Restartable sequences: self-tests
[deliverable/linux.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32 struct bio_vec *bvec;
33 int i;
34
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 fscrypt_release_ctx(bio->bi_private);
38 } else {
39 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40 return;
41 }
42 }
43
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
46
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
52 }
53 unlock_page(page);
54 }
55 bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
63
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
66
67 fscrypt_pullback_bio_page(&page, true);
68
69 if (unlikely(bio->bi_error)) {
70 set_bit(AS_EIO, &page->mapping->flags);
71 f2fs_stop_checkpoint(sbi, true);
72 }
73 end_page_writeback(page);
74 }
75 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
76 wq_has_sleeper(&sbi->cp_wait))
77 wake_up(&sbi->cp_wait);
78
79 bio_put(bio);
80 }
81
82 /*
83 * Low-level block read/write IO operations.
84 */
85 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
86 int npages, bool is_read)
87 {
88 struct bio *bio;
89
90 bio = f2fs_bio_alloc(npages);
91
92 bio->bi_bdev = sbi->sb->s_bdev;
93 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
94 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
95 bio->bi_private = is_read ? NULL : sbi;
96
97 return bio;
98 }
99
100 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw,
101 struct bio *bio)
102 {
103 if (!is_read_io(rw))
104 atomic_inc(&sbi->nr_wb_bios);
105 submit_bio(rw, bio);
106 }
107
108 static void __submit_merged_bio(struct f2fs_bio_info *io)
109 {
110 struct f2fs_io_info *fio = &io->fio;
111
112 if (!io->bio)
113 return;
114
115 if (is_read_io(fio->rw))
116 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
117 else
118 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
119
120 __submit_bio(io->sbi, fio->rw, io->bio);
121 io->bio = NULL;
122 }
123
124 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
125 struct page *page, nid_t ino)
126 {
127 struct bio_vec *bvec;
128 struct page *target;
129 int i;
130
131 if (!io->bio)
132 return false;
133
134 if (!inode && !page && !ino)
135 return true;
136
137 bio_for_each_segment_all(bvec, io->bio, i) {
138
139 if (bvec->bv_page->mapping)
140 target = bvec->bv_page;
141 else
142 target = fscrypt_control_page(bvec->bv_page);
143
144 if (inode && inode == target->mapping->host)
145 return true;
146 if (page && page == target)
147 return true;
148 if (ino && ino == ino_of_node(target))
149 return true;
150 }
151
152 return false;
153 }
154
155 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
156 struct page *page, nid_t ino,
157 enum page_type type)
158 {
159 enum page_type btype = PAGE_TYPE_OF_BIO(type);
160 struct f2fs_bio_info *io = &sbi->write_io[btype];
161 bool ret;
162
163 down_read(&io->io_rwsem);
164 ret = __has_merged_page(io, inode, page, ino);
165 up_read(&io->io_rwsem);
166 return ret;
167 }
168
169 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
170 struct inode *inode, struct page *page,
171 nid_t ino, enum page_type type, int rw)
172 {
173 enum page_type btype = PAGE_TYPE_OF_BIO(type);
174 struct f2fs_bio_info *io;
175
176 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
177
178 down_write(&io->io_rwsem);
179
180 if (!__has_merged_page(io, inode, page, ino))
181 goto out;
182
183 /* change META to META_FLUSH in the checkpoint procedure */
184 if (type >= META_FLUSH) {
185 io->fio.type = META_FLUSH;
186 if (test_opt(sbi, NOBARRIER))
187 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
188 else
189 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
190 }
191 __submit_merged_bio(io);
192 out:
193 up_write(&io->io_rwsem);
194 }
195
196 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
197 int rw)
198 {
199 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
200 }
201
202 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
203 struct inode *inode, struct page *page,
204 nid_t ino, enum page_type type, int rw)
205 {
206 if (has_merged_page(sbi, inode, page, ino, type))
207 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
208 }
209
210 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
211 {
212 f2fs_submit_merged_bio(sbi, DATA, WRITE);
213 f2fs_submit_merged_bio(sbi, NODE, WRITE);
214 f2fs_submit_merged_bio(sbi, META, WRITE);
215 }
216
217 /*
218 * Fill the locked page with data located in the block address.
219 * Return unlocked page.
220 */
221 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
222 {
223 struct bio *bio;
224 struct page *page = fio->encrypted_page ?
225 fio->encrypted_page : fio->page;
226
227 trace_f2fs_submit_page_bio(page, fio);
228 f2fs_trace_ios(fio, 0);
229
230 /* Allocate a new bio */
231 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
232
233 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
234 bio_put(bio);
235 return -EFAULT;
236 }
237
238 __submit_bio(fio->sbi, fio->rw, bio);
239 return 0;
240 }
241
242 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
243 {
244 struct f2fs_sb_info *sbi = fio->sbi;
245 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
246 struct f2fs_bio_info *io;
247 bool is_read = is_read_io(fio->rw);
248 struct page *bio_page;
249
250 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
251
252 if (fio->old_blkaddr != NEW_ADDR)
253 verify_block_addr(sbi, fio->old_blkaddr);
254 verify_block_addr(sbi, fio->new_blkaddr);
255
256 down_write(&io->io_rwsem);
257
258 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
259 io->fio.rw != fio->rw))
260 __submit_merged_bio(io);
261 alloc_new:
262 if (io->bio == NULL) {
263 int bio_blocks = MAX_BIO_BLOCKS(sbi);
264
265 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
266 bio_blocks, is_read);
267 io->fio = *fio;
268 }
269
270 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
271
272 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
273 PAGE_SIZE) {
274 __submit_merged_bio(io);
275 goto alloc_new;
276 }
277
278 io->last_block_in_bio = fio->new_blkaddr;
279 f2fs_trace_ios(fio, 0);
280
281 up_write(&io->io_rwsem);
282 trace_f2fs_submit_page_mbio(fio->page, fio);
283 }
284
285 static void __set_data_blkaddr(struct dnode_of_data *dn)
286 {
287 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
288 __le32 *addr_array;
289
290 /* Get physical address of data block */
291 addr_array = blkaddr_in_node(rn);
292 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
293 }
294
295 /*
296 * Lock ordering for the change of data block address:
297 * ->data_page
298 * ->node_page
299 * update block addresses in the node page
300 */
301 void set_data_blkaddr(struct dnode_of_data *dn)
302 {
303 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
304 __set_data_blkaddr(dn);
305 if (set_page_dirty(dn->node_page))
306 dn->node_changed = true;
307 }
308
309 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
310 {
311 dn->data_blkaddr = blkaddr;
312 set_data_blkaddr(dn);
313 f2fs_update_extent_cache(dn);
314 }
315
316 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
317 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
318 {
319 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
320
321 if (!count)
322 return 0;
323
324 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
325 return -EPERM;
326 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
327 return -ENOSPC;
328
329 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
330 dn->ofs_in_node, count);
331
332 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
333
334 for (; count > 0; dn->ofs_in_node++) {
335 block_t blkaddr =
336 datablock_addr(dn->node_page, dn->ofs_in_node);
337 if (blkaddr == NULL_ADDR) {
338 dn->data_blkaddr = NEW_ADDR;
339 __set_data_blkaddr(dn);
340 count--;
341 }
342 }
343
344 if (set_page_dirty(dn->node_page))
345 dn->node_changed = true;
346
347 mark_inode_dirty(dn->inode);
348 sync_inode_page(dn);
349 return 0;
350 }
351
352 /* Should keep dn->ofs_in_node unchanged */
353 int reserve_new_block(struct dnode_of_data *dn)
354 {
355 unsigned int ofs_in_node = dn->ofs_in_node;
356 int ret;
357
358 ret = reserve_new_blocks(dn, 1);
359 dn->ofs_in_node = ofs_in_node;
360 return ret;
361 }
362
363 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
364 {
365 bool need_put = dn->inode_page ? false : true;
366 int err;
367
368 err = get_dnode_of_data(dn, index, ALLOC_NODE);
369 if (err)
370 return err;
371
372 if (dn->data_blkaddr == NULL_ADDR)
373 err = reserve_new_block(dn);
374 if (err || need_put)
375 f2fs_put_dnode(dn);
376 return err;
377 }
378
379 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
380 {
381 struct extent_info ei;
382 struct inode *inode = dn->inode;
383
384 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
385 dn->data_blkaddr = ei.blk + index - ei.fofs;
386 return 0;
387 }
388
389 return f2fs_reserve_block(dn, index);
390 }
391
392 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
393 int rw, bool for_write)
394 {
395 struct address_space *mapping = inode->i_mapping;
396 struct dnode_of_data dn;
397 struct page *page;
398 struct extent_info ei;
399 int err;
400 struct f2fs_io_info fio = {
401 .sbi = F2FS_I_SB(inode),
402 .type = DATA,
403 .rw = rw,
404 .encrypted_page = NULL,
405 };
406
407 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
408 return read_mapping_page(mapping, index, NULL);
409
410 page = f2fs_grab_cache_page(mapping, index, for_write);
411 if (!page)
412 return ERR_PTR(-ENOMEM);
413
414 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
415 dn.data_blkaddr = ei.blk + index - ei.fofs;
416 goto got_it;
417 }
418
419 set_new_dnode(&dn, inode, NULL, NULL, 0);
420 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
421 if (err)
422 goto put_err;
423 f2fs_put_dnode(&dn);
424
425 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
426 err = -ENOENT;
427 goto put_err;
428 }
429 got_it:
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 return page;
433 }
434
435 /*
436 * A new dentry page is allocated but not able to be written, since its
437 * new inode page couldn't be allocated due to -ENOSPC.
438 * In such the case, its blkaddr can be remained as NEW_ADDR.
439 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
440 */
441 if (dn.data_blkaddr == NEW_ADDR) {
442 zero_user_segment(page, 0, PAGE_SIZE);
443 SetPageUptodate(page);
444 unlock_page(page);
445 return page;
446 }
447
448 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
449 fio.page = page;
450 err = f2fs_submit_page_bio(&fio);
451 if (err)
452 goto put_err;
453 return page;
454
455 put_err:
456 f2fs_put_page(page, 1);
457 return ERR_PTR(err);
458 }
459
460 struct page *find_data_page(struct inode *inode, pgoff_t index)
461 {
462 struct address_space *mapping = inode->i_mapping;
463 struct page *page;
464
465 page = find_get_page(mapping, index);
466 if (page && PageUptodate(page))
467 return page;
468 f2fs_put_page(page, 0);
469
470 page = get_read_data_page(inode, index, READ_SYNC, false);
471 if (IS_ERR(page))
472 return page;
473
474 if (PageUptodate(page))
475 return page;
476
477 wait_on_page_locked(page);
478 if (unlikely(!PageUptodate(page))) {
479 f2fs_put_page(page, 0);
480 return ERR_PTR(-EIO);
481 }
482 return page;
483 }
484
485 /*
486 * If it tries to access a hole, return an error.
487 * Because, the callers, functions in dir.c and GC, should be able to know
488 * whether this page exists or not.
489 */
490 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
491 bool for_write)
492 {
493 struct address_space *mapping = inode->i_mapping;
494 struct page *page;
495 repeat:
496 page = get_read_data_page(inode, index, READ_SYNC, for_write);
497 if (IS_ERR(page))
498 return page;
499
500 /* wait for read completion */
501 lock_page(page);
502 if (unlikely(!PageUptodate(page))) {
503 f2fs_put_page(page, 1);
504 return ERR_PTR(-EIO);
505 }
506 if (unlikely(page->mapping != mapping)) {
507 f2fs_put_page(page, 1);
508 goto repeat;
509 }
510 return page;
511 }
512
513 /*
514 * Caller ensures that this data page is never allocated.
515 * A new zero-filled data page is allocated in the page cache.
516 *
517 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
518 * f2fs_unlock_op().
519 * Note that, ipage is set only by make_empty_dir, and if any error occur,
520 * ipage should be released by this function.
521 */
522 struct page *get_new_data_page(struct inode *inode,
523 struct page *ipage, pgoff_t index, bool new_i_size)
524 {
525 struct address_space *mapping = inode->i_mapping;
526 struct page *page;
527 struct dnode_of_data dn;
528 int err;
529
530 page = f2fs_grab_cache_page(mapping, index, true);
531 if (!page) {
532 /*
533 * before exiting, we should make sure ipage will be released
534 * if any error occur.
535 */
536 f2fs_put_page(ipage, 1);
537 return ERR_PTR(-ENOMEM);
538 }
539
540 set_new_dnode(&dn, inode, ipage, NULL, 0);
541 err = f2fs_reserve_block(&dn, index);
542 if (err) {
543 f2fs_put_page(page, 1);
544 return ERR_PTR(err);
545 }
546 if (!ipage)
547 f2fs_put_dnode(&dn);
548
549 if (PageUptodate(page))
550 goto got_it;
551
552 if (dn.data_blkaddr == NEW_ADDR) {
553 zero_user_segment(page, 0, PAGE_SIZE);
554 SetPageUptodate(page);
555 } else {
556 f2fs_put_page(page, 1);
557
558 /* if ipage exists, blkaddr should be NEW_ADDR */
559 f2fs_bug_on(F2FS_I_SB(inode), ipage);
560 page = get_lock_data_page(inode, index, true);
561 if (IS_ERR(page))
562 return page;
563 }
564 got_it:
565 if (new_i_size && i_size_read(inode) <
566 ((loff_t)(index + 1) << PAGE_SHIFT)) {
567 i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
568 /* Only the directory inode sets new_i_size */
569 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
570 }
571 return page;
572 }
573
574 static int __allocate_data_block(struct dnode_of_data *dn)
575 {
576 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
577 struct f2fs_summary sum;
578 struct node_info ni;
579 int seg = CURSEG_WARM_DATA;
580 pgoff_t fofs;
581 blkcnt_t count = 1;
582
583 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
584 return -EPERM;
585
586 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
587 if (dn->data_blkaddr == NEW_ADDR)
588 goto alloc;
589
590 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
591 return -ENOSPC;
592
593 alloc:
594 get_node_info(sbi, dn->nid, &ni);
595 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
596
597 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
598 seg = CURSEG_DIRECT_IO;
599
600 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
601 &sum, seg);
602 set_data_blkaddr(dn);
603
604 /* update i_size */
605 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
606 dn->ofs_in_node;
607 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
608 i_size_write(dn->inode,
609 ((loff_t)(fofs + 1) << PAGE_SHIFT));
610 return 0;
611 }
612
613 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
614 {
615 struct inode *inode = file_inode(iocb->ki_filp);
616 struct f2fs_map_blocks map;
617 ssize_t ret = 0;
618
619 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
620 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
621 map.m_next_pgofs = NULL;
622
623 if (f2fs_encrypted_inode(inode))
624 return 0;
625
626 if (iocb->ki_flags & IOCB_DIRECT) {
627 ret = f2fs_convert_inline_inode(inode);
628 if (ret)
629 return ret;
630 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
631 }
632 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
633 ret = f2fs_convert_inline_inode(inode);
634 if (ret)
635 return ret;
636 }
637 if (!f2fs_has_inline_data(inode))
638 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
639 return ret;
640 }
641
642 /*
643 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
644 * f2fs_map_blocks structure.
645 * If original data blocks are allocated, then give them to blockdev.
646 * Otherwise,
647 * a. preallocate requested block addresses
648 * b. do not use extent cache for better performance
649 * c. give the block addresses to blockdev
650 */
651 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
652 int create, int flag)
653 {
654 unsigned int maxblocks = map->m_len;
655 struct dnode_of_data dn;
656 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
657 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
658 pgoff_t pgofs, end_offset, end;
659 int err = 0, ofs = 1;
660 unsigned int ofs_in_node, last_ofs_in_node;
661 blkcnt_t prealloc;
662 struct extent_info ei;
663 bool allocated = false;
664 block_t blkaddr;
665
666 map->m_len = 0;
667 map->m_flags = 0;
668
669 /* it only supports block size == page size */
670 pgofs = (pgoff_t)map->m_lblk;
671 end = pgofs + maxblocks;
672
673 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
674 map->m_pblk = ei.blk + pgofs - ei.fofs;
675 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
676 map->m_flags = F2FS_MAP_MAPPED;
677 goto out;
678 }
679
680 next_dnode:
681 if (create)
682 f2fs_lock_op(sbi);
683
684 /* When reading holes, we need its node page */
685 set_new_dnode(&dn, inode, NULL, NULL, 0);
686 err = get_dnode_of_data(&dn, pgofs, mode);
687 if (err) {
688 if (flag == F2FS_GET_BLOCK_BMAP)
689 map->m_pblk = 0;
690 if (err == -ENOENT) {
691 err = 0;
692 if (map->m_next_pgofs)
693 *map->m_next_pgofs =
694 get_next_page_offset(&dn, pgofs);
695 }
696 goto unlock_out;
697 }
698
699 prealloc = 0;
700 ofs_in_node = dn.ofs_in_node;
701 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
702
703 next_block:
704 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
705
706 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
707 if (create) {
708 if (unlikely(f2fs_cp_error(sbi))) {
709 err = -EIO;
710 goto sync_out;
711 }
712 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
713 if (blkaddr == NULL_ADDR) {
714 prealloc++;
715 last_ofs_in_node = dn.ofs_in_node;
716 }
717 } else {
718 err = __allocate_data_block(&dn);
719 if (!err) {
720 set_inode_flag(F2FS_I(inode),
721 FI_APPEND_WRITE);
722 allocated = true;
723 }
724 }
725 if (err)
726 goto sync_out;
727 map->m_flags = F2FS_MAP_NEW;
728 blkaddr = dn.data_blkaddr;
729 } else {
730 if (flag == F2FS_GET_BLOCK_BMAP) {
731 map->m_pblk = 0;
732 goto sync_out;
733 }
734 if (flag == F2FS_GET_BLOCK_FIEMAP &&
735 blkaddr == NULL_ADDR) {
736 if (map->m_next_pgofs)
737 *map->m_next_pgofs = pgofs + 1;
738 }
739 if (flag != F2FS_GET_BLOCK_FIEMAP ||
740 blkaddr != NEW_ADDR)
741 goto sync_out;
742 }
743 }
744
745 if (flag == F2FS_GET_BLOCK_PRE_AIO)
746 goto skip;
747
748 if (map->m_len == 0) {
749 /* preallocated unwritten block should be mapped for fiemap. */
750 if (blkaddr == NEW_ADDR)
751 map->m_flags |= F2FS_MAP_UNWRITTEN;
752 map->m_flags |= F2FS_MAP_MAPPED;
753
754 map->m_pblk = blkaddr;
755 map->m_len = 1;
756 } else if ((map->m_pblk != NEW_ADDR &&
757 blkaddr == (map->m_pblk + ofs)) ||
758 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
759 flag == F2FS_GET_BLOCK_PRE_DIO) {
760 ofs++;
761 map->m_len++;
762 } else {
763 goto sync_out;
764 }
765
766 skip:
767 dn.ofs_in_node++;
768 pgofs++;
769
770 /* preallocate blocks in batch for one dnode page */
771 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
772 (pgofs == end || dn.ofs_in_node == end_offset)) {
773
774 dn.ofs_in_node = ofs_in_node;
775 err = reserve_new_blocks(&dn, prealloc);
776 if (err)
777 goto sync_out;
778
779 map->m_len += dn.ofs_in_node - ofs_in_node;
780 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
781 err = -ENOSPC;
782 goto sync_out;
783 }
784 dn.ofs_in_node = end_offset;
785 }
786
787 if (pgofs >= end)
788 goto sync_out;
789 else if (dn.ofs_in_node < end_offset)
790 goto next_block;
791
792 if (allocated)
793 sync_inode_page(&dn);
794 f2fs_put_dnode(&dn);
795
796 if (create) {
797 f2fs_unlock_op(sbi);
798 f2fs_balance_fs(sbi, allocated);
799 }
800 allocated = false;
801 goto next_dnode;
802
803 sync_out:
804 if (allocated)
805 sync_inode_page(&dn);
806 f2fs_put_dnode(&dn);
807 unlock_out:
808 if (create) {
809 f2fs_unlock_op(sbi);
810 f2fs_balance_fs(sbi, allocated);
811 }
812 out:
813 trace_f2fs_map_blocks(inode, map, err);
814 return err;
815 }
816
817 static int __get_data_block(struct inode *inode, sector_t iblock,
818 struct buffer_head *bh, int create, int flag,
819 pgoff_t *next_pgofs)
820 {
821 struct f2fs_map_blocks map;
822 int ret;
823
824 map.m_lblk = iblock;
825 map.m_len = bh->b_size >> inode->i_blkbits;
826 map.m_next_pgofs = next_pgofs;
827
828 ret = f2fs_map_blocks(inode, &map, create, flag);
829 if (!ret) {
830 map_bh(bh, inode->i_sb, map.m_pblk);
831 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
832 bh->b_size = map.m_len << inode->i_blkbits;
833 }
834 return ret;
835 }
836
837 static int get_data_block(struct inode *inode, sector_t iblock,
838 struct buffer_head *bh_result, int create, int flag,
839 pgoff_t *next_pgofs)
840 {
841 return __get_data_block(inode, iblock, bh_result, create,
842 flag, next_pgofs);
843 }
844
845 static int get_data_block_dio(struct inode *inode, sector_t iblock,
846 struct buffer_head *bh_result, int create)
847 {
848 return __get_data_block(inode, iblock, bh_result, create,
849 F2FS_GET_BLOCK_DIO, NULL);
850 }
851
852 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
853 struct buffer_head *bh_result, int create)
854 {
855 /* Block number less than F2FS MAX BLOCKS */
856 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
857 return -EFBIG;
858
859 return __get_data_block(inode, iblock, bh_result, create,
860 F2FS_GET_BLOCK_BMAP, NULL);
861 }
862
863 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
864 {
865 return (offset >> inode->i_blkbits);
866 }
867
868 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
869 {
870 return (blk << inode->i_blkbits);
871 }
872
873 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
874 u64 start, u64 len)
875 {
876 struct buffer_head map_bh;
877 sector_t start_blk, last_blk;
878 pgoff_t next_pgofs;
879 loff_t isize;
880 u64 logical = 0, phys = 0, size = 0;
881 u32 flags = 0;
882 int ret = 0;
883
884 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
885 if (ret)
886 return ret;
887
888 if (f2fs_has_inline_data(inode)) {
889 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
890 if (ret != -EAGAIN)
891 return ret;
892 }
893
894 inode_lock(inode);
895
896 isize = i_size_read(inode);
897 if (start >= isize)
898 goto out;
899
900 if (start + len > isize)
901 len = isize - start;
902
903 if (logical_to_blk(inode, len) == 0)
904 len = blk_to_logical(inode, 1);
905
906 start_blk = logical_to_blk(inode, start);
907 last_blk = logical_to_blk(inode, start + len - 1);
908
909 next:
910 memset(&map_bh, 0, sizeof(struct buffer_head));
911 map_bh.b_size = len;
912
913 ret = get_data_block(inode, start_blk, &map_bh, 0,
914 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
915 if (ret)
916 goto out;
917
918 /* HOLE */
919 if (!buffer_mapped(&map_bh)) {
920 start_blk = next_pgofs;
921 /* Go through holes util pass the EOF */
922 if (blk_to_logical(inode, start_blk) < isize)
923 goto prep_next;
924 /* Found a hole beyond isize means no more extents.
925 * Note that the premise is that filesystems don't
926 * punch holes beyond isize and keep size unchanged.
927 */
928 flags |= FIEMAP_EXTENT_LAST;
929 }
930
931 if (size) {
932 if (f2fs_encrypted_inode(inode))
933 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
934
935 ret = fiemap_fill_next_extent(fieinfo, logical,
936 phys, size, flags);
937 }
938
939 if (start_blk > last_blk || ret)
940 goto out;
941
942 logical = blk_to_logical(inode, start_blk);
943 phys = blk_to_logical(inode, map_bh.b_blocknr);
944 size = map_bh.b_size;
945 flags = 0;
946 if (buffer_unwritten(&map_bh))
947 flags = FIEMAP_EXTENT_UNWRITTEN;
948
949 start_blk += logical_to_blk(inode, size);
950
951 prep_next:
952 cond_resched();
953 if (fatal_signal_pending(current))
954 ret = -EINTR;
955 else
956 goto next;
957 out:
958 if (ret == 1)
959 ret = 0;
960
961 inode_unlock(inode);
962 return ret;
963 }
964
965 /*
966 * This function was originally taken from fs/mpage.c, and customized for f2fs.
967 * Major change was from block_size == page_size in f2fs by default.
968 */
969 static int f2fs_mpage_readpages(struct address_space *mapping,
970 struct list_head *pages, struct page *page,
971 unsigned nr_pages)
972 {
973 struct bio *bio = NULL;
974 unsigned page_idx;
975 sector_t last_block_in_bio = 0;
976 struct inode *inode = mapping->host;
977 const unsigned blkbits = inode->i_blkbits;
978 const unsigned blocksize = 1 << blkbits;
979 sector_t block_in_file;
980 sector_t last_block;
981 sector_t last_block_in_file;
982 sector_t block_nr;
983 struct block_device *bdev = inode->i_sb->s_bdev;
984 struct f2fs_map_blocks map;
985
986 map.m_pblk = 0;
987 map.m_lblk = 0;
988 map.m_len = 0;
989 map.m_flags = 0;
990 map.m_next_pgofs = NULL;
991
992 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
993
994 prefetchw(&page->flags);
995 if (pages) {
996 page = list_entry(pages->prev, struct page, lru);
997 list_del(&page->lru);
998 if (add_to_page_cache_lru(page, mapping,
999 page->index, GFP_KERNEL))
1000 goto next_page;
1001 }
1002
1003 block_in_file = (sector_t)page->index;
1004 last_block = block_in_file + nr_pages;
1005 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1006 blkbits;
1007 if (last_block > last_block_in_file)
1008 last_block = last_block_in_file;
1009
1010 /*
1011 * Map blocks using the previous result first.
1012 */
1013 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1014 block_in_file > map.m_lblk &&
1015 block_in_file < (map.m_lblk + map.m_len))
1016 goto got_it;
1017
1018 /*
1019 * Then do more f2fs_map_blocks() calls until we are
1020 * done with this page.
1021 */
1022 map.m_flags = 0;
1023
1024 if (block_in_file < last_block) {
1025 map.m_lblk = block_in_file;
1026 map.m_len = last_block - block_in_file;
1027
1028 if (f2fs_map_blocks(inode, &map, 0,
1029 F2FS_GET_BLOCK_READ))
1030 goto set_error_page;
1031 }
1032 got_it:
1033 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1034 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1035 SetPageMappedToDisk(page);
1036
1037 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1038 SetPageUptodate(page);
1039 goto confused;
1040 }
1041 } else {
1042 zero_user_segment(page, 0, PAGE_SIZE);
1043 SetPageUptodate(page);
1044 unlock_page(page);
1045 goto next_page;
1046 }
1047
1048 /*
1049 * This page will go to BIO. Do we need to send this
1050 * BIO off first?
1051 */
1052 if (bio && (last_block_in_bio != block_nr - 1)) {
1053 submit_and_realloc:
1054 __submit_bio(F2FS_I_SB(inode), READ, bio);
1055 bio = NULL;
1056 }
1057 if (bio == NULL) {
1058 struct fscrypt_ctx *ctx = NULL;
1059
1060 if (f2fs_encrypted_inode(inode) &&
1061 S_ISREG(inode->i_mode)) {
1062
1063 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1064 if (IS_ERR(ctx))
1065 goto set_error_page;
1066
1067 /* wait the page to be moved by cleaning */
1068 f2fs_wait_on_encrypted_page_writeback(
1069 F2FS_I_SB(inode), block_nr);
1070 }
1071
1072 bio = bio_alloc(GFP_KERNEL,
1073 min_t(int, nr_pages, BIO_MAX_PAGES));
1074 if (!bio) {
1075 if (ctx)
1076 fscrypt_release_ctx(ctx);
1077 goto set_error_page;
1078 }
1079 bio->bi_bdev = bdev;
1080 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1081 bio->bi_end_io = f2fs_read_end_io;
1082 bio->bi_private = ctx;
1083 }
1084
1085 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1086 goto submit_and_realloc;
1087
1088 last_block_in_bio = block_nr;
1089 goto next_page;
1090 set_error_page:
1091 SetPageError(page);
1092 zero_user_segment(page, 0, PAGE_SIZE);
1093 unlock_page(page);
1094 goto next_page;
1095 confused:
1096 if (bio) {
1097 __submit_bio(F2FS_I_SB(inode), READ, bio);
1098 bio = NULL;
1099 }
1100 unlock_page(page);
1101 next_page:
1102 if (pages)
1103 put_page(page);
1104 }
1105 BUG_ON(pages && !list_empty(pages));
1106 if (bio)
1107 __submit_bio(F2FS_I_SB(inode), READ, bio);
1108 return 0;
1109 }
1110
1111 static int f2fs_read_data_page(struct file *file, struct page *page)
1112 {
1113 struct inode *inode = page->mapping->host;
1114 int ret = -EAGAIN;
1115
1116 trace_f2fs_readpage(page, DATA);
1117
1118 /* If the file has inline data, try to read it directly */
1119 if (f2fs_has_inline_data(inode))
1120 ret = f2fs_read_inline_data(inode, page);
1121 if (ret == -EAGAIN)
1122 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1123 return ret;
1124 }
1125
1126 static int f2fs_read_data_pages(struct file *file,
1127 struct address_space *mapping,
1128 struct list_head *pages, unsigned nr_pages)
1129 {
1130 struct inode *inode = file->f_mapping->host;
1131 struct page *page = list_entry(pages->prev, struct page, lru);
1132
1133 trace_f2fs_readpages(inode, page, nr_pages);
1134
1135 /* If the file has inline data, skip readpages */
1136 if (f2fs_has_inline_data(inode))
1137 return 0;
1138
1139 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1140 }
1141
1142 int do_write_data_page(struct f2fs_io_info *fio)
1143 {
1144 struct page *page = fio->page;
1145 struct inode *inode = page->mapping->host;
1146 struct dnode_of_data dn;
1147 int err = 0;
1148
1149 set_new_dnode(&dn, inode, NULL, NULL, 0);
1150 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1151 if (err)
1152 return err;
1153
1154 fio->old_blkaddr = dn.data_blkaddr;
1155
1156 /* This page is already truncated */
1157 if (fio->old_blkaddr == NULL_ADDR) {
1158 ClearPageUptodate(page);
1159 goto out_writepage;
1160 }
1161
1162 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1163 gfp_t gfp_flags = GFP_NOFS;
1164
1165 /* wait for GCed encrypted page writeback */
1166 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1167 fio->old_blkaddr);
1168 retry_encrypt:
1169 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1170 gfp_flags);
1171 if (IS_ERR(fio->encrypted_page)) {
1172 err = PTR_ERR(fio->encrypted_page);
1173 if (err == -ENOMEM) {
1174 /* flush pending ios and wait for a while */
1175 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1176 congestion_wait(BLK_RW_ASYNC, HZ/50);
1177 gfp_flags |= __GFP_NOFAIL;
1178 err = 0;
1179 goto retry_encrypt;
1180 }
1181 goto out_writepage;
1182 }
1183 }
1184
1185 set_page_writeback(page);
1186
1187 /*
1188 * If current allocation needs SSR,
1189 * it had better in-place writes for updated data.
1190 */
1191 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1192 !is_cold_data(page) &&
1193 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1194 need_inplace_update(inode))) {
1195 rewrite_data_page(fio);
1196 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1197 trace_f2fs_do_write_data_page(page, IPU);
1198 } else {
1199 write_data_page(&dn, fio);
1200 trace_f2fs_do_write_data_page(page, OPU);
1201 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1202 if (page->index == 0)
1203 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1204 }
1205 out_writepage:
1206 f2fs_put_dnode(&dn);
1207 return err;
1208 }
1209
1210 static int f2fs_write_data_page(struct page *page,
1211 struct writeback_control *wbc)
1212 {
1213 struct inode *inode = page->mapping->host;
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 loff_t i_size = i_size_read(inode);
1216 const pgoff_t end_index = ((unsigned long long) i_size)
1217 >> PAGE_SHIFT;
1218 unsigned offset = 0;
1219 bool need_balance_fs = false;
1220 int err = 0;
1221 struct f2fs_io_info fio = {
1222 .sbi = sbi,
1223 .type = DATA,
1224 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1225 .page = page,
1226 .encrypted_page = NULL,
1227 };
1228
1229 trace_f2fs_writepage(page, DATA);
1230
1231 if (page->index < end_index)
1232 goto write;
1233
1234 /*
1235 * If the offset is out-of-range of file size,
1236 * this page does not have to be written to disk.
1237 */
1238 offset = i_size & (PAGE_SIZE - 1);
1239 if ((page->index >= end_index + 1) || !offset)
1240 goto out;
1241
1242 zero_user_segment(page, offset, PAGE_SIZE);
1243 write:
1244 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1245 goto redirty_out;
1246 if (f2fs_is_drop_cache(inode))
1247 goto out;
1248 /* we should not write 0'th page having journal header */
1249 if (f2fs_is_volatile_file(inode) && (!page->index ||
1250 (!wbc->for_reclaim &&
1251 available_free_memory(sbi, BASE_CHECK))))
1252 goto redirty_out;
1253
1254 /* Dentry blocks are controlled by checkpoint */
1255 if (S_ISDIR(inode->i_mode)) {
1256 if (unlikely(f2fs_cp_error(sbi)))
1257 goto redirty_out;
1258 err = do_write_data_page(&fio);
1259 goto done;
1260 }
1261
1262 /* we should bypass data pages to proceed the kworkder jobs */
1263 if (unlikely(f2fs_cp_error(sbi))) {
1264 SetPageError(page);
1265 goto out;
1266 }
1267
1268 if (!wbc->for_reclaim)
1269 need_balance_fs = true;
1270 else if (has_not_enough_free_secs(sbi, 0))
1271 goto redirty_out;
1272
1273 err = -EAGAIN;
1274 f2fs_lock_op(sbi);
1275 if (f2fs_has_inline_data(inode))
1276 err = f2fs_write_inline_data(inode, page);
1277 if (err == -EAGAIN)
1278 err = do_write_data_page(&fio);
1279 f2fs_unlock_op(sbi);
1280 done:
1281 if (err && err != -ENOENT)
1282 goto redirty_out;
1283
1284 clear_cold_data(page);
1285 out:
1286 inode_dec_dirty_pages(inode);
1287 if (err)
1288 ClearPageUptodate(page);
1289
1290 if (wbc->for_reclaim) {
1291 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1292 remove_dirty_inode(inode);
1293 }
1294
1295 unlock_page(page);
1296 f2fs_balance_fs(sbi, need_balance_fs);
1297
1298 if (unlikely(f2fs_cp_error(sbi)))
1299 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1300
1301 return 0;
1302
1303 redirty_out:
1304 redirty_page_for_writepage(wbc, page);
1305 return AOP_WRITEPAGE_ACTIVATE;
1306 }
1307
1308 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1309 void *data)
1310 {
1311 struct address_space *mapping = data;
1312 int ret = mapping->a_ops->writepage(page, wbc);
1313 mapping_set_error(mapping, ret);
1314 return ret;
1315 }
1316
1317 /*
1318 * This function was copied from write_cche_pages from mm/page-writeback.c.
1319 * The major change is making write step of cold data page separately from
1320 * warm/hot data page.
1321 */
1322 static int f2fs_write_cache_pages(struct address_space *mapping,
1323 struct writeback_control *wbc, writepage_t writepage,
1324 void *data)
1325 {
1326 int ret = 0;
1327 int done = 0;
1328 struct pagevec pvec;
1329 int nr_pages;
1330 pgoff_t uninitialized_var(writeback_index);
1331 pgoff_t index;
1332 pgoff_t end; /* Inclusive */
1333 pgoff_t done_index;
1334 int cycled;
1335 int range_whole = 0;
1336 int tag;
1337 int step = 0;
1338
1339 pagevec_init(&pvec, 0);
1340 next:
1341 if (wbc->range_cyclic) {
1342 writeback_index = mapping->writeback_index; /* prev offset */
1343 index = writeback_index;
1344 if (index == 0)
1345 cycled = 1;
1346 else
1347 cycled = 0;
1348 end = -1;
1349 } else {
1350 index = wbc->range_start >> PAGE_SHIFT;
1351 end = wbc->range_end >> PAGE_SHIFT;
1352 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1353 range_whole = 1;
1354 cycled = 1; /* ignore range_cyclic tests */
1355 }
1356 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1357 tag = PAGECACHE_TAG_TOWRITE;
1358 else
1359 tag = PAGECACHE_TAG_DIRTY;
1360 retry:
1361 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1362 tag_pages_for_writeback(mapping, index, end);
1363 done_index = index;
1364 while (!done && (index <= end)) {
1365 int i;
1366
1367 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1368 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1369 if (nr_pages == 0)
1370 break;
1371
1372 for (i = 0; i < nr_pages; i++) {
1373 struct page *page = pvec.pages[i];
1374
1375 if (page->index > end) {
1376 done = 1;
1377 break;
1378 }
1379
1380 done_index = page->index;
1381
1382 lock_page(page);
1383
1384 if (unlikely(page->mapping != mapping)) {
1385 continue_unlock:
1386 unlock_page(page);
1387 continue;
1388 }
1389
1390 if (!PageDirty(page)) {
1391 /* someone wrote it for us */
1392 goto continue_unlock;
1393 }
1394
1395 if (step == is_cold_data(page))
1396 goto continue_unlock;
1397
1398 if (PageWriteback(page)) {
1399 if (wbc->sync_mode != WB_SYNC_NONE)
1400 f2fs_wait_on_page_writeback(page,
1401 DATA, true);
1402 else
1403 goto continue_unlock;
1404 }
1405
1406 BUG_ON(PageWriteback(page));
1407 if (!clear_page_dirty_for_io(page))
1408 goto continue_unlock;
1409
1410 ret = (*writepage)(page, wbc, data);
1411 if (unlikely(ret)) {
1412 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1413 unlock_page(page);
1414 ret = 0;
1415 } else {
1416 done_index = page->index + 1;
1417 done = 1;
1418 break;
1419 }
1420 }
1421
1422 if (--wbc->nr_to_write <= 0 &&
1423 wbc->sync_mode == WB_SYNC_NONE) {
1424 done = 1;
1425 break;
1426 }
1427 }
1428 pagevec_release(&pvec);
1429 cond_resched();
1430 }
1431
1432 if (step < 1) {
1433 step++;
1434 goto next;
1435 }
1436
1437 if (!cycled && !done) {
1438 cycled = 1;
1439 index = 0;
1440 end = writeback_index - 1;
1441 goto retry;
1442 }
1443 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1444 mapping->writeback_index = done_index;
1445
1446 return ret;
1447 }
1448
1449 static int f2fs_write_data_pages(struct address_space *mapping,
1450 struct writeback_control *wbc)
1451 {
1452 struct inode *inode = mapping->host;
1453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1454 bool locked = false;
1455 int ret;
1456 long diff;
1457
1458 /* deal with chardevs and other special file */
1459 if (!mapping->a_ops->writepage)
1460 return 0;
1461
1462 /* skip writing if there is no dirty page in this inode */
1463 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1464 return 0;
1465
1466 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1467 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1468 available_free_memory(sbi, DIRTY_DENTS))
1469 goto skip_write;
1470
1471 /* skip writing during file defragment */
1472 if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1473 goto skip_write;
1474
1475 /* during POR, we don't need to trigger writepage at all. */
1476 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1477 goto skip_write;
1478
1479 trace_f2fs_writepages(mapping->host, wbc, DATA);
1480
1481 diff = nr_pages_to_write(sbi, DATA, wbc);
1482
1483 if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
1484 mutex_lock(&sbi->writepages);
1485 locked = true;
1486 }
1487 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1488 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1489 if (locked)
1490 mutex_unlock(&sbi->writepages);
1491
1492 remove_dirty_inode(inode);
1493
1494 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1495 return ret;
1496
1497 skip_write:
1498 wbc->pages_skipped += get_dirty_pages(inode);
1499 trace_f2fs_writepages(mapping->host, wbc, DATA);
1500 return 0;
1501 }
1502
1503 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1504 {
1505 struct inode *inode = mapping->host;
1506 loff_t i_size = i_size_read(inode);
1507
1508 if (to > i_size) {
1509 truncate_pagecache(inode, i_size);
1510 truncate_blocks(inode, i_size, true);
1511 }
1512 }
1513
1514 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1515 struct page *page, loff_t pos, unsigned len,
1516 block_t *blk_addr, bool *node_changed)
1517 {
1518 struct inode *inode = page->mapping->host;
1519 pgoff_t index = page->index;
1520 struct dnode_of_data dn;
1521 struct page *ipage;
1522 bool locked = false;
1523 struct extent_info ei;
1524 int err = 0;
1525
1526 /*
1527 * we already allocated all the blocks, so we don't need to get
1528 * the block addresses when there is no need to fill the page.
1529 */
1530 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1531 len == PAGE_SIZE)
1532 return 0;
1533
1534 if (f2fs_has_inline_data(inode) ||
1535 (pos & PAGE_MASK) >= i_size_read(inode)) {
1536 f2fs_lock_op(sbi);
1537 locked = true;
1538 }
1539 restart:
1540 /* check inline_data */
1541 ipage = get_node_page(sbi, inode->i_ino);
1542 if (IS_ERR(ipage)) {
1543 err = PTR_ERR(ipage);
1544 goto unlock_out;
1545 }
1546
1547 set_new_dnode(&dn, inode, ipage, ipage, 0);
1548
1549 if (f2fs_has_inline_data(inode)) {
1550 if (pos + len <= MAX_INLINE_DATA) {
1551 read_inline_data(page, ipage);
1552 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1553 if (inode->i_nlink)
1554 set_inline_node(ipage);
1555 } else {
1556 err = f2fs_convert_inline_page(&dn, page);
1557 if (err)
1558 goto out;
1559 if (dn.data_blkaddr == NULL_ADDR)
1560 err = f2fs_get_block(&dn, index);
1561 }
1562 } else if (locked) {
1563 err = f2fs_get_block(&dn, index);
1564 } else {
1565 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1566 dn.data_blkaddr = ei.blk + index - ei.fofs;
1567 } else {
1568 /* hole case */
1569 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1570 if (err || dn.data_blkaddr == NULL_ADDR) {
1571 f2fs_put_dnode(&dn);
1572 f2fs_lock_op(sbi);
1573 locked = true;
1574 goto restart;
1575 }
1576 }
1577 }
1578
1579 /* convert_inline_page can make node_changed */
1580 *blk_addr = dn.data_blkaddr;
1581 *node_changed = dn.node_changed;
1582 out:
1583 f2fs_put_dnode(&dn);
1584 unlock_out:
1585 if (locked)
1586 f2fs_unlock_op(sbi);
1587 return err;
1588 }
1589
1590 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1591 loff_t pos, unsigned len, unsigned flags,
1592 struct page **pagep, void **fsdata)
1593 {
1594 struct inode *inode = mapping->host;
1595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1596 struct page *page = NULL;
1597 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1598 bool need_balance = false;
1599 block_t blkaddr = NULL_ADDR;
1600 int err = 0;
1601
1602 trace_f2fs_write_begin(inode, pos, len, flags);
1603
1604 /*
1605 * We should check this at this moment to avoid deadlock on inode page
1606 * and #0 page. The locking rule for inline_data conversion should be:
1607 * lock_page(page #0) -> lock_page(inode_page)
1608 */
1609 if (index != 0) {
1610 err = f2fs_convert_inline_inode(inode);
1611 if (err)
1612 goto fail;
1613 }
1614 repeat:
1615 page = grab_cache_page_write_begin(mapping, index, flags);
1616 if (!page) {
1617 err = -ENOMEM;
1618 goto fail;
1619 }
1620
1621 *pagep = page;
1622
1623 err = prepare_write_begin(sbi, page, pos, len,
1624 &blkaddr, &need_balance);
1625 if (err)
1626 goto fail;
1627
1628 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1629 unlock_page(page);
1630 f2fs_balance_fs(sbi, true);
1631 lock_page(page);
1632 if (page->mapping != mapping) {
1633 /* The page got truncated from under us */
1634 f2fs_put_page(page, 1);
1635 goto repeat;
1636 }
1637 }
1638
1639 f2fs_wait_on_page_writeback(page, DATA, false);
1640
1641 /* wait for GCed encrypted page writeback */
1642 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1643 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1644
1645 if (len == PAGE_SIZE)
1646 goto out_update;
1647 if (PageUptodate(page))
1648 goto out_clear;
1649
1650 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1651 unsigned start = pos & (PAGE_SIZE - 1);
1652 unsigned end = start + len;
1653
1654 /* Reading beyond i_size is simple: memset to zero */
1655 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1656 goto out_update;
1657 }
1658
1659 if (blkaddr == NEW_ADDR) {
1660 zero_user_segment(page, 0, PAGE_SIZE);
1661 } else {
1662 struct f2fs_io_info fio = {
1663 .sbi = sbi,
1664 .type = DATA,
1665 .rw = READ_SYNC,
1666 .old_blkaddr = blkaddr,
1667 .new_blkaddr = blkaddr,
1668 .page = page,
1669 .encrypted_page = NULL,
1670 };
1671 err = f2fs_submit_page_bio(&fio);
1672 if (err)
1673 goto fail;
1674
1675 lock_page(page);
1676 if (unlikely(!PageUptodate(page))) {
1677 err = -EIO;
1678 goto fail;
1679 }
1680 if (unlikely(page->mapping != mapping)) {
1681 f2fs_put_page(page, 1);
1682 goto repeat;
1683 }
1684
1685 /* avoid symlink page */
1686 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1687 err = fscrypt_decrypt_page(page);
1688 if (err)
1689 goto fail;
1690 }
1691 }
1692 out_update:
1693 SetPageUptodate(page);
1694 out_clear:
1695 clear_cold_data(page);
1696 return 0;
1697
1698 fail:
1699 f2fs_put_page(page, 1);
1700 f2fs_write_failed(mapping, pos + len);
1701 return err;
1702 }
1703
1704 static int f2fs_write_end(struct file *file,
1705 struct address_space *mapping,
1706 loff_t pos, unsigned len, unsigned copied,
1707 struct page *page, void *fsdata)
1708 {
1709 struct inode *inode = page->mapping->host;
1710
1711 trace_f2fs_write_end(inode, pos, len, copied);
1712
1713 set_page_dirty(page);
1714
1715 if (pos + copied > i_size_read(inode)) {
1716 i_size_write(inode, pos + copied);
1717 mark_inode_dirty(inode);
1718 }
1719
1720 f2fs_put_page(page, 1);
1721 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1722 return copied;
1723 }
1724
1725 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1726 loff_t offset)
1727 {
1728 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1729
1730 if (offset & blocksize_mask)
1731 return -EINVAL;
1732
1733 if (iov_iter_alignment(iter) & blocksize_mask)
1734 return -EINVAL;
1735
1736 return 0;
1737 }
1738
1739 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1740 {
1741 struct address_space *mapping = iocb->ki_filp->f_mapping;
1742 struct inode *inode = mapping->host;
1743 size_t count = iov_iter_count(iter);
1744 loff_t offset = iocb->ki_pos;
1745 int err;
1746
1747 err = check_direct_IO(inode, iter, offset);
1748 if (err)
1749 return err;
1750
1751 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1752 return 0;
1753
1754 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1755
1756 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1757 if (iov_iter_rw(iter) == WRITE) {
1758 if (err > 0)
1759 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1760 else if (err < 0)
1761 f2fs_write_failed(mapping, offset + count);
1762 }
1763
1764 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1765
1766 return err;
1767 }
1768
1769 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1770 unsigned int length)
1771 {
1772 struct inode *inode = page->mapping->host;
1773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1774
1775 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1776 (offset % PAGE_SIZE || length != PAGE_SIZE))
1777 return;
1778
1779 if (PageDirty(page)) {
1780 if (inode->i_ino == F2FS_META_INO(sbi))
1781 dec_page_count(sbi, F2FS_DIRTY_META);
1782 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1783 dec_page_count(sbi, F2FS_DIRTY_NODES);
1784 else
1785 inode_dec_dirty_pages(inode);
1786 }
1787
1788 /* This is atomic written page, keep Private */
1789 if (IS_ATOMIC_WRITTEN_PAGE(page))
1790 return;
1791
1792 set_page_private(page, 0);
1793 ClearPagePrivate(page);
1794 }
1795
1796 int f2fs_release_page(struct page *page, gfp_t wait)
1797 {
1798 /* If this is dirty page, keep PagePrivate */
1799 if (PageDirty(page))
1800 return 0;
1801
1802 /* This is atomic written page, keep Private */
1803 if (IS_ATOMIC_WRITTEN_PAGE(page))
1804 return 0;
1805
1806 set_page_private(page, 0);
1807 ClearPagePrivate(page);
1808 return 1;
1809 }
1810
1811 static int f2fs_set_data_page_dirty(struct page *page)
1812 {
1813 struct address_space *mapping = page->mapping;
1814 struct inode *inode = mapping->host;
1815
1816 trace_f2fs_set_page_dirty(page, DATA);
1817
1818 SetPageUptodate(page);
1819
1820 if (f2fs_is_atomic_file(inode)) {
1821 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1822 register_inmem_page(inode, page);
1823 return 1;
1824 }
1825 /*
1826 * Previously, this page has been registered, we just
1827 * return here.
1828 */
1829 return 0;
1830 }
1831
1832 if (!PageDirty(page)) {
1833 __set_page_dirty_nobuffers(page);
1834 update_dirty_page(inode, page);
1835 return 1;
1836 }
1837 return 0;
1838 }
1839
1840 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1841 {
1842 struct inode *inode = mapping->host;
1843
1844 if (f2fs_has_inline_data(inode))
1845 return 0;
1846
1847 /* make sure allocating whole blocks */
1848 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1849 filemap_write_and_wait(mapping);
1850
1851 return generic_block_bmap(mapping, block, get_data_block_bmap);
1852 }
1853
1854 const struct address_space_operations f2fs_dblock_aops = {
1855 .readpage = f2fs_read_data_page,
1856 .readpages = f2fs_read_data_pages,
1857 .writepage = f2fs_write_data_page,
1858 .writepages = f2fs_write_data_pages,
1859 .write_begin = f2fs_write_begin,
1860 .write_end = f2fs_write_end,
1861 .set_page_dirty = f2fs_set_data_page_dirty,
1862 .invalidatepage = f2fs_invalidate_page,
1863 .releasepage = f2fs_release_page,
1864 .direct_IO = f2fs_direct_IO,
1865 .bmap = f2fs_bmap,
1866 };
This page took 0.067726 seconds and 5 git commands to generate.