Merge tag 'mac80211-for-davem-2016-08-05' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
200 }
201 #endif
202 /*
203 * We are doing an exec(). 'current' is the process
204 * doing the exec and bprm->mm is the new process's mm.
205 */
206 ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207 1, &page, NULL);
208 if (ret <= 0)
209 return NULL;
210
211 if (write) {
212 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 struct rlimit *rlim;
214
215 acct_arg_size(bprm, size / PAGE_SIZE);
216
217 /*
218 * We've historically supported up to 32 pages (ARG_MAX)
219 * of argument strings even with small stacks
220 */
221 if (size <= ARG_MAX)
222 return page;
223
224 /*
225 * Limit to 1/4-th the stack size for the argv+env strings.
226 * This ensures that:
227 * - the remaining binfmt code will not run out of stack space,
228 * - the program will have a reasonable amount of stack left
229 * to work from.
230 */
231 rlim = current->signal->rlim;
232 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 put_page(page);
234 return NULL;
235 }
236 }
237
238 return page;
239 }
240
241 static void put_arg_page(struct page *page)
242 {
243 put_page(page);
244 }
245
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
252 {
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
261
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
265
266 if (down_write_killable(&mm->mmap_sem)) {
267 err = -EINTR;
268 goto err_free;
269 }
270 vma->vm_mm = mm;
271
272 /*
273 * Place the stack at the largest stack address the architecture
274 * supports. Later, we'll move this to an appropriate place. We don't
275 * use STACK_TOP because that can depend on attributes which aren't
276 * configured yet.
277 */
278 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_end = STACK_TOP_MAX;
280 vma->vm_start = vma->vm_end - PAGE_SIZE;
281 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 INIT_LIST_HEAD(&vma->anon_vma_chain);
284
285 err = insert_vm_struct(mm, vma);
286 if (err)
287 goto err;
288
289 mm->stack_vm = mm->total_vm = 1;
290 arch_bprm_mm_init(mm, vma);
291 up_write(&mm->mmap_sem);
292 bprm->p = vma->vm_end - sizeof(void *);
293 return 0;
294 err:
295 up_write(&mm->mmap_sem);
296 err_free:
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
299 return err;
300 }
301
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 return len <= MAX_ARG_STRLEN;
305 }
306
307 #else
308
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 int write)
315 {
316 struct page *page;
317
318 page = bprm->page[pos / PAGE_SIZE];
319 if (!page && write) {
320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 if (!page)
322 return NULL;
323 bprm->page[pos / PAGE_SIZE] = page;
324 }
325
326 return page;
327 }
328
329 static void put_arg_page(struct page *page)
330 {
331 }
332
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 if (bprm->page[i]) {
336 __free_page(bprm->page[i]);
337 bprm->page[i] = NULL;
338 }
339 }
340
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 int i;
344
345 for (i = 0; i < MAX_ARG_PAGES; i++)
346 free_arg_page(bprm, i);
347 }
348
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 struct page *page)
351 {
352 }
353
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 return 0;
358 }
359
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 return len <= bprm->p;
363 }
364
365 #endif /* CONFIG_MMU */
366
367 /*
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
372 */
373 static int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 int err;
376 struct mm_struct *mm = NULL;
377
378 bprm->mm = mm = mm_alloc();
379 err = -ENOMEM;
380 if (!mm)
381 goto err;
382
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
386
387 return 0;
388
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
393 }
394
395 return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 bool is_compat;
401 #endif
402 union {
403 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406 #endif
407 } ptr;
408 };
409
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
417
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
420
421 return compat_ptr(compat);
422 }
423 #endif
424
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
427
428 return native;
429 }
430
431 /*
432 * count() counts the number of strings in array ARGV.
433 */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 int i = 0;
437
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, i);
441
442 if (!p)
443 break;
444
445 if (IS_ERR(p))
446 return -EFAULT;
447
448 if (i >= max)
449 return -E2BIG;
450 ++i;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458 }
459
460 /*
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
464 */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 struct linux_binprm *bprm)
467 {
468 struct page *kmapped_page = NULL;
469 char *kaddr = NULL;
470 unsigned long kpos = 0;
471 int ret;
472
473 while (argc-- > 0) {
474 const char __user *str;
475 int len;
476 unsigned long pos;
477
478 ret = -EFAULT;
479 str = get_user_arg_ptr(argv, argc);
480 if (IS_ERR(str))
481 goto out;
482
483 len = strnlen_user(str, MAX_ARG_STRLEN);
484 if (!len)
485 goto out;
486
487 ret = -E2BIG;
488 if (!valid_arg_len(bprm, len))
489 goto out;
490
491 /* We're going to work our way backwords. */
492 pos = bprm->p;
493 str += len;
494 bprm->p -= len;
495
496 while (len > 0) {
497 int offset, bytes_to_copy;
498
499 if (fatal_signal_pending(current)) {
500 ret = -ERESTARTNOHAND;
501 goto out;
502 }
503 cond_resched();
504
505 offset = pos % PAGE_SIZE;
506 if (offset == 0)
507 offset = PAGE_SIZE;
508
509 bytes_to_copy = offset;
510 if (bytes_to_copy > len)
511 bytes_to_copy = len;
512
513 offset -= bytes_to_copy;
514 pos -= bytes_to_copy;
515 str -= bytes_to_copy;
516 len -= bytes_to_copy;
517
518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 struct page *page;
520
521 page = get_arg_page(bprm, pos, 1);
522 if (!page) {
523 ret = -E2BIG;
524 goto out;
525 }
526
527 if (kmapped_page) {
528 flush_kernel_dcache_page(kmapped_page);
529 kunmap(kmapped_page);
530 put_arg_page(kmapped_page);
531 }
532 kmapped_page = page;
533 kaddr = kmap(kmapped_page);
534 kpos = pos & PAGE_MASK;
535 flush_arg_page(bprm, kpos, kmapped_page);
536 }
537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 ret = -EFAULT;
539 goto out;
540 }
541 }
542 }
543 ret = 0;
544 out:
545 if (kmapped_page) {
546 flush_kernel_dcache_page(kmapped_page);
547 kunmap(kmapped_page);
548 put_arg_page(kmapped_page);
549 }
550 return ret;
551 }
552
553 /*
554 * Like copy_strings, but get argv and its values from kernel memory.
555 */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 struct linux_binprm *bprm)
558 {
559 int r;
560 mm_segment_t oldfs = get_fs();
561 struct user_arg_ptr argv = {
562 .ptr.native = (const char __user *const __user *)__argv,
563 };
564
565 set_fs(KERNEL_DS);
566 r = copy_strings(argc, argv, bprm);
567 set_fs(oldfs);
568
569 return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572
573 #ifdef CONFIG_MMU
574
575 /*
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
579 *
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
586 */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589 struct mm_struct *mm = vma->vm_mm;
590 unsigned long old_start = vma->vm_start;
591 unsigned long old_end = vma->vm_end;
592 unsigned long length = old_end - old_start;
593 unsigned long new_start = old_start - shift;
594 unsigned long new_end = old_end - shift;
595 struct mmu_gather tlb;
596
597 BUG_ON(new_start > new_end);
598
599 /*
600 * ensure there are no vmas between where we want to go
601 * and where we are
602 */
603 if (vma != find_vma(mm, new_start))
604 return -EFAULT;
605
606 /*
607 * cover the whole range: [new_start, old_end)
608 */
609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 return -ENOMEM;
611
612 /*
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
615 */
616 if (length != move_page_tables(vma, old_start,
617 vma, new_start, length, false))
618 return -ENOMEM;
619
620 lru_add_drain();
621 tlb_gather_mmu(&tlb, mm, old_start, old_end);
622 if (new_end > old_start) {
623 /*
624 * when the old and new regions overlap clear from new_end.
625 */
626 free_pgd_range(&tlb, new_end, old_end, new_end,
627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 } else {
629 /*
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
634 */
635 free_pgd_range(&tlb, old_start, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 }
638 tlb_finish_mmu(&tlb, old_start, old_end);
639
640 /*
641 * Shrink the vma to just the new range. Always succeeds.
642 */
643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645 return 0;
646 }
647
648 /*
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
651 */
652 int setup_arg_pages(struct linux_binprm *bprm,
653 unsigned long stack_top,
654 int executable_stack)
655 {
656 unsigned long ret;
657 unsigned long stack_shift;
658 struct mm_struct *mm = current->mm;
659 struct vm_area_struct *vma = bprm->vma;
660 struct vm_area_struct *prev = NULL;
661 unsigned long vm_flags;
662 unsigned long stack_base;
663 unsigned long stack_size;
664 unsigned long stack_expand;
665 unsigned long rlim_stack;
666
667 #ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size */
669 stack_base = rlimit_max(RLIMIT_STACK);
670 if (stack_base > STACK_SIZE_MAX)
671 stack_base = STACK_SIZE_MAX;
672
673 /* Add space for stack randomization. */
674 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma->vm_end - vma->vm_start > stack_base)
678 return -ENOMEM;
679
680 stack_base = PAGE_ALIGN(stack_top - stack_base);
681
682 stack_shift = vma->vm_start - stack_base;
683 mm->arg_start = bprm->p - stack_shift;
684 bprm->p = vma->vm_end - stack_shift;
685 #else
686 stack_top = arch_align_stack(stack_top);
687 stack_top = PAGE_ALIGN(stack_top);
688
689 if (unlikely(stack_top < mmap_min_addr) ||
690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 return -ENOMEM;
692
693 stack_shift = vma->vm_end - stack_top;
694
695 bprm->p -= stack_shift;
696 mm->arg_start = bprm->p;
697 #endif
698
699 if (bprm->loader)
700 bprm->loader -= stack_shift;
701 bprm->exec -= stack_shift;
702
703 if (down_write_killable(&mm->mmap_sem))
704 return -EINTR;
705
706 vm_flags = VM_STACK_FLAGS;
707
708 /*
709 * Adjust stack execute permissions; explicitly enable for
710 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711 * (arch default) otherwise.
712 */
713 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
714 vm_flags |= VM_EXEC;
715 else if (executable_stack == EXSTACK_DISABLE_X)
716 vm_flags &= ~VM_EXEC;
717 vm_flags |= mm->def_flags;
718 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
719
720 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
721 vm_flags);
722 if (ret)
723 goto out_unlock;
724 BUG_ON(prev != vma);
725
726 /* Move stack pages down in memory. */
727 if (stack_shift) {
728 ret = shift_arg_pages(vma, stack_shift);
729 if (ret)
730 goto out_unlock;
731 }
732
733 /* mprotect_fixup is overkill to remove the temporary stack flags */
734 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
735
736 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
737 stack_size = vma->vm_end - vma->vm_start;
738 /*
739 * Align this down to a page boundary as expand_stack
740 * will align it up.
741 */
742 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
743 #ifdef CONFIG_STACK_GROWSUP
744 if (stack_size + stack_expand > rlim_stack)
745 stack_base = vma->vm_start + rlim_stack;
746 else
747 stack_base = vma->vm_end + stack_expand;
748 #else
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_end - rlim_stack;
751 else
752 stack_base = vma->vm_start - stack_expand;
753 #endif
754 current->mm->start_stack = bprm->p;
755 ret = expand_stack(vma, stack_base);
756 if (ret)
757 ret = -EFAULT;
758
759 out_unlock:
760 up_write(&mm->mmap_sem);
761 return ret;
762 }
763 EXPORT_SYMBOL(setup_arg_pages);
764
765 #endif /* CONFIG_MMU */
766
767 static struct file *do_open_execat(int fd, struct filename *name, int flags)
768 {
769 struct file *file;
770 int err;
771 struct open_flags open_exec_flags = {
772 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
773 .acc_mode = MAY_EXEC,
774 .intent = LOOKUP_OPEN,
775 .lookup_flags = LOOKUP_FOLLOW,
776 };
777
778 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
779 return ERR_PTR(-EINVAL);
780 if (flags & AT_SYMLINK_NOFOLLOW)
781 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
782 if (flags & AT_EMPTY_PATH)
783 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
784
785 file = do_filp_open(fd, name, &open_exec_flags);
786 if (IS_ERR(file))
787 goto out;
788
789 err = -EACCES;
790 if (!S_ISREG(file_inode(file)->i_mode))
791 goto exit;
792
793 if (path_noexec(&file->f_path))
794 goto exit;
795
796 err = deny_write_access(file);
797 if (err)
798 goto exit;
799
800 if (name->name[0] != '\0')
801 fsnotify_open(file);
802
803 out:
804 return file;
805
806 exit:
807 fput(file);
808 return ERR_PTR(err);
809 }
810
811 struct file *open_exec(const char *name)
812 {
813 struct filename *filename = getname_kernel(name);
814 struct file *f = ERR_CAST(filename);
815
816 if (!IS_ERR(filename)) {
817 f = do_open_execat(AT_FDCWD, filename, 0);
818 putname(filename);
819 }
820 return f;
821 }
822 EXPORT_SYMBOL(open_exec);
823
824 int kernel_read(struct file *file, loff_t offset,
825 char *addr, unsigned long count)
826 {
827 mm_segment_t old_fs;
828 loff_t pos = offset;
829 int result;
830
831 old_fs = get_fs();
832 set_fs(get_ds());
833 /* The cast to a user pointer is valid due to the set_fs() */
834 result = vfs_read(file, (void __user *)addr, count, &pos);
835 set_fs(old_fs);
836 return result;
837 }
838
839 EXPORT_SYMBOL(kernel_read);
840
841 int kernel_read_file(struct file *file, void **buf, loff_t *size,
842 loff_t max_size, enum kernel_read_file_id id)
843 {
844 loff_t i_size, pos;
845 ssize_t bytes = 0;
846 int ret;
847
848 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
849 return -EINVAL;
850
851 ret = security_kernel_read_file(file, id);
852 if (ret)
853 return ret;
854
855 ret = deny_write_access(file);
856 if (ret)
857 return ret;
858
859 i_size = i_size_read(file_inode(file));
860 if (max_size > 0 && i_size > max_size) {
861 ret = -EFBIG;
862 goto out;
863 }
864 if (i_size <= 0) {
865 ret = -EINVAL;
866 goto out;
867 }
868
869 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
870 *buf = vmalloc(i_size);
871 if (!*buf) {
872 ret = -ENOMEM;
873 goto out;
874 }
875
876 pos = 0;
877 while (pos < i_size) {
878 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
879 i_size - pos);
880 if (bytes < 0) {
881 ret = bytes;
882 goto out;
883 }
884
885 if (bytes == 0)
886 break;
887 pos += bytes;
888 }
889
890 if (pos != i_size) {
891 ret = -EIO;
892 goto out_free;
893 }
894
895 ret = security_kernel_post_read_file(file, *buf, i_size, id);
896 if (!ret)
897 *size = pos;
898
899 out_free:
900 if (ret < 0) {
901 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
902 vfree(*buf);
903 *buf = NULL;
904 }
905 }
906
907 out:
908 allow_write_access(file);
909 return ret;
910 }
911 EXPORT_SYMBOL_GPL(kernel_read_file);
912
913 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
914 loff_t max_size, enum kernel_read_file_id id)
915 {
916 struct file *file;
917 int ret;
918
919 if (!path || !*path)
920 return -EINVAL;
921
922 file = filp_open(path, O_RDONLY, 0);
923 if (IS_ERR(file))
924 return PTR_ERR(file);
925
926 ret = kernel_read_file(file, buf, size, max_size, id);
927 fput(file);
928 return ret;
929 }
930 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
931
932 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
933 enum kernel_read_file_id id)
934 {
935 struct fd f = fdget(fd);
936 int ret = -EBADF;
937
938 if (!f.file)
939 goto out;
940
941 ret = kernel_read_file(f.file, buf, size, max_size, id);
942 out:
943 fdput(f);
944 return ret;
945 }
946 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
947
948 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
949 {
950 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
951 if (res > 0)
952 flush_icache_range(addr, addr + len);
953 return res;
954 }
955 EXPORT_SYMBOL(read_code);
956
957 static int exec_mmap(struct mm_struct *mm)
958 {
959 struct task_struct *tsk;
960 struct mm_struct *old_mm, *active_mm;
961
962 /* Notify parent that we're no longer interested in the old VM */
963 tsk = current;
964 old_mm = current->mm;
965 mm_release(tsk, old_mm);
966
967 if (old_mm) {
968 sync_mm_rss(old_mm);
969 /*
970 * Make sure that if there is a core dump in progress
971 * for the old mm, we get out and die instead of going
972 * through with the exec. We must hold mmap_sem around
973 * checking core_state and changing tsk->mm.
974 */
975 down_read(&old_mm->mmap_sem);
976 if (unlikely(old_mm->core_state)) {
977 up_read(&old_mm->mmap_sem);
978 return -EINTR;
979 }
980 }
981 task_lock(tsk);
982 active_mm = tsk->active_mm;
983 tsk->mm = mm;
984 tsk->active_mm = mm;
985 activate_mm(active_mm, mm);
986 tsk->mm->vmacache_seqnum = 0;
987 vmacache_flush(tsk);
988 task_unlock(tsk);
989 if (old_mm) {
990 up_read(&old_mm->mmap_sem);
991 BUG_ON(active_mm != old_mm);
992 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
993 mm_update_next_owner(old_mm);
994 mmput(old_mm);
995 return 0;
996 }
997 mmdrop(active_mm);
998 return 0;
999 }
1000
1001 /*
1002 * This function makes sure the current process has its own signal table,
1003 * so that flush_signal_handlers can later reset the handlers without
1004 * disturbing other processes. (Other processes might share the signal
1005 * table via the CLONE_SIGHAND option to clone().)
1006 */
1007 static int de_thread(struct task_struct *tsk)
1008 {
1009 struct signal_struct *sig = tsk->signal;
1010 struct sighand_struct *oldsighand = tsk->sighand;
1011 spinlock_t *lock = &oldsighand->siglock;
1012
1013 if (thread_group_empty(tsk))
1014 goto no_thread_group;
1015
1016 /*
1017 * Kill all other threads in the thread group.
1018 */
1019 spin_lock_irq(lock);
1020 if (signal_group_exit(sig)) {
1021 /*
1022 * Another group action in progress, just
1023 * return so that the signal is processed.
1024 */
1025 spin_unlock_irq(lock);
1026 return -EAGAIN;
1027 }
1028
1029 sig->group_exit_task = tsk;
1030 sig->notify_count = zap_other_threads(tsk);
1031 if (!thread_group_leader(tsk))
1032 sig->notify_count--;
1033
1034 while (sig->notify_count) {
1035 __set_current_state(TASK_KILLABLE);
1036 spin_unlock_irq(lock);
1037 schedule();
1038 if (unlikely(__fatal_signal_pending(tsk)))
1039 goto killed;
1040 spin_lock_irq(lock);
1041 }
1042 spin_unlock_irq(lock);
1043
1044 /*
1045 * At this point all other threads have exited, all we have to
1046 * do is to wait for the thread group leader to become inactive,
1047 * and to assume its PID:
1048 */
1049 if (!thread_group_leader(tsk)) {
1050 struct task_struct *leader = tsk->group_leader;
1051
1052 for (;;) {
1053 threadgroup_change_begin(tsk);
1054 write_lock_irq(&tasklist_lock);
1055 /*
1056 * Do this under tasklist_lock to ensure that
1057 * exit_notify() can't miss ->group_exit_task
1058 */
1059 sig->notify_count = -1;
1060 if (likely(leader->exit_state))
1061 break;
1062 __set_current_state(TASK_KILLABLE);
1063 write_unlock_irq(&tasklist_lock);
1064 threadgroup_change_end(tsk);
1065 schedule();
1066 if (unlikely(__fatal_signal_pending(tsk)))
1067 goto killed;
1068 }
1069
1070 /*
1071 * The only record we have of the real-time age of a
1072 * process, regardless of execs it's done, is start_time.
1073 * All the past CPU time is accumulated in signal_struct
1074 * from sister threads now dead. But in this non-leader
1075 * exec, nothing survives from the original leader thread,
1076 * whose birth marks the true age of this process now.
1077 * When we take on its identity by switching to its PID, we
1078 * also take its birthdate (always earlier than our own).
1079 */
1080 tsk->start_time = leader->start_time;
1081 tsk->real_start_time = leader->real_start_time;
1082
1083 BUG_ON(!same_thread_group(leader, tsk));
1084 BUG_ON(has_group_leader_pid(tsk));
1085 /*
1086 * An exec() starts a new thread group with the
1087 * TGID of the previous thread group. Rehash the
1088 * two threads with a switched PID, and release
1089 * the former thread group leader:
1090 */
1091
1092 /* Become a process group leader with the old leader's pid.
1093 * The old leader becomes a thread of the this thread group.
1094 * Note: The old leader also uses this pid until release_task
1095 * is called. Odd but simple and correct.
1096 */
1097 tsk->pid = leader->pid;
1098 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1099 transfer_pid(leader, tsk, PIDTYPE_PGID);
1100 transfer_pid(leader, tsk, PIDTYPE_SID);
1101
1102 list_replace_rcu(&leader->tasks, &tsk->tasks);
1103 list_replace_init(&leader->sibling, &tsk->sibling);
1104
1105 tsk->group_leader = tsk;
1106 leader->group_leader = tsk;
1107
1108 tsk->exit_signal = SIGCHLD;
1109 leader->exit_signal = -1;
1110
1111 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1112 leader->exit_state = EXIT_DEAD;
1113
1114 /*
1115 * We are going to release_task()->ptrace_unlink() silently,
1116 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1117 * the tracer wont't block again waiting for this thread.
1118 */
1119 if (unlikely(leader->ptrace))
1120 __wake_up_parent(leader, leader->parent);
1121 write_unlock_irq(&tasklist_lock);
1122 threadgroup_change_end(tsk);
1123
1124 release_task(leader);
1125 }
1126
1127 sig->group_exit_task = NULL;
1128 sig->notify_count = 0;
1129
1130 no_thread_group:
1131 /* we have changed execution domain */
1132 tsk->exit_signal = SIGCHLD;
1133
1134 exit_itimers(sig);
1135 flush_itimer_signals();
1136
1137 if (atomic_read(&oldsighand->count) != 1) {
1138 struct sighand_struct *newsighand;
1139 /*
1140 * This ->sighand is shared with the CLONE_SIGHAND
1141 * but not CLONE_THREAD task, switch to the new one.
1142 */
1143 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1144 if (!newsighand)
1145 return -ENOMEM;
1146
1147 atomic_set(&newsighand->count, 1);
1148 memcpy(newsighand->action, oldsighand->action,
1149 sizeof(newsighand->action));
1150
1151 write_lock_irq(&tasklist_lock);
1152 spin_lock(&oldsighand->siglock);
1153 rcu_assign_pointer(tsk->sighand, newsighand);
1154 spin_unlock(&oldsighand->siglock);
1155 write_unlock_irq(&tasklist_lock);
1156
1157 __cleanup_sighand(oldsighand);
1158 }
1159
1160 BUG_ON(!thread_group_leader(tsk));
1161 return 0;
1162
1163 killed:
1164 /* protects against exit_notify() and __exit_signal() */
1165 read_lock(&tasklist_lock);
1166 sig->group_exit_task = NULL;
1167 sig->notify_count = 0;
1168 read_unlock(&tasklist_lock);
1169 return -EAGAIN;
1170 }
1171
1172 char *get_task_comm(char *buf, struct task_struct *tsk)
1173 {
1174 /* buf must be at least sizeof(tsk->comm) in size */
1175 task_lock(tsk);
1176 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1177 task_unlock(tsk);
1178 return buf;
1179 }
1180 EXPORT_SYMBOL_GPL(get_task_comm);
1181
1182 /*
1183 * These functions flushes out all traces of the currently running executable
1184 * so that a new one can be started
1185 */
1186
1187 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1188 {
1189 task_lock(tsk);
1190 trace_task_rename(tsk, buf);
1191 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1192 task_unlock(tsk);
1193 perf_event_comm(tsk, exec);
1194 }
1195
1196 int flush_old_exec(struct linux_binprm * bprm)
1197 {
1198 int retval;
1199
1200 /*
1201 * Make sure we have a private signal table and that
1202 * we are unassociated from the previous thread group.
1203 */
1204 retval = de_thread(current);
1205 if (retval)
1206 goto out;
1207
1208 /*
1209 * Must be called _before_ exec_mmap() as bprm->mm is
1210 * not visibile until then. This also enables the update
1211 * to be lockless.
1212 */
1213 set_mm_exe_file(bprm->mm, bprm->file);
1214
1215 /*
1216 * Release all of the old mmap stuff
1217 */
1218 acct_arg_size(bprm, 0);
1219 retval = exec_mmap(bprm->mm);
1220 if (retval)
1221 goto out;
1222
1223 bprm->mm = NULL; /* We're using it now */
1224
1225 set_fs(USER_DS);
1226 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1227 PF_NOFREEZE | PF_NO_SETAFFINITY);
1228 flush_thread();
1229 current->personality &= ~bprm->per_clear;
1230
1231 return 0;
1232
1233 out:
1234 return retval;
1235 }
1236 EXPORT_SYMBOL(flush_old_exec);
1237
1238 void would_dump(struct linux_binprm *bprm, struct file *file)
1239 {
1240 if (inode_permission(file_inode(file), MAY_READ) < 0)
1241 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1242 }
1243 EXPORT_SYMBOL(would_dump);
1244
1245 void setup_new_exec(struct linux_binprm * bprm)
1246 {
1247 arch_pick_mmap_layout(current->mm);
1248
1249 /* This is the point of no return */
1250 current->sas_ss_sp = current->sas_ss_size = 0;
1251
1252 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1253 set_dumpable(current->mm, SUID_DUMP_USER);
1254 else
1255 set_dumpable(current->mm, suid_dumpable);
1256
1257 perf_event_exec();
1258 __set_task_comm(current, kbasename(bprm->filename), true);
1259
1260 /* Set the new mm task size. We have to do that late because it may
1261 * depend on TIF_32BIT which is only updated in flush_thread() on
1262 * some architectures like powerpc
1263 */
1264 current->mm->task_size = TASK_SIZE;
1265
1266 /* install the new credentials */
1267 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1268 !gid_eq(bprm->cred->gid, current_egid())) {
1269 current->pdeath_signal = 0;
1270 } else {
1271 would_dump(bprm, bprm->file);
1272 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1273 set_dumpable(current->mm, suid_dumpable);
1274 }
1275
1276 /* An exec changes our domain. We are no longer part of the thread
1277 group */
1278 current->self_exec_id++;
1279 flush_signal_handlers(current, 0);
1280 do_close_on_exec(current->files);
1281 }
1282 EXPORT_SYMBOL(setup_new_exec);
1283
1284 /*
1285 * Prepare credentials and lock ->cred_guard_mutex.
1286 * install_exec_creds() commits the new creds and drops the lock.
1287 * Or, if exec fails before, free_bprm() should release ->cred and
1288 * and unlock.
1289 */
1290 int prepare_bprm_creds(struct linux_binprm *bprm)
1291 {
1292 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1293 return -ERESTARTNOINTR;
1294
1295 bprm->cred = prepare_exec_creds();
1296 if (likely(bprm->cred))
1297 return 0;
1298
1299 mutex_unlock(&current->signal->cred_guard_mutex);
1300 return -ENOMEM;
1301 }
1302
1303 static void free_bprm(struct linux_binprm *bprm)
1304 {
1305 free_arg_pages(bprm);
1306 if (bprm->cred) {
1307 mutex_unlock(&current->signal->cred_guard_mutex);
1308 abort_creds(bprm->cred);
1309 }
1310 if (bprm->file) {
1311 allow_write_access(bprm->file);
1312 fput(bprm->file);
1313 }
1314 /* If a binfmt changed the interp, free it. */
1315 if (bprm->interp != bprm->filename)
1316 kfree(bprm->interp);
1317 kfree(bprm);
1318 }
1319
1320 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1321 {
1322 /* If a binfmt changed the interp, free it first. */
1323 if (bprm->interp != bprm->filename)
1324 kfree(bprm->interp);
1325 bprm->interp = kstrdup(interp, GFP_KERNEL);
1326 if (!bprm->interp)
1327 return -ENOMEM;
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(bprm_change_interp);
1331
1332 /*
1333 * install the new credentials for this executable
1334 */
1335 void install_exec_creds(struct linux_binprm *bprm)
1336 {
1337 security_bprm_committing_creds(bprm);
1338
1339 commit_creds(bprm->cred);
1340 bprm->cred = NULL;
1341
1342 /*
1343 * Disable monitoring for regular users
1344 * when executing setuid binaries. Must
1345 * wait until new credentials are committed
1346 * by commit_creds() above
1347 */
1348 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1349 perf_event_exit_task(current);
1350 /*
1351 * cred_guard_mutex must be held at least to this point to prevent
1352 * ptrace_attach() from altering our determination of the task's
1353 * credentials; any time after this it may be unlocked.
1354 */
1355 security_bprm_committed_creds(bprm);
1356 mutex_unlock(&current->signal->cred_guard_mutex);
1357 }
1358 EXPORT_SYMBOL(install_exec_creds);
1359
1360 /*
1361 * determine how safe it is to execute the proposed program
1362 * - the caller must hold ->cred_guard_mutex to protect against
1363 * PTRACE_ATTACH or seccomp thread-sync
1364 */
1365 static void check_unsafe_exec(struct linux_binprm *bprm)
1366 {
1367 struct task_struct *p = current, *t;
1368 unsigned n_fs;
1369
1370 if (p->ptrace) {
1371 if (p->ptrace & PT_PTRACE_CAP)
1372 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1373 else
1374 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1375 }
1376
1377 /*
1378 * This isn't strictly necessary, but it makes it harder for LSMs to
1379 * mess up.
1380 */
1381 if (task_no_new_privs(current))
1382 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1383
1384 t = p;
1385 n_fs = 1;
1386 spin_lock(&p->fs->lock);
1387 rcu_read_lock();
1388 while_each_thread(p, t) {
1389 if (t->fs == p->fs)
1390 n_fs++;
1391 }
1392 rcu_read_unlock();
1393
1394 if (p->fs->users > n_fs)
1395 bprm->unsafe |= LSM_UNSAFE_SHARE;
1396 else
1397 p->fs->in_exec = 1;
1398 spin_unlock(&p->fs->lock);
1399 }
1400
1401 static void bprm_fill_uid(struct linux_binprm *bprm)
1402 {
1403 struct inode *inode;
1404 unsigned int mode;
1405 kuid_t uid;
1406 kgid_t gid;
1407
1408 /*
1409 * Since this can be called multiple times (via prepare_binprm),
1410 * we must clear any previous work done when setting set[ug]id
1411 * bits from any earlier bprm->file uses (for example when run
1412 * first for a setuid script then again for its interpreter).
1413 */
1414 bprm->cred->euid = current_euid();
1415 bprm->cred->egid = current_egid();
1416
1417 if (!mnt_may_suid(bprm->file->f_path.mnt))
1418 return;
1419
1420 if (task_no_new_privs(current))
1421 return;
1422
1423 inode = file_inode(bprm->file);
1424 mode = READ_ONCE(inode->i_mode);
1425 if (!(mode & (S_ISUID|S_ISGID)))
1426 return;
1427
1428 /* Be careful if suid/sgid is set */
1429 inode_lock(inode);
1430
1431 /* reload atomically mode/uid/gid now that lock held */
1432 mode = inode->i_mode;
1433 uid = inode->i_uid;
1434 gid = inode->i_gid;
1435 inode_unlock(inode);
1436
1437 /* We ignore suid/sgid if there are no mappings for them in the ns */
1438 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1439 !kgid_has_mapping(bprm->cred->user_ns, gid))
1440 return;
1441
1442 if (mode & S_ISUID) {
1443 bprm->per_clear |= PER_CLEAR_ON_SETID;
1444 bprm->cred->euid = uid;
1445 }
1446
1447 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1448 bprm->per_clear |= PER_CLEAR_ON_SETID;
1449 bprm->cred->egid = gid;
1450 }
1451 }
1452
1453 /*
1454 * Fill the binprm structure from the inode.
1455 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1456 *
1457 * This may be called multiple times for binary chains (scripts for example).
1458 */
1459 int prepare_binprm(struct linux_binprm *bprm)
1460 {
1461 int retval;
1462
1463 bprm_fill_uid(bprm);
1464
1465 /* fill in binprm security blob */
1466 retval = security_bprm_set_creds(bprm);
1467 if (retval)
1468 return retval;
1469 bprm->cred_prepared = 1;
1470
1471 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1472 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1473 }
1474
1475 EXPORT_SYMBOL(prepare_binprm);
1476
1477 /*
1478 * Arguments are '\0' separated strings found at the location bprm->p
1479 * points to; chop off the first by relocating brpm->p to right after
1480 * the first '\0' encountered.
1481 */
1482 int remove_arg_zero(struct linux_binprm *bprm)
1483 {
1484 int ret = 0;
1485 unsigned long offset;
1486 char *kaddr;
1487 struct page *page;
1488
1489 if (!bprm->argc)
1490 return 0;
1491
1492 do {
1493 offset = bprm->p & ~PAGE_MASK;
1494 page = get_arg_page(bprm, bprm->p, 0);
1495 if (!page) {
1496 ret = -EFAULT;
1497 goto out;
1498 }
1499 kaddr = kmap_atomic(page);
1500
1501 for (; offset < PAGE_SIZE && kaddr[offset];
1502 offset++, bprm->p++)
1503 ;
1504
1505 kunmap_atomic(kaddr);
1506 put_arg_page(page);
1507 } while (offset == PAGE_SIZE);
1508
1509 bprm->p++;
1510 bprm->argc--;
1511 ret = 0;
1512
1513 out:
1514 return ret;
1515 }
1516 EXPORT_SYMBOL(remove_arg_zero);
1517
1518 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1519 /*
1520 * cycle the list of binary formats handler, until one recognizes the image
1521 */
1522 int search_binary_handler(struct linux_binprm *bprm)
1523 {
1524 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1525 struct linux_binfmt *fmt;
1526 int retval;
1527
1528 /* This allows 4 levels of binfmt rewrites before failing hard. */
1529 if (bprm->recursion_depth > 5)
1530 return -ELOOP;
1531
1532 retval = security_bprm_check(bprm);
1533 if (retval)
1534 return retval;
1535
1536 retval = -ENOENT;
1537 retry:
1538 read_lock(&binfmt_lock);
1539 list_for_each_entry(fmt, &formats, lh) {
1540 if (!try_module_get(fmt->module))
1541 continue;
1542 read_unlock(&binfmt_lock);
1543 bprm->recursion_depth++;
1544 retval = fmt->load_binary(bprm);
1545 read_lock(&binfmt_lock);
1546 put_binfmt(fmt);
1547 bprm->recursion_depth--;
1548 if (retval < 0 && !bprm->mm) {
1549 /* we got to flush_old_exec() and failed after it */
1550 read_unlock(&binfmt_lock);
1551 force_sigsegv(SIGSEGV, current);
1552 return retval;
1553 }
1554 if (retval != -ENOEXEC || !bprm->file) {
1555 read_unlock(&binfmt_lock);
1556 return retval;
1557 }
1558 }
1559 read_unlock(&binfmt_lock);
1560
1561 if (need_retry) {
1562 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1563 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1564 return retval;
1565 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1566 return retval;
1567 need_retry = false;
1568 goto retry;
1569 }
1570
1571 return retval;
1572 }
1573 EXPORT_SYMBOL(search_binary_handler);
1574
1575 static int exec_binprm(struct linux_binprm *bprm)
1576 {
1577 pid_t old_pid, old_vpid;
1578 int ret;
1579
1580 /* Need to fetch pid before load_binary changes it */
1581 old_pid = current->pid;
1582 rcu_read_lock();
1583 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1584 rcu_read_unlock();
1585
1586 ret = search_binary_handler(bprm);
1587 if (ret >= 0) {
1588 audit_bprm(bprm);
1589 trace_sched_process_exec(current, old_pid, bprm);
1590 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1591 proc_exec_connector(current);
1592 }
1593
1594 return ret;
1595 }
1596
1597 /*
1598 * sys_execve() executes a new program.
1599 */
1600 static int do_execveat_common(int fd, struct filename *filename,
1601 struct user_arg_ptr argv,
1602 struct user_arg_ptr envp,
1603 int flags)
1604 {
1605 char *pathbuf = NULL;
1606 struct linux_binprm *bprm;
1607 struct file *file;
1608 struct files_struct *displaced;
1609 int retval;
1610
1611 if (IS_ERR(filename))
1612 return PTR_ERR(filename);
1613
1614 /*
1615 * We move the actual failure in case of RLIMIT_NPROC excess from
1616 * set*uid() to execve() because too many poorly written programs
1617 * don't check setuid() return code. Here we additionally recheck
1618 * whether NPROC limit is still exceeded.
1619 */
1620 if ((current->flags & PF_NPROC_EXCEEDED) &&
1621 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1622 retval = -EAGAIN;
1623 goto out_ret;
1624 }
1625
1626 /* We're below the limit (still or again), so we don't want to make
1627 * further execve() calls fail. */
1628 current->flags &= ~PF_NPROC_EXCEEDED;
1629
1630 retval = unshare_files(&displaced);
1631 if (retval)
1632 goto out_ret;
1633
1634 retval = -ENOMEM;
1635 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1636 if (!bprm)
1637 goto out_files;
1638
1639 retval = prepare_bprm_creds(bprm);
1640 if (retval)
1641 goto out_free;
1642
1643 check_unsafe_exec(bprm);
1644 current->in_execve = 1;
1645
1646 file = do_open_execat(fd, filename, flags);
1647 retval = PTR_ERR(file);
1648 if (IS_ERR(file))
1649 goto out_unmark;
1650
1651 sched_exec();
1652
1653 bprm->file = file;
1654 if (fd == AT_FDCWD || filename->name[0] == '/') {
1655 bprm->filename = filename->name;
1656 } else {
1657 if (filename->name[0] == '\0')
1658 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1659 else
1660 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1661 fd, filename->name);
1662 if (!pathbuf) {
1663 retval = -ENOMEM;
1664 goto out_unmark;
1665 }
1666 /*
1667 * Record that a name derived from an O_CLOEXEC fd will be
1668 * inaccessible after exec. Relies on having exclusive access to
1669 * current->files (due to unshare_files above).
1670 */
1671 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1672 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1673 bprm->filename = pathbuf;
1674 }
1675 bprm->interp = bprm->filename;
1676
1677 retval = bprm_mm_init(bprm);
1678 if (retval)
1679 goto out_unmark;
1680
1681 bprm->argc = count(argv, MAX_ARG_STRINGS);
1682 if ((retval = bprm->argc) < 0)
1683 goto out;
1684
1685 bprm->envc = count(envp, MAX_ARG_STRINGS);
1686 if ((retval = bprm->envc) < 0)
1687 goto out;
1688
1689 retval = prepare_binprm(bprm);
1690 if (retval < 0)
1691 goto out;
1692
1693 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1694 if (retval < 0)
1695 goto out;
1696
1697 bprm->exec = bprm->p;
1698 retval = copy_strings(bprm->envc, envp, bprm);
1699 if (retval < 0)
1700 goto out;
1701
1702 retval = copy_strings(bprm->argc, argv, bprm);
1703 if (retval < 0)
1704 goto out;
1705
1706 retval = exec_binprm(bprm);
1707 if (retval < 0)
1708 goto out;
1709
1710 /* execve succeeded */
1711 current->fs->in_exec = 0;
1712 current->in_execve = 0;
1713 acct_update_integrals(current);
1714 task_numa_free(current);
1715 free_bprm(bprm);
1716 kfree(pathbuf);
1717 putname(filename);
1718 if (displaced)
1719 put_files_struct(displaced);
1720 return retval;
1721
1722 out:
1723 if (bprm->mm) {
1724 acct_arg_size(bprm, 0);
1725 mmput(bprm->mm);
1726 }
1727
1728 out_unmark:
1729 current->fs->in_exec = 0;
1730 current->in_execve = 0;
1731
1732 out_free:
1733 free_bprm(bprm);
1734 kfree(pathbuf);
1735
1736 out_files:
1737 if (displaced)
1738 reset_files_struct(displaced);
1739 out_ret:
1740 putname(filename);
1741 return retval;
1742 }
1743
1744 int do_execve(struct filename *filename,
1745 const char __user *const __user *__argv,
1746 const char __user *const __user *__envp)
1747 {
1748 struct user_arg_ptr argv = { .ptr.native = __argv };
1749 struct user_arg_ptr envp = { .ptr.native = __envp };
1750 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1751 }
1752
1753 int do_execveat(int fd, struct filename *filename,
1754 const char __user *const __user *__argv,
1755 const char __user *const __user *__envp,
1756 int flags)
1757 {
1758 struct user_arg_ptr argv = { .ptr.native = __argv };
1759 struct user_arg_ptr envp = { .ptr.native = __envp };
1760
1761 return do_execveat_common(fd, filename, argv, envp, flags);
1762 }
1763
1764 #ifdef CONFIG_COMPAT
1765 static int compat_do_execve(struct filename *filename,
1766 const compat_uptr_t __user *__argv,
1767 const compat_uptr_t __user *__envp)
1768 {
1769 struct user_arg_ptr argv = {
1770 .is_compat = true,
1771 .ptr.compat = __argv,
1772 };
1773 struct user_arg_ptr envp = {
1774 .is_compat = true,
1775 .ptr.compat = __envp,
1776 };
1777 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1778 }
1779
1780 static int compat_do_execveat(int fd, struct filename *filename,
1781 const compat_uptr_t __user *__argv,
1782 const compat_uptr_t __user *__envp,
1783 int flags)
1784 {
1785 struct user_arg_ptr argv = {
1786 .is_compat = true,
1787 .ptr.compat = __argv,
1788 };
1789 struct user_arg_ptr envp = {
1790 .is_compat = true,
1791 .ptr.compat = __envp,
1792 };
1793 return do_execveat_common(fd, filename, argv, envp, flags);
1794 }
1795 #endif
1796
1797 void set_binfmt(struct linux_binfmt *new)
1798 {
1799 struct mm_struct *mm = current->mm;
1800
1801 if (mm->binfmt)
1802 module_put(mm->binfmt->module);
1803
1804 mm->binfmt = new;
1805 if (new)
1806 __module_get(new->module);
1807 }
1808 EXPORT_SYMBOL(set_binfmt);
1809
1810 /*
1811 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1812 */
1813 void set_dumpable(struct mm_struct *mm, int value)
1814 {
1815 unsigned long old, new;
1816
1817 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1818 return;
1819
1820 do {
1821 old = ACCESS_ONCE(mm->flags);
1822 new = (old & ~MMF_DUMPABLE_MASK) | value;
1823 } while (cmpxchg(&mm->flags, old, new) != old);
1824 }
1825
1826 SYSCALL_DEFINE3(execve,
1827 const char __user *, filename,
1828 const char __user *const __user *, argv,
1829 const char __user *const __user *, envp)
1830 {
1831 return do_execve(getname(filename), argv, envp);
1832 }
1833
1834 SYSCALL_DEFINE5(execveat,
1835 int, fd, const char __user *, filename,
1836 const char __user *const __user *, argv,
1837 const char __user *const __user *, envp,
1838 int, flags)
1839 {
1840 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1841
1842 return do_execveat(fd,
1843 getname_flags(filename, lookup_flags, NULL),
1844 argv, envp, flags);
1845 }
1846
1847 #ifdef CONFIG_COMPAT
1848 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1849 const compat_uptr_t __user *, argv,
1850 const compat_uptr_t __user *, envp)
1851 {
1852 return compat_do_execve(getname(filename), argv, envp);
1853 }
1854
1855 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1856 const char __user *, filename,
1857 const compat_uptr_t __user *, argv,
1858 const compat_uptr_t __user *, envp,
1859 int, flags)
1860 {
1861 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1862
1863 return compat_do_execveat(fd,
1864 getname_flags(filename, lookup_flags, NULL),
1865 argv, envp, flags);
1866 }
1867 #endif
This page took 0.087743 seconds and 6 git commands to generate.