fb: adv7393: off by one in probe function
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50 };
51
52 struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56 };
57
58 extern struct f2fs_fault_info f2fs_fault;
59 extern char *fault_name[FAULT_MAX];
60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62 static inline bool time_to_inject(int type)
63 {
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91 }
92 #endif
93
94 /*
95 * For mount options
96 */
97 #define F2FS_MOUNT_BG_GC 0x00000001
98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99 #define F2FS_MOUNT_DISCARD 0x00000004
100 #define F2FS_MOUNT_NOHEAP 0x00000008
101 #define F2FS_MOUNT_XATTR_USER 0x00000010
102 #define F2FS_MOUNT_POSIX_ACL 0x00000020
103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
105 #define F2FS_MOUNT_INLINE_DATA 0x00000100
106 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108 #define F2FS_MOUNT_NOBARRIER 0x00000800
109 #define F2FS_MOUNT_FASTBOOT 0x00001000
110 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114 #define F2FS_MOUNT_ADAPTIVE 0x00020000
115 #define F2FS_MOUNT_LFS 0x00040000
116
117 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
120
121 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
122 typecheck(unsigned long long, b) && \
123 ((long long)((a) - (b)) > 0))
124
125 typedef u32 block_t; /*
126 * should not change u32, since it is the on-disk block
127 * address format, __le32.
128 */
129 typedef u32 nid_t;
130
131 struct f2fs_mount_info {
132 unsigned int opt;
133 };
134
135 #define F2FS_FEATURE_ENCRYPT 0x0001
136 #define F2FS_FEATURE_HMSMR 0x0002
137
138 #define F2FS_HAS_FEATURE(sb, mask) \
139 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
140 #define F2FS_SET_FEATURE(sb, mask) \
141 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
142 #define F2FS_CLEAR_FEATURE(sb, mask) \
143 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
144
145 /*
146 * For checkpoint manager
147 */
148 enum {
149 NAT_BITMAP,
150 SIT_BITMAP
151 };
152
153 enum {
154 CP_UMOUNT,
155 CP_FASTBOOT,
156 CP_SYNC,
157 CP_RECOVERY,
158 CP_DISCARD,
159 };
160
161 #define DEF_BATCHED_TRIM_SECTIONS 32
162 #define BATCHED_TRIM_SEGMENTS(sbi) \
163 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
164 #define BATCHED_TRIM_BLOCKS(sbi) \
165 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
166 #define DEF_CP_INTERVAL 60 /* 60 secs */
167 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
168
169 struct cp_control {
170 int reason;
171 __u64 trim_start;
172 __u64 trim_end;
173 __u64 trim_minlen;
174 __u64 trimmed;
175 };
176
177 /*
178 * For CP/NAT/SIT/SSA readahead
179 */
180 enum {
181 META_CP,
182 META_NAT,
183 META_SIT,
184 META_SSA,
185 META_POR,
186 };
187
188 /* for the list of ino */
189 enum {
190 ORPHAN_INO, /* for orphan ino list */
191 APPEND_INO, /* for append ino list */
192 UPDATE_INO, /* for update ino list */
193 MAX_INO_ENTRY, /* max. list */
194 };
195
196 struct ino_entry {
197 struct list_head list; /* list head */
198 nid_t ino; /* inode number */
199 };
200
201 /* for the list of inodes to be GCed */
202 struct inode_entry {
203 struct list_head list; /* list head */
204 struct inode *inode; /* vfs inode pointer */
205 };
206
207 /* for the list of blockaddresses to be discarded */
208 struct discard_entry {
209 struct list_head list; /* list head */
210 block_t blkaddr; /* block address to be discarded */
211 int len; /* # of consecutive blocks of the discard */
212 };
213
214 /* for the list of fsync inodes, used only during recovery */
215 struct fsync_inode_entry {
216 struct list_head list; /* list head */
217 struct inode *inode; /* vfs inode pointer */
218 block_t blkaddr; /* block address locating the last fsync */
219 block_t last_dentry; /* block address locating the last dentry */
220 };
221
222 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
223 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
224
225 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
226 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
227 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
228 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
229
230 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
231 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
232
233 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
234 {
235 int before = nats_in_cursum(journal);
236 journal->n_nats = cpu_to_le16(before + i);
237 return before;
238 }
239
240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
241 {
242 int before = sits_in_cursum(journal);
243 journal->n_sits = cpu_to_le16(before + i);
244 return before;
245 }
246
247 static inline bool __has_cursum_space(struct f2fs_journal *journal,
248 int size, int type)
249 {
250 if (type == NAT_JOURNAL)
251 return size <= MAX_NAT_JENTRIES(journal);
252 return size <= MAX_SIT_JENTRIES(journal);
253 }
254
255 /*
256 * ioctl commands
257 */
258 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
259 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
260 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
261
262 #define F2FS_IOCTL_MAGIC 0xf5
263 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
264 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
265 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
266 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
267 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
268 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
269 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
270 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
271 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
272 struct f2fs_move_range)
273
274 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
275 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
276 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
277
278 /*
279 * should be same as XFS_IOC_GOINGDOWN.
280 * Flags for going down operation used by FS_IOC_GOINGDOWN
281 */
282 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
283 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
284 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
285 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
286 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
287
288 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
289 /*
290 * ioctl commands in 32 bit emulation
291 */
292 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
293 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
294 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
295 #endif
296
297 struct f2fs_defragment {
298 u64 start;
299 u64 len;
300 };
301
302 struct f2fs_move_range {
303 u32 dst_fd; /* destination fd */
304 u64 pos_in; /* start position in src_fd */
305 u64 pos_out; /* start position in dst_fd */
306 u64 len; /* size to move */
307 };
308
309 /*
310 * For INODE and NODE manager
311 */
312 /* for directory operations */
313 struct f2fs_dentry_ptr {
314 struct inode *inode;
315 const void *bitmap;
316 struct f2fs_dir_entry *dentry;
317 __u8 (*filename)[F2FS_SLOT_LEN];
318 int max;
319 };
320
321 static inline void make_dentry_ptr(struct inode *inode,
322 struct f2fs_dentry_ptr *d, void *src, int type)
323 {
324 d->inode = inode;
325
326 if (type == 1) {
327 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
328 d->max = NR_DENTRY_IN_BLOCK;
329 d->bitmap = &t->dentry_bitmap;
330 d->dentry = t->dentry;
331 d->filename = t->filename;
332 } else {
333 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
334 d->max = NR_INLINE_DENTRY;
335 d->bitmap = &t->dentry_bitmap;
336 d->dentry = t->dentry;
337 d->filename = t->filename;
338 }
339 }
340
341 /*
342 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
343 * as its node offset to distinguish from index node blocks.
344 * But some bits are used to mark the node block.
345 */
346 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
347 >> OFFSET_BIT_SHIFT)
348 enum {
349 ALLOC_NODE, /* allocate a new node page if needed */
350 LOOKUP_NODE, /* look up a node without readahead */
351 LOOKUP_NODE_RA, /*
352 * look up a node with readahead called
353 * by get_data_block.
354 */
355 };
356
357 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
358
359 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
360
361 /* vector size for gang look-up from extent cache that consists of radix tree */
362 #define EXT_TREE_VEC_SIZE 64
363
364 /* for in-memory extent cache entry */
365 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
366
367 /* number of extent info in extent cache we try to shrink */
368 #define EXTENT_CACHE_SHRINK_NUMBER 128
369
370 struct extent_info {
371 unsigned int fofs; /* start offset in a file */
372 u32 blk; /* start block address of the extent */
373 unsigned int len; /* length of the extent */
374 };
375
376 struct extent_node {
377 struct rb_node rb_node; /* rb node located in rb-tree */
378 struct list_head list; /* node in global extent list of sbi */
379 struct extent_info ei; /* extent info */
380 struct extent_tree *et; /* extent tree pointer */
381 };
382
383 struct extent_tree {
384 nid_t ino; /* inode number */
385 struct rb_root root; /* root of extent info rb-tree */
386 struct extent_node *cached_en; /* recently accessed extent node */
387 struct extent_info largest; /* largested extent info */
388 struct list_head list; /* to be used by sbi->zombie_list */
389 rwlock_t lock; /* protect extent info rb-tree */
390 atomic_t node_cnt; /* # of extent node in rb-tree*/
391 };
392
393 /*
394 * This structure is taken from ext4_map_blocks.
395 *
396 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
397 */
398 #define F2FS_MAP_NEW (1 << BH_New)
399 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
400 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
401 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
402 F2FS_MAP_UNWRITTEN)
403
404 struct f2fs_map_blocks {
405 block_t m_pblk;
406 block_t m_lblk;
407 unsigned int m_len;
408 unsigned int m_flags;
409 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
410 };
411
412 /* for flag in get_data_block */
413 #define F2FS_GET_BLOCK_READ 0
414 #define F2FS_GET_BLOCK_DIO 1
415 #define F2FS_GET_BLOCK_FIEMAP 2
416 #define F2FS_GET_BLOCK_BMAP 3
417 #define F2FS_GET_BLOCK_PRE_DIO 4
418 #define F2FS_GET_BLOCK_PRE_AIO 5
419
420 /*
421 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
422 */
423 #define FADVISE_COLD_BIT 0x01
424 #define FADVISE_LOST_PINO_BIT 0x02
425 #define FADVISE_ENCRYPT_BIT 0x04
426 #define FADVISE_ENC_NAME_BIT 0x08
427
428 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
429 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
430 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
431 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
432 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
433 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
434 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
435 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
436 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
437 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
438 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
439
440 #define DEF_DIR_LEVEL 0
441
442 struct f2fs_inode_info {
443 struct inode vfs_inode; /* serve a vfs inode */
444 unsigned long i_flags; /* keep an inode flags for ioctl */
445 unsigned char i_advise; /* use to give file attribute hints */
446 unsigned char i_dir_level; /* use for dentry level for large dir */
447 unsigned int i_current_depth; /* use only in directory structure */
448 unsigned int i_pino; /* parent inode number */
449 umode_t i_acl_mode; /* keep file acl mode temporarily */
450
451 /* Use below internally in f2fs*/
452 unsigned long flags; /* use to pass per-file flags */
453 struct rw_semaphore i_sem; /* protect fi info */
454 struct percpu_counter dirty_pages; /* # of dirty pages */
455 f2fs_hash_t chash; /* hash value of given file name */
456 unsigned int clevel; /* maximum level of given file name */
457 nid_t i_xattr_nid; /* node id that contains xattrs */
458 unsigned long long xattr_ver; /* cp version of xattr modification */
459 loff_t last_disk_size; /* lastly written file size */
460
461 struct list_head dirty_list; /* dirty list for dirs and files */
462 struct list_head gdirty_list; /* linked in global dirty list */
463 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
464 struct mutex inmem_lock; /* lock for inmemory pages */
465 struct extent_tree *extent_tree; /* cached extent_tree entry */
466 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
467 };
468
469 static inline void get_extent_info(struct extent_info *ext,
470 struct f2fs_extent *i_ext)
471 {
472 ext->fofs = le32_to_cpu(i_ext->fofs);
473 ext->blk = le32_to_cpu(i_ext->blk);
474 ext->len = le32_to_cpu(i_ext->len);
475 }
476
477 static inline void set_raw_extent(struct extent_info *ext,
478 struct f2fs_extent *i_ext)
479 {
480 i_ext->fofs = cpu_to_le32(ext->fofs);
481 i_ext->blk = cpu_to_le32(ext->blk);
482 i_ext->len = cpu_to_le32(ext->len);
483 }
484
485 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
486 u32 blk, unsigned int len)
487 {
488 ei->fofs = fofs;
489 ei->blk = blk;
490 ei->len = len;
491 }
492
493 static inline bool __is_extent_same(struct extent_info *ei1,
494 struct extent_info *ei2)
495 {
496 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
497 ei1->len == ei2->len);
498 }
499
500 static inline bool __is_extent_mergeable(struct extent_info *back,
501 struct extent_info *front)
502 {
503 return (back->fofs + back->len == front->fofs &&
504 back->blk + back->len == front->blk);
505 }
506
507 static inline bool __is_back_mergeable(struct extent_info *cur,
508 struct extent_info *back)
509 {
510 return __is_extent_mergeable(back, cur);
511 }
512
513 static inline bool __is_front_mergeable(struct extent_info *cur,
514 struct extent_info *front)
515 {
516 return __is_extent_mergeable(cur, front);
517 }
518
519 extern void f2fs_mark_inode_dirty_sync(struct inode *);
520 static inline void __try_update_largest_extent(struct inode *inode,
521 struct extent_tree *et, struct extent_node *en)
522 {
523 if (en->ei.len > et->largest.len) {
524 et->largest = en->ei;
525 f2fs_mark_inode_dirty_sync(inode);
526 }
527 }
528
529 struct f2fs_nm_info {
530 block_t nat_blkaddr; /* base disk address of NAT */
531 nid_t max_nid; /* maximum possible node ids */
532 nid_t available_nids; /* maximum available node ids */
533 nid_t next_scan_nid; /* the next nid to be scanned */
534 unsigned int ram_thresh; /* control the memory footprint */
535 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
536 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
537
538 /* NAT cache management */
539 struct radix_tree_root nat_root;/* root of the nat entry cache */
540 struct radix_tree_root nat_set_root;/* root of the nat set cache */
541 struct percpu_rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
542 struct list_head nat_entries; /* cached nat entry list (clean) */
543 unsigned int nat_cnt; /* the # of cached nat entries */
544 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
545
546 /* free node ids management */
547 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
548 struct list_head free_nid_list; /* a list for free nids */
549 spinlock_t free_nid_list_lock; /* protect free nid list */
550 unsigned int fcnt; /* the number of free node id */
551 struct mutex build_lock; /* lock for build free nids */
552
553 /* for checkpoint */
554 char *nat_bitmap; /* NAT bitmap pointer */
555 int bitmap_size; /* bitmap size */
556 };
557
558 /*
559 * this structure is used as one of function parameters.
560 * all the information are dedicated to a given direct node block determined
561 * by the data offset in a file.
562 */
563 struct dnode_of_data {
564 struct inode *inode; /* vfs inode pointer */
565 struct page *inode_page; /* its inode page, NULL is possible */
566 struct page *node_page; /* cached direct node page */
567 nid_t nid; /* node id of the direct node block */
568 unsigned int ofs_in_node; /* data offset in the node page */
569 bool inode_page_locked; /* inode page is locked or not */
570 bool node_changed; /* is node block changed */
571 char cur_level; /* level of hole node page */
572 char max_level; /* level of current page located */
573 block_t data_blkaddr; /* block address of the node block */
574 };
575
576 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
577 struct page *ipage, struct page *npage, nid_t nid)
578 {
579 memset(dn, 0, sizeof(*dn));
580 dn->inode = inode;
581 dn->inode_page = ipage;
582 dn->node_page = npage;
583 dn->nid = nid;
584 }
585
586 /*
587 * For SIT manager
588 *
589 * By default, there are 6 active log areas across the whole main area.
590 * When considering hot and cold data separation to reduce cleaning overhead,
591 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
592 * respectively.
593 * In the current design, you should not change the numbers intentionally.
594 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
595 * logs individually according to the underlying devices. (default: 6)
596 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
597 * data and 8 for node logs.
598 */
599 #define NR_CURSEG_DATA_TYPE (3)
600 #define NR_CURSEG_NODE_TYPE (3)
601 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
602
603 enum {
604 CURSEG_HOT_DATA = 0, /* directory entry blocks */
605 CURSEG_WARM_DATA, /* data blocks */
606 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
607 CURSEG_HOT_NODE, /* direct node blocks of directory files */
608 CURSEG_WARM_NODE, /* direct node blocks of normal files */
609 CURSEG_COLD_NODE, /* indirect node blocks */
610 NO_CHECK_TYPE,
611 CURSEG_DIRECT_IO, /* to use for the direct IO path */
612 };
613
614 struct flush_cmd {
615 struct completion wait;
616 struct llist_node llnode;
617 int ret;
618 };
619
620 struct flush_cmd_control {
621 struct task_struct *f2fs_issue_flush; /* flush thread */
622 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
623 atomic_t submit_flush; /* # of issued flushes */
624 struct llist_head issue_list; /* list for command issue */
625 struct llist_node *dispatch_list; /* list for command dispatch */
626 };
627
628 struct f2fs_sm_info {
629 struct sit_info *sit_info; /* whole segment information */
630 struct free_segmap_info *free_info; /* free segment information */
631 struct dirty_seglist_info *dirty_info; /* dirty segment information */
632 struct curseg_info *curseg_array; /* active segment information */
633
634 block_t seg0_blkaddr; /* block address of 0'th segment */
635 block_t main_blkaddr; /* start block address of main area */
636 block_t ssa_blkaddr; /* start block address of SSA area */
637
638 unsigned int segment_count; /* total # of segments */
639 unsigned int main_segments; /* # of segments in main area */
640 unsigned int reserved_segments; /* # of reserved segments */
641 unsigned int ovp_segments; /* # of overprovision segments */
642
643 /* a threshold to reclaim prefree segments */
644 unsigned int rec_prefree_segments;
645
646 /* for small discard management */
647 struct list_head discard_list; /* 4KB discard list */
648 int nr_discards; /* # of discards in the list */
649 int max_discards; /* max. discards to be issued */
650
651 /* for batched trimming */
652 unsigned int trim_sections; /* # of sections to trim */
653
654 struct list_head sit_entry_set; /* sit entry set list */
655
656 unsigned int ipu_policy; /* in-place-update policy */
657 unsigned int min_ipu_util; /* in-place-update threshold */
658 unsigned int min_fsync_blocks; /* threshold for fsync */
659
660 /* for flush command control */
661 struct flush_cmd_control *cmd_control_info;
662
663 };
664
665 /*
666 * For superblock
667 */
668 /*
669 * COUNT_TYPE for monitoring
670 *
671 * f2fs monitors the number of several block types such as on-writeback,
672 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
673 */
674 enum count_type {
675 F2FS_DIRTY_DENTS,
676 F2FS_DIRTY_DATA,
677 F2FS_DIRTY_NODES,
678 F2FS_DIRTY_META,
679 F2FS_INMEM_PAGES,
680 F2FS_DIRTY_IMETA,
681 NR_COUNT_TYPE,
682 };
683
684 /*
685 * The below are the page types of bios used in submit_bio().
686 * The available types are:
687 * DATA User data pages. It operates as async mode.
688 * NODE Node pages. It operates as async mode.
689 * META FS metadata pages such as SIT, NAT, CP.
690 * NR_PAGE_TYPE The number of page types.
691 * META_FLUSH Make sure the previous pages are written
692 * with waiting the bio's completion
693 * ... Only can be used with META.
694 */
695 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
696 enum page_type {
697 DATA,
698 NODE,
699 META,
700 NR_PAGE_TYPE,
701 META_FLUSH,
702 INMEM, /* the below types are used by tracepoints only. */
703 INMEM_DROP,
704 INMEM_REVOKE,
705 IPU,
706 OPU,
707 };
708
709 struct f2fs_io_info {
710 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
711 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
712 int op; /* contains REQ_OP_ */
713 int op_flags; /* rq_flag_bits */
714 block_t new_blkaddr; /* new block address to be written */
715 block_t old_blkaddr; /* old block address before Cow */
716 struct page *page; /* page to be written */
717 struct page *encrypted_page; /* encrypted page */
718 };
719
720 #define is_read_io(rw) (rw == READ)
721 struct f2fs_bio_info {
722 struct f2fs_sb_info *sbi; /* f2fs superblock */
723 struct bio *bio; /* bios to merge */
724 sector_t last_block_in_bio; /* last block number */
725 struct f2fs_io_info fio; /* store buffered io info. */
726 struct rw_semaphore io_rwsem; /* blocking op for bio */
727 };
728
729 enum inode_type {
730 DIR_INODE, /* for dirty dir inode */
731 FILE_INODE, /* for dirty regular/symlink inode */
732 DIRTY_META, /* for all dirtied inode metadata */
733 NR_INODE_TYPE,
734 };
735
736 /* for inner inode cache management */
737 struct inode_management {
738 struct radix_tree_root ino_root; /* ino entry array */
739 spinlock_t ino_lock; /* for ino entry lock */
740 struct list_head ino_list; /* inode list head */
741 unsigned long ino_num; /* number of entries */
742 };
743
744 /* For s_flag in struct f2fs_sb_info */
745 enum {
746 SBI_IS_DIRTY, /* dirty flag for checkpoint */
747 SBI_IS_CLOSE, /* specify unmounting */
748 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
749 SBI_POR_DOING, /* recovery is doing or not */
750 SBI_NEED_SB_WRITE, /* need to recover superblock */
751 };
752
753 enum {
754 CP_TIME,
755 REQ_TIME,
756 MAX_TIME,
757 };
758
759 #ifdef CONFIG_F2FS_FS_ENCRYPTION
760 #define F2FS_KEY_DESC_PREFIX "f2fs:"
761 #define F2FS_KEY_DESC_PREFIX_SIZE 5
762 #endif
763 struct f2fs_sb_info {
764 struct super_block *sb; /* pointer to VFS super block */
765 struct proc_dir_entry *s_proc; /* proc entry */
766 struct f2fs_super_block *raw_super; /* raw super block pointer */
767 int valid_super_block; /* valid super block no */
768 int s_flag; /* flags for sbi */
769
770 #ifdef CONFIG_F2FS_FS_ENCRYPTION
771 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
772 u8 key_prefix_size;
773 #endif
774 /* for node-related operations */
775 struct f2fs_nm_info *nm_info; /* node manager */
776 struct inode *node_inode; /* cache node blocks */
777
778 /* for segment-related operations */
779 struct f2fs_sm_info *sm_info; /* segment manager */
780
781 /* for bio operations */
782 struct f2fs_bio_info read_io; /* for read bios */
783 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
784 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
785
786 /* for checkpoint */
787 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
788 struct inode *meta_inode; /* cache meta blocks */
789 struct mutex cp_mutex; /* checkpoint procedure lock */
790 struct percpu_rw_semaphore cp_rwsem; /* blocking FS operations */
791 struct rw_semaphore node_write; /* locking node writes */
792 wait_queue_head_t cp_wait;
793 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
794 long interval_time[MAX_TIME]; /* to store thresholds */
795
796 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
797
798 /* for orphan inode, use 0'th array */
799 unsigned int max_orphans; /* max orphan inodes */
800
801 /* for inode management */
802 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
803 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
804
805 /* for extent tree cache */
806 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
807 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
808 struct list_head extent_list; /* lru list for shrinker */
809 spinlock_t extent_lock; /* locking extent lru list */
810 atomic_t total_ext_tree; /* extent tree count */
811 struct list_head zombie_list; /* extent zombie tree list */
812 atomic_t total_zombie_tree; /* extent zombie tree count */
813 atomic_t total_ext_node; /* extent info count */
814
815 /* basic filesystem units */
816 unsigned int log_sectors_per_block; /* log2 sectors per block */
817 unsigned int log_blocksize; /* log2 block size */
818 unsigned int blocksize; /* block size */
819 unsigned int root_ino_num; /* root inode number*/
820 unsigned int node_ino_num; /* node inode number*/
821 unsigned int meta_ino_num; /* meta inode number*/
822 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
823 unsigned int blocks_per_seg; /* blocks per segment */
824 unsigned int segs_per_sec; /* segments per section */
825 unsigned int secs_per_zone; /* sections per zone */
826 unsigned int total_sections; /* total section count */
827 unsigned int total_node_count; /* total node block count */
828 unsigned int total_valid_node_count; /* valid node block count */
829 loff_t max_file_blocks; /* max block index of file */
830 int active_logs; /* # of active logs */
831 int dir_level; /* directory level */
832
833 block_t user_block_count; /* # of user blocks */
834 block_t total_valid_block_count; /* # of valid blocks */
835 block_t discard_blks; /* discard command candidats */
836 block_t last_valid_block_count; /* for recovery */
837 u32 s_next_generation; /* for NFS support */
838 atomic_t nr_wb_bios; /* # of writeback bios */
839
840 /* # of pages, see count_type */
841 struct percpu_counter nr_pages[NR_COUNT_TYPE];
842 /* # of allocated blocks */
843 struct percpu_counter alloc_valid_block_count;
844
845 /* valid inode count */
846 struct percpu_counter total_valid_inode_count;
847
848 struct f2fs_mount_info mount_opt; /* mount options */
849
850 /* for cleaning operations */
851 struct mutex gc_mutex; /* mutex for GC */
852 struct f2fs_gc_kthread *gc_thread; /* GC thread */
853 unsigned int cur_victim_sec; /* current victim section num */
854
855 /* maximum # of trials to find a victim segment for SSR and GC */
856 unsigned int max_victim_search;
857
858 /*
859 * for stat information.
860 * one is for the LFS mode, and the other is for the SSR mode.
861 */
862 #ifdef CONFIG_F2FS_STAT_FS
863 struct f2fs_stat_info *stat_info; /* FS status information */
864 unsigned int segment_count[2]; /* # of allocated segments */
865 unsigned int block_count[2]; /* # of allocated blocks */
866 atomic_t inplace_count; /* # of inplace update */
867 atomic64_t total_hit_ext; /* # of lookup extent cache */
868 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
869 atomic64_t read_hit_largest; /* # of hit largest extent node */
870 atomic64_t read_hit_cached; /* # of hit cached extent node */
871 atomic_t inline_xattr; /* # of inline_xattr inodes */
872 atomic_t inline_inode; /* # of inline_data inodes */
873 atomic_t inline_dir; /* # of inline_dentry inodes */
874 int bg_gc; /* background gc calls */
875 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
876 #endif
877 unsigned int last_victim[2]; /* last victim segment # */
878 spinlock_t stat_lock; /* lock for stat operations */
879
880 /* For sysfs suppport */
881 struct kobject s_kobj;
882 struct completion s_kobj_unregister;
883
884 /* For shrinker support */
885 struct list_head s_list;
886 struct mutex umount_mutex;
887 unsigned int shrinker_run_no;
888
889 /* For write statistics */
890 u64 sectors_written_start;
891 u64 kbytes_written;
892
893 /* Reference to checksum algorithm driver via cryptoapi */
894 struct crypto_shash *s_chksum_driver;
895 };
896
897 /* For write statistics. Suppose sector size is 512 bytes,
898 * and the return value is in kbytes. s is of struct f2fs_sb_info.
899 */
900 #define BD_PART_WRITTEN(s) \
901 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
902 s->sectors_written_start) >> 1)
903
904 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
905 {
906 sbi->last_time[type] = jiffies;
907 }
908
909 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
910 {
911 struct timespec ts = {sbi->interval_time[type], 0};
912 unsigned long interval = timespec_to_jiffies(&ts);
913
914 return time_after(jiffies, sbi->last_time[type] + interval);
915 }
916
917 static inline bool is_idle(struct f2fs_sb_info *sbi)
918 {
919 struct block_device *bdev = sbi->sb->s_bdev;
920 struct request_queue *q = bdev_get_queue(bdev);
921 struct request_list *rl = &q->root_rl;
922
923 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
924 return 0;
925
926 return f2fs_time_over(sbi, REQ_TIME);
927 }
928
929 /*
930 * Inline functions
931 */
932 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
933 unsigned int length)
934 {
935 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
936 u32 *ctx = (u32 *)shash_desc_ctx(shash);
937 int err;
938
939 shash->tfm = sbi->s_chksum_driver;
940 shash->flags = 0;
941 *ctx = F2FS_SUPER_MAGIC;
942
943 err = crypto_shash_update(shash, address, length);
944 BUG_ON(err);
945
946 return *ctx;
947 }
948
949 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
950 void *buf, size_t buf_size)
951 {
952 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
953 }
954
955 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
956 {
957 return container_of(inode, struct f2fs_inode_info, vfs_inode);
958 }
959
960 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
961 {
962 return sb->s_fs_info;
963 }
964
965 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
966 {
967 return F2FS_SB(inode->i_sb);
968 }
969
970 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
971 {
972 return F2FS_I_SB(mapping->host);
973 }
974
975 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
976 {
977 return F2FS_M_SB(page->mapping);
978 }
979
980 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
981 {
982 return (struct f2fs_super_block *)(sbi->raw_super);
983 }
984
985 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
986 {
987 return (struct f2fs_checkpoint *)(sbi->ckpt);
988 }
989
990 static inline struct f2fs_node *F2FS_NODE(struct page *page)
991 {
992 return (struct f2fs_node *)page_address(page);
993 }
994
995 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
996 {
997 return &((struct f2fs_node *)page_address(page))->i;
998 }
999
1000 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1001 {
1002 return (struct f2fs_nm_info *)(sbi->nm_info);
1003 }
1004
1005 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1006 {
1007 return (struct f2fs_sm_info *)(sbi->sm_info);
1008 }
1009
1010 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1011 {
1012 return (struct sit_info *)(SM_I(sbi)->sit_info);
1013 }
1014
1015 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1016 {
1017 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1018 }
1019
1020 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1021 {
1022 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1023 }
1024
1025 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1026 {
1027 return sbi->meta_inode->i_mapping;
1028 }
1029
1030 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1031 {
1032 return sbi->node_inode->i_mapping;
1033 }
1034
1035 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1036 {
1037 return sbi->s_flag & (0x01 << type);
1038 }
1039
1040 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1041 {
1042 sbi->s_flag |= (0x01 << type);
1043 }
1044
1045 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1046 {
1047 sbi->s_flag &= ~(0x01 << type);
1048 }
1049
1050 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1051 {
1052 return le64_to_cpu(cp->checkpoint_ver);
1053 }
1054
1055 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1056 {
1057 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1058 return ckpt_flags & f;
1059 }
1060
1061 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1062 {
1063 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1064 ckpt_flags |= f;
1065 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1066 }
1067
1068 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1069 {
1070 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1071 ckpt_flags &= (~f);
1072 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1073 }
1074
1075 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1076 {
1077 percpu_down_read(&sbi->cp_rwsem);
1078 }
1079
1080 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1081 {
1082 percpu_up_read(&sbi->cp_rwsem);
1083 }
1084
1085 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1086 {
1087 percpu_down_write(&sbi->cp_rwsem);
1088 }
1089
1090 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1091 {
1092 percpu_up_write(&sbi->cp_rwsem);
1093 }
1094
1095 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1096 {
1097 int reason = CP_SYNC;
1098
1099 if (test_opt(sbi, FASTBOOT))
1100 reason = CP_FASTBOOT;
1101 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1102 reason = CP_UMOUNT;
1103 return reason;
1104 }
1105
1106 static inline bool __remain_node_summaries(int reason)
1107 {
1108 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1109 }
1110
1111 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1112 {
1113 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1114 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1115 }
1116
1117 /*
1118 * Check whether the given nid is within node id range.
1119 */
1120 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1121 {
1122 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1123 return -EINVAL;
1124 if (unlikely(nid >= NM_I(sbi)->max_nid))
1125 return -EINVAL;
1126 return 0;
1127 }
1128
1129 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1130
1131 /*
1132 * Check whether the inode has blocks or not
1133 */
1134 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1135 {
1136 if (F2FS_I(inode)->i_xattr_nid)
1137 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1138 else
1139 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1140 }
1141
1142 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1143 {
1144 return ofs == XATTR_NODE_OFFSET;
1145 }
1146
1147 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1148 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1149 struct inode *inode, blkcnt_t *count)
1150 {
1151 blkcnt_t diff;
1152
1153 #ifdef CONFIG_F2FS_FAULT_INJECTION
1154 if (time_to_inject(FAULT_BLOCK))
1155 return false;
1156 #endif
1157 /*
1158 * let's increase this in prior to actual block count change in order
1159 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1160 */
1161 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1162
1163 spin_lock(&sbi->stat_lock);
1164 sbi->total_valid_block_count += (block_t)(*count);
1165 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1166 diff = sbi->total_valid_block_count - sbi->user_block_count;
1167 *count -= diff;
1168 sbi->total_valid_block_count = sbi->user_block_count;
1169 if (!*count) {
1170 spin_unlock(&sbi->stat_lock);
1171 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1172 return false;
1173 }
1174 }
1175 spin_unlock(&sbi->stat_lock);
1176
1177 f2fs_i_blocks_write(inode, *count, true);
1178 return true;
1179 }
1180
1181 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1182 struct inode *inode,
1183 blkcnt_t count)
1184 {
1185 spin_lock(&sbi->stat_lock);
1186 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1187 f2fs_bug_on(sbi, inode->i_blocks < count);
1188 sbi->total_valid_block_count -= (block_t)count;
1189 spin_unlock(&sbi->stat_lock);
1190 f2fs_i_blocks_write(inode, count, false);
1191 }
1192
1193 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1194 {
1195 percpu_counter_inc(&sbi->nr_pages[count_type]);
1196 set_sbi_flag(sbi, SBI_IS_DIRTY);
1197 }
1198
1199 static inline void inode_inc_dirty_pages(struct inode *inode)
1200 {
1201 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1202 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1203 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1204 }
1205
1206 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1207 {
1208 percpu_counter_dec(&sbi->nr_pages[count_type]);
1209 }
1210
1211 static inline void inode_dec_dirty_pages(struct inode *inode)
1212 {
1213 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1214 !S_ISLNK(inode->i_mode))
1215 return;
1216
1217 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1218 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1219 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1220 }
1221
1222 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1223 {
1224 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1225 }
1226
1227 static inline s64 get_dirty_pages(struct inode *inode)
1228 {
1229 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1230 }
1231
1232 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1233 {
1234 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1235 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1236 sbi->log_blocks_per_seg;
1237
1238 return segs / sbi->segs_per_sec;
1239 }
1240
1241 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1242 {
1243 return sbi->total_valid_block_count;
1244 }
1245
1246 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1247 {
1248 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1249
1250 /* return NAT or SIT bitmap */
1251 if (flag == NAT_BITMAP)
1252 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1253 else if (flag == SIT_BITMAP)
1254 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1255
1256 return 0;
1257 }
1258
1259 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1260 {
1261 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1262 }
1263
1264 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1265 {
1266 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1267 int offset;
1268
1269 if (__cp_payload(sbi) > 0) {
1270 if (flag == NAT_BITMAP)
1271 return &ckpt->sit_nat_version_bitmap;
1272 else
1273 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1274 } else {
1275 offset = (flag == NAT_BITMAP) ?
1276 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1277 return &ckpt->sit_nat_version_bitmap + offset;
1278 }
1279 }
1280
1281 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1282 {
1283 block_t start_addr;
1284 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1285 unsigned long long ckpt_version = cur_cp_version(ckpt);
1286
1287 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1288
1289 /*
1290 * odd numbered checkpoint should at cp segment 0
1291 * and even segment must be at cp segment 1
1292 */
1293 if (!(ckpt_version & 1))
1294 start_addr += sbi->blocks_per_seg;
1295
1296 return start_addr;
1297 }
1298
1299 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1300 {
1301 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1302 }
1303
1304 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1305 struct inode *inode)
1306 {
1307 block_t valid_block_count;
1308 unsigned int valid_node_count;
1309
1310 spin_lock(&sbi->stat_lock);
1311
1312 valid_block_count = sbi->total_valid_block_count + 1;
1313 if (unlikely(valid_block_count > sbi->user_block_count)) {
1314 spin_unlock(&sbi->stat_lock);
1315 return false;
1316 }
1317
1318 valid_node_count = sbi->total_valid_node_count + 1;
1319 if (unlikely(valid_node_count > sbi->total_node_count)) {
1320 spin_unlock(&sbi->stat_lock);
1321 return false;
1322 }
1323
1324 if (inode)
1325 f2fs_i_blocks_write(inode, 1, true);
1326
1327 sbi->total_valid_node_count++;
1328 sbi->total_valid_block_count++;
1329 spin_unlock(&sbi->stat_lock);
1330
1331 percpu_counter_inc(&sbi->alloc_valid_block_count);
1332 return true;
1333 }
1334
1335 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1336 struct inode *inode)
1337 {
1338 spin_lock(&sbi->stat_lock);
1339
1340 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1341 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1342 f2fs_bug_on(sbi, !inode->i_blocks);
1343
1344 f2fs_i_blocks_write(inode, 1, false);
1345 sbi->total_valid_node_count--;
1346 sbi->total_valid_block_count--;
1347
1348 spin_unlock(&sbi->stat_lock);
1349 }
1350
1351 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1352 {
1353 return sbi->total_valid_node_count;
1354 }
1355
1356 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1357 {
1358 percpu_counter_inc(&sbi->total_valid_inode_count);
1359 }
1360
1361 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1362 {
1363 percpu_counter_dec(&sbi->total_valid_inode_count);
1364 }
1365
1366 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1367 {
1368 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1369 }
1370
1371 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1372 pgoff_t index, bool for_write)
1373 {
1374 #ifdef CONFIG_F2FS_FAULT_INJECTION
1375 struct page *page = find_lock_page(mapping, index);
1376 if (page)
1377 return page;
1378
1379 if (time_to_inject(FAULT_PAGE_ALLOC))
1380 return NULL;
1381 #endif
1382 if (!for_write)
1383 return grab_cache_page(mapping, index);
1384 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1385 }
1386
1387 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1388 {
1389 char *src_kaddr = kmap(src);
1390 char *dst_kaddr = kmap(dst);
1391
1392 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1393 kunmap(dst);
1394 kunmap(src);
1395 }
1396
1397 static inline void f2fs_put_page(struct page *page, int unlock)
1398 {
1399 if (!page)
1400 return;
1401
1402 if (unlock) {
1403 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1404 unlock_page(page);
1405 }
1406 put_page(page);
1407 }
1408
1409 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1410 {
1411 if (dn->node_page)
1412 f2fs_put_page(dn->node_page, 1);
1413 if (dn->inode_page && dn->node_page != dn->inode_page)
1414 f2fs_put_page(dn->inode_page, 0);
1415 dn->node_page = NULL;
1416 dn->inode_page = NULL;
1417 }
1418
1419 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1420 size_t size)
1421 {
1422 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1423 }
1424
1425 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1426 gfp_t flags)
1427 {
1428 void *entry;
1429
1430 entry = kmem_cache_alloc(cachep, flags);
1431 if (!entry)
1432 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1433 return entry;
1434 }
1435
1436 static inline struct bio *f2fs_bio_alloc(int npages)
1437 {
1438 struct bio *bio;
1439
1440 /* No failure on bio allocation */
1441 bio = bio_alloc(GFP_NOIO, npages);
1442 if (!bio)
1443 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1444 return bio;
1445 }
1446
1447 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1448 unsigned long index, void *item)
1449 {
1450 while (radix_tree_insert(root, index, item))
1451 cond_resched();
1452 }
1453
1454 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1455
1456 static inline bool IS_INODE(struct page *page)
1457 {
1458 struct f2fs_node *p = F2FS_NODE(page);
1459 return RAW_IS_INODE(p);
1460 }
1461
1462 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1463 {
1464 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1465 }
1466
1467 static inline block_t datablock_addr(struct page *node_page,
1468 unsigned int offset)
1469 {
1470 struct f2fs_node *raw_node;
1471 __le32 *addr_array;
1472 raw_node = F2FS_NODE(node_page);
1473 addr_array = blkaddr_in_node(raw_node);
1474 return le32_to_cpu(addr_array[offset]);
1475 }
1476
1477 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1478 {
1479 int mask;
1480
1481 addr += (nr >> 3);
1482 mask = 1 << (7 - (nr & 0x07));
1483 return mask & *addr;
1484 }
1485
1486 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1487 {
1488 int mask;
1489
1490 addr += (nr >> 3);
1491 mask = 1 << (7 - (nr & 0x07));
1492 *addr |= mask;
1493 }
1494
1495 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1496 {
1497 int mask;
1498
1499 addr += (nr >> 3);
1500 mask = 1 << (7 - (nr & 0x07));
1501 *addr &= ~mask;
1502 }
1503
1504 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1505 {
1506 int mask;
1507 int ret;
1508
1509 addr += (nr >> 3);
1510 mask = 1 << (7 - (nr & 0x07));
1511 ret = mask & *addr;
1512 *addr |= mask;
1513 return ret;
1514 }
1515
1516 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1517 {
1518 int mask;
1519 int ret;
1520
1521 addr += (nr >> 3);
1522 mask = 1 << (7 - (nr & 0x07));
1523 ret = mask & *addr;
1524 *addr &= ~mask;
1525 return ret;
1526 }
1527
1528 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1529 {
1530 int mask;
1531
1532 addr += (nr >> 3);
1533 mask = 1 << (7 - (nr & 0x07));
1534 *addr ^= mask;
1535 }
1536
1537 /* used for f2fs_inode_info->flags */
1538 enum {
1539 FI_NEW_INODE, /* indicate newly allocated inode */
1540 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1541 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1542 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1543 FI_INC_LINK, /* need to increment i_nlink */
1544 FI_ACL_MODE, /* indicate acl mode */
1545 FI_NO_ALLOC, /* should not allocate any blocks */
1546 FI_FREE_NID, /* free allocated nide */
1547 FI_NO_EXTENT, /* not to use the extent cache */
1548 FI_INLINE_XATTR, /* used for inline xattr */
1549 FI_INLINE_DATA, /* used for inline data*/
1550 FI_INLINE_DENTRY, /* used for inline dentry */
1551 FI_APPEND_WRITE, /* inode has appended data */
1552 FI_UPDATE_WRITE, /* inode has in-place-update data */
1553 FI_NEED_IPU, /* used for ipu per file */
1554 FI_ATOMIC_FILE, /* indicate atomic file */
1555 FI_VOLATILE_FILE, /* indicate volatile file */
1556 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1557 FI_DROP_CACHE, /* drop dirty page cache */
1558 FI_DATA_EXIST, /* indicate data exists */
1559 FI_INLINE_DOTS, /* indicate inline dot dentries */
1560 FI_DO_DEFRAG, /* indicate defragment is running */
1561 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1562 };
1563
1564 static inline void __mark_inode_dirty_flag(struct inode *inode,
1565 int flag, bool set)
1566 {
1567 switch (flag) {
1568 case FI_INLINE_XATTR:
1569 case FI_INLINE_DATA:
1570 case FI_INLINE_DENTRY:
1571 if (set)
1572 return;
1573 case FI_DATA_EXIST:
1574 case FI_INLINE_DOTS:
1575 f2fs_mark_inode_dirty_sync(inode);
1576 }
1577 }
1578
1579 static inline void set_inode_flag(struct inode *inode, int flag)
1580 {
1581 if (!test_bit(flag, &F2FS_I(inode)->flags))
1582 set_bit(flag, &F2FS_I(inode)->flags);
1583 __mark_inode_dirty_flag(inode, flag, true);
1584 }
1585
1586 static inline int is_inode_flag_set(struct inode *inode, int flag)
1587 {
1588 return test_bit(flag, &F2FS_I(inode)->flags);
1589 }
1590
1591 static inline void clear_inode_flag(struct inode *inode, int flag)
1592 {
1593 if (test_bit(flag, &F2FS_I(inode)->flags))
1594 clear_bit(flag, &F2FS_I(inode)->flags);
1595 __mark_inode_dirty_flag(inode, flag, false);
1596 }
1597
1598 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1599 {
1600 F2FS_I(inode)->i_acl_mode = mode;
1601 set_inode_flag(inode, FI_ACL_MODE);
1602 f2fs_mark_inode_dirty_sync(inode);
1603 }
1604
1605 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1606 {
1607 if (inc)
1608 inc_nlink(inode);
1609 else
1610 drop_nlink(inode);
1611 f2fs_mark_inode_dirty_sync(inode);
1612 }
1613
1614 static inline void f2fs_i_blocks_write(struct inode *inode,
1615 blkcnt_t diff, bool add)
1616 {
1617 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1618 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1619
1620 inode->i_blocks = add ? inode->i_blocks + diff :
1621 inode->i_blocks - diff;
1622 f2fs_mark_inode_dirty_sync(inode);
1623 if (clean || recover)
1624 set_inode_flag(inode, FI_AUTO_RECOVER);
1625 }
1626
1627 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1628 {
1629 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1630 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1631
1632 if (i_size_read(inode) == i_size)
1633 return;
1634
1635 i_size_write(inode, i_size);
1636 f2fs_mark_inode_dirty_sync(inode);
1637 if (clean || recover)
1638 set_inode_flag(inode, FI_AUTO_RECOVER);
1639 }
1640
1641 static inline bool f2fs_skip_inode_update(struct inode *inode)
1642 {
1643 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1644 return false;
1645 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1646 }
1647
1648 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1649 {
1650 F2FS_I(inode)->i_current_depth = depth;
1651 f2fs_mark_inode_dirty_sync(inode);
1652 }
1653
1654 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1655 {
1656 F2FS_I(inode)->i_xattr_nid = xnid;
1657 f2fs_mark_inode_dirty_sync(inode);
1658 }
1659
1660 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1661 {
1662 F2FS_I(inode)->i_pino = pino;
1663 f2fs_mark_inode_dirty_sync(inode);
1664 }
1665
1666 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1667 {
1668 struct f2fs_inode_info *fi = F2FS_I(inode);
1669
1670 if (ri->i_inline & F2FS_INLINE_XATTR)
1671 set_bit(FI_INLINE_XATTR, &fi->flags);
1672 if (ri->i_inline & F2FS_INLINE_DATA)
1673 set_bit(FI_INLINE_DATA, &fi->flags);
1674 if (ri->i_inline & F2FS_INLINE_DENTRY)
1675 set_bit(FI_INLINE_DENTRY, &fi->flags);
1676 if (ri->i_inline & F2FS_DATA_EXIST)
1677 set_bit(FI_DATA_EXIST, &fi->flags);
1678 if (ri->i_inline & F2FS_INLINE_DOTS)
1679 set_bit(FI_INLINE_DOTS, &fi->flags);
1680 }
1681
1682 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1683 {
1684 ri->i_inline = 0;
1685
1686 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1687 ri->i_inline |= F2FS_INLINE_XATTR;
1688 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1689 ri->i_inline |= F2FS_INLINE_DATA;
1690 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1691 ri->i_inline |= F2FS_INLINE_DENTRY;
1692 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1693 ri->i_inline |= F2FS_DATA_EXIST;
1694 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1695 ri->i_inline |= F2FS_INLINE_DOTS;
1696 }
1697
1698 static inline int f2fs_has_inline_xattr(struct inode *inode)
1699 {
1700 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1701 }
1702
1703 static inline unsigned int addrs_per_inode(struct inode *inode)
1704 {
1705 if (f2fs_has_inline_xattr(inode))
1706 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1707 return DEF_ADDRS_PER_INODE;
1708 }
1709
1710 static inline void *inline_xattr_addr(struct page *page)
1711 {
1712 struct f2fs_inode *ri = F2FS_INODE(page);
1713 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1714 F2FS_INLINE_XATTR_ADDRS]);
1715 }
1716
1717 static inline int inline_xattr_size(struct inode *inode)
1718 {
1719 if (f2fs_has_inline_xattr(inode))
1720 return F2FS_INLINE_XATTR_ADDRS << 2;
1721 else
1722 return 0;
1723 }
1724
1725 static inline int f2fs_has_inline_data(struct inode *inode)
1726 {
1727 return is_inode_flag_set(inode, FI_INLINE_DATA);
1728 }
1729
1730 static inline void f2fs_clear_inline_inode(struct inode *inode)
1731 {
1732 clear_inode_flag(inode, FI_INLINE_DATA);
1733 clear_inode_flag(inode, FI_DATA_EXIST);
1734 }
1735
1736 static inline int f2fs_exist_data(struct inode *inode)
1737 {
1738 return is_inode_flag_set(inode, FI_DATA_EXIST);
1739 }
1740
1741 static inline int f2fs_has_inline_dots(struct inode *inode)
1742 {
1743 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1744 }
1745
1746 static inline bool f2fs_is_atomic_file(struct inode *inode)
1747 {
1748 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1749 }
1750
1751 static inline bool f2fs_is_volatile_file(struct inode *inode)
1752 {
1753 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1754 }
1755
1756 static inline bool f2fs_is_first_block_written(struct inode *inode)
1757 {
1758 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1759 }
1760
1761 static inline bool f2fs_is_drop_cache(struct inode *inode)
1762 {
1763 return is_inode_flag_set(inode, FI_DROP_CACHE);
1764 }
1765
1766 static inline void *inline_data_addr(struct page *page)
1767 {
1768 struct f2fs_inode *ri = F2FS_INODE(page);
1769 return (void *)&(ri->i_addr[1]);
1770 }
1771
1772 static inline int f2fs_has_inline_dentry(struct inode *inode)
1773 {
1774 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1775 }
1776
1777 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1778 {
1779 if (!f2fs_has_inline_dentry(dir))
1780 kunmap(page);
1781 }
1782
1783 static inline int is_file(struct inode *inode, int type)
1784 {
1785 return F2FS_I(inode)->i_advise & type;
1786 }
1787
1788 static inline void set_file(struct inode *inode, int type)
1789 {
1790 F2FS_I(inode)->i_advise |= type;
1791 f2fs_mark_inode_dirty_sync(inode);
1792 }
1793
1794 static inline void clear_file(struct inode *inode, int type)
1795 {
1796 F2FS_I(inode)->i_advise &= ~type;
1797 f2fs_mark_inode_dirty_sync(inode);
1798 }
1799
1800 static inline int f2fs_readonly(struct super_block *sb)
1801 {
1802 return sb->s_flags & MS_RDONLY;
1803 }
1804
1805 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1806 {
1807 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1808 }
1809
1810 static inline bool is_dot_dotdot(const struct qstr *str)
1811 {
1812 if (str->len == 1 && str->name[0] == '.')
1813 return true;
1814
1815 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1816 return true;
1817
1818 return false;
1819 }
1820
1821 static inline bool f2fs_may_extent_tree(struct inode *inode)
1822 {
1823 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1824 is_inode_flag_set(inode, FI_NO_EXTENT))
1825 return false;
1826
1827 return S_ISREG(inode->i_mode);
1828 }
1829
1830 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1831 {
1832 #ifdef CONFIG_F2FS_FAULT_INJECTION
1833 if (time_to_inject(FAULT_KMALLOC))
1834 return NULL;
1835 #endif
1836 return kmalloc(size, flags);
1837 }
1838
1839 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1840 {
1841 void *ret;
1842
1843 ret = kmalloc(size, flags | __GFP_NOWARN);
1844 if (!ret)
1845 ret = __vmalloc(size, flags, PAGE_KERNEL);
1846 return ret;
1847 }
1848
1849 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1850 {
1851 void *ret;
1852
1853 ret = kzalloc(size, flags | __GFP_NOWARN);
1854 if (!ret)
1855 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1856 return ret;
1857 }
1858
1859 #define get_inode_mode(i) \
1860 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1861 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1862
1863 /* get offset of first page in next direct node */
1864 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1865 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1866 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1867 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1868
1869 /*
1870 * file.c
1871 */
1872 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1873 void truncate_data_blocks(struct dnode_of_data *);
1874 int truncate_blocks(struct inode *, u64, bool);
1875 int f2fs_truncate(struct inode *);
1876 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1877 int f2fs_setattr(struct dentry *, struct iattr *);
1878 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1879 int truncate_data_blocks_range(struct dnode_of_data *, int);
1880 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1881 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1882
1883 /*
1884 * inode.c
1885 */
1886 void f2fs_set_inode_flags(struct inode *);
1887 struct inode *f2fs_iget(struct super_block *, unsigned long);
1888 int try_to_free_nats(struct f2fs_sb_info *, int);
1889 int update_inode(struct inode *, struct page *);
1890 int update_inode_page(struct inode *);
1891 int f2fs_write_inode(struct inode *, struct writeback_control *);
1892 void f2fs_evict_inode(struct inode *);
1893 void handle_failed_inode(struct inode *);
1894
1895 /*
1896 * namei.c
1897 */
1898 struct dentry *f2fs_get_parent(struct dentry *child);
1899
1900 /*
1901 * dir.c
1902 */
1903 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1904 void set_de_type(struct f2fs_dir_entry *, umode_t);
1905 unsigned char get_de_type(struct f2fs_dir_entry *);
1906 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1907 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1908 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1909 unsigned int, struct fscrypt_str *);
1910 void do_make_empty_dir(struct inode *, struct inode *,
1911 struct f2fs_dentry_ptr *);
1912 struct page *init_inode_metadata(struct inode *, struct inode *,
1913 const struct qstr *, struct page *);
1914 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1915 int room_for_filename(const void *, int, int);
1916 void f2fs_drop_nlink(struct inode *, struct inode *);
1917 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1918 struct page **);
1919 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1920 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1921 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1922 struct page *, struct inode *);
1923 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1924 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1925 const struct qstr *, f2fs_hash_t , unsigned int);
1926 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1927 struct inode *, nid_t, umode_t);
1928 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1929 umode_t);
1930 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1931 struct inode *);
1932 int f2fs_do_tmpfile(struct inode *, struct inode *);
1933 bool f2fs_empty_dir(struct inode *);
1934
1935 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1936 {
1937 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1938 inode, inode->i_ino, inode->i_mode);
1939 }
1940
1941 /*
1942 * super.c
1943 */
1944 int f2fs_inode_dirtied(struct inode *);
1945 void f2fs_inode_synced(struct inode *);
1946 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1947 int f2fs_sync_fs(struct super_block *, int);
1948 extern __printf(3, 4)
1949 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1950 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1951
1952 /*
1953 * hash.c
1954 */
1955 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1956
1957 /*
1958 * node.c
1959 */
1960 struct dnode_of_data;
1961 struct node_info;
1962
1963 bool available_free_memory(struct f2fs_sb_info *, int);
1964 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1965 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1966 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1967 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1968 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1969 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1970 int truncate_inode_blocks(struct inode *, pgoff_t);
1971 int truncate_xattr_node(struct inode *, struct page *);
1972 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1973 int remove_inode_page(struct inode *);
1974 struct page *new_inode_page(struct inode *);
1975 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1976 void ra_node_page(struct f2fs_sb_info *, nid_t);
1977 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1978 struct page *get_node_page_ra(struct page *, int);
1979 void move_node_page(struct page *, int);
1980 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1981 struct writeback_control *, bool);
1982 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1983 void build_free_nids(struct f2fs_sb_info *);
1984 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1985 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1986 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1987 int try_to_free_nids(struct f2fs_sb_info *, int);
1988 void recover_inline_xattr(struct inode *, struct page *);
1989 void recover_xattr_data(struct inode *, struct page *, block_t);
1990 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1991 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1992 struct f2fs_summary_block *);
1993 void flush_nat_entries(struct f2fs_sb_info *);
1994 int build_node_manager(struct f2fs_sb_info *);
1995 void destroy_node_manager(struct f2fs_sb_info *);
1996 int __init create_node_manager_caches(void);
1997 void destroy_node_manager_caches(void);
1998
1999 /*
2000 * segment.c
2001 */
2002 void register_inmem_page(struct inode *, struct page *);
2003 void drop_inmem_pages(struct inode *);
2004 int commit_inmem_pages(struct inode *);
2005 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2006 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2007 int f2fs_issue_flush(struct f2fs_sb_info *);
2008 int create_flush_cmd_control(struct f2fs_sb_info *);
2009 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2010 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2011 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2012 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2013 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2014 void release_discard_addrs(struct f2fs_sb_info *);
2015 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
2016 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2017 void allocate_new_segments(struct f2fs_sb_info *);
2018 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2019 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2020 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2021 void write_meta_page(struct f2fs_sb_info *, struct page *);
2022 void write_node_page(unsigned int, struct f2fs_io_info *);
2023 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2024 void rewrite_data_page(struct f2fs_io_info *);
2025 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2026 block_t, block_t, bool, bool);
2027 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2028 block_t, block_t, unsigned char, bool, bool);
2029 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2030 block_t, block_t *, struct f2fs_summary *, int);
2031 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2032 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2033 void write_data_summaries(struct f2fs_sb_info *, block_t);
2034 void write_node_summaries(struct f2fs_sb_info *, block_t);
2035 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2036 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2037 int build_segment_manager(struct f2fs_sb_info *);
2038 void destroy_segment_manager(struct f2fs_sb_info *);
2039 int __init create_segment_manager_caches(void);
2040 void destroy_segment_manager_caches(void);
2041
2042 /*
2043 * checkpoint.c
2044 */
2045 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2046 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2047 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2048 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2049 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2050 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2051 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2052 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2053 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2054 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2055 void release_ino_entry(struct f2fs_sb_info *, bool);
2056 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2057 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2058 int acquire_orphan_inode(struct f2fs_sb_info *);
2059 void release_orphan_inode(struct f2fs_sb_info *);
2060 void add_orphan_inode(struct inode *);
2061 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2062 int recover_orphan_inodes(struct f2fs_sb_info *);
2063 int get_valid_checkpoint(struct f2fs_sb_info *);
2064 void update_dirty_page(struct inode *, struct page *);
2065 void remove_dirty_inode(struct inode *);
2066 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2067 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2068 void init_ino_entry_info(struct f2fs_sb_info *);
2069 int __init create_checkpoint_caches(void);
2070 void destroy_checkpoint_caches(void);
2071
2072 /*
2073 * data.c
2074 */
2075 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2076 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2077 struct page *, nid_t, enum page_type, int);
2078 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2079 int f2fs_submit_page_bio(struct f2fs_io_info *);
2080 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2081 void set_data_blkaddr(struct dnode_of_data *);
2082 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2083 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2084 int reserve_new_block(struct dnode_of_data *);
2085 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2086 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2087 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2088 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2089 struct page *find_data_page(struct inode *, pgoff_t);
2090 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2091 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2092 int do_write_data_page(struct f2fs_io_info *);
2093 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2094 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2095 void f2fs_set_page_dirty_nobuffers(struct page *);
2096 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2097 int f2fs_release_page(struct page *, gfp_t);
2098
2099 /*
2100 * gc.c
2101 */
2102 int start_gc_thread(struct f2fs_sb_info *);
2103 void stop_gc_thread(struct f2fs_sb_info *);
2104 block_t start_bidx_of_node(unsigned int, struct inode *);
2105 int f2fs_gc(struct f2fs_sb_info *, bool);
2106 void build_gc_manager(struct f2fs_sb_info *);
2107
2108 /*
2109 * recovery.c
2110 */
2111 int recover_fsync_data(struct f2fs_sb_info *, bool);
2112 bool space_for_roll_forward(struct f2fs_sb_info *);
2113
2114 /*
2115 * debug.c
2116 */
2117 #ifdef CONFIG_F2FS_STAT_FS
2118 struct f2fs_stat_info {
2119 struct list_head stat_list;
2120 struct f2fs_sb_info *sbi;
2121 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2122 int main_area_segs, main_area_sections, main_area_zones;
2123 unsigned long long hit_largest, hit_cached, hit_rbtree;
2124 unsigned long long hit_total, total_ext;
2125 int ext_tree, zombie_tree, ext_node;
2126 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2127 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2128 int nats, dirty_nats, sits, dirty_sits, fnids;
2129 int total_count, utilization;
2130 int bg_gc, wb_bios;
2131 int inline_xattr, inline_inode, inline_dir, orphans;
2132 unsigned int valid_count, valid_node_count, valid_inode_count;
2133 unsigned int bimodal, avg_vblocks;
2134 int util_free, util_valid, util_invalid;
2135 int rsvd_segs, overp_segs;
2136 int dirty_count, node_pages, meta_pages;
2137 int prefree_count, call_count, cp_count, bg_cp_count;
2138 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2139 int bg_node_segs, bg_data_segs;
2140 int tot_blks, data_blks, node_blks;
2141 int bg_data_blks, bg_node_blks;
2142 int curseg[NR_CURSEG_TYPE];
2143 int cursec[NR_CURSEG_TYPE];
2144 int curzone[NR_CURSEG_TYPE];
2145
2146 unsigned int segment_count[2];
2147 unsigned int block_count[2];
2148 unsigned int inplace_count;
2149 unsigned long long base_mem, cache_mem, page_mem;
2150 };
2151
2152 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2153 {
2154 return (struct f2fs_stat_info *)sbi->stat_info;
2155 }
2156
2157 #define stat_inc_cp_count(si) ((si)->cp_count++)
2158 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2159 #define stat_inc_call_count(si) ((si)->call_count++)
2160 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2161 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2162 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2163 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2164 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2165 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2166 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2167 #define stat_inc_inline_xattr(inode) \
2168 do { \
2169 if (f2fs_has_inline_xattr(inode)) \
2170 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2171 } while (0)
2172 #define stat_dec_inline_xattr(inode) \
2173 do { \
2174 if (f2fs_has_inline_xattr(inode)) \
2175 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2176 } while (0)
2177 #define stat_inc_inline_inode(inode) \
2178 do { \
2179 if (f2fs_has_inline_data(inode)) \
2180 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2181 } while (0)
2182 #define stat_dec_inline_inode(inode) \
2183 do { \
2184 if (f2fs_has_inline_data(inode)) \
2185 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2186 } while (0)
2187 #define stat_inc_inline_dir(inode) \
2188 do { \
2189 if (f2fs_has_inline_dentry(inode)) \
2190 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2191 } while (0)
2192 #define stat_dec_inline_dir(inode) \
2193 do { \
2194 if (f2fs_has_inline_dentry(inode)) \
2195 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2196 } while (0)
2197 #define stat_inc_seg_type(sbi, curseg) \
2198 ((sbi)->segment_count[(curseg)->alloc_type]++)
2199 #define stat_inc_block_count(sbi, curseg) \
2200 ((sbi)->block_count[(curseg)->alloc_type]++)
2201 #define stat_inc_inplace_blocks(sbi) \
2202 (atomic_inc(&(sbi)->inplace_count))
2203 #define stat_inc_seg_count(sbi, type, gc_type) \
2204 do { \
2205 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2206 (si)->tot_segs++; \
2207 if (type == SUM_TYPE_DATA) { \
2208 si->data_segs++; \
2209 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2210 } else { \
2211 si->node_segs++; \
2212 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2213 } \
2214 } while (0)
2215
2216 #define stat_inc_tot_blk_count(si, blks) \
2217 (si->tot_blks += (blks))
2218
2219 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2220 do { \
2221 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2222 stat_inc_tot_blk_count(si, blks); \
2223 si->data_blks += (blks); \
2224 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2225 } while (0)
2226
2227 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2228 do { \
2229 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2230 stat_inc_tot_blk_count(si, blks); \
2231 si->node_blks += (blks); \
2232 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2233 } while (0)
2234
2235 int f2fs_build_stats(struct f2fs_sb_info *);
2236 void f2fs_destroy_stats(struct f2fs_sb_info *);
2237 int __init f2fs_create_root_stats(void);
2238 void f2fs_destroy_root_stats(void);
2239 #else
2240 #define stat_inc_cp_count(si)
2241 #define stat_inc_bg_cp_count(si)
2242 #define stat_inc_call_count(si)
2243 #define stat_inc_bggc_count(si)
2244 #define stat_inc_dirty_inode(sbi, type)
2245 #define stat_dec_dirty_inode(sbi, type)
2246 #define stat_inc_total_hit(sb)
2247 #define stat_inc_rbtree_node_hit(sb)
2248 #define stat_inc_largest_node_hit(sbi)
2249 #define stat_inc_cached_node_hit(sbi)
2250 #define stat_inc_inline_xattr(inode)
2251 #define stat_dec_inline_xattr(inode)
2252 #define stat_inc_inline_inode(inode)
2253 #define stat_dec_inline_inode(inode)
2254 #define stat_inc_inline_dir(inode)
2255 #define stat_dec_inline_dir(inode)
2256 #define stat_inc_seg_type(sbi, curseg)
2257 #define stat_inc_block_count(sbi, curseg)
2258 #define stat_inc_inplace_blocks(sbi)
2259 #define stat_inc_seg_count(sbi, type, gc_type)
2260 #define stat_inc_tot_blk_count(si, blks)
2261 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2262 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2263
2264 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2265 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2266 static inline int __init f2fs_create_root_stats(void) { return 0; }
2267 static inline void f2fs_destroy_root_stats(void) { }
2268 #endif
2269
2270 extern const struct file_operations f2fs_dir_operations;
2271 extern const struct file_operations f2fs_file_operations;
2272 extern const struct inode_operations f2fs_file_inode_operations;
2273 extern const struct address_space_operations f2fs_dblock_aops;
2274 extern const struct address_space_operations f2fs_node_aops;
2275 extern const struct address_space_operations f2fs_meta_aops;
2276 extern const struct inode_operations f2fs_dir_inode_operations;
2277 extern const struct inode_operations f2fs_symlink_inode_operations;
2278 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2279 extern const struct inode_operations f2fs_special_inode_operations;
2280 extern struct kmem_cache *inode_entry_slab;
2281
2282 /*
2283 * inline.c
2284 */
2285 bool f2fs_may_inline_data(struct inode *);
2286 bool f2fs_may_inline_dentry(struct inode *);
2287 void read_inline_data(struct page *, struct page *);
2288 bool truncate_inline_inode(struct page *, u64);
2289 int f2fs_read_inline_data(struct inode *, struct page *);
2290 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2291 int f2fs_convert_inline_inode(struct inode *);
2292 int f2fs_write_inline_data(struct inode *, struct page *);
2293 bool recover_inline_data(struct inode *, struct page *);
2294 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2295 struct fscrypt_name *, struct page **);
2296 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2297 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2298 nid_t, umode_t);
2299 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2300 struct inode *, struct inode *);
2301 bool f2fs_empty_inline_dir(struct inode *);
2302 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2303 struct fscrypt_str *);
2304 int f2fs_inline_data_fiemap(struct inode *,
2305 struct fiemap_extent_info *, __u64, __u64);
2306
2307 /*
2308 * shrinker.c
2309 */
2310 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2311 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2312 void f2fs_join_shrinker(struct f2fs_sb_info *);
2313 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2314
2315 /*
2316 * extent_cache.c
2317 */
2318 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2319 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2320 void f2fs_drop_extent_tree(struct inode *);
2321 unsigned int f2fs_destroy_extent_node(struct inode *);
2322 void f2fs_destroy_extent_tree(struct inode *);
2323 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2324 void f2fs_update_extent_cache(struct dnode_of_data *);
2325 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2326 pgoff_t, block_t, unsigned int);
2327 void init_extent_cache_info(struct f2fs_sb_info *);
2328 int __init create_extent_cache(void);
2329 void destroy_extent_cache(void);
2330
2331 /*
2332 * crypto support
2333 */
2334 static inline bool f2fs_encrypted_inode(struct inode *inode)
2335 {
2336 return file_is_encrypt(inode);
2337 }
2338
2339 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2340 {
2341 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2342 file_set_encrypt(inode);
2343 #endif
2344 }
2345
2346 static inline bool f2fs_bio_encrypted(struct bio *bio)
2347 {
2348 return bio->bi_private != NULL;
2349 }
2350
2351 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2352 {
2353 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2354 }
2355
2356 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2357 {
2358 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2359 }
2360
2361 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2362 {
2363 clear_opt(sbi, ADAPTIVE);
2364 clear_opt(sbi, LFS);
2365
2366 switch (mt) {
2367 case F2FS_MOUNT_ADAPTIVE:
2368 set_opt(sbi, ADAPTIVE);
2369 break;
2370 case F2FS_MOUNT_LFS:
2371 set_opt(sbi, LFS);
2372 break;
2373 }
2374 }
2375
2376 static inline bool f2fs_may_encrypt(struct inode *inode)
2377 {
2378 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2379 umode_t mode = inode->i_mode;
2380
2381 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2382 #else
2383 return 0;
2384 #endif
2385 }
2386
2387 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2388 #define fscrypt_set_d_op(i)
2389 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2390 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2391 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2392 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2393 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2394 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2395 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2396 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2397 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2398 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2399 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2400 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2401 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2402 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2403 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2404 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2405 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2406 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2407 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2408 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2409 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2410 #endif
2411 #endif
This page took 0.081917 seconds and 5 git commands to generate.