore '/' overriden with '\0' */
3175 return retval;
3176 Elong:
3177 return ERR_PTR(-ENAMETOOLONG);
3178 }
3179
3180 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3181 struct path *pwd)
3182 {
3183 unsigned seq;
3184
3185 do {
3186 seq = read_seqcount_begin(&fs->seq);
3187 *root = fs->root;
3188 *pwd = fs->pwd;
3189 } while (read_seqcount_retry(&fs->seq, seq));
3190 }
3191
3192 /*
3193 * NOTE! The user-level library version returns a
3194 * character pointer. The kernel system call just
3195 * returns the length of the buffer filled (which
3196 * includes the ending '\0' character), or a negative
3197 * error value. So libc would do something like
3198 *
3199 * char *getcwd(char * buf, size_t size)
3200 * {
3201 * int retval;
3202 *
3203 * retval = sys_getcwd(buf, size);
3204 * if (retval >= 0)
3205 * return buf;
3206 * errno = -retval;
3207 * return NULL;
3208 * }
3209 */
3210 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3211 {
3212 int error;
3213 struct path pwd, root;
3214 char *page = __getname();
3215
3216 if (!page)
3217 return -ENOMEM;
3218
3219 rcu_read_lock();
3220 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3221
3222 error = -ENOENT;
3223 if (!d_unlinked(pwd.dentry)) {
3224 unsigned long len;
3225 char *cwd = page + PATH_MAX;
3226 int buflen = PATH_MAX;
3227
3228 prepend(&cwd, &buflen, "\0", 1);
3229 error = prepend_path(&pwd, &root, &cwd, &buflen);
3230 rcu_read_unlock();
3231
3232 if (error < 0)
3233 goto out;
3234
3235 /* Unreachable from current root */
3236 if (error > 0) {
3237 error = prepend_unreachable(&cwd, &buflen);
3238 if (error)
3239 goto out;
3240 }
3241
3242 error = -ERANGE;
3243 len = PATH_MAX + page - cwd;
3244 if (len <= size) {
3245 error = len;
3246 if (copy_to_user(buf, cwd, len))
3247 error = -EFAULT;
3248 }
3249 } else {
3250 rcu_read_unlock();
3251 }
3252
3253 out:
3254 __putname(page);
3255 return error;
3256 }
3257
3258 /*
3259 * Test whether new_dentry is a subdirectory of old_dentry.
3260 *
3261 * Trivially implemented using the dcache structure
3262 */
3263
3264 /**
3265 * is_subdir - is new dentry a subdirectory of old_dentry
3266 * @new_dentry: new dentry
3267 * @old_dentry: old dentry
3268 *
3269 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3270 * Returns 0 otherwise.
3271 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3272 */
3273
3274 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3275 {
3276 int result;
3277 unsigned seq;
3278
3279 if (new_dentry == old_dentry)
3280 return 1;
3281
3282 do {
3283 /* for restarting inner loop in case of seq retry */
3284 seq = read_seqbegin(&rename_lock);
3285 /*
3286 * Need rcu_readlock to protect against the d_parent trashing
3287 * due to d_move
3288 */
3289 rcu_read_lock();
3290 if (d_ancestor(old_dentry, new_dentry))
3291 result = 1;
3292 else
3293 result = 0;
3294 rcu_read_unlock();
3295 } while (read_seqretry(&rename_lock, seq));
3296
3297 return result;
3298 }
3299
3300 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3301 {
3302 struct dentry *root = data;
3303 if (dentry != root) {
3304 if (d_unhashed(dentry) || !dentry->d_inode)
3305 return D_WALK_SKIP;
3306
3307 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3308 dentry->d_flags |= DCACHE_GENOCIDE;
3309 dentry->d_lockref.count--;
3310 }
3311 }
3312 return D_WALK_CONTINUE;
3313 }
3314
3315 void d_genocide(struct dentry *parent)
3316 {
3317 d_walk(parent, parent, d_genocide_kill, NULL);
3318 }
3319
3320 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3321 {
3322 inode_dec_link_count(inode);
3323 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3324 !hlist_unhashed(&dentry->d_alias) ||
3325 !d_unlinked(dentry));
3326 spin_lock(&dentry->d_parent->d_lock);
3327 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3328 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3329 (unsigned long long)inode->i_ino);
3330 spin_unlock(&dentry->d_lock);
3331 spin_unlock(&dentry->d_parent->d_lock);
3332 d_instantiate(dentry, inode);
3333 }
3334 EXPORT_SYMBOL(d_tmpfile);
3335
3336 static __initdata unsigned long dhash_entries;
3337 static int __init set_dhash_entries(char *str)
3338 {
3339 if (!str)
3340 return 0;
3341 dhash_entries = simple_strtoul(str, &str, 0);
3342 return 1;
3343 }
3344 __setup("dhash_entries=", set_dhash_entries);
3345
3346 static void __init dcache_init_early(void)
3347 {
3348 unsigned int loop;
3349
3350 /* If hashes are distributed across NUMA nodes, defer
3351 * hash allocation until vmalloc space is available.
3352 */
3353 if (hashdist)
3354 return;
3355
3356 dentry_hashtable =
3357 alloc_large_system_hash("Dentry cache",
3358 sizeof(struct hlist_bl_head),
3359 dhash_entries,
3360 13,
3361 HASH_EARLY,
3362 &d_hash_shift,
3363 &d_hash_mask,
3364 0,
3365 0);
3366
3367 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3368 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3369 }
3370
3371 static void __init dcache_init(void)
3372 {
3373 unsigned int loop;
3374
3375 /*
3376 * A constructor could be added for stable state like the lists,
3377 * but it is probably not worth it because of the cache nature
3378 * of the dcache.
3379 */
3380 dentry_cache = KMEM_CACHE(dentry,
3381 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3382
3383 /* Hash may have been set up in dcache_init_early */
3384 if (!hashdist)
3385 return;
3386
3387 dentry_hashtable =
3388 alloc_large_system_hash("Dentry cache",
3389 sizeof(struct hlist_bl_head),
3390 dhash_entries,
3391 13,
3392 0,
3393 &d_hash_shift,
3394 &d_hash_mask,
3395 0,
3396 0);
3397
3398 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3399 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3400 }
3401
3402 /* SLAB cache for __getname() consumers */
3403 struct kmem_cache *names_cachep __read_mostly;
3404 EXPORT_SYMBOL(names_cachep);
3405
3406 EXPORT_SYMBOL(d_genocide);
3407
3408 void __init vfs_caches_init_early(void)
3409 {
3410 dcache_init_early();
3411 inode_init_early();
3412 }
3413
3414 void __init vfs_caches_init(unsigned long mempages)
3415 {
3416 unsigned long reserve;
3417
3418 /* Base hash sizes on available memory, with a reserve equal to
3419 150% of current kernel size */
3420
3421 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3422 mempages -= reserve;
3423
3424 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3425 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3426
3427 dcache_init();
3428 inode_init();
3429 files_init(mempages);
3430 mnt_init();
3431 bdev_cache_init();
3432 chrdev_init();
3433 }
This page took 0.102159 seconds and 5 git commands to generate.