rapidio: add definitions of Component Tag fields
[deliverable/linux.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is possible to drop the "ep->mtx" and to use the global
67 * mutex "epmutex" (together with "ep->lock") to have it working,
68 * but having "ep->mtx" will make the interface more scalable.
69 * Events that require holding "epmutex" are very rare, while for
70 * normal operations the epoll private "ep->mtx" will guarantee
71 * a better scalability.
72 */
73
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79
80 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
81
82 #define EP_UNACTIVE_PTR ((void *) -1L)
83
84 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
85
86 struct epoll_filefd {
87 struct file *file;
88 int fd;
89 };
90
91 /*
92 * Structure used to track possible nested calls, for too deep recursions
93 * and loop cycles.
94 */
95 struct nested_call_node {
96 struct list_head llink;
97 void *cookie;
98 void *ctx;
99 };
100
101 /*
102 * This structure is used as collector for nested calls, to check for
103 * maximum recursion dept and loop cycles.
104 */
105 struct nested_calls {
106 struct list_head tasks_call_list;
107 spinlock_t lock;
108 };
109
110 /*
111 * Each file descriptor added to the eventpoll interface will
112 * have an entry of this type linked to the "rbr" RB tree.
113 */
114 struct epitem {
115 /* RB tree node used to link this structure to the eventpoll RB tree */
116 struct rb_node rbn;
117
118 /* List header used to link this structure to the eventpoll ready list */
119 struct list_head rdllink;
120
121 /*
122 * Works together "struct eventpoll"->ovflist in keeping the
123 * single linked chain of items.
124 */
125 struct epitem *next;
126
127 /* The file descriptor information this item refers to */
128 struct epoll_filefd ffd;
129
130 /* Number of active wait queue attached to poll operations */
131 int nwait;
132
133 /* List containing poll wait queues */
134 struct list_head pwqlist;
135
136 /* The "container" of this item */
137 struct eventpoll *ep;
138
139 /* List header used to link this item to the "struct file" items list */
140 struct list_head fllink;
141
142 /* The structure that describe the interested events and the source fd */
143 struct epoll_event event;
144 };
145
146 /*
147 * This structure is stored inside the "private_data" member of the file
148 * structure and rapresent the main data sructure for the eventpoll
149 * interface.
150 */
151 struct eventpoll {
152 /* Protect the this structure access */
153 spinlock_t lock;
154
155 /*
156 * This mutex is used to ensure that files are not removed
157 * while epoll is using them. This is held during the event
158 * collection loop, the file cleanup path, the epoll file exit
159 * code and the ctl operations.
160 */
161 struct mutex mtx;
162
163 /* Wait queue used by sys_epoll_wait() */
164 wait_queue_head_t wq;
165
166 /* Wait queue used by file->poll() */
167 wait_queue_head_t poll_wait;
168
169 /* List of ready file descriptors */
170 struct list_head rdllist;
171
172 /* RB tree root used to store monitored fd structs */
173 struct rb_root rbr;
174
175 /*
176 * This is a single linked list that chains all the "struct epitem" that
177 * happened while transfering ready events to userspace w/out
178 * holding ->lock.
179 */
180 struct epitem *ovflist;
181
182 /* The user that created the eventpoll descriptor */
183 struct user_struct *user;
184 };
185
186 /* Wait structure used by the poll hooks */
187 struct eppoll_entry {
188 /* List header used to link this structure to the "struct epitem" */
189 struct list_head llink;
190
191 /* The "base" pointer is set to the container "struct epitem" */
192 struct epitem *base;
193
194 /*
195 * Wait queue item that will be linked to the target file wait
196 * queue head.
197 */
198 wait_queue_t wait;
199
200 /* The wait queue head that linked the "wait" wait queue item */
201 wait_queue_head_t *whead;
202 };
203
204 /* Wrapper struct used by poll queueing */
205 struct ep_pqueue {
206 poll_table pt;
207 struct epitem *epi;
208 };
209
210 /* Used by the ep_send_events() function as callback private data */
211 struct ep_send_events_data {
212 int maxevents;
213 struct epoll_event __user *events;
214 };
215
216 /*
217 * Configuration options available inside /proc/sys/fs/epoll/
218 */
219 /* Maximum number of epoll watched descriptors, per user */
220 static long max_user_watches __read_mostly;
221
222 /*
223 * This mutex is used to serialize ep_free() and eventpoll_release_file().
224 */
225 static DEFINE_MUTEX(epmutex);
226
227 /* Used for safe wake up implementation */
228 static struct nested_calls poll_safewake_ncalls;
229
230 /* Used to call file's f_op->poll() under the nested calls boundaries */
231 static struct nested_calls poll_readywalk_ncalls;
232
233 /* Slab cache used to allocate "struct epitem" */
234 static struct kmem_cache *epi_cache __read_mostly;
235
236 /* Slab cache used to allocate "struct eppoll_entry" */
237 static struct kmem_cache *pwq_cache __read_mostly;
238
239 #ifdef CONFIG_SYSCTL
240
241 #include <linux/sysctl.h>
242
243 static long zero;
244 static long long_max = LONG_MAX;
245
246 ctl_table epoll_table[] = {
247 {
248 .procname = "max_user_watches",
249 .data = &max_user_watches,
250 .maxlen = sizeof(max_user_watches),
251 .mode = 0644,
252 .proc_handler = proc_doulongvec_minmax,
253 .extra1 = &zero,
254 .extra2 = &long_max,
255 },
256 { }
257 };
258 #endif /* CONFIG_SYSCTL */
259
260
261 /* Setup the structure that is used as key for the RB tree */
262 static inline void ep_set_ffd(struct epoll_filefd *ffd,
263 struct file *file, int fd)
264 {
265 ffd->file = file;
266 ffd->fd = fd;
267 }
268
269 /* Compare RB tree keys */
270 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
271 struct epoll_filefd *p2)
272 {
273 return (p1->file > p2->file ? +1:
274 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
275 }
276
277 /* Tells us if the item is currently linked */
278 static inline int ep_is_linked(struct list_head *p)
279 {
280 return !list_empty(p);
281 }
282
283 /* Get the "struct epitem" from a wait queue pointer */
284 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
285 {
286 return container_of(p, struct eppoll_entry, wait)->base;
287 }
288
289 /* Get the "struct epitem" from an epoll queue wrapper */
290 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
291 {
292 return container_of(p, struct ep_pqueue, pt)->epi;
293 }
294
295 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
296 static inline int ep_op_has_event(int op)
297 {
298 return op != EPOLL_CTL_DEL;
299 }
300
301 /* Initialize the poll safe wake up structure */
302 static void ep_nested_calls_init(struct nested_calls *ncalls)
303 {
304 INIT_LIST_HEAD(&ncalls->tasks_call_list);
305 spin_lock_init(&ncalls->lock);
306 }
307
308 /**
309 * ep_call_nested - Perform a bound (possibly) nested call, by checking
310 * that the recursion limit is not exceeded, and that
311 * the same nested call (by the meaning of same cookie) is
312 * no re-entered.
313 *
314 * @ncalls: Pointer to the nested_calls structure to be used for this call.
315 * @max_nests: Maximum number of allowed nesting calls.
316 * @nproc: Nested call core function pointer.
317 * @priv: Opaque data to be passed to the @nproc callback.
318 * @cookie: Cookie to be used to identify this nested call.
319 * @ctx: This instance context.
320 *
321 * Returns: Returns the code returned by the @nproc callback, or -1 if
322 * the maximum recursion limit has been exceeded.
323 */
324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
325 int (*nproc)(void *, void *, int), void *priv,
326 void *cookie, void *ctx)
327 {
328 int error, call_nests = 0;
329 unsigned long flags;
330 struct list_head *lsthead = &ncalls->tasks_call_list;
331 struct nested_call_node *tncur;
332 struct nested_call_node tnode;
333
334 spin_lock_irqsave(&ncalls->lock, flags);
335
336 /*
337 * Try to see if the current task is already inside this wakeup call.
338 * We use a list here, since the population inside this set is always
339 * very much limited.
340 */
341 list_for_each_entry(tncur, lsthead, llink) {
342 if (tncur->ctx == ctx &&
343 (tncur->cookie == cookie || ++call_nests > max_nests)) {
344 /*
345 * Ops ... loop detected or maximum nest level reached.
346 * We abort this wake by breaking the cycle itself.
347 */
348 error = -1;
349 goto out_unlock;
350 }
351 }
352
353 /* Add the current task and cookie to the list */
354 tnode.ctx = ctx;
355 tnode.cookie = cookie;
356 list_add(&tnode.llink, lsthead);
357
358 spin_unlock_irqrestore(&ncalls->lock, flags);
359
360 /* Call the nested function */
361 error = (*nproc)(priv, cookie, call_nests);
362
363 /* Remove the current task from the list */
364 spin_lock_irqsave(&ncalls->lock, flags);
365 list_del(&tnode.llink);
366 out_unlock:
367 spin_unlock_irqrestore(&ncalls->lock, flags);
368
369 return error;
370 }
371
372 #ifdef CONFIG_DEBUG_LOCK_ALLOC
373 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
374 unsigned long events, int subclass)
375 {
376 unsigned long flags;
377
378 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
379 wake_up_locked_poll(wqueue, events);
380 spin_unlock_irqrestore(&wqueue->lock, flags);
381 }
382 #else
383 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
384 unsigned long events, int subclass)
385 {
386 wake_up_poll(wqueue, events);
387 }
388 #endif
389
390 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
391 {
392 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
393 1 + call_nests);
394 return 0;
395 }
396
397 /*
398 * Perform a safe wake up of the poll wait list. The problem is that
399 * with the new callback'd wake up system, it is possible that the
400 * poll callback is reentered from inside the call to wake_up() done
401 * on the poll wait queue head. The rule is that we cannot reenter the
402 * wake up code from the same task more than EP_MAX_NESTS times,
403 * and we cannot reenter the same wait queue head at all. This will
404 * enable to have a hierarchy of epoll file descriptor of no more than
405 * EP_MAX_NESTS deep.
406 */
407 static void ep_poll_safewake(wait_queue_head_t *wq)
408 {
409 int this_cpu = get_cpu();
410
411 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
412 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
413
414 put_cpu();
415 }
416
417 /*
418 * This function unregisters poll callbacks from the associated file
419 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
420 * ep_free).
421 */
422 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
423 {
424 struct list_head *lsthead = &epi->pwqlist;
425 struct eppoll_entry *pwq;
426
427 while (!list_empty(lsthead)) {
428 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
429
430 list_del(&pwq->llink);
431 remove_wait_queue(pwq->whead, &pwq->wait);
432 kmem_cache_free(pwq_cache, pwq);
433 }
434 }
435
436 /**
437 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
438 * the scan code, to call f_op->poll(). Also allows for
439 * O(NumReady) performance.
440 *
441 * @ep: Pointer to the epoll private data structure.
442 * @sproc: Pointer to the scan callback.
443 * @priv: Private opaque data passed to the @sproc callback.
444 *
445 * Returns: The same integer error code returned by the @sproc callback.
446 */
447 static int ep_scan_ready_list(struct eventpoll *ep,
448 int (*sproc)(struct eventpoll *,
449 struct list_head *, void *),
450 void *priv)
451 {
452 int error, pwake = 0;
453 unsigned long flags;
454 struct epitem *epi, *nepi;
455 LIST_HEAD(txlist);
456
457 /*
458 * We need to lock this because we could be hit by
459 * eventpoll_release_file() and epoll_ctl().
460 */
461 mutex_lock(&ep->mtx);
462
463 /*
464 * Steal the ready list, and re-init the original one to the
465 * empty list. Also, set ep->ovflist to NULL so that events
466 * happening while looping w/out locks, are not lost. We cannot
467 * have the poll callback to queue directly on ep->rdllist,
468 * because we want the "sproc" callback to be able to do it
469 * in a lockless way.
470 */
471 spin_lock_irqsave(&ep->lock, flags);
472 list_splice_init(&ep->rdllist, &txlist);
473 ep->ovflist = NULL;
474 spin_unlock_irqrestore(&ep->lock, flags);
475
476 /*
477 * Now call the callback function.
478 */
479 error = (*sproc)(ep, &txlist, priv);
480
481 spin_lock_irqsave(&ep->lock, flags);
482 /*
483 * During the time we spent inside the "sproc" callback, some
484 * other events might have been queued by the poll callback.
485 * We re-insert them inside the main ready-list here.
486 */
487 for (nepi = ep->ovflist; (epi = nepi) != NULL;
488 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
489 /*
490 * We need to check if the item is already in the list.
491 * During the "sproc" callback execution time, items are
492 * queued into ->ovflist but the "txlist" might already
493 * contain them, and the list_splice() below takes care of them.
494 */
495 if (!ep_is_linked(&epi->rdllink))
496 list_add_tail(&epi->rdllink, &ep->rdllist);
497 }
498 /*
499 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
500 * releasing the lock, events will be queued in the normal way inside
501 * ep->rdllist.
502 */
503 ep->ovflist = EP_UNACTIVE_PTR;
504
505 /*
506 * Quickly re-inject items left on "txlist".
507 */
508 list_splice(&txlist, &ep->rdllist);
509
510 if (!list_empty(&ep->rdllist)) {
511 /*
512 * Wake up (if active) both the eventpoll wait list and
513 * the ->poll() wait list (delayed after we release the lock).
514 */
515 if (waitqueue_active(&ep->wq))
516 wake_up_locked(&ep->wq);
517 if (waitqueue_active(&ep->poll_wait))
518 pwake++;
519 }
520 spin_unlock_irqrestore(&ep->lock, flags);
521
522 mutex_unlock(&ep->mtx);
523
524 /* We have to call this outside the lock */
525 if (pwake)
526 ep_poll_safewake(&ep->poll_wait);
527
528 return error;
529 }
530
531 /*
532 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
533 * all the associated resources. Must be called with "mtx" held.
534 */
535 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
536 {
537 unsigned long flags;
538 struct file *file = epi->ffd.file;
539
540 /*
541 * Removes poll wait queue hooks. We _have_ to do this without holding
542 * the "ep->lock" otherwise a deadlock might occur. This because of the
543 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
544 * queue head lock when unregistering the wait queue. The wakeup callback
545 * will run by holding the wait queue head lock and will call our callback
546 * that will try to get "ep->lock".
547 */
548 ep_unregister_pollwait(ep, epi);
549
550 /* Remove the current item from the list of epoll hooks */
551 spin_lock(&file->f_lock);
552 if (ep_is_linked(&epi->fllink))
553 list_del_init(&epi->fllink);
554 spin_unlock(&file->f_lock);
555
556 rb_erase(&epi->rbn, &ep->rbr);
557
558 spin_lock_irqsave(&ep->lock, flags);
559 if (ep_is_linked(&epi->rdllink))
560 list_del_init(&epi->rdllink);
561 spin_unlock_irqrestore(&ep->lock, flags);
562
563 /* At this point it is safe to free the eventpoll item */
564 kmem_cache_free(epi_cache, epi);
565
566 atomic_long_dec(&ep->user->epoll_watches);
567
568 return 0;
569 }
570
571 static void ep_free(struct eventpoll *ep)
572 {
573 struct rb_node *rbp;
574 struct epitem *epi;
575
576 /* We need to release all tasks waiting for these file */
577 if (waitqueue_active(&ep->poll_wait))
578 ep_poll_safewake(&ep->poll_wait);
579
580 /*
581 * We need to lock this because we could be hit by
582 * eventpoll_release_file() while we're freeing the "struct eventpoll".
583 * We do not need to hold "ep->mtx" here because the epoll file
584 * is on the way to be removed and no one has references to it
585 * anymore. The only hit might come from eventpoll_release_file() but
586 * holding "epmutex" is sufficent here.
587 */
588 mutex_lock(&epmutex);
589
590 /*
591 * Walks through the whole tree by unregistering poll callbacks.
592 */
593 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
594 epi = rb_entry(rbp, struct epitem, rbn);
595
596 ep_unregister_pollwait(ep, epi);
597 }
598
599 /*
600 * Walks through the whole tree by freeing each "struct epitem". At this
601 * point we are sure no poll callbacks will be lingering around, and also by
602 * holding "epmutex" we can be sure that no file cleanup code will hit
603 * us during this operation. So we can avoid the lock on "ep->lock".
604 */
605 while ((rbp = rb_first(&ep->rbr)) != NULL) {
606 epi = rb_entry(rbp, struct epitem, rbn);
607 ep_remove(ep, epi);
608 }
609
610 mutex_unlock(&epmutex);
611 mutex_destroy(&ep->mtx);
612 free_uid(ep->user);
613 kfree(ep);
614 }
615
616 static int ep_eventpoll_release(struct inode *inode, struct file *file)
617 {
618 struct eventpoll *ep = file->private_data;
619
620 if (ep)
621 ep_free(ep);
622
623 return 0;
624 }
625
626 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
627 void *priv)
628 {
629 struct epitem *epi, *tmp;
630
631 list_for_each_entry_safe(epi, tmp, head, rdllink) {
632 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
633 epi->event.events)
634 return POLLIN | POLLRDNORM;
635 else {
636 /*
637 * Item has been dropped into the ready list by the poll
638 * callback, but it's not actually ready, as far as
639 * caller requested events goes. We can remove it here.
640 */
641 list_del_init(&epi->rdllink);
642 }
643 }
644
645 return 0;
646 }
647
648 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
649 {
650 return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
651 }
652
653 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
654 {
655 int pollflags;
656 struct eventpoll *ep = file->private_data;
657
658 /* Insert inside our poll wait queue */
659 poll_wait(file, &ep->poll_wait, wait);
660
661 /*
662 * Proceed to find out if wanted events are really available inside
663 * the ready list. This need to be done under ep_call_nested()
664 * supervision, since the call to f_op->poll() done on listed files
665 * could re-enter here.
666 */
667 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
668 ep_poll_readyevents_proc, ep, ep, current);
669
670 return pollflags != -1 ? pollflags : 0;
671 }
672
673 /* File callbacks that implement the eventpoll file behaviour */
674 static const struct file_operations eventpoll_fops = {
675 .release = ep_eventpoll_release,
676 .poll = ep_eventpoll_poll,
677 .llseek = noop_llseek,
678 };
679
680 /* Fast test to see if the file is an evenpoll file */
681 static inline int is_file_epoll(struct file *f)
682 {
683 return f->f_op == &eventpoll_fops;
684 }
685
686 /*
687 * This is called from eventpoll_release() to unlink files from the eventpoll
688 * interface. We need to have this facility to cleanup correctly files that are
689 * closed without being removed from the eventpoll interface.
690 */
691 void eventpoll_release_file(struct file *file)
692 {
693 struct list_head *lsthead = &file->f_ep_links;
694 struct eventpoll *ep;
695 struct epitem *epi;
696
697 /*
698 * We don't want to get "file->f_lock" because it is not
699 * necessary. It is not necessary because we're in the "struct file"
700 * cleanup path, and this means that noone is using this file anymore.
701 * So, for example, epoll_ctl() cannot hit here since if we reach this
702 * point, the file counter already went to zero and fget() would fail.
703 * The only hit might come from ep_free() but by holding the mutex
704 * will correctly serialize the operation. We do need to acquire
705 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
706 * from anywhere but ep_free().
707 *
708 * Besides, ep_remove() acquires the lock, so we can't hold it here.
709 */
710 mutex_lock(&epmutex);
711
712 while (!list_empty(lsthead)) {
713 epi = list_first_entry(lsthead, struct epitem, fllink);
714
715 ep = epi->ep;
716 list_del_init(&epi->fllink);
717 mutex_lock(&ep->mtx);
718 ep_remove(ep, epi);
719 mutex_unlock(&ep->mtx);
720 }
721
722 mutex_unlock(&epmutex);
723 }
724
725 static int ep_alloc(struct eventpoll **pep)
726 {
727 int error;
728 struct user_struct *user;
729 struct eventpoll *ep;
730
731 user = get_current_user();
732 error = -ENOMEM;
733 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
734 if (unlikely(!ep))
735 goto free_uid;
736
737 spin_lock_init(&ep->lock);
738 mutex_init(&ep->mtx);
739 init_waitqueue_head(&ep->wq);
740 init_waitqueue_head(&ep->poll_wait);
741 INIT_LIST_HEAD(&ep->rdllist);
742 ep->rbr = RB_ROOT;
743 ep->ovflist = EP_UNACTIVE_PTR;
744 ep->user = user;
745
746 *pep = ep;
747
748 return 0;
749
750 free_uid:
751 free_uid(user);
752 return error;
753 }
754
755 /*
756 * Search the file inside the eventpoll tree. The RB tree operations
757 * are protected by the "mtx" mutex, and ep_find() must be called with
758 * "mtx" held.
759 */
760 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
761 {
762 int kcmp;
763 struct rb_node *rbp;
764 struct epitem *epi, *epir = NULL;
765 struct epoll_filefd ffd;
766
767 ep_set_ffd(&ffd, file, fd);
768 for (rbp = ep->rbr.rb_node; rbp; ) {
769 epi = rb_entry(rbp, struct epitem, rbn);
770 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
771 if (kcmp > 0)
772 rbp = rbp->rb_right;
773 else if (kcmp < 0)
774 rbp = rbp->rb_left;
775 else {
776 epir = epi;
777 break;
778 }
779 }
780
781 return epir;
782 }
783
784 /*
785 * This is the callback that is passed to the wait queue wakeup
786 * machanism. It is called by the stored file descriptors when they
787 * have events to report.
788 */
789 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
790 {
791 int pwake = 0;
792 unsigned long flags;
793 struct epitem *epi = ep_item_from_wait(wait);
794 struct eventpoll *ep = epi->ep;
795
796 spin_lock_irqsave(&ep->lock, flags);
797
798 /*
799 * If the event mask does not contain any poll(2) event, we consider the
800 * descriptor to be disabled. This condition is likely the effect of the
801 * EPOLLONESHOT bit that disables the descriptor when an event is received,
802 * until the next EPOLL_CTL_MOD will be issued.
803 */
804 if (!(epi->event.events & ~EP_PRIVATE_BITS))
805 goto out_unlock;
806
807 /*
808 * Check the events coming with the callback. At this stage, not
809 * every device reports the events in the "key" parameter of the
810 * callback. We need to be able to handle both cases here, hence the
811 * test for "key" != NULL before the event match test.
812 */
813 if (key && !((unsigned long) key & epi->event.events))
814 goto out_unlock;
815
816 /*
817 * If we are trasfering events to userspace, we can hold no locks
818 * (because we're accessing user memory, and because of linux f_op->poll()
819 * semantics). All the events that happens during that period of time are
820 * chained in ep->ovflist and requeued later on.
821 */
822 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
823 if (epi->next == EP_UNACTIVE_PTR) {
824 epi->next = ep->ovflist;
825 ep->ovflist = epi;
826 }
827 goto out_unlock;
828 }
829
830 /* If this file is already in the ready list we exit soon */
831 if (!ep_is_linked(&epi->rdllink))
832 list_add_tail(&epi->rdllink, &ep->rdllist);
833
834 /*
835 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
836 * wait list.
837 */
838 if (waitqueue_active(&ep->wq))
839 wake_up_locked(&ep->wq);
840 if (waitqueue_active(&ep->poll_wait))
841 pwake++;
842
843 out_unlock:
844 spin_unlock_irqrestore(&ep->lock, flags);
845
846 /* We have to call this outside the lock */
847 if (pwake)
848 ep_poll_safewake(&ep->poll_wait);
849
850 return 1;
851 }
852
853 /*
854 * This is the callback that is used to add our wait queue to the
855 * target file wakeup lists.
856 */
857 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
858 poll_table *pt)
859 {
860 struct epitem *epi = ep_item_from_epqueue(pt);
861 struct eppoll_entry *pwq;
862
863 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
864 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
865 pwq->whead = whead;
866 pwq->base = epi;
867 add_wait_queue(whead, &pwq->wait);
868 list_add_tail(&pwq->llink, &epi->pwqlist);
869 epi->nwait++;
870 } else {
871 /* We have to signal that an error occurred */
872 epi->nwait = -1;
873 }
874 }
875
876 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
877 {
878 int kcmp;
879 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
880 struct epitem *epic;
881
882 while (*p) {
883 parent = *p;
884 epic = rb_entry(parent, struct epitem, rbn);
885 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
886 if (kcmp > 0)
887 p = &parent->rb_right;
888 else
889 p = &parent->rb_left;
890 }
891 rb_link_node(&epi->rbn, parent, p);
892 rb_insert_color(&epi->rbn, &ep->rbr);
893 }
894
895 /*
896 * Must be called with "mtx" held.
897 */
898 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
899 struct file *tfile, int fd)
900 {
901 int error, revents, pwake = 0;
902 unsigned long flags;
903 long user_watches;
904 struct epitem *epi;
905 struct ep_pqueue epq;
906
907 user_watches = atomic_long_read(&ep->user->epoll_watches);
908 if (unlikely(user_watches >= max_user_watches))
909 return -ENOSPC;
910 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
911 return -ENOMEM;
912
913 /* Item initialization follow here ... */
914 INIT_LIST_HEAD(&epi->rdllink);
915 INIT_LIST_HEAD(&epi->fllink);
916 INIT_LIST_HEAD(&epi->pwqlist);
917 epi->ep = ep;
918 ep_set_ffd(&epi->ffd, tfile, fd);
919 epi->event = *event;
920 epi->nwait = 0;
921 epi->next = EP_UNACTIVE_PTR;
922
923 /* Initialize the poll table using the queue callback */
924 epq.epi = epi;
925 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
926
927 /*
928 * Attach the item to the poll hooks and get current event bits.
929 * We can safely use the file* here because its usage count has
930 * been increased by the caller of this function. Note that after
931 * this operation completes, the poll callback can start hitting
932 * the new item.
933 */
934 revents = tfile->f_op->poll(tfile, &epq.pt);
935
936 /*
937 * We have to check if something went wrong during the poll wait queue
938 * install process. Namely an allocation for a wait queue failed due
939 * high memory pressure.
940 */
941 error = -ENOMEM;
942 if (epi->nwait < 0)
943 goto error_unregister;
944
945 /* Add the current item to the list of active epoll hook for this file */
946 spin_lock(&tfile->f_lock);
947 list_add_tail(&epi->fllink, &tfile->f_ep_links);
948 spin_unlock(&tfile->f_lock);
949
950 /*
951 * Add the current item to the RB tree. All RB tree operations are
952 * protected by "mtx", and ep_insert() is called with "mtx" held.
953 */
954 ep_rbtree_insert(ep, epi);
955
956 /* We have to drop the new item inside our item list to keep track of it */
957 spin_lock_irqsave(&ep->lock, flags);
958
959 /* If the file is already "ready" we drop it inside the ready list */
960 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
961 list_add_tail(&epi->rdllink, &ep->rdllist);
962
963 /* Notify waiting tasks that events are available */
964 if (waitqueue_active(&ep->wq))
965 wake_up_locked(&ep->wq);
966 if (waitqueue_active(&ep->poll_wait))
967 pwake++;
968 }
969
970 spin_unlock_irqrestore(&ep->lock, flags);
971
972 atomic_long_inc(&ep->user->epoll_watches);
973
974 /* We have to call this outside the lock */
975 if (pwake)
976 ep_poll_safewake(&ep->poll_wait);
977
978 return 0;
979
980 error_unregister:
981 ep_unregister_pollwait(ep, epi);
982
983 /*
984 * We need to do this because an event could have been arrived on some
985 * allocated wait queue. Note that we don't care about the ep->ovflist
986 * list, since that is used/cleaned only inside a section bound by "mtx".
987 * And ep_insert() is called with "mtx" held.
988 */
989 spin_lock_irqsave(&ep->lock, flags);
990 if (ep_is_linked(&epi->rdllink))
991 list_del_init(&epi->rdllink);
992 spin_unlock_irqrestore(&ep->lock, flags);
993
994 kmem_cache_free(epi_cache, epi);
995
996 return error;
997 }
998
999 /*
1000 * Modify the interest event mask by dropping an event if the new mask
1001 * has a match in the current file status. Must be called with "mtx" held.
1002 */
1003 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1004 {
1005 int pwake = 0;
1006 unsigned int revents;
1007
1008 /*
1009 * Set the new event interest mask before calling f_op->poll();
1010 * otherwise we might miss an event that happens between the
1011 * f_op->poll() call and the new event set registering.
1012 */
1013 epi->event.events = event->events;
1014 epi->event.data = event->data; /* protected by mtx */
1015
1016 /*
1017 * Get current event bits. We can safely use the file* here because
1018 * its usage count has been increased by the caller of this function.
1019 */
1020 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1021
1022 /*
1023 * If the item is "hot" and it is not registered inside the ready
1024 * list, push it inside.
1025 */
1026 if (revents & event->events) {
1027 spin_lock_irq(&ep->lock);
1028 if (!ep_is_linked(&epi->rdllink)) {
1029 list_add_tail(&epi->rdllink, &ep->rdllist);
1030
1031 /* Notify waiting tasks that events are available */
1032 if (waitqueue_active(&ep->wq))
1033 wake_up_locked(&ep->wq);
1034 if (waitqueue_active(&ep->poll_wait))
1035 pwake++;
1036 }
1037 spin_unlock_irq(&ep->lock);
1038 }
1039
1040 /* We have to call this outside the lock */
1041 if (pwake)
1042 ep_poll_safewake(&ep->poll_wait);
1043
1044 return 0;
1045 }
1046
1047 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1048 void *priv)
1049 {
1050 struct ep_send_events_data *esed = priv;
1051 int eventcnt;
1052 unsigned int revents;
1053 struct epitem *epi;
1054 struct epoll_event __user *uevent;
1055
1056 /*
1057 * We can loop without lock because we are passed a task private list.
1058 * Items cannot vanish during the loop because ep_scan_ready_list() is
1059 * holding "mtx" during this call.
1060 */
1061 for (eventcnt = 0, uevent = esed->events;
1062 !list_empty(head) && eventcnt < esed->maxevents;) {
1063 epi = list_first_entry(head, struct epitem, rdllink);
1064
1065 list_del_init(&epi->rdllink);
1066
1067 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1068 epi->event.events;
1069
1070 /*
1071 * If the event mask intersect the caller-requested one,
1072 * deliver the event to userspace. Again, ep_scan_ready_list()
1073 * is holding "mtx", so no operations coming from userspace
1074 * can change the item.
1075 */
1076 if (revents) {
1077 if (__put_user(revents, &uevent->events) ||
1078 __put_user(epi->event.data, &uevent->data)) {
1079 list_add(&epi->rdllink, head);
1080 return eventcnt ? eventcnt : -EFAULT;
1081 }
1082 eventcnt++;
1083 uevent++;
1084 if (epi->event.events & EPOLLONESHOT)
1085 epi->event.events &= EP_PRIVATE_BITS;
1086 else if (!(epi->event.events & EPOLLET)) {
1087 /*
1088 * If this file has been added with Level
1089 * Trigger mode, we need to insert back inside
1090 * the ready list, so that the next call to
1091 * epoll_wait() will check again the events
1092 * availability. At this point, noone can insert
1093 * into ep->rdllist besides us. The epoll_ctl()
1094 * callers are locked out by
1095 * ep_scan_ready_list() holding "mtx" and the
1096 * poll callback will queue them in ep->ovflist.
1097 */
1098 list_add_tail(&epi->rdllink, &ep->rdllist);
1099 }
1100 }
1101 }
1102
1103 return eventcnt;
1104 }
1105
1106 static int ep_send_events(struct eventpoll *ep,
1107 struct epoll_event __user *events, int maxevents)
1108 {
1109 struct ep_send_events_data esed;
1110
1111 esed.maxevents = maxevents;
1112 esed.events = events;
1113
1114 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1115 }
1116
1117 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1118 int maxevents, long timeout)
1119 {
1120 int res, eavail, timed_out = 0;
1121 unsigned long flags;
1122 long slack;
1123 wait_queue_t wait;
1124 struct timespec end_time;
1125 ktime_t expires, *to = NULL;
1126
1127 if (timeout > 0) {
1128 ktime_get_ts(&end_time);
1129 timespec_add_ns(&end_time, (u64)timeout * NSEC_PER_MSEC);
1130 slack = select_estimate_accuracy(&end_time);
1131 to = &expires;
1132 *to = timespec_to_ktime(end_time);
1133 } else if (timeout == 0) {
1134 timed_out = 1;
1135 }
1136
1137 retry:
1138 spin_lock_irqsave(&ep->lock, flags);
1139
1140 res = 0;
1141 if (list_empty(&ep->rdllist)) {
1142 /*
1143 * We don't have any available event to return to the caller.
1144 * We need to sleep here, and we will be wake up by
1145 * ep_poll_callback() when events will become available.
1146 */
1147 init_waitqueue_entry(&wait, current);
1148 __add_wait_queue_exclusive(&ep->wq, &wait);
1149
1150 for (;;) {
1151 /*
1152 * We don't want to sleep if the ep_poll_callback() sends us
1153 * a wakeup in between. That's why we set the task state
1154 * to TASK_INTERRUPTIBLE before doing the checks.
1155 */
1156 set_current_state(TASK_INTERRUPTIBLE);
1157 if (!list_empty(&ep->rdllist) || timed_out)
1158 break;
1159 if (signal_pending(current)) {
1160 res = -EINTR;
1161 break;
1162 }
1163
1164 spin_unlock_irqrestore(&ep->lock, flags);
1165 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1166 timed_out = 1;
1167
1168 spin_lock_irqsave(&ep->lock, flags);
1169 }
1170 __remove_wait_queue(&ep->wq, &wait);
1171
1172 set_current_state(TASK_RUNNING);
1173 }
1174 /* Is it worth to try to dig for events ? */
1175 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1176
1177 spin_unlock_irqrestore(&ep->lock, flags);
1178
1179 /*
1180 * Try to transfer events to user space. In case we get 0 events and
1181 * there's still timeout left over, we go trying again in search of
1182 * more luck.
1183 */
1184 if (!res && eavail &&
1185 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1186 goto retry;
1187
1188 return res;
1189 }
1190
1191 /*
1192 * Open an eventpoll file descriptor.
1193 */
1194 SYSCALL_DEFINE1(epoll_create1, int, flags)
1195 {
1196 int error;
1197 struct eventpoll *ep = NULL;
1198
1199 /* Check the EPOLL_* constant for consistency. */
1200 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1201
1202 if (flags & ~EPOLL_CLOEXEC)
1203 return -EINVAL;
1204 /*
1205 * Create the internal data structure ("struct eventpoll").
1206 */
1207 error = ep_alloc(&ep);
1208 if (error < 0)
1209 return error;
1210 /*
1211 * Creates all the items needed to setup an eventpoll file. That is,
1212 * a file structure and a free file descriptor.
1213 */
1214 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1215 O_RDWR | (flags & O_CLOEXEC));
1216 if (error < 0)
1217 ep_free(ep);
1218
1219 return error;
1220 }
1221
1222 SYSCALL_DEFINE1(epoll_create, int, size)
1223 {
1224 if (size <= 0)
1225 return -EINVAL;
1226
1227 return sys_epoll_create1(0);
1228 }
1229
1230 /*
1231 * The following function implements the controller interface for
1232 * the eventpoll file that enables the insertion/removal/change of
1233 * file descriptors inside the interest set.
1234 */
1235 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1236 struct epoll_event __user *, event)
1237 {
1238 int error;
1239 struct file *file, *tfile;
1240 struct eventpoll *ep;
1241 struct epitem *epi;
1242 struct epoll_event epds;
1243
1244 error = -EFAULT;
1245 if (ep_op_has_event(op) &&
1246 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1247 goto error_return;
1248
1249 /* Get the "struct file *" for the eventpoll file */
1250 error = -EBADF;
1251 file = fget(epfd);
1252 if (!file)
1253 goto error_return;
1254
1255 /* Get the "struct file *" for the target file */
1256 tfile = fget(fd);
1257 if (!tfile)
1258 goto error_fput;
1259
1260 /* The target file descriptor must support poll */
1261 error = -EPERM;
1262 if (!tfile->f_op || !tfile->f_op->poll)
1263 goto error_tgt_fput;
1264
1265 /*
1266 * We have to check that the file structure underneath the file descriptor
1267 * the user passed to us _is_ an eventpoll file. And also we do not permit
1268 * adding an epoll file descriptor inside itself.
1269 */
1270 error = -EINVAL;
1271 if (file == tfile || !is_file_epoll(file))
1272 goto error_tgt_fput;
1273
1274 /*
1275 * At this point it is safe to assume that the "private_data" contains
1276 * our own data structure.
1277 */
1278 ep = file->private_data;
1279
1280 mutex_lock(&ep->mtx);
1281
1282 /*
1283 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1284 * above, we can be sure to be able to use the item looked up by
1285 * ep_find() till we release the mutex.
1286 */
1287 epi = ep_find(ep, tfile, fd);
1288
1289 error = -EINVAL;
1290 switch (op) {
1291 case EPOLL_CTL_ADD:
1292 if (!epi) {
1293 epds.events |= POLLERR | POLLHUP;
1294 error = ep_insert(ep, &epds, tfile, fd);
1295 } else
1296 error = -EEXIST;
1297 break;
1298 case EPOLL_CTL_DEL:
1299 if (epi)
1300 error = ep_remove(ep, epi);
1301 else
1302 error = -ENOENT;
1303 break;
1304 case EPOLL_CTL_MOD:
1305 if (epi) {
1306 epds.events |= POLLERR | POLLHUP;
1307 error = ep_modify(ep, epi, &epds);
1308 } else
1309 error = -ENOENT;
1310 break;
1311 }
1312 mutex_unlock(&ep->mtx);
1313
1314 error_tgt_fput:
1315 fput(tfile);
1316 error_fput:
1317 fput(file);
1318 error_return:
1319
1320 return error;
1321 }
1322
1323 /*
1324 * Implement the event wait interface for the eventpoll file. It is the kernel
1325 * part of the user space epoll_wait(2).
1326 */
1327 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1328 int, maxevents, int, timeout)
1329 {
1330 int error;
1331 struct file *file;
1332 struct eventpoll *ep;
1333
1334 /* The maximum number of event must be greater than zero */
1335 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1336 return -EINVAL;
1337
1338 /* Verify that the area passed by the user is writeable */
1339 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1340 error = -EFAULT;
1341 goto error_return;
1342 }
1343
1344 /* Get the "struct file *" for the eventpoll file */
1345 error = -EBADF;
1346 file = fget(epfd);
1347 if (!file)
1348 goto error_return;
1349
1350 /*
1351 * We have to check that the file structure underneath the fd
1352 * the user passed to us _is_ an eventpoll file.
1353 */
1354 error = -EINVAL;
1355 if (!is_file_epoll(file))
1356 goto error_fput;
1357
1358 /*
1359 * At this point it is safe to assume that the "private_data" contains
1360 * our own data structure.
1361 */
1362 ep = file->private_data;
1363
1364 /* Time to fish for events ... */
1365 error = ep_poll(ep, events, maxevents, timeout);
1366
1367 error_fput:
1368 fput(file);
1369 error_return:
1370
1371 return error;
1372 }
1373
1374 #ifdef HAVE_SET_RESTORE_SIGMASK
1375
1376 /*
1377 * Implement the event wait interface for the eventpoll file. It is the kernel
1378 * part of the user space epoll_pwait(2).
1379 */
1380 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1381 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1382 size_t, sigsetsize)
1383 {
1384 int error;
1385 sigset_t ksigmask, sigsaved;
1386
1387 /*
1388 * If the caller wants a certain signal mask to be set during the wait,
1389 * we apply it here.
1390 */
1391 if (sigmask) {
1392 if (sigsetsize != sizeof(sigset_t))
1393 return -EINVAL;
1394 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1395 return -EFAULT;
1396 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1397 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1398 }
1399
1400 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1401
1402 /*
1403 * If we changed the signal mask, we need to restore the original one.
1404 * In case we've got a signal while waiting, we do not restore the
1405 * signal mask yet, and we allow do_signal() to deliver the signal on
1406 * the way back to userspace, before the signal mask is restored.
1407 */
1408 if (sigmask) {
1409 if (error == -EINTR) {
1410 memcpy(&current->saved_sigmask, &sigsaved,
1411 sizeof(sigsaved));
1412 set_restore_sigmask();
1413 } else
1414 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1415 }
1416
1417 return error;
1418 }
1419
1420 #endif /* HAVE_SET_RESTORE_SIGMASK */
1421
1422 static int __init eventpoll_init(void)
1423 {
1424 struct sysinfo si;
1425
1426 si_meminfo(&si);
1427 /*
1428 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1429 */
1430 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1431 EP_ITEM_COST;
1432 BUG_ON(max_user_watches < 0);
1433
1434 /* Initialize the structure used to perform safe poll wait head wake ups */
1435 ep_nested_calls_init(&poll_safewake_ncalls);
1436
1437 /* Initialize the structure used to perform file's f_op->poll() calls */
1438 ep_nested_calls_init(&poll_readywalk_ncalls);
1439
1440 /* Allocates slab cache used to allocate "struct epitem" items */
1441 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1442 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1443
1444 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1445 pwq_cache = kmem_cache_create("eventpoll_pwq",
1446 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1447
1448 return 0;
1449 }
1450 fs_initcall(eventpoll_init);
This page took 0.059412 seconds and 5 git commands to generate.