ipvs: Pass ipvs not net to ip_vs_proc_conn
[deliverable/linux.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
57 */
58
59 /* dio_state only used in the submission path */
60
61 struct dio_submit {
62 struct bio *bio; /* bio under assembly */
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 int boundary; /* prev block is at a boundary */
79 get_block_t *get_block; /* block mapping function */
80 dio_submit_t *submit_io; /* IO submition function */
81
82 loff_t logical_offset_in_bio; /* current first logical block in bio */
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
96 loff_t cur_page_fs_offset; /* Offset in file */
97
98 struct iov_iter *iter;
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
105 size_t from, to;
106 };
107
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 int flags; /* doesn't change */
111 int rw;
112 struct inode *inode;
113 loff_t i_size; /* i_size when submitted */
114 dio_iodone_t *end_io; /* IO completion function */
115
116 void *private; /* copy from map_bh.b_private */
117
118 /* BIO completion state */
119 spinlock_t bio_lock; /* protects BIO fields below */
120 int page_errors; /* errno from get_user_pages() */
121 int is_async; /* is IO async ? */
122 bool defer_completion; /* defer AIO completion to workqueue? */
123 int io_error; /* IO error in completion path */
124 unsigned long refcount; /* direct_io_worker() and bios */
125 struct bio *bio_list; /* singly linked via bi_private */
126 struct task_struct *waiter; /* waiting task (NULL if none) */
127
128 /* AIO related stuff */
129 struct kiocb *iocb; /* kiocb */
130 ssize_t result; /* IO result */
131
132 /*
133 * pages[] (and any fields placed after it) are not zeroed out at
134 * allocation time. Don't add new fields after pages[] unless you
135 * wish that they not be zeroed.
136 */
137 union {
138 struct page *pages[DIO_PAGES]; /* page buffer */
139 struct work_struct complete_work;/* deferred AIO completion */
140 };
141 } ____cacheline_aligned_in_smp;
142
143 static struct kmem_cache *dio_cache __read_mostly;
144
145 /*
146 * How many pages are in the queue?
147 */
148 static inline unsigned dio_pages_present(struct dio_submit *sdio)
149 {
150 return sdio->tail - sdio->head;
151 }
152
153 /*
154 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
155 */
156 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
157 {
158 ssize_t ret;
159
160 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
161 &sdio->from);
162
163 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
164 struct page *page = ZERO_PAGE(0);
165 /*
166 * A memory fault, but the filesystem has some outstanding
167 * mapped blocks. We need to use those blocks up to avoid
168 * leaking stale data in the file.
169 */
170 if (dio->page_errors == 0)
171 dio->page_errors = ret;
172 page_cache_get(page);
173 dio->pages[0] = page;
174 sdio->head = 0;
175 sdio->tail = 1;
176 sdio->from = 0;
177 sdio->to = PAGE_SIZE;
178 return 0;
179 }
180
181 if (ret >= 0) {
182 iov_iter_advance(sdio->iter, ret);
183 ret += sdio->from;
184 sdio->head = 0;
185 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
187 return 0;
188 }
189 return ret;
190 }
191
192 /*
193 * Get another userspace page. Returns an ERR_PTR on error. Pages are
194 * buffered inside the dio so that we can call get_user_pages() against a
195 * decent number of pages, less frequently. To provide nicer use of the
196 * L1 cache.
197 */
198 static inline struct page *dio_get_page(struct dio *dio,
199 struct dio_submit *sdio)
200 {
201 if (dio_pages_present(sdio) == 0) {
202 int ret;
203
204 ret = dio_refill_pages(dio, sdio);
205 if (ret)
206 return ERR_PTR(ret);
207 BUG_ON(dio_pages_present(sdio) == 0);
208 }
209 return dio->pages[sdio->head];
210 }
211
212 /**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
216 * This drops i_dio_count, lets interested parties know that a DIO operation
217 * has completed, and calculates the resulting return code for the operation.
218 *
219 * It lets the filesystem know if it registered an interest earlier via
220 * get_block. Pass the private field of the map buffer_head so that
221 * filesystems can use it to hold additional state between get_block calls and
222 * dio_complete.
223 */
224 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
225 bool is_async)
226 {
227 ssize_t transferred = 0;
228
229 /*
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
234 */
235 if (ret == -EIOCBQUEUED)
236 ret = 0;
237
238 if (dio->result) {
239 transferred = dio->result;
240
241 /* Check for short read case */
242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 transferred = dio->i_size - offset;
244 }
245
246 if (ret == 0)
247 ret = dio->page_errors;
248 if (ret == 0)
249 ret = dio->io_error;
250 if (ret == 0)
251 ret = transferred;
252
253 if (dio->end_io && dio->result)
254 dio->end_io(dio->iocb, offset, transferred, dio->private);
255
256 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
257 inode_dio_end(dio->inode);
258
259 if (is_async) {
260 if (dio->rw & WRITE) {
261 int err;
262
263 err = generic_write_sync(dio->iocb->ki_filp, offset,
264 transferred);
265 if (err < 0 && ret > 0)
266 ret = err;
267 }
268
269 dio->iocb->ki_complete(dio->iocb, ret, 0);
270 }
271
272 kmem_cache_free(dio_cache, dio);
273 return ret;
274 }
275
276 static void dio_aio_complete_work(struct work_struct *work)
277 {
278 struct dio *dio = container_of(work, struct dio, complete_work);
279
280 dio_complete(dio, dio->iocb->ki_pos, 0, true);
281 }
282
283 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284
285 /*
286 * Asynchronous IO callback.
287 */
288 static void dio_bio_end_aio(struct bio *bio)
289 {
290 struct dio *dio = bio->bi_private;
291 unsigned long remaining;
292 unsigned long flags;
293
294 /* cleanup the bio */
295 dio_bio_complete(dio, bio);
296
297 spin_lock_irqsave(&dio->bio_lock, flags);
298 remaining = --dio->refcount;
299 if (remaining == 1 && dio->waiter)
300 wake_up_process(dio->waiter);
301 spin_unlock_irqrestore(&dio->bio_lock, flags);
302
303 if (remaining == 0) {
304 if (dio->result && dio->defer_completion) {
305 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
306 queue_work(dio->inode->i_sb->s_dio_done_wq,
307 &dio->complete_work);
308 } else {
309 dio_complete(dio, dio->iocb->ki_pos, 0, true);
310 }
311 }
312 }
313
314 /*
315 * The BIO completion handler simply queues the BIO up for the process-context
316 * handler.
317 *
318 * During I/O bi_private points at the dio. After I/O, bi_private is used to
319 * implement a singly-linked list of completed BIOs, at dio->bio_list.
320 */
321 static void dio_bio_end_io(struct bio *bio)
322 {
323 struct dio *dio = bio->bi_private;
324 unsigned long flags;
325
326 spin_lock_irqsave(&dio->bio_lock, flags);
327 bio->bi_private = dio->bio_list;
328 dio->bio_list = bio;
329 if (--dio->refcount == 1 && dio->waiter)
330 wake_up_process(dio->waiter);
331 spin_unlock_irqrestore(&dio->bio_lock, flags);
332 }
333
334 /**
335 * dio_end_io - handle the end io action for the given bio
336 * @bio: The direct io bio thats being completed
337 * @error: Error if there was one
338 *
339 * This is meant to be called by any filesystem that uses their own dio_submit_t
340 * so that the DIO specific endio actions are dealt with after the filesystem
341 * has done it's completion work.
342 */
343 void dio_end_io(struct bio *bio, int error)
344 {
345 struct dio *dio = bio->bi_private;
346
347 if (dio->is_async)
348 dio_bio_end_aio(bio);
349 else
350 dio_bio_end_io(bio);
351 }
352 EXPORT_SYMBOL_GPL(dio_end_io);
353
354 static inline void
355 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
356 struct block_device *bdev,
357 sector_t first_sector, int nr_vecs)
358 {
359 struct bio *bio;
360
361 /*
362 * bio_alloc() is guaranteed to return a bio when called with
363 * __GFP_WAIT and we request a valid number of vectors.
364 */
365 bio = bio_alloc(GFP_KERNEL, nr_vecs);
366
367 bio->bi_bdev = bdev;
368 bio->bi_iter.bi_sector = first_sector;
369 if (dio->is_async)
370 bio->bi_end_io = dio_bio_end_aio;
371 else
372 bio->bi_end_io = dio_bio_end_io;
373
374 sdio->bio = bio;
375 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
376 }
377
378 /*
379 * In the AIO read case we speculatively dirty the pages before starting IO.
380 * During IO completion, any of these pages which happen to have been written
381 * back will be redirtied by bio_check_pages_dirty().
382 *
383 * bios hold a dio reference between submit_bio and ->end_io.
384 */
385 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
386 {
387 struct bio *bio = sdio->bio;
388 unsigned long flags;
389
390 bio->bi_private = dio;
391
392 spin_lock_irqsave(&dio->bio_lock, flags);
393 dio->refcount++;
394 spin_unlock_irqrestore(&dio->bio_lock, flags);
395
396 if (dio->is_async && dio->rw == READ)
397 bio_set_pages_dirty(bio);
398
399 if (sdio->submit_io)
400 sdio->submit_io(dio->rw, bio, dio->inode,
401 sdio->logical_offset_in_bio);
402 else
403 submit_bio(dio->rw, bio);
404
405 sdio->bio = NULL;
406 sdio->boundary = 0;
407 sdio->logical_offset_in_bio = 0;
408 }
409
410 /*
411 * Release any resources in case of a failure
412 */
413 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
414 {
415 while (sdio->head < sdio->tail)
416 page_cache_release(dio->pages[sdio->head++]);
417 }
418
419 /*
420 * Wait for the next BIO to complete. Remove it and return it. NULL is
421 * returned once all BIOs have been completed. This must only be called once
422 * all bios have been issued so that dio->refcount can only decrease. This
423 * requires that that the caller hold a reference on the dio.
424 */
425 static struct bio *dio_await_one(struct dio *dio)
426 {
427 unsigned long flags;
428 struct bio *bio = NULL;
429
430 spin_lock_irqsave(&dio->bio_lock, flags);
431
432 /*
433 * Wait as long as the list is empty and there are bios in flight. bio
434 * completion drops the count, maybe adds to the list, and wakes while
435 * holding the bio_lock so we don't need set_current_state()'s barrier
436 * and can call it after testing our condition.
437 */
438 while (dio->refcount > 1 && dio->bio_list == NULL) {
439 __set_current_state(TASK_UNINTERRUPTIBLE);
440 dio->waiter = current;
441 spin_unlock_irqrestore(&dio->bio_lock, flags);
442 io_schedule();
443 /* wake up sets us TASK_RUNNING */
444 spin_lock_irqsave(&dio->bio_lock, flags);
445 dio->waiter = NULL;
446 }
447 if (dio->bio_list) {
448 bio = dio->bio_list;
449 dio->bio_list = bio->bi_private;
450 }
451 spin_unlock_irqrestore(&dio->bio_lock, flags);
452 return bio;
453 }
454
455 /*
456 * Process one completed BIO. No locks are held.
457 */
458 static int dio_bio_complete(struct dio *dio, struct bio *bio)
459 {
460 struct bio_vec *bvec;
461 unsigned i;
462 int err;
463
464 if (bio->bi_error)
465 dio->io_error = -EIO;
466
467 if (dio->is_async && dio->rw == READ) {
468 bio_check_pages_dirty(bio); /* transfers ownership */
469 err = bio->bi_error;
470 } else {
471 bio_for_each_segment_all(bvec, bio, i) {
472 struct page *page = bvec->bv_page;
473
474 if (dio->rw == READ && !PageCompound(page))
475 set_page_dirty_lock(page);
476 page_cache_release(page);
477 }
478 err = bio->bi_error;
479 bio_put(bio);
480 }
481 return err;
482 }
483
484 /*
485 * Wait on and process all in-flight BIOs. This must only be called once
486 * all bios have been issued so that the refcount can only decrease.
487 * This just waits for all bios to make it through dio_bio_complete. IO
488 * errors are propagated through dio->io_error and should be propagated via
489 * dio_complete().
490 */
491 static void dio_await_completion(struct dio *dio)
492 {
493 struct bio *bio;
494 do {
495 bio = dio_await_one(dio);
496 if (bio)
497 dio_bio_complete(dio, bio);
498 } while (bio);
499 }
500
501 /*
502 * A really large O_DIRECT read or write can generate a lot of BIOs. So
503 * to keep the memory consumption sane we periodically reap any completed BIOs
504 * during the BIO generation phase.
505 *
506 * This also helps to limit the peak amount of pinned userspace memory.
507 */
508 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
509 {
510 int ret = 0;
511
512 if (sdio->reap_counter++ >= 64) {
513 while (dio->bio_list) {
514 unsigned long flags;
515 struct bio *bio;
516 int ret2;
517
518 spin_lock_irqsave(&dio->bio_lock, flags);
519 bio = dio->bio_list;
520 dio->bio_list = bio->bi_private;
521 spin_unlock_irqrestore(&dio->bio_lock, flags);
522 ret2 = dio_bio_complete(dio, bio);
523 if (ret == 0)
524 ret = ret2;
525 }
526 sdio->reap_counter = 0;
527 }
528 return ret;
529 }
530
531 /*
532 * Create workqueue for deferred direct IO completions. We allocate the
533 * workqueue when it's first needed. This avoids creating workqueue for
534 * filesystems that don't need it and also allows us to create the workqueue
535 * late enough so the we can include s_id in the name of the workqueue.
536 */
537 static int sb_init_dio_done_wq(struct super_block *sb)
538 {
539 struct workqueue_struct *old;
540 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
541 WQ_MEM_RECLAIM, 0,
542 sb->s_id);
543 if (!wq)
544 return -ENOMEM;
545 /*
546 * This has to be atomic as more DIOs can race to create the workqueue
547 */
548 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
549 /* Someone created workqueue before us? Free ours... */
550 if (old)
551 destroy_workqueue(wq);
552 return 0;
553 }
554
555 static int dio_set_defer_completion(struct dio *dio)
556 {
557 struct super_block *sb = dio->inode->i_sb;
558
559 if (dio->defer_completion)
560 return 0;
561 dio->defer_completion = true;
562 if (!sb->s_dio_done_wq)
563 return sb_init_dio_done_wq(sb);
564 return 0;
565 }
566
567 /*
568 * Call into the fs to map some more disk blocks. We record the current number
569 * of available blocks at sdio->blocks_available. These are in units of the
570 * fs blocksize, (1 << inode->i_blkbits).
571 *
572 * The fs is allowed to map lots of blocks at once. If it wants to do that,
573 * it uses the passed inode-relative block number as the file offset, as usual.
574 *
575 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
576 * has remaining to do. The fs should not map more than this number of blocks.
577 *
578 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
579 * indicate how much contiguous disk space has been made available at
580 * bh->b_blocknr.
581 *
582 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
583 * This isn't very efficient...
584 *
585 * In the case of filesystem holes: the fs may return an arbitrarily-large
586 * hole by returning an appropriate value in b_size and by clearing
587 * buffer_mapped(). However the direct-io code will only process holes one
588 * block at a time - it will repeatedly call get_block() as it walks the hole.
589 */
590 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
591 struct buffer_head *map_bh)
592 {
593 int ret;
594 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
595 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
596 unsigned long fs_count; /* Number of filesystem-sized blocks */
597 int create;
598 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
599
600 /*
601 * If there was a memory error and we've overwritten all the
602 * mapped blocks then we can now return that memory error
603 */
604 ret = dio->page_errors;
605 if (ret == 0) {
606 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
607 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
608 fs_endblk = (sdio->final_block_in_request - 1) >>
609 sdio->blkfactor;
610 fs_count = fs_endblk - fs_startblk + 1;
611
612 map_bh->b_state = 0;
613 map_bh->b_size = fs_count << i_blkbits;
614
615 /*
616 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
617 * forbid block creations: only overwrites are permitted.
618 * We will return early to the caller once we see an
619 * unmapped buffer head returned, and the caller will fall
620 * back to buffered I/O.
621 *
622 * Otherwise the decision is left to the get_blocks method,
623 * which may decide to handle it or also return an unmapped
624 * buffer head.
625 */
626 create = dio->rw & WRITE;
627 if (dio->flags & DIO_SKIP_HOLES) {
628 if (sdio->block_in_file < (i_size_read(dio->inode) >>
629 sdio->blkbits))
630 create = 0;
631 }
632
633 ret = (*sdio->get_block)(dio->inode, fs_startblk,
634 map_bh, create);
635
636 /* Store for completion */
637 dio->private = map_bh->b_private;
638
639 if (ret == 0 && buffer_defer_completion(map_bh))
640 ret = dio_set_defer_completion(dio);
641 }
642 return ret;
643 }
644
645 /*
646 * There is no bio. Make one now.
647 */
648 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
649 sector_t start_sector, struct buffer_head *map_bh)
650 {
651 sector_t sector;
652 int ret, nr_pages;
653
654 ret = dio_bio_reap(dio, sdio);
655 if (ret)
656 goto out;
657 sector = start_sector << (sdio->blkbits - 9);
658 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
659 BUG_ON(nr_pages <= 0);
660 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
661 sdio->boundary = 0;
662 out:
663 return ret;
664 }
665
666 /*
667 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
668 * that was successful then update final_block_in_bio and take a ref against
669 * the just-added page.
670 *
671 * Return zero on success. Non-zero means the caller needs to start a new BIO.
672 */
673 static inline int dio_bio_add_page(struct dio_submit *sdio)
674 {
675 int ret;
676
677 ret = bio_add_page(sdio->bio, sdio->cur_page,
678 sdio->cur_page_len, sdio->cur_page_offset);
679 if (ret == sdio->cur_page_len) {
680 /*
681 * Decrement count only, if we are done with this page
682 */
683 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
684 sdio->pages_in_io--;
685 page_cache_get(sdio->cur_page);
686 sdio->final_block_in_bio = sdio->cur_page_block +
687 (sdio->cur_page_len >> sdio->blkbits);
688 ret = 0;
689 } else {
690 ret = 1;
691 }
692 return ret;
693 }
694
695 /*
696 * Put cur_page under IO. The section of cur_page which is described by
697 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
698 * starts on-disk at cur_page_block.
699 *
700 * We take a ref against the page here (on behalf of its presence in the bio).
701 *
702 * The caller of this function is responsible for removing cur_page from the
703 * dio, and for dropping the refcount which came from that presence.
704 */
705 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
706 struct buffer_head *map_bh)
707 {
708 int ret = 0;
709
710 if (sdio->bio) {
711 loff_t cur_offset = sdio->cur_page_fs_offset;
712 loff_t bio_next_offset = sdio->logical_offset_in_bio +
713 sdio->bio->bi_iter.bi_size;
714
715 /*
716 * See whether this new request is contiguous with the old.
717 *
718 * Btrfs cannot handle having logically non-contiguous requests
719 * submitted. For example if you have
720 *
721 * Logical: [0-4095][HOLE][8192-12287]
722 * Physical: [0-4095] [4096-8191]
723 *
724 * We cannot submit those pages together as one BIO. So if our
725 * current logical offset in the file does not equal what would
726 * be the next logical offset in the bio, submit the bio we
727 * have.
728 */
729 if (sdio->final_block_in_bio != sdio->cur_page_block ||
730 cur_offset != bio_next_offset)
731 dio_bio_submit(dio, sdio);
732 }
733
734 if (sdio->bio == NULL) {
735 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
736 if (ret)
737 goto out;
738 }
739
740 if (dio_bio_add_page(sdio) != 0) {
741 dio_bio_submit(dio, sdio);
742 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
743 if (ret == 0) {
744 ret = dio_bio_add_page(sdio);
745 BUG_ON(ret != 0);
746 }
747 }
748 out:
749 return ret;
750 }
751
752 /*
753 * An autonomous function to put a chunk of a page under deferred IO.
754 *
755 * The caller doesn't actually know (or care) whether this piece of page is in
756 * a BIO, or is under IO or whatever. We just take care of all possible
757 * situations here. The separation between the logic of do_direct_IO() and
758 * that of submit_page_section() is important for clarity. Please don't break.
759 *
760 * The chunk of page starts on-disk at blocknr.
761 *
762 * We perform deferred IO, by recording the last-submitted page inside our
763 * private part of the dio structure. If possible, we just expand the IO
764 * across that page here.
765 *
766 * If that doesn't work out then we put the old page into the bio and add this
767 * page to the dio instead.
768 */
769 static inline int
770 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
771 unsigned offset, unsigned len, sector_t blocknr,
772 struct buffer_head *map_bh)
773 {
774 int ret = 0;
775
776 if (dio->rw & WRITE) {
777 /*
778 * Read accounting is performed in submit_bio()
779 */
780 task_io_account_write(len);
781 }
782
783 /*
784 * Can we just grow the current page's presence in the dio?
785 */
786 if (sdio->cur_page == page &&
787 sdio->cur_page_offset + sdio->cur_page_len == offset &&
788 sdio->cur_page_block +
789 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
790 sdio->cur_page_len += len;
791 goto out;
792 }
793
794 /*
795 * If there's a deferred page already there then send it.
796 */
797 if (sdio->cur_page) {
798 ret = dio_send_cur_page(dio, sdio, map_bh);
799 page_cache_release(sdio->cur_page);
800 sdio->cur_page = NULL;
801 if (ret)
802 return ret;
803 }
804
805 page_cache_get(page); /* It is in dio */
806 sdio->cur_page = page;
807 sdio->cur_page_offset = offset;
808 sdio->cur_page_len = len;
809 sdio->cur_page_block = blocknr;
810 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
811 out:
812 /*
813 * If sdio->boundary then we want to schedule the IO now to
814 * avoid metadata seeks.
815 */
816 if (sdio->boundary) {
817 ret = dio_send_cur_page(dio, sdio, map_bh);
818 dio_bio_submit(dio, sdio);
819 page_cache_release(sdio->cur_page);
820 sdio->cur_page = NULL;
821 }
822 return ret;
823 }
824
825 /*
826 * Clean any dirty buffers in the blockdev mapping which alias newly-created
827 * file blocks. Only called for S_ISREG files - blockdevs do not set
828 * buffer_new
829 */
830 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
831 {
832 unsigned i;
833 unsigned nblocks;
834
835 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
836
837 for (i = 0; i < nblocks; i++) {
838 unmap_underlying_metadata(map_bh->b_bdev,
839 map_bh->b_blocknr + i);
840 }
841 }
842
843 /*
844 * If we are not writing the entire block and get_block() allocated
845 * the block for us, we need to fill-in the unused portion of the
846 * block with zeros. This happens only if user-buffer, fileoffset or
847 * io length is not filesystem block-size multiple.
848 *
849 * `end' is zero if we're doing the start of the IO, 1 at the end of the
850 * IO.
851 */
852 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
853 int end, struct buffer_head *map_bh)
854 {
855 unsigned dio_blocks_per_fs_block;
856 unsigned this_chunk_blocks; /* In dio_blocks */
857 unsigned this_chunk_bytes;
858 struct page *page;
859
860 sdio->start_zero_done = 1;
861 if (!sdio->blkfactor || !buffer_new(map_bh))
862 return;
863
864 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
865 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
866
867 if (!this_chunk_blocks)
868 return;
869
870 /*
871 * We need to zero out part of an fs block. It is either at the
872 * beginning or the end of the fs block.
873 */
874 if (end)
875 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
876
877 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
878
879 page = ZERO_PAGE(0);
880 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
881 sdio->next_block_for_io, map_bh))
882 return;
883
884 sdio->next_block_for_io += this_chunk_blocks;
885 }
886
887 /*
888 * Walk the user pages, and the file, mapping blocks to disk and generating
889 * a sequence of (page,offset,len,block) mappings. These mappings are injected
890 * into submit_page_section(), which takes care of the next stage of submission
891 *
892 * Direct IO against a blockdev is different from a file. Because we can
893 * happily perform page-sized but 512-byte aligned IOs. It is important that
894 * blockdev IO be able to have fine alignment and large sizes.
895 *
896 * So what we do is to permit the ->get_block function to populate bh.b_size
897 * with the size of IO which is permitted at this offset and this i_blkbits.
898 *
899 * For best results, the blockdev should be set up with 512-byte i_blkbits and
900 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
901 * fine alignment but still allows this function to work in PAGE_SIZE units.
902 */
903 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
904 struct buffer_head *map_bh)
905 {
906 const unsigned blkbits = sdio->blkbits;
907 int ret = 0;
908
909 while (sdio->block_in_file < sdio->final_block_in_request) {
910 struct page *page;
911 size_t from, to;
912
913 page = dio_get_page(dio, sdio);
914 if (IS_ERR(page)) {
915 ret = PTR_ERR(page);
916 goto out;
917 }
918 from = sdio->head ? 0 : sdio->from;
919 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
920 sdio->head++;
921
922 while (from < to) {
923 unsigned this_chunk_bytes; /* # of bytes mapped */
924 unsigned this_chunk_blocks; /* # of blocks */
925 unsigned u;
926
927 if (sdio->blocks_available == 0) {
928 /*
929 * Need to go and map some more disk
930 */
931 unsigned long blkmask;
932 unsigned long dio_remainder;
933
934 ret = get_more_blocks(dio, sdio, map_bh);
935 if (ret) {
936 page_cache_release(page);
937 goto out;
938 }
939 if (!buffer_mapped(map_bh))
940 goto do_holes;
941
942 sdio->blocks_available =
943 map_bh->b_size >> sdio->blkbits;
944 sdio->next_block_for_io =
945 map_bh->b_blocknr << sdio->blkfactor;
946 if (buffer_new(map_bh))
947 clean_blockdev_aliases(dio, map_bh);
948
949 if (!sdio->blkfactor)
950 goto do_holes;
951
952 blkmask = (1 << sdio->blkfactor) - 1;
953 dio_remainder = (sdio->block_in_file & blkmask);
954
955 /*
956 * If we are at the start of IO and that IO
957 * starts partway into a fs-block,
958 * dio_remainder will be non-zero. If the IO
959 * is a read then we can simply advance the IO
960 * cursor to the first block which is to be
961 * read. But if the IO is a write and the
962 * block was newly allocated we cannot do that;
963 * the start of the fs block must be zeroed out
964 * on-disk
965 */
966 if (!buffer_new(map_bh))
967 sdio->next_block_for_io += dio_remainder;
968 sdio->blocks_available -= dio_remainder;
969 }
970 do_holes:
971 /* Handle holes */
972 if (!buffer_mapped(map_bh)) {
973 loff_t i_size_aligned;
974
975 /* AKPM: eargh, -ENOTBLK is a hack */
976 if (dio->rw & WRITE) {
977 page_cache_release(page);
978 return -ENOTBLK;
979 }
980
981 /*
982 * Be sure to account for a partial block as the
983 * last block in the file
984 */
985 i_size_aligned = ALIGN(i_size_read(dio->inode),
986 1 << blkbits);
987 if (sdio->block_in_file >=
988 i_size_aligned >> blkbits) {
989 /* We hit eof */
990 page_cache_release(page);
991 goto out;
992 }
993 zero_user(page, from, 1 << blkbits);
994 sdio->block_in_file++;
995 from += 1 << blkbits;
996 dio->result += 1 << blkbits;
997 goto next_block;
998 }
999
1000 /*
1001 * If we're performing IO which has an alignment which
1002 * is finer than the underlying fs, go check to see if
1003 * we must zero out the start of this block.
1004 */
1005 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1006 dio_zero_block(dio, sdio, 0, map_bh);
1007
1008 /*
1009 * Work out, in this_chunk_blocks, how much disk we
1010 * can add to this page
1011 */
1012 this_chunk_blocks = sdio->blocks_available;
1013 u = (to - from) >> blkbits;
1014 if (this_chunk_blocks > u)
1015 this_chunk_blocks = u;
1016 u = sdio->final_block_in_request - sdio->block_in_file;
1017 if (this_chunk_blocks > u)
1018 this_chunk_blocks = u;
1019 this_chunk_bytes = this_chunk_blocks << blkbits;
1020 BUG_ON(this_chunk_bytes == 0);
1021
1022 if (this_chunk_blocks == sdio->blocks_available)
1023 sdio->boundary = buffer_boundary(map_bh);
1024 ret = submit_page_section(dio, sdio, page,
1025 from,
1026 this_chunk_bytes,
1027 sdio->next_block_for_io,
1028 map_bh);
1029 if (ret) {
1030 page_cache_release(page);
1031 goto out;
1032 }
1033 sdio->next_block_for_io += this_chunk_blocks;
1034
1035 sdio->block_in_file += this_chunk_blocks;
1036 from += this_chunk_bytes;
1037 dio->result += this_chunk_bytes;
1038 sdio->blocks_available -= this_chunk_blocks;
1039 next_block:
1040 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1041 if (sdio->block_in_file == sdio->final_block_in_request)
1042 break;
1043 }
1044
1045 /* Drop the ref which was taken in get_user_pages() */
1046 page_cache_release(page);
1047 }
1048 out:
1049 return ret;
1050 }
1051
1052 static inline int drop_refcount(struct dio *dio)
1053 {
1054 int ret2;
1055 unsigned long flags;
1056
1057 /*
1058 * Sync will always be dropping the final ref and completing the
1059 * operation. AIO can if it was a broken operation described above or
1060 * in fact if all the bios race to complete before we get here. In
1061 * that case dio_complete() translates the EIOCBQUEUED into the proper
1062 * return code that the caller will hand to ->complete().
1063 *
1064 * This is managed by the bio_lock instead of being an atomic_t so that
1065 * completion paths can drop their ref and use the remaining count to
1066 * decide to wake the submission path atomically.
1067 */
1068 spin_lock_irqsave(&dio->bio_lock, flags);
1069 ret2 = --dio->refcount;
1070 spin_unlock_irqrestore(&dio->bio_lock, flags);
1071 return ret2;
1072 }
1073
1074 /*
1075 * This is a library function for use by filesystem drivers.
1076 *
1077 * The locking rules are governed by the flags parameter:
1078 * - if the flags value contains DIO_LOCKING we use a fancy locking
1079 * scheme for dumb filesystems.
1080 * For writes this function is called under i_mutex and returns with
1081 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1082 * taken and dropped again before returning.
1083 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1084 * internal locking but rather rely on the filesystem to synchronize
1085 * direct I/O reads/writes versus each other and truncate.
1086 *
1087 * To help with locking against truncate we incremented the i_dio_count
1088 * counter before starting direct I/O, and decrement it once we are done.
1089 * Truncate can wait for it to reach zero to provide exclusion. It is
1090 * expected that filesystem provide exclusion between new direct I/O
1091 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1092 * but other filesystems need to take care of this on their own.
1093 *
1094 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1095 * is always inlined. Otherwise gcc is unable to split the structure into
1096 * individual fields and will generate much worse code. This is important
1097 * for the whole file.
1098 */
1099 static inline ssize_t
1100 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1101 struct block_device *bdev, struct iov_iter *iter,
1102 loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1103 dio_submit_t submit_io, int flags)
1104 {
1105 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1106 unsigned blkbits = i_blkbits;
1107 unsigned blocksize_mask = (1 << blkbits) - 1;
1108 ssize_t retval = -EINVAL;
1109 size_t count = iov_iter_count(iter);
1110 loff_t end = offset + count;
1111 struct dio *dio;
1112 struct dio_submit sdio = { 0, };
1113 struct buffer_head map_bh = { 0, };
1114 struct blk_plug plug;
1115 unsigned long align = offset | iov_iter_alignment(iter);
1116
1117 /*
1118 * Avoid references to bdev if not absolutely needed to give
1119 * the early prefetch in the caller enough time.
1120 */
1121
1122 if (align & blocksize_mask) {
1123 if (bdev)
1124 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1125 blocksize_mask = (1 << blkbits) - 1;
1126 if (align & blocksize_mask)
1127 goto out;
1128 }
1129
1130 /* watch out for a 0 len io from a tricksy fs */
1131 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1132 return 0;
1133
1134 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1135 retval = -ENOMEM;
1136 if (!dio)
1137 goto out;
1138 /*
1139 * Believe it or not, zeroing out the page array caused a .5%
1140 * performance regression in a database benchmark. So, we take
1141 * care to only zero out what's needed.
1142 */
1143 memset(dio, 0, offsetof(struct dio, pages));
1144
1145 dio->flags = flags;
1146 if (dio->flags & DIO_LOCKING) {
1147 if (iov_iter_rw(iter) == READ) {
1148 struct address_space *mapping =
1149 iocb->ki_filp->f_mapping;
1150
1151 /* will be released by direct_io_worker */
1152 mutex_lock(&inode->i_mutex);
1153
1154 retval = filemap_write_and_wait_range(mapping, offset,
1155 end - 1);
1156 if (retval) {
1157 mutex_unlock(&inode->i_mutex);
1158 kmem_cache_free(dio_cache, dio);
1159 goto out;
1160 }
1161 }
1162 }
1163
1164 /*
1165 * For file extending writes updating i_size before data writeouts
1166 * complete can expose uninitialized blocks in dumb filesystems.
1167 * In that case we need to wait for I/O completion even if asked
1168 * for an asynchronous write.
1169 */
1170 if (is_sync_kiocb(iocb))
1171 dio->is_async = false;
1172 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1173 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1174 dio->is_async = false;
1175 else
1176 dio->is_async = true;
1177
1178 dio->inode = inode;
1179 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1180
1181 /*
1182 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1183 * so that we can call ->fsync.
1184 */
1185 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1186 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1187 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1188 retval = dio_set_defer_completion(dio);
1189 if (retval) {
1190 /*
1191 * We grab i_mutex only for reads so we don't have
1192 * to release it here
1193 */
1194 kmem_cache_free(dio_cache, dio);
1195 goto out;
1196 }
1197 }
1198
1199 /*
1200 * Will be decremented at I/O completion time.
1201 */
1202 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1203 inode_dio_begin(inode);
1204
1205 retval = 0;
1206 sdio.blkbits = blkbits;
1207 sdio.blkfactor = i_blkbits - blkbits;
1208 sdio.block_in_file = offset >> blkbits;
1209
1210 sdio.get_block = get_block;
1211 dio->end_io = end_io;
1212 sdio.submit_io = submit_io;
1213 sdio.final_block_in_bio = -1;
1214 sdio.next_block_for_io = -1;
1215
1216 dio->iocb = iocb;
1217 dio->i_size = i_size_read(inode);
1218
1219 spin_lock_init(&dio->bio_lock);
1220 dio->refcount = 1;
1221
1222 sdio.iter = iter;
1223 sdio.final_block_in_request =
1224 (offset + iov_iter_count(iter)) >> blkbits;
1225
1226 /*
1227 * In case of non-aligned buffers, we may need 2 more
1228 * pages since we need to zero out first and last block.
1229 */
1230 if (unlikely(sdio.blkfactor))
1231 sdio.pages_in_io = 2;
1232
1233 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1234
1235 blk_start_plug(&plug);
1236
1237 retval = do_direct_IO(dio, &sdio, &map_bh);
1238 if (retval)
1239 dio_cleanup(dio, &sdio);
1240
1241 if (retval == -ENOTBLK) {
1242 /*
1243 * The remaining part of the request will be
1244 * be handled by buffered I/O when we return
1245 */
1246 retval = 0;
1247 }
1248 /*
1249 * There may be some unwritten disk at the end of a part-written
1250 * fs-block-sized block. Go zero that now.
1251 */
1252 dio_zero_block(dio, &sdio, 1, &map_bh);
1253
1254 if (sdio.cur_page) {
1255 ssize_t ret2;
1256
1257 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1258 if (retval == 0)
1259 retval = ret2;
1260 page_cache_release(sdio.cur_page);
1261 sdio.cur_page = NULL;
1262 }
1263 if (sdio.bio)
1264 dio_bio_submit(dio, &sdio);
1265
1266 blk_finish_plug(&plug);
1267
1268 /*
1269 * It is possible that, we return short IO due to end of file.
1270 * In that case, we need to release all the pages we got hold on.
1271 */
1272 dio_cleanup(dio, &sdio);
1273
1274 /*
1275 * All block lookups have been performed. For READ requests
1276 * we can let i_mutex go now that its achieved its purpose
1277 * of protecting us from looking up uninitialized blocks.
1278 */
1279 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1280 mutex_unlock(&dio->inode->i_mutex);
1281
1282 /*
1283 * The only time we want to leave bios in flight is when a successful
1284 * partial aio read or full aio write have been setup. In that case
1285 * bio completion will call aio_complete. The only time it's safe to
1286 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1287 * This had *better* be the only place that raises -EIOCBQUEUED.
1288 */
1289 BUG_ON(retval == -EIOCBQUEUED);
1290 if (dio->is_async && retval == 0 && dio->result &&
1291 (iov_iter_rw(iter) == READ || dio->result == count))
1292 retval = -EIOCBQUEUED;
1293 else
1294 dio_await_completion(dio);
1295
1296 if (drop_refcount(dio) == 0) {
1297 retval = dio_complete(dio, offset, retval, false);
1298 } else
1299 BUG_ON(retval != -EIOCBQUEUED);
1300
1301 out:
1302 return retval;
1303 }
1304
1305 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1306 struct block_device *bdev, struct iov_iter *iter,
1307 loff_t offset, get_block_t get_block,
1308 dio_iodone_t end_io, dio_submit_t submit_io,
1309 int flags)
1310 {
1311 /*
1312 * The block device state is needed in the end to finally
1313 * submit everything. Since it's likely to be cache cold
1314 * prefetch it here as first thing to hide some of the
1315 * latency.
1316 *
1317 * Attempt to prefetch the pieces we likely need later.
1318 */
1319 prefetch(&bdev->bd_disk->part_tbl);
1320 prefetch(bdev->bd_queue);
1321 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1322
1323 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1324 end_io, submit_io, flags);
1325 }
1326
1327 EXPORT_SYMBOL(__blockdev_direct_IO);
1328
1329 static __init int dio_init(void)
1330 {
1331 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1332 return 0;
1333 }
1334 module_init(dio_init)
This page took 0.059083 seconds and 5 git commands to generate.