Merge tag 'staging-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
200 }
201 #endif
202 ret = get_user_pages(current, bprm->mm, pos,
203 1, write, 1, &page, NULL);
204 if (ret <= 0)
205 return NULL;
206
207 if (write) {
208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 struct rlimit *rlim;
210
211 acct_arg_size(bprm, size / PAGE_SIZE);
212
213 /*
214 * We've historically supported up to 32 pages (ARG_MAX)
215 * of argument strings even with small stacks
216 */
217 if (size <= ARG_MAX)
218 return page;
219
220 /*
221 * Limit to 1/4-th the stack size for the argv+env strings.
222 * This ensures that:
223 * - the remaining binfmt code will not run out of stack space,
224 * - the program will have a reasonable amount of stack left
225 * to work from.
226 */
227 rlim = current->signal->rlim;
228 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 put_page(page);
230 return NULL;
231 }
232 }
233
234 return page;
235 }
236
237 static void put_arg_page(struct page *page)
238 {
239 put_page(page);
240 }
241
242 static void free_arg_page(struct linux_binprm *bprm, int i)
243 {
244 }
245
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
252 {
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
261
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
265
266 down_write(&mm->mmap_sem);
267 vma->vm_mm = mm;
268
269 /*
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
274 */
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 INIT_LIST_HEAD(&vma->anon_vma_chain);
281
282 err = insert_vm_struct(mm, vma);
283 if (err)
284 goto err;
285
286 mm->stack_vm = mm->total_vm = 1;
287 arch_bprm_mm_init(mm, vma);
288 up_write(&mm->mmap_sem);
289 bprm->p = vma->vm_end - sizeof(void *);
290 return 0;
291 err:
292 up_write(&mm->mmap_sem);
293 bprm->vma = NULL;
294 kmem_cache_free(vm_area_cachep, vma);
295 return err;
296 }
297
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300 return len <= MAX_ARG_STRLEN;
301 }
302
303 #else
304
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 int write)
311 {
312 struct page *page;
313
314 page = bprm->page[pos / PAGE_SIZE];
315 if (!page && write) {
316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 if (!page)
318 return NULL;
319 bprm->page[pos / PAGE_SIZE] = page;
320 }
321
322 return page;
323 }
324
325 static void put_arg_page(struct page *page)
326 {
327 }
328
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331 if (bprm->page[i]) {
332 __free_page(bprm->page[i]);
333 bprm->page[i] = NULL;
334 }
335 }
336
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339 int i;
340
341 for (i = 0; i < MAX_ARG_PAGES; i++)
342 free_arg_page(bprm, i);
343 }
344
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 struct page *page)
347 {
348 }
349
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 return 0;
354 }
355
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358 return len <= bprm->p;
359 }
360
361 #endif /* CONFIG_MMU */
362
363 /*
364 * Create a new mm_struct and populate it with a temporary stack
365 * vm_area_struct. We don't have enough context at this point to set the stack
366 * flags, permissions, and offset, so we use temporary values. We'll update
367 * them later in setup_arg_pages().
368 */
369 static int bprm_mm_init(struct linux_binprm *bprm)
370 {
371 int err;
372 struct mm_struct *mm = NULL;
373
374 bprm->mm = mm = mm_alloc();
375 err = -ENOMEM;
376 if (!mm)
377 goto err;
378
379 err = __bprm_mm_init(bprm);
380 if (err)
381 goto err;
382
383 return 0;
384
385 err:
386 if (mm) {
387 bprm->mm = NULL;
388 mmdrop(mm);
389 }
390
391 return err;
392 }
393
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 bool is_compat;
397 #endif
398 union {
399 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 const compat_uptr_t __user *compat;
402 #endif
403 } ptr;
404 };
405
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 const char __user *native;
409
410 #ifdef CONFIG_COMPAT
411 if (unlikely(argv.is_compat)) {
412 compat_uptr_t compat;
413
414 if (get_user(compat, argv.ptr.compat + nr))
415 return ERR_PTR(-EFAULT);
416
417 return compat_ptr(compat);
418 }
419 #endif
420
421 if (get_user(native, argv.ptr.native + nr))
422 return ERR_PTR(-EFAULT);
423
424 return native;
425 }
426
427 /*
428 * count() counts the number of strings in array ARGV.
429 */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432 int i = 0;
433
434 if (argv.ptr.native != NULL) {
435 for (;;) {
436 const char __user *p = get_user_arg_ptr(argv, i);
437
438 if (!p)
439 break;
440
441 if (IS_ERR(p))
442 return -EFAULT;
443
444 if (i >= max)
445 return -E2BIG;
446 ++i;
447
448 if (fatal_signal_pending(current))
449 return -ERESTARTNOHAND;
450 cond_resched();
451 }
452 }
453 return i;
454 }
455
456 /*
457 * 'copy_strings()' copies argument/environment strings from the old
458 * processes's memory to the new process's stack. The call to get_user_pages()
459 * ensures the destination page is created and not swapped out.
460 */
461 static int copy_strings(int argc, struct user_arg_ptr argv,
462 struct linux_binprm *bprm)
463 {
464 struct page *kmapped_page = NULL;
465 char *kaddr = NULL;
466 unsigned long kpos = 0;
467 int ret;
468
469 while (argc-- > 0) {
470 const char __user *str;
471 int len;
472 unsigned long pos;
473
474 ret = -EFAULT;
475 str = get_user_arg_ptr(argv, argc);
476 if (IS_ERR(str))
477 goto out;
478
479 len = strnlen_user(str, MAX_ARG_STRLEN);
480 if (!len)
481 goto out;
482
483 ret = -E2BIG;
484 if (!valid_arg_len(bprm, len))
485 goto out;
486
487 /* We're going to work our way backwords. */
488 pos = bprm->p;
489 str += len;
490 bprm->p -= len;
491
492 while (len > 0) {
493 int offset, bytes_to_copy;
494
495 if (fatal_signal_pending(current)) {
496 ret = -ERESTARTNOHAND;
497 goto out;
498 }
499 cond_resched();
500
501 offset = pos % PAGE_SIZE;
502 if (offset == 0)
503 offset = PAGE_SIZE;
504
505 bytes_to_copy = offset;
506 if (bytes_to_copy > len)
507 bytes_to_copy = len;
508
509 offset -= bytes_to_copy;
510 pos -= bytes_to_copy;
511 str -= bytes_to_copy;
512 len -= bytes_to_copy;
513
514 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
515 struct page *page;
516
517 page = get_arg_page(bprm, pos, 1);
518 if (!page) {
519 ret = -E2BIG;
520 goto out;
521 }
522
523 if (kmapped_page) {
524 flush_kernel_dcache_page(kmapped_page);
525 kunmap(kmapped_page);
526 put_arg_page(kmapped_page);
527 }
528 kmapped_page = page;
529 kaddr = kmap(kmapped_page);
530 kpos = pos & PAGE_MASK;
531 flush_arg_page(bprm, kpos, kmapped_page);
532 }
533 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534 ret = -EFAULT;
535 goto out;
536 }
537 }
538 }
539 ret = 0;
540 out:
541 if (kmapped_page) {
542 flush_kernel_dcache_page(kmapped_page);
543 kunmap(kmapped_page);
544 put_arg_page(kmapped_page);
545 }
546 return ret;
547 }
548
549 /*
550 * Like copy_strings, but get argv and its values from kernel memory.
551 */
552 int copy_strings_kernel(int argc, const char *const *__argv,
553 struct linux_binprm *bprm)
554 {
555 int r;
556 mm_segment_t oldfs = get_fs();
557 struct user_arg_ptr argv = {
558 .ptr.native = (const char __user *const __user *)__argv,
559 };
560
561 set_fs(KERNEL_DS);
562 r = copy_strings(argc, argv, bprm);
563 set_fs(oldfs);
564
565 return r;
566 }
567 EXPORT_SYMBOL(copy_strings_kernel);
568
569 #ifdef CONFIG_MMU
570
571 /*
572 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
573 * the binfmt code determines where the new stack should reside, we shift it to
574 * its final location. The process proceeds as follows:
575 *
576 * 1) Use shift to calculate the new vma endpoints.
577 * 2) Extend vma to cover both the old and new ranges. This ensures the
578 * arguments passed to subsequent functions are consistent.
579 * 3) Move vma's page tables to the new range.
580 * 4) Free up any cleared pgd range.
581 * 5) Shrink the vma to cover only the new range.
582 */
583 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
584 {
585 struct mm_struct *mm = vma->vm_mm;
586 unsigned long old_start = vma->vm_start;
587 unsigned long old_end = vma->vm_end;
588 unsigned long length = old_end - old_start;
589 unsigned long new_start = old_start - shift;
590 unsigned long new_end = old_end - shift;
591 struct mmu_gather tlb;
592
593 BUG_ON(new_start > new_end);
594
595 /*
596 * ensure there are no vmas between where we want to go
597 * and where we are
598 */
599 if (vma != find_vma(mm, new_start))
600 return -EFAULT;
601
602 /*
603 * cover the whole range: [new_start, old_end)
604 */
605 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
606 return -ENOMEM;
607
608 /*
609 * move the page tables downwards, on failure we rely on
610 * process cleanup to remove whatever mess we made.
611 */
612 if (length != move_page_tables(vma, old_start,
613 vma, new_start, length, false))
614 return -ENOMEM;
615
616 lru_add_drain();
617 tlb_gather_mmu(&tlb, mm, old_start, old_end);
618 if (new_end > old_start) {
619 /*
620 * when the old and new regions overlap clear from new_end.
621 */
622 free_pgd_range(&tlb, new_end, old_end, new_end,
623 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
624 } else {
625 /*
626 * otherwise, clean from old_start; this is done to not touch
627 * the address space in [new_end, old_start) some architectures
628 * have constraints on va-space that make this illegal (IA64) -
629 * for the others its just a little faster.
630 */
631 free_pgd_range(&tlb, old_start, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 }
634 tlb_finish_mmu(&tlb, old_start, old_end);
635
636 /*
637 * Shrink the vma to just the new range. Always succeeds.
638 */
639 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
640
641 return 0;
642 }
643
644 /*
645 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646 * the stack is optionally relocated, and some extra space is added.
647 */
648 int setup_arg_pages(struct linux_binprm *bprm,
649 unsigned long stack_top,
650 int executable_stack)
651 {
652 unsigned long ret;
653 unsigned long stack_shift;
654 struct mm_struct *mm = current->mm;
655 struct vm_area_struct *vma = bprm->vma;
656 struct vm_area_struct *prev = NULL;
657 unsigned long vm_flags;
658 unsigned long stack_base;
659 unsigned long stack_size;
660 unsigned long stack_expand;
661 unsigned long rlim_stack;
662
663 #ifdef CONFIG_STACK_GROWSUP
664 /* Limit stack size */
665 stack_base = rlimit_max(RLIMIT_STACK);
666 if (stack_base > STACK_SIZE_MAX)
667 stack_base = STACK_SIZE_MAX;
668
669 /* Add space for stack randomization. */
670 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
671
672 /* Make sure we didn't let the argument array grow too large. */
673 if (vma->vm_end - vma->vm_start > stack_base)
674 return -ENOMEM;
675
676 stack_base = PAGE_ALIGN(stack_top - stack_base);
677
678 stack_shift = vma->vm_start - stack_base;
679 mm->arg_start = bprm->p - stack_shift;
680 bprm->p = vma->vm_end - stack_shift;
681 #else
682 stack_top = arch_align_stack(stack_top);
683 stack_top = PAGE_ALIGN(stack_top);
684
685 if (unlikely(stack_top < mmap_min_addr) ||
686 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687 return -ENOMEM;
688
689 stack_shift = vma->vm_end - stack_top;
690
691 bprm->p -= stack_shift;
692 mm->arg_start = bprm->p;
693 #endif
694
695 if (bprm->loader)
696 bprm->loader -= stack_shift;
697 bprm->exec -= stack_shift;
698
699 down_write(&mm->mmap_sem);
700 vm_flags = VM_STACK_FLAGS;
701
702 /*
703 * Adjust stack execute permissions; explicitly enable for
704 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705 * (arch default) otherwise.
706 */
707 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708 vm_flags |= VM_EXEC;
709 else if (executable_stack == EXSTACK_DISABLE_X)
710 vm_flags &= ~VM_EXEC;
711 vm_flags |= mm->def_flags;
712 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
713
714 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715 vm_flags);
716 if (ret)
717 goto out_unlock;
718 BUG_ON(prev != vma);
719
720 /* Move stack pages down in memory. */
721 if (stack_shift) {
722 ret = shift_arg_pages(vma, stack_shift);
723 if (ret)
724 goto out_unlock;
725 }
726
727 /* mprotect_fixup is overkill to remove the temporary stack flags */
728 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
729
730 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731 stack_size = vma->vm_end - vma->vm_start;
732 /*
733 * Align this down to a page boundary as expand_stack
734 * will align it up.
735 */
736 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737 #ifdef CONFIG_STACK_GROWSUP
738 if (stack_size + stack_expand > rlim_stack)
739 stack_base = vma->vm_start + rlim_stack;
740 else
741 stack_base = vma->vm_end + stack_expand;
742 #else
743 if (stack_size + stack_expand > rlim_stack)
744 stack_base = vma->vm_end - rlim_stack;
745 else
746 stack_base = vma->vm_start - stack_expand;
747 #endif
748 current->mm->start_stack = bprm->p;
749 ret = expand_stack(vma, stack_base);
750 if (ret)
751 ret = -EFAULT;
752
753 out_unlock:
754 up_write(&mm->mmap_sem);
755 return ret;
756 }
757 EXPORT_SYMBOL(setup_arg_pages);
758
759 #endif /* CONFIG_MMU */
760
761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
762 {
763 struct file *file;
764 int err;
765 struct open_flags open_exec_flags = {
766 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 .acc_mode = MAY_EXEC,
768 .intent = LOOKUP_OPEN,
769 .lookup_flags = LOOKUP_FOLLOW,
770 };
771
772 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
773 return ERR_PTR(-EINVAL);
774 if (flags & AT_SYMLINK_NOFOLLOW)
775 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
776 if (flags & AT_EMPTY_PATH)
777 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
778
779 file = do_filp_open(fd, name, &open_exec_flags);
780 if (IS_ERR(file))
781 goto out;
782
783 err = -EACCES;
784 if (!S_ISREG(file_inode(file)->i_mode))
785 goto exit;
786
787 if (path_noexec(&file->f_path))
788 goto exit;
789
790 err = deny_write_access(file);
791 if (err)
792 goto exit;
793
794 if (name->name[0] != '\0')
795 fsnotify_open(file);
796
797 out:
798 return file;
799
800 exit:
801 fput(file);
802 return ERR_PTR(err);
803 }
804
805 struct file *open_exec(const char *name)
806 {
807 struct filename *filename = getname_kernel(name);
808 struct file *f = ERR_CAST(filename);
809
810 if (!IS_ERR(filename)) {
811 f = do_open_execat(AT_FDCWD, filename, 0);
812 putname(filename);
813 }
814 return f;
815 }
816 EXPORT_SYMBOL(open_exec);
817
818 int kernel_read(struct file *file, loff_t offset,
819 char *addr, unsigned long count)
820 {
821 mm_segment_t old_fs;
822 loff_t pos = offset;
823 int result;
824
825 old_fs = get_fs();
826 set_fs(get_ds());
827 /* The cast to a user pointer is valid due to the set_fs() */
828 result = vfs_read(file, (void __user *)addr, count, &pos);
829 set_fs(old_fs);
830 return result;
831 }
832
833 EXPORT_SYMBOL(kernel_read);
834
835 int kernel_read_file(struct file *file, void **buf, loff_t *size,
836 loff_t max_size, enum kernel_read_file_id id)
837 {
838 loff_t i_size, pos;
839 ssize_t bytes = 0;
840 int ret;
841
842 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
843 return -EINVAL;
844
845 ret = security_kernel_read_file(file, id);
846 if (ret)
847 return ret;
848
849 i_size = i_size_read(file_inode(file));
850 if (max_size > 0 && i_size > max_size)
851 return -EFBIG;
852 if (i_size <= 0)
853 return -EINVAL;
854
855 *buf = vmalloc(i_size);
856 if (!*buf)
857 return -ENOMEM;
858
859 pos = 0;
860 while (pos < i_size) {
861 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
862 i_size - pos);
863 if (bytes < 0) {
864 ret = bytes;
865 goto out;
866 }
867
868 if (bytes == 0)
869 break;
870 pos += bytes;
871 }
872
873 if (pos != i_size) {
874 ret = -EIO;
875 goto out;
876 }
877
878 ret = security_kernel_post_read_file(file, *buf, i_size, id);
879 if (!ret)
880 *size = pos;
881
882 out:
883 if (ret < 0) {
884 vfree(*buf);
885 *buf = NULL;
886 }
887 return ret;
888 }
889 EXPORT_SYMBOL_GPL(kernel_read_file);
890
891 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
892 loff_t max_size, enum kernel_read_file_id id)
893 {
894 struct file *file;
895 int ret;
896
897 if (!path || !*path)
898 return -EINVAL;
899
900 file = filp_open(path, O_RDONLY, 0);
901 if (IS_ERR(file))
902 return PTR_ERR(file);
903
904 ret = kernel_read_file(file, buf, size, max_size, id);
905 fput(file);
906 return ret;
907 }
908 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
909
910 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
911 enum kernel_read_file_id id)
912 {
913 struct fd f = fdget(fd);
914 int ret = -EBADF;
915
916 if (!f.file)
917 goto out;
918
919 ret = kernel_read_file(f.file, buf, size, max_size, id);
920 out:
921 fdput(f);
922 return ret;
923 }
924 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
925
926 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
927 {
928 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
929 if (res > 0)
930 flush_icache_range(addr, addr + len);
931 return res;
932 }
933 EXPORT_SYMBOL(read_code);
934
935 static int exec_mmap(struct mm_struct *mm)
936 {
937 struct task_struct *tsk;
938 struct mm_struct *old_mm, *active_mm;
939
940 /* Notify parent that we're no longer interested in the old VM */
941 tsk = current;
942 old_mm = current->mm;
943 mm_release(tsk, old_mm);
944
945 if (old_mm) {
946 sync_mm_rss(old_mm);
947 /*
948 * Make sure that if there is a core dump in progress
949 * for the old mm, we get out and die instead of going
950 * through with the exec. We must hold mmap_sem around
951 * checking core_state and changing tsk->mm.
952 */
953 down_read(&old_mm->mmap_sem);
954 if (unlikely(old_mm->core_state)) {
955 up_read(&old_mm->mmap_sem);
956 return -EINTR;
957 }
958 }
959 task_lock(tsk);
960 active_mm = tsk->active_mm;
961 tsk->mm = mm;
962 tsk->active_mm = mm;
963 activate_mm(active_mm, mm);
964 tsk->mm->vmacache_seqnum = 0;
965 vmacache_flush(tsk);
966 task_unlock(tsk);
967 if (old_mm) {
968 up_read(&old_mm->mmap_sem);
969 BUG_ON(active_mm != old_mm);
970 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
971 mm_update_next_owner(old_mm);
972 mmput(old_mm);
973 return 0;
974 }
975 mmdrop(active_mm);
976 return 0;
977 }
978
979 /*
980 * This function makes sure the current process has its own signal table,
981 * so that flush_signal_handlers can later reset the handlers without
982 * disturbing other processes. (Other processes might share the signal
983 * table via the CLONE_SIGHAND option to clone().)
984 */
985 static int de_thread(struct task_struct *tsk)
986 {
987 struct signal_struct *sig = tsk->signal;
988 struct sighand_struct *oldsighand = tsk->sighand;
989 spinlock_t *lock = &oldsighand->siglock;
990
991 if (thread_group_empty(tsk))
992 goto no_thread_group;
993
994 /*
995 * Kill all other threads in the thread group.
996 */
997 spin_lock_irq(lock);
998 if (signal_group_exit(sig)) {
999 /*
1000 * Another group action in progress, just
1001 * return so that the signal is processed.
1002 */
1003 spin_unlock_irq(lock);
1004 return -EAGAIN;
1005 }
1006
1007 sig->group_exit_task = tsk;
1008 sig->notify_count = zap_other_threads(tsk);
1009 if (!thread_group_leader(tsk))
1010 sig->notify_count--;
1011
1012 while (sig->notify_count) {
1013 __set_current_state(TASK_KILLABLE);
1014 spin_unlock_irq(lock);
1015 schedule();
1016 if (unlikely(__fatal_signal_pending(tsk)))
1017 goto killed;
1018 spin_lock_irq(lock);
1019 }
1020 spin_unlock_irq(lock);
1021
1022 /*
1023 * At this point all other threads have exited, all we have to
1024 * do is to wait for the thread group leader to become inactive,
1025 * and to assume its PID:
1026 */
1027 if (!thread_group_leader(tsk)) {
1028 struct task_struct *leader = tsk->group_leader;
1029
1030 for (;;) {
1031 threadgroup_change_begin(tsk);
1032 write_lock_irq(&tasklist_lock);
1033 /*
1034 * Do this under tasklist_lock to ensure that
1035 * exit_notify() can't miss ->group_exit_task
1036 */
1037 sig->notify_count = -1;
1038 if (likely(leader->exit_state))
1039 break;
1040 __set_current_state(TASK_KILLABLE);
1041 write_unlock_irq(&tasklist_lock);
1042 threadgroup_change_end(tsk);
1043 schedule();
1044 if (unlikely(__fatal_signal_pending(tsk)))
1045 goto killed;
1046 }
1047
1048 /*
1049 * The only record we have of the real-time age of a
1050 * process, regardless of execs it's done, is start_time.
1051 * All the past CPU time is accumulated in signal_struct
1052 * from sister threads now dead. But in this non-leader
1053 * exec, nothing survives from the original leader thread,
1054 * whose birth marks the true age of this process now.
1055 * When we take on its identity by switching to its PID, we
1056 * also take its birthdate (always earlier than our own).
1057 */
1058 tsk->start_time = leader->start_time;
1059 tsk->real_start_time = leader->real_start_time;
1060
1061 BUG_ON(!same_thread_group(leader, tsk));
1062 BUG_ON(has_group_leader_pid(tsk));
1063 /*
1064 * An exec() starts a new thread group with the
1065 * TGID of the previous thread group. Rehash the
1066 * two threads with a switched PID, and release
1067 * the former thread group leader:
1068 */
1069
1070 /* Become a process group leader with the old leader's pid.
1071 * The old leader becomes a thread of the this thread group.
1072 * Note: The old leader also uses this pid until release_task
1073 * is called. Odd but simple and correct.
1074 */
1075 tsk->pid = leader->pid;
1076 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1077 transfer_pid(leader, tsk, PIDTYPE_PGID);
1078 transfer_pid(leader, tsk, PIDTYPE_SID);
1079
1080 list_replace_rcu(&leader->tasks, &tsk->tasks);
1081 list_replace_init(&leader->sibling, &tsk->sibling);
1082
1083 tsk->group_leader = tsk;
1084 leader->group_leader = tsk;
1085
1086 tsk->exit_signal = SIGCHLD;
1087 leader->exit_signal = -1;
1088
1089 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1090 leader->exit_state = EXIT_DEAD;
1091
1092 /*
1093 * We are going to release_task()->ptrace_unlink() silently,
1094 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1095 * the tracer wont't block again waiting for this thread.
1096 */
1097 if (unlikely(leader->ptrace))
1098 __wake_up_parent(leader, leader->parent);
1099 write_unlock_irq(&tasklist_lock);
1100 threadgroup_change_end(tsk);
1101
1102 release_task(leader);
1103 }
1104
1105 sig->group_exit_task = NULL;
1106 sig->notify_count = 0;
1107
1108 no_thread_group:
1109 /* we have changed execution domain */
1110 tsk->exit_signal = SIGCHLD;
1111
1112 exit_itimers(sig);
1113 flush_itimer_signals();
1114
1115 if (atomic_read(&oldsighand->count) != 1) {
1116 struct sighand_struct *newsighand;
1117 /*
1118 * This ->sighand is shared with the CLONE_SIGHAND
1119 * but not CLONE_THREAD task, switch to the new one.
1120 */
1121 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1122 if (!newsighand)
1123 return -ENOMEM;
1124
1125 atomic_set(&newsighand->count, 1);
1126 memcpy(newsighand->action, oldsighand->action,
1127 sizeof(newsighand->action));
1128
1129 write_lock_irq(&tasklist_lock);
1130 spin_lock(&oldsighand->siglock);
1131 rcu_assign_pointer(tsk->sighand, newsighand);
1132 spin_unlock(&oldsighand->siglock);
1133 write_unlock_irq(&tasklist_lock);
1134
1135 __cleanup_sighand(oldsighand);
1136 }
1137
1138 BUG_ON(!thread_group_leader(tsk));
1139 return 0;
1140
1141 killed:
1142 /* protects against exit_notify() and __exit_signal() */
1143 read_lock(&tasklist_lock);
1144 sig->group_exit_task = NULL;
1145 sig->notify_count = 0;
1146 read_unlock(&tasklist_lock);
1147 return -EAGAIN;
1148 }
1149
1150 char *get_task_comm(char *buf, struct task_struct *tsk)
1151 {
1152 /* buf must be at least sizeof(tsk->comm) in size */
1153 task_lock(tsk);
1154 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1155 task_unlock(tsk);
1156 return buf;
1157 }
1158 EXPORT_SYMBOL_GPL(get_task_comm);
1159
1160 /*
1161 * These functions flushes out all traces of the currently running executable
1162 * so that a new one can be started
1163 */
1164
1165 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1166 {
1167 task_lock(tsk);
1168 trace_task_rename(tsk, buf);
1169 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1170 task_unlock(tsk);
1171 perf_event_comm(tsk, exec);
1172 }
1173
1174 int flush_old_exec(struct linux_binprm * bprm)
1175 {
1176 int retval;
1177
1178 /*
1179 * Make sure we have a private signal table and that
1180 * we are unassociated from the previous thread group.
1181 */
1182 retval = de_thread(current);
1183 if (retval)
1184 goto out;
1185
1186 /*
1187 * Must be called _before_ exec_mmap() as bprm->mm is
1188 * not visibile until then. This also enables the update
1189 * to be lockless.
1190 */
1191 set_mm_exe_file(bprm->mm, bprm->file);
1192
1193 /*
1194 * Release all of the old mmap stuff
1195 */
1196 acct_arg_size(bprm, 0);
1197 retval = exec_mmap(bprm->mm);
1198 if (retval)
1199 goto out;
1200
1201 bprm->mm = NULL; /* We're using it now */
1202
1203 set_fs(USER_DS);
1204 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1205 PF_NOFREEZE | PF_NO_SETAFFINITY);
1206 flush_thread();
1207 current->personality &= ~bprm->per_clear;
1208
1209 return 0;
1210
1211 out:
1212 return retval;
1213 }
1214 EXPORT_SYMBOL(flush_old_exec);
1215
1216 void would_dump(struct linux_binprm *bprm, struct file *file)
1217 {
1218 if (inode_permission(file_inode(file), MAY_READ) < 0)
1219 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1220 }
1221 EXPORT_SYMBOL(would_dump);
1222
1223 void setup_new_exec(struct linux_binprm * bprm)
1224 {
1225 arch_pick_mmap_layout(current->mm);
1226
1227 /* This is the point of no return */
1228 current->sas_ss_sp = current->sas_ss_size = 0;
1229
1230 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1231 set_dumpable(current->mm, SUID_DUMP_USER);
1232 else
1233 set_dumpable(current->mm, suid_dumpable);
1234
1235 perf_event_exec();
1236 __set_task_comm(current, kbasename(bprm->filename), true);
1237
1238 /* Set the new mm task size. We have to do that late because it may
1239 * depend on TIF_32BIT which is only updated in flush_thread() on
1240 * some architectures like powerpc
1241 */
1242 current->mm->task_size = TASK_SIZE;
1243
1244 /* install the new credentials */
1245 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1246 !gid_eq(bprm->cred->gid, current_egid())) {
1247 current->pdeath_signal = 0;
1248 } else {
1249 would_dump(bprm, bprm->file);
1250 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1251 set_dumpable(current->mm, suid_dumpable);
1252 }
1253
1254 /* An exec changes our domain. We are no longer part of the thread
1255 group */
1256 current->self_exec_id++;
1257 flush_signal_handlers(current, 0);
1258 do_close_on_exec(current->files);
1259 }
1260 EXPORT_SYMBOL(setup_new_exec);
1261
1262 /*
1263 * Prepare credentials and lock ->cred_guard_mutex.
1264 * install_exec_creds() commits the new creds and drops the lock.
1265 * Or, if exec fails before, free_bprm() should release ->cred and
1266 * and unlock.
1267 */
1268 int prepare_bprm_creds(struct linux_binprm *bprm)
1269 {
1270 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1271 return -ERESTARTNOINTR;
1272
1273 bprm->cred = prepare_exec_creds();
1274 if (likely(bprm->cred))
1275 return 0;
1276
1277 mutex_unlock(&current->signal->cred_guard_mutex);
1278 return -ENOMEM;
1279 }
1280
1281 static void free_bprm(struct linux_binprm *bprm)
1282 {
1283 free_arg_pages(bprm);
1284 if (bprm->cred) {
1285 mutex_unlock(&current->signal->cred_guard_mutex);
1286 abort_creds(bprm->cred);
1287 }
1288 if (bprm->file) {
1289 allow_write_access(bprm->file);
1290 fput(bprm->file);
1291 }
1292 /* If a binfmt changed the interp, free it. */
1293 if (bprm->interp != bprm->filename)
1294 kfree(bprm->interp);
1295 kfree(bprm);
1296 }
1297
1298 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1299 {
1300 /* If a binfmt changed the interp, free it first. */
1301 if (bprm->interp != bprm->filename)
1302 kfree(bprm->interp);
1303 bprm->interp = kstrdup(interp, GFP_KERNEL);
1304 if (!bprm->interp)
1305 return -ENOMEM;
1306 return 0;
1307 }
1308 EXPORT_SYMBOL(bprm_change_interp);
1309
1310 /*
1311 * install the new credentials for this executable
1312 */
1313 void install_exec_creds(struct linux_binprm *bprm)
1314 {
1315 security_bprm_committing_creds(bprm);
1316
1317 commit_creds(bprm->cred);
1318 bprm->cred = NULL;
1319
1320 /*
1321 * Disable monitoring for regular users
1322 * when executing setuid binaries. Must
1323 * wait until new credentials are committed
1324 * by commit_creds() above
1325 */
1326 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1327 perf_event_exit_task(current);
1328 /*
1329 * cred_guard_mutex must be held at least to this point to prevent
1330 * ptrace_attach() from altering our determination of the task's
1331 * credentials; any time after this it may be unlocked.
1332 */
1333 security_bprm_committed_creds(bprm);
1334 mutex_unlock(&current->signal->cred_guard_mutex);
1335 }
1336 EXPORT_SYMBOL(install_exec_creds);
1337
1338 /*
1339 * determine how safe it is to execute the proposed program
1340 * - the caller must hold ->cred_guard_mutex to protect against
1341 * PTRACE_ATTACH or seccomp thread-sync
1342 */
1343 static void check_unsafe_exec(struct linux_binprm *bprm)
1344 {
1345 struct task_struct *p = current, *t;
1346 unsigned n_fs;
1347
1348 if (p->ptrace) {
1349 if (p->ptrace & PT_PTRACE_CAP)
1350 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1351 else
1352 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1353 }
1354
1355 /*
1356 * This isn't strictly necessary, but it makes it harder for LSMs to
1357 * mess up.
1358 */
1359 if (task_no_new_privs(current))
1360 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1361
1362 t = p;
1363 n_fs = 1;
1364 spin_lock(&p->fs->lock);
1365 rcu_read_lock();
1366 while_each_thread(p, t) {
1367 if (t->fs == p->fs)
1368 n_fs++;
1369 }
1370 rcu_read_unlock();
1371
1372 if (p->fs->users > n_fs)
1373 bprm->unsafe |= LSM_UNSAFE_SHARE;
1374 else
1375 p->fs->in_exec = 1;
1376 spin_unlock(&p->fs->lock);
1377 }
1378
1379 static void bprm_fill_uid(struct linux_binprm *bprm)
1380 {
1381 struct inode *inode;
1382 unsigned int mode;
1383 kuid_t uid;
1384 kgid_t gid;
1385
1386 /* clear any previous set[ug]id data from a previous binary */
1387 bprm->cred->euid = current_euid();
1388 bprm->cred->egid = current_egid();
1389
1390 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1391 return;
1392
1393 if (task_no_new_privs(current))
1394 return;
1395
1396 inode = file_inode(bprm->file);
1397 mode = READ_ONCE(inode->i_mode);
1398 if (!(mode & (S_ISUID|S_ISGID)))
1399 return;
1400
1401 /* Be careful if suid/sgid is set */
1402 inode_lock(inode);
1403
1404 /* reload atomically mode/uid/gid now that lock held */
1405 mode = inode->i_mode;
1406 uid = inode->i_uid;
1407 gid = inode->i_gid;
1408 inode_unlock(inode);
1409
1410 /* We ignore suid/sgid if there are no mappings for them in the ns */
1411 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1412 !kgid_has_mapping(bprm->cred->user_ns, gid))
1413 return;
1414
1415 if (mode & S_ISUID) {
1416 bprm->per_clear |= PER_CLEAR_ON_SETID;
1417 bprm->cred->euid = uid;
1418 }
1419
1420 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1421 bprm->per_clear |= PER_CLEAR_ON_SETID;
1422 bprm->cred->egid = gid;
1423 }
1424 }
1425
1426 /*
1427 * Fill the binprm structure from the inode.
1428 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1429 *
1430 * This may be called multiple times for binary chains (scripts for example).
1431 */
1432 int prepare_binprm(struct linux_binprm *bprm)
1433 {
1434 int retval;
1435
1436 bprm_fill_uid(bprm);
1437
1438 /* fill in binprm security blob */
1439 retval = security_bprm_set_creds(bprm);
1440 if (retval)
1441 return retval;
1442 bprm->cred_prepared = 1;
1443
1444 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1445 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1446 }
1447
1448 EXPORT_SYMBOL(prepare_binprm);
1449
1450 /*
1451 * Arguments are '\0' separated strings found at the location bprm->p
1452 * points to; chop off the first by relocating brpm->p to right after
1453 * the first '\0' encountered.
1454 */
1455 int remove_arg_zero(struct linux_binprm *bprm)
1456 {
1457 int ret = 0;
1458 unsigned long offset;
1459 char *kaddr;
1460 struct page *page;
1461
1462 if (!bprm->argc)
1463 return 0;
1464
1465 do {
1466 offset = bprm->p & ~PAGE_MASK;
1467 page = get_arg_page(bprm, bprm->p, 0);
1468 if (!page) {
1469 ret = -EFAULT;
1470 goto out;
1471 }
1472 kaddr = kmap_atomic(page);
1473
1474 for (; offset < PAGE_SIZE && kaddr[offset];
1475 offset++, bprm->p++)
1476 ;
1477
1478 kunmap_atomic(kaddr);
1479 put_arg_page(page);
1480
1481 if (offset == PAGE_SIZE)
1482 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1483 } while (offset == PAGE_SIZE);
1484
1485 bprm->p++;
1486 bprm->argc--;
1487 ret = 0;
1488
1489 out:
1490 return ret;
1491 }
1492 EXPORT_SYMBOL(remove_arg_zero);
1493
1494 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1495 /*
1496 * cycle the list of binary formats handler, until one recognizes the image
1497 */
1498 int search_binary_handler(struct linux_binprm *bprm)
1499 {
1500 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1501 struct linux_binfmt *fmt;
1502 int retval;
1503
1504 /* This allows 4 levels of binfmt rewrites before failing hard. */
1505 if (bprm->recursion_depth > 5)
1506 return -ELOOP;
1507
1508 retval = security_bprm_check(bprm);
1509 if (retval)
1510 return retval;
1511
1512 retval = -ENOENT;
1513 retry:
1514 read_lock(&binfmt_lock);
1515 list_for_each_entry(fmt, &formats, lh) {
1516 if (!try_module_get(fmt->module))
1517 continue;
1518 read_unlock(&binfmt_lock);
1519 bprm->recursion_depth++;
1520 retval = fmt->load_binary(bprm);
1521 read_lock(&binfmt_lock);
1522 put_binfmt(fmt);
1523 bprm->recursion_depth--;
1524 if (retval < 0 && !bprm->mm) {
1525 /* we got to flush_old_exec() and failed after it */
1526 read_unlock(&binfmt_lock);
1527 force_sigsegv(SIGSEGV, current);
1528 return retval;
1529 }
1530 if (retval != -ENOEXEC || !bprm->file) {
1531 read_unlock(&binfmt_lock);
1532 return retval;
1533 }
1534 }
1535 read_unlock(&binfmt_lock);
1536
1537 if (need_retry) {
1538 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1539 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1540 return retval;
1541 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1542 return retval;
1543 need_retry = false;
1544 goto retry;
1545 }
1546
1547 return retval;
1548 }
1549 EXPORT_SYMBOL(search_binary_handler);
1550
1551 static int exec_binprm(struct linux_binprm *bprm)
1552 {
1553 pid_t old_pid, old_vpid;
1554 int ret;
1555
1556 /* Need to fetch pid before load_binary changes it */
1557 old_pid = current->pid;
1558 rcu_read_lock();
1559 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1560 rcu_read_unlock();
1561
1562 ret = search_binary_handler(bprm);
1563 if (ret >= 0) {
1564 audit_bprm(bprm);
1565 trace_sched_process_exec(current, old_pid, bprm);
1566 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1567 proc_exec_connector(current);
1568 }
1569
1570 return ret;
1571 }
1572
1573 /*
1574 * sys_execve() executes a new program.
1575 */
1576 static int do_execveat_common(int fd, struct filename *filename,
1577 struct user_arg_ptr argv,
1578 struct user_arg_ptr envp,
1579 int flags)
1580 {
1581 char *pathbuf = NULL;
1582 struct linux_binprm *bprm;
1583 struct file *file;
1584 struct files_struct *displaced;
1585 int retval;
1586
1587 if (IS_ERR(filename))
1588 return PTR_ERR(filename);
1589
1590 /*
1591 * We move the actual failure in case of RLIMIT_NPROC excess from
1592 * set*uid() to execve() because too many poorly written programs
1593 * don't check setuid() return code. Here we additionally recheck
1594 * whether NPROC limit is still exceeded.
1595 */
1596 if ((current->flags & PF_NPROC_EXCEEDED) &&
1597 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1598 retval = -EAGAIN;
1599 goto out_ret;
1600 }
1601
1602 /* We're below the limit (still or again), so we don't want to make
1603 * further execve() calls fail. */
1604 current->flags &= ~PF_NPROC_EXCEEDED;
1605
1606 retval = unshare_files(&displaced);
1607 if (retval)
1608 goto out_ret;
1609
1610 retval = -ENOMEM;
1611 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1612 if (!bprm)
1613 goto out_files;
1614
1615 retval = prepare_bprm_creds(bprm);
1616 if (retval)
1617 goto out_free;
1618
1619 check_unsafe_exec(bprm);
1620 current->in_execve = 1;
1621
1622 file = do_open_execat(fd, filename, flags);
1623 retval = PTR_ERR(file);
1624 if (IS_ERR(file))
1625 goto out_unmark;
1626
1627 sched_exec();
1628
1629 bprm->file = file;
1630 if (fd == AT_FDCWD || filename->name[0] == '/') {
1631 bprm->filename = filename->name;
1632 } else {
1633 if (filename->name[0] == '\0')
1634 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1635 else
1636 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1637 fd, filename->name);
1638 if (!pathbuf) {
1639 retval = -ENOMEM;
1640 goto out_unmark;
1641 }
1642 /*
1643 * Record that a name derived from an O_CLOEXEC fd will be
1644 * inaccessible after exec. Relies on having exclusive access to
1645 * current->files (due to unshare_files above).
1646 */
1647 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1648 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1649 bprm->filename = pathbuf;
1650 }
1651 bprm->interp = bprm->filename;
1652
1653 retval = bprm_mm_init(bprm);
1654 if (retval)
1655 goto out_unmark;
1656
1657 bprm->argc = count(argv, MAX_ARG_STRINGS);
1658 if ((retval = bprm->argc) < 0)
1659 goto out;
1660
1661 bprm->envc = count(envp, MAX_ARG_STRINGS);
1662 if ((retval = bprm->envc) < 0)
1663 goto out;
1664
1665 retval = prepare_binprm(bprm);
1666 if (retval < 0)
1667 goto out;
1668
1669 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1670 if (retval < 0)
1671 goto out;
1672
1673 bprm->exec = bprm->p;
1674 retval = copy_strings(bprm->envc, envp, bprm);
1675 if (retval < 0)
1676 goto out;
1677
1678 retval = copy_strings(bprm->argc, argv, bprm);
1679 if (retval < 0)
1680 goto out;
1681
1682 retval = exec_binprm(bprm);
1683 if (retval < 0)
1684 goto out;
1685
1686 /* execve succeeded */
1687 current->fs->in_exec = 0;
1688 current->in_execve = 0;
1689 acct_update_integrals(current);
1690 task_numa_free(current);
1691 free_bprm(bprm);
1692 kfree(pathbuf);
1693 putname(filename);
1694 if (displaced)
1695 put_files_struct(displaced);
1696 return retval;
1697
1698 out:
1699 if (bprm->mm) {
1700 acct_arg_size(bprm, 0);
1701 mmput(bprm->mm);
1702 }
1703
1704 out_unmark:
1705 current->fs->in_exec = 0;
1706 current->in_execve = 0;
1707
1708 out_free:
1709 free_bprm(bprm);
1710 kfree(pathbuf);
1711
1712 out_files:
1713 if (displaced)
1714 reset_files_struct(displaced);
1715 out_ret:
1716 putname(filename);
1717 return retval;
1718 }
1719
1720 int do_execve(struct filename *filename,
1721 const char __user *const __user *__argv,
1722 const char __user *const __user *__envp)
1723 {
1724 struct user_arg_ptr argv = { .ptr.native = __argv };
1725 struct user_arg_ptr envp = { .ptr.native = __envp };
1726 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1727 }
1728
1729 int do_execveat(int fd, struct filename *filename,
1730 const char __user *const __user *__argv,
1731 const char __user *const __user *__envp,
1732 int flags)
1733 {
1734 struct user_arg_ptr argv = { .ptr.native = __argv };
1735 struct user_arg_ptr envp = { .ptr.native = __envp };
1736
1737 return do_execveat_common(fd, filename, argv, envp, flags);
1738 }
1739
1740 #ifdef CONFIG_COMPAT
1741 static int compat_do_execve(struct filename *filename,
1742 const compat_uptr_t __user *__argv,
1743 const compat_uptr_t __user *__envp)
1744 {
1745 struct user_arg_ptr argv = {
1746 .is_compat = true,
1747 .ptr.compat = __argv,
1748 };
1749 struct user_arg_ptr envp = {
1750 .is_compat = true,
1751 .ptr.compat = __envp,
1752 };
1753 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1754 }
1755
1756 static int compat_do_execveat(int fd, struct filename *filename,
1757 const compat_uptr_t __user *__argv,
1758 const compat_uptr_t __user *__envp,
1759 int flags)
1760 {
1761 struct user_arg_ptr argv = {
1762 .is_compat = true,
1763 .ptr.compat = __argv,
1764 };
1765 struct user_arg_ptr envp = {
1766 .is_compat = true,
1767 .ptr.compat = __envp,
1768 };
1769 return do_execveat_common(fd, filename, argv, envp, flags);
1770 }
1771 #endif
1772
1773 void set_binfmt(struct linux_binfmt *new)
1774 {
1775 struct mm_struct *mm = current->mm;
1776
1777 if (mm->binfmt)
1778 module_put(mm->binfmt->module);
1779
1780 mm->binfmt = new;
1781 if (new)
1782 __module_get(new->module);
1783 }
1784 EXPORT_SYMBOL(set_binfmt);
1785
1786 /*
1787 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1788 */
1789 void set_dumpable(struct mm_struct *mm, int value)
1790 {
1791 unsigned long old, new;
1792
1793 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1794 return;
1795
1796 do {
1797 old = ACCESS_ONCE(mm->flags);
1798 new = (old & ~MMF_DUMPABLE_MASK) | value;
1799 } while (cmpxchg(&mm->flags, old, new) != old);
1800 }
1801
1802 SYSCALL_DEFINE3(execve,
1803 const char __user *, filename,
1804 const char __user *const __user *, argv,
1805 const char __user *const __user *, envp)
1806 {
1807 return do_execve(getname(filename), argv, envp);
1808 }
1809
1810 SYSCALL_DEFINE5(execveat,
1811 int, fd, const char __user *, filename,
1812 const char __user *const __user *, argv,
1813 const char __user *const __user *, envp,
1814 int, flags)
1815 {
1816 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1817
1818 return do_execveat(fd,
1819 getname_flags(filename, lookup_flags, NULL),
1820 argv, envp, flags);
1821 }
1822
1823 #ifdef CONFIG_COMPAT
1824 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1825 const compat_uptr_t __user *, argv,
1826 const compat_uptr_t __user *, envp)
1827 {
1828 return compat_do_execve(getname(filename), argv, envp);
1829 }
1830
1831 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1832 const char __user *, filename,
1833 const compat_uptr_t __user *, argv,
1834 const compat_uptr_t __user *, envp,
1835 int, flags)
1836 {
1837 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1838
1839 return compat_do_execveat(fd,
1840 getname_flags(filename, lookup_flags, NULL),
1841 argv, envp, flags);
1842 }
1843 #endif
This page took 0.072335 seconds and 6 git commands to generate.