Restartable sequences: self-tests
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16
17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA)
26 return false;
27
28 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
29 return false;
30
31 return true;
32 }
33
34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
45 void read_inline_data(struct page *page, struct page *ipage)
46 {
47 void *src_addr, *dst_addr;
48
49 if (PageUptodate(page))
50 return;
51
52 f2fs_bug_on(F2FS_P_SB(page), page->index);
53
54 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
55
56 /* Copy the whole inline data block */
57 src_addr = inline_data_addr(ipage);
58 dst_addr = kmap_atomic(page);
59 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
60 flush_dcache_page(page);
61 kunmap_atomic(dst_addr);
62 SetPageUptodate(page);
63 }
64
65 bool truncate_inline_inode(struct page *ipage, u64 from)
66 {
67 void *addr;
68
69 if (from >= MAX_INLINE_DATA)
70 return false;
71
72 addr = inline_data_addr(ipage);
73
74 f2fs_wait_on_page_writeback(ipage, NODE, true);
75 memset(addr + from, 0, MAX_INLINE_DATA - from);
76
77 return true;
78 }
79
80 int f2fs_read_inline_data(struct inode *inode, struct page *page)
81 {
82 struct page *ipage;
83
84 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
85 if (IS_ERR(ipage)) {
86 unlock_page(page);
87 return PTR_ERR(ipage);
88 }
89
90 if (!f2fs_has_inline_data(inode)) {
91 f2fs_put_page(ipage, 1);
92 return -EAGAIN;
93 }
94
95 if (page->index)
96 zero_user_segment(page, 0, PAGE_SIZE);
97 else
98 read_inline_data(page, ipage);
99
100 SetPageUptodate(page);
101 f2fs_put_page(ipage, 1);
102 unlock_page(page);
103 return 0;
104 }
105
106 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
107 {
108 struct f2fs_io_info fio = {
109 .sbi = F2FS_I_SB(dn->inode),
110 .type = DATA,
111 .rw = WRITE_SYNC | REQ_PRIO,
112 .page = page,
113 .encrypted_page = NULL,
114 };
115 int dirty, err;
116
117 if (!f2fs_exist_data(dn->inode))
118 goto clear_out;
119
120 err = f2fs_reserve_block(dn, 0);
121 if (err)
122 return err;
123
124 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
125
126 read_inline_data(page, dn->inode_page);
127 set_page_dirty(page);
128
129 /* clear dirty state */
130 dirty = clear_page_dirty_for_io(page);
131
132 /* write data page to try to make data consistent */
133 set_page_writeback(page);
134 fio.old_blkaddr = dn->data_blkaddr;
135 write_data_page(dn, &fio);
136 f2fs_wait_on_page_writeback(page, DATA, true);
137 if (dirty)
138 inode_dec_dirty_pages(dn->inode);
139
140 /* this converted inline_data should be recovered. */
141 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
142
143 /* clear inline data and flag after data writeback */
144 truncate_inline_inode(dn->inode_page, 0);
145 clear_inline_node(dn->inode_page);
146 clear_out:
147 stat_dec_inline_inode(dn->inode);
148 f2fs_clear_inline_inode(dn->inode);
149 sync_inode_page(dn);
150 f2fs_put_dnode(dn);
151 return 0;
152 }
153
154 int f2fs_convert_inline_inode(struct inode *inode)
155 {
156 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
157 struct dnode_of_data dn;
158 struct page *ipage, *page;
159 int err = 0;
160
161 if (!f2fs_has_inline_data(inode))
162 return 0;
163
164 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
165 if (!page)
166 return -ENOMEM;
167
168 f2fs_lock_op(sbi);
169
170 ipage = get_node_page(sbi, inode->i_ino);
171 if (IS_ERR(ipage)) {
172 err = PTR_ERR(ipage);
173 goto out;
174 }
175
176 set_new_dnode(&dn, inode, ipage, ipage, 0);
177
178 if (f2fs_has_inline_data(inode))
179 err = f2fs_convert_inline_page(&dn, page);
180
181 f2fs_put_dnode(&dn);
182 out:
183 f2fs_unlock_op(sbi);
184
185 f2fs_put_page(page, 1);
186
187 f2fs_balance_fs(sbi, dn.node_changed);
188
189 return err;
190 }
191
192 int f2fs_write_inline_data(struct inode *inode, struct page *page)
193 {
194 void *src_addr, *dst_addr;
195 struct dnode_of_data dn;
196 int err;
197
198 set_new_dnode(&dn, inode, NULL, NULL, 0);
199 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
200 if (err)
201 return err;
202
203 if (!f2fs_has_inline_data(inode)) {
204 f2fs_put_dnode(&dn);
205 return -EAGAIN;
206 }
207
208 f2fs_bug_on(F2FS_I_SB(inode), page->index);
209
210 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
211 src_addr = kmap_atomic(page);
212 dst_addr = inline_data_addr(dn.inode_page);
213 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
214 kunmap_atomic(src_addr);
215
216 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
217 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
218
219 sync_inode_page(&dn);
220 clear_inline_node(dn.inode_page);
221 f2fs_put_dnode(&dn);
222 return 0;
223 }
224
225 bool recover_inline_data(struct inode *inode, struct page *npage)
226 {
227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 struct f2fs_inode *ri = NULL;
229 void *src_addr, *dst_addr;
230 struct page *ipage;
231
232 /*
233 * The inline_data recovery policy is as follows.
234 * [prev.] [next] of inline_data flag
235 * o o -> recover inline_data
236 * o x -> remove inline_data, and then recover data blocks
237 * x o -> remove inline_data, and then recover inline_data
238 * x x -> recover data blocks
239 */
240 if (IS_INODE(npage))
241 ri = F2FS_INODE(npage);
242
243 if (f2fs_has_inline_data(inode) &&
244 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
245 process_inline:
246 ipage = get_node_page(sbi, inode->i_ino);
247 f2fs_bug_on(sbi, IS_ERR(ipage));
248
249 f2fs_wait_on_page_writeback(ipage, NODE, true);
250
251 src_addr = inline_data_addr(npage);
252 dst_addr = inline_data_addr(ipage);
253 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
254
255 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
256 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
257
258 update_inode(inode, ipage);
259 f2fs_put_page(ipage, 1);
260 return true;
261 }
262
263 if (f2fs_has_inline_data(inode)) {
264 ipage = get_node_page(sbi, inode->i_ino);
265 f2fs_bug_on(sbi, IS_ERR(ipage));
266 if (!truncate_inline_inode(ipage, 0))
267 return false;
268 f2fs_clear_inline_inode(inode);
269 update_inode(inode, ipage);
270 f2fs_put_page(ipage, 1);
271 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
272 if (truncate_blocks(inode, 0, false))
273 return false;
274 goto process_inline;
275 }
276 return false;
277 }
278
279 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
280 struct fscrypt_name *fname, struct page **res_page)
281 {
282 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
283 struct f2fs_inline_dentry *inline_dentry;
284 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
285 struct f2fs_dir_entry *de;
286 struct f2fs_dentry_ptr d;
287 struct page *ipage;
288 f2fs_hash_t namehash;
289
290 ipage = get_node_page(sbi, dir->i_ino);
291 if (IS_ERR(ipage))
292 return NULL;
293
294 namehash = f2fs_dentry_hash(&name);
295
296 inline_dentry = inline_data_addr(ipage);
297
298 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
299 de = find_target_dentry(fname, namehash, NULL, &d);
300 unlock_page(ipage);
301 if (de)
302 *res_page = ipage;
303 else
304 f2fs_put_page(ipage, 0);
305
306 return de;
307 }
308
309 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
310 struct page **p)
311 {
312 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
313 struct page *ipage;
314 struct f2fs_dir_entry *de;
315 struct f2fs_inline_dentry *dentry_blk;
316
317 ipage = get_node_page(sbi, dir->i_ino);
318 if (IS_ERR(ipage))
319 return NULL;
320
321 dentry_blk = inline_data_addr(ipage);
322 de = &dentry_blk->dentry[1];
323 *p = ipage;
324 unlock_page(ipage);
325 return de;
326 }
327
328 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
329 struct page *ipage)
330 {
331 struct f2fs_inline_dentry *dentry_blk;
332 struct f2fs_dentry_ptr d;
333
334 dentry_blk = inline_data_addr(ipage);
335
336 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
337 do_make_empty_dir(inode, parent, &d);
338
339 set_page_dirty(ipage);
340
341 /* update i_size to MAX_INLINE_DATA */
342 if (i_size_read(inode) < MAX_INLINE_DATA) {
343 i_size_write(inode, MAX_INLINE_DATA);
344 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
345 }
346 return 0;
347 }
348
349 /*
350 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
351 * release ipage in this function.
352 */
353 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
354 struct f2fs_inline_dentry *inline_dentry)
355 {
356 struct page *page;
357 struct dnode_of_data dn;
358 struct f2fs_dentry_block *dentry_blk;
359 int err;
360
361 page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
362 if (!page) {
363 f2fs_put_page(ipage, 1);
364 return -ENOMEM;
365 }
366
367 set_new_dnode(&dn, dir, ipage, NULL, 0);
368 err = f2fs_reserve_block(&dn, 0);
369 if (err)
370 goto out;
371
372 f2fs_wait_on_page_writeback(page, DATA, true);
373 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
374
375 dentry_blk = kmap_atomic(page);
376
377 /* copy data from inline dentry block to new dentry block */
378 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
379 INLINE_DENTRY_BITMAP_SIZE);
380 memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
381 SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
382 /*
383 * we do not need to zero out remainder part of dentry and filename
384 * field, since we have used bitmap for marking the usage status of
385 * them, besides, we can also ignore copying/zeroing reserved space
386 * of dentry block, because them haven't been used so far.
387 */
388 memcpy(dentry_blk->dentry, inline_dentry->dentry,
389 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
390 memcpy(dentry_blk->filename, inline_dentry->filename,
391 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
392
393 kunmap_atomic(dentry_blk);
394 SetPageUptodate(page);
395 set_page_dirty(page);
396
397 /* clear inline dir and flag after data writeback */
398 truncate_inline_inode(ipage, 0);
399
400 stat_dec_inline_dir(dir);
401 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
402
403 F2FS_I(dir)->i_current_depth = 1;
404 if (i_size_read(dir) < PAGE_SIZE) {
405 i_size_write(dir, PAGE_SIZE);
406 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
407 }
408
409 sync_inode_page(&dn);
410 out:
411 f2fs_put_page(page, 1);
412 return err;
413 }
414
415 static int f2fs_add_inline_entries(struct inode *dir,
416 struct f2fs_inline_dentry *inline_dentry)
417 {
418 struct f2fs_dentry_ptr d;
419 unsigned long bit_pos = 0;
420 int err = 0;
421
422 make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
423
424 while (bit_pos < d.max) {
425 struct f2fs_dir_entry *de;
426 struct qstr new_name;
427 nid_t ino;
428 umode_t fake_mode;
429
430 if (!test_bit_le(bit_pos, d.bitmap)) {
431 bit_pos++;
432 continue;
433 }
434
435 de = &d.dentry[bit_pos];
436
437 if (unlikely(!de->name_len)) {
438 bit_pos++;
439 continue;
440 }
441
442 new_name.name = d.filename[bit_pos];
443 new_name.len = de->name_len;
444
445 ino = le32_to_cpu(de->ino);
446 fake_mode = get_de_type(de) << S_SHIFT;
447
448 err = f2fs_add_regular_entry(dir, &new_name, NULL,
449 ino, fake_mode);
450 if (err)
451 goto punch_dentry_pages;
452
453 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
454 }
455 return 0;
456 punch_dentry_pages:
457 truncate_inode_pages(&dir->i_data, 0);
458 truncate_blocks(dir, 0, false);
459 remove_dirty_inode(dir);
460 return err;
461 }
462
463 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
464 struct f2fs_inline_dentry *inline_dentry)
465 {
466 struct f2fs_inline_dentry *backup_dentry;
467 struct f2fs_inode_info *fi = F2FS_I(dir);
468 int err;
469
470 backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry),
471 GFP_F2FS_ZERO);
472 if (!backup_dentry) {
473 f2fs_put_page(ipage, 1);
474 return -ENOMEM;
475 }
476
477 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
478 truncate_inline_inode(ipage, 0);
479
480 unlock_page(ipage);
481
482 err = f2fs_add_inline_entries(dir, backup_dentry);
483 if (err)
484 goto recover;
485
486 lock_page(ipage);
487
488 stat_dec_inline_dir(dir);
489 clear_inode_flag(fi, FI_INLINE_DENTRY);
490 update_inode(dir, ipage);
491 kfree(backup_dentry);
492 return 0;
493 recover:
494 lock_page(ipage);
495 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
496 fi->i_current_depth = 0;
497 i_size_write(dir, MAX_INLINE_DATA);
498 update_inode(dir, ipage);
499 f2fs_put_page(ipage, 1);
500
501 kfree(backup_dentry);
502 return err;
503 }
504
505 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
506 struct f2fs_inline_dentry *inline_dentry)
507 {
508 if (!F2FS_I(dir)->i_dir_level)
509 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
510 else
511 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
512 }
513
514 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
515 struct inode *inode, nid_t ino, umode_t mode)
516 {
517 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
518 struct page *ipage;
519 unsigned int bit_pos;
520 f2fs_hash_t name_hash;
521 size_t namelen = name->len;
522 struct f2fs_inline_dentry *dentry_blk = NULL;
523 struct f2fs_dentry_ptr d;
524 int slots = GET_DENTRY_SLOTS(namelen);
525 struct page *page = NULL;
526 int err = 0;
527
528 ipage = get_node_page(sbi, dir->i_ino);
529 if (IS_ERR(ipage))
530 return PTR_ERR(ipage);
531
532 dentry_blk = inline_data_addr(ipage);
533 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
534 slots, NR_INLINE_DENTRY);
535 if (bit_pos >= NR_INLINE_DENTRY) {
536 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
537 if (err)
538 return err;
539 err = -EAGAIN;
540 goto out;
541 }
542
543 if (inode) {
544 down_write(&F2FS_I(inode)->i_sem);
545 page = init_inode_metadata(inode, dir, name, ipage);
546 if (IS_ERR(page)) {
547 err = PTR_ERR(page);
548 goto fail;
549 }
550 }
551
552 f2fs_wait_on_page_writeback(ipage, NODE, true);
553
554 name_hash = f2fs_dentry_hash(name);
555 make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
556 f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
557
558 set_page_dirty(ipage);
559
560 /* we don't need to mark_inode_dirty now */
561 if (inode) {
562 F2FS_I(inode)->i_pino = dir->i_ino;
563 update_inode(inode, page);
564 f2fs_put_page(page, 1);
565 }
566
567 update_parent_metadata(dir, inode, 0);
568 fail:
569 if (inode)
570 up_write(&F2FS_I(inode)->i_sem);
571
572 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
573 update_inode(dir, ipage);
574 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
575 }
576 out:
577 f2fs_put_page(ipage, 1);
578 return err;
579 }
580
581 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
582 struct inode *dir, struct inode *inode)
583 {
584 struct f2fs_inline_dentry *inline_dentry;
585 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
586 unsigned int bit_pos;
587 int i;
588
589 lock_page(page);
590 f2fs_wait_on_page_writeback(page, NODE, true);
591
592 inline_dentry = inline_data_addr(page);
593 bit_pos = dentry - inline_dentry->dentry;
594 for (i = 0; i < slots; i++)
595 test_and_clear_bit_le(bit_pos + i,
596 &inline_dentry->dentry_bitmap);
597
598 set_page_dirty(page);
599
600 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
601
602 if (inode)
603 f2fs_drop_nlink(dir, inode, page);
604
605 f2fs_put_page(page, 1);
606 }
607
608 bool f2fs_empty_inline_dir(struct inode *dir)
609 {
610 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
611 struct page *ipage;
612 unsigned int bit_pos = 2;
613 struct f2fs_inline_dentry *dentry_blk;
614
615 ipage = get_node_page(sbi, dir->i_ino);
616 if (IS_ERR(ipage))
617 return false;
618
619 dentry_blk = inline_data_addr(ipage);
620 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
621 NR_INLINE_DENTRY,
622 bit_pos);
623
624 f2fs_put_page(ipage, 1);
625
626 if (bit_pos < NR_INLINE_DENTRY)
627 return false;
628
629 return true;
630 }
631
632 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
633 struct fscrypt_str *fstr)
634 {
635 struct inode *inode = file_inode(file);
636 struct f2fs_inline_dentry *inline_dentry = NULL;
637 struct page *ipage = NULL;
638 struct f2fs_dentry_ptr d;
639
640 if (ctx->pos == NR_INLINE_DENTRY)
641 return 0;
642
643 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
644 if (IS_ERR(ipage))
645 return PTR_ERR(ipage);
646
647 inline_dentry = inline_data_addr(ipage);
648
649 make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
650
651 if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
652 ctx->pos = NR_INLINE_DENTRY;
653
654 f2fs_put_page(ipage, 1);
655 return 0;
656 }
657
658 int f2fs_inline_data_fiemap(struct inode *inode,
659 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
660 {
661 __u64 byteaddr, ilen;
662 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
663 FIEMAP_EXTENT_LAST;
664 struct node_info ni;
665 struct page *ipage;
666 int err = 0;
667
668 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
669 if (IS_ERR(ipage))
670 return PTR_ERR(ipage);
671
672 if (!f2fs_has_inline_data(inode)) {
673 err = -EAGAIN;
674 goto out;
675 }
676
677 ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
678 if (start >= ilen)
679 goto out;
680 if (start + len < ilen)
681 ilen = start + len;
682 ilen -= start;
683
684 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
685 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
686 byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
687 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
688 out:
689 f2fs_put_page(ipage, 1);
690 return err;
691 }
This page took 0.043508 seconds and 5 git commands to generate.