Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
64
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += (sbi->im[i].ino_num *
67 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 } else if (type == EXTENT_CACHE) {
70 mem_size = (atomic_read(&sbi->total_ext_tree) *
71 sizeof(struct extent_tree) +
72 atomic_read(&sbi->total_ext_node) *
73 sizeof(struct extent_node)) >> PAGE_SHIFT;
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else {
76 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 return true;
78 }
79 return res;
80 }
81
82 static void clear_node_page_dirty(struct page *page)
83 {
84 struct address_space *mapping = page->mapping;
85 unsigned int long flags;
86
87 if (PageDirty(page)) {
88 spin_lock_irqsave(&mapping->tree_lock, flags);
89 radix_tree_tag_clear(&mapping->page_tree,
90 page_index(page),
91 PAGECACHE_TAG_DIRTY);
92 spin_unlock_irqrestore(&mapping->tree_lock, flags);
93
94 clear_page_dirty_for_io(page);
95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96 }
97 ClearPageUptodate(page);
98 }
99
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101 {
102 pgoff_t index = current_nat_addr(sbi, nid);
103 return get_meta_page(sbi, index);
104 }
105
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 struct page *src_page;
109 struct page *dst_page;
110 pgoff_t src_off;
111 pgoff_t dst_off;
112 void *src_addr;
113 void *dst_addr;
114 struct f2fs_nm_info *nm_i = NM_I(sbi);
115
116 src_off = current_nat_addr(sbi, nid);
117 dst_off = next_nat_addr(sbi, src_off);
118
119 /* get current nat block page with lock */
120 src_page = get_meta_page(sbi, src_off);
121 dst_page = grab_meta_page(sbi, dst_off);
122 f2fs_bug_on(sbi, PageDirty(src_page));
123
124 src_addr = page_address(src_page);
125 dst_addr = page_address(dst_page);
126 memcpy(dst_addr, src_addr, PAGE_SIZE);
127 set_page_dirty(dst_page);
128 f2fs_put_page(src_page, 1);
129
130 set_to_next_nat(nm_i, nid);
131
132 return dst_page;
133 }
134
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136 {
137 return radix_tree_lookup(&nm_i->nat_root, n);
138 }
139
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 nid_t start, unsigned int nr, struct nat_entry **ep)
142 {
143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 }
145
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147 {
148 list_del(&e->list);
149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 nm_i->nat_cnt--;
151 kmem_cache_free(nat_entry_slab, e);
152 }
153
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 struct nat_entry *ne)
156 {
157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 struct nat_entry_set *head;
159
160 if (get_nat_flag(ne, IS_DIRTY))
161 return;
162
163 head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 if (!head) {
165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166
167 INIT_LIST_HEAD(&head->entry_list);
168 INIT_LIST_HEAD(&head->set_list);
169 head->set = set;
170 head->entry_cnt = 0;
171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172 }
173 list_move_tail(&ne->list, &head->entry_list);
174 nm_i->dirty_nat_cnt++;
175 head->entry_cnt++;
176 set_nat_flag(ne, IS_DIRTY, true);
177 }
178
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 struct nat_entry *ne)
181 {
182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 struct nat_entry_set *head;
184
185 head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 if (head) {
187 list_move_tail(&ne->list, &nm_i->nat_entries);
188 set_nat_flag(ne, IS_DIRTY, false);
189 head->entry_cnt--;
190 nm_i->dirty_nat_cnt--;
191 }
192 }
193
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
199 }
200
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
206
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
213 }
214 up_read(&nm_i->nat_tree_lock);
215 return need;
216 }
217
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
223
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
230 }
231
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
237
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
246 }
247
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
249 {
250 struct nat_entry *new;
251
252 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
253 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
254 memset(new, 0, sizeof(struct nat_entry));
255 nat_set_nid(new, nid);
256 nat_reset_flag(new);
257 list_add_tail(&new->list, &nm_i->nat_entries);
258 nm_i->nat_cnt++;
259 return new;
260 }
261
262 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
263 struct f2fs_nat_entry *ne)
264 {
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
267
268 e = __lookup_nat_cache(nm_i, nid);
269 if (!e) {
270 e = grab_nat_entry(nm_i, nid);
271 node_info_from_raw_nat(&e->ni, ne);
272 } else {
273 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
274 nat_get_blkaddr(e) != ne->block_addr ||
275 nat_get_version(e) != ne->version);
276 }
277 }
278
279 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
280 block_t new_blkaddr, bool fsync_done)
281 {
282 struct f2fs_nm_info *nm_i = NM_I(sbi);
283 struct nat_entry *e;
284
285 down_write(&nm_i->nat_tree_lock);
286 e = __lookup_nat_cache(nm_i, ni->nid);
287 if (!e) {
288 e = grab_nat_entry(nm_i, ni->nid);
289 copy_node_info(&e->ni, ni);
290 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
291 } else if (new_blkaddr == NEW_ADDR) {
292 /*
293 * when nid is reallocated,
294 * previous nat entry can be remained in nat cache.
295 * So, reinitialize it with new information.
296 */
297 copy_node_info(&e->ni, ni);
298 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
299 }
300
301 /* sanity check */
302 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
304 new_blkaddr == NULL_ADDR);
305 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
306 new_blkaddr == NEW_ADDR);
307 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
308 nat_get_blkaddr(e) != NULL_ADDR &&
309 new_blkaddr == NEW_ADDR);
310
311 /* increment version no as node is removed */
312 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
313 unsigned char version = nat_get_version(e);
314 nat_set_version(e, inc_node_version(version));
315
316 /* in order to reuse the nid */
317 if (nm_i->next_scan_nid > ni->nid)
318 nm_i->next_scan_nid = ni->nid;
319 }
320
321 /* change address */
322 nat_set_blkaddr(e, new_blkaddr);
323 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
324 set_nat_flag(e, IS_CHECKPOINTED, false);
325 __set_nat_cache_dirty(nm_i, e);
326
327 /* update fsync_mark if its inode nat entry is still alive */
328 if (ni->nid != ni->ino)
329 e = __lookup_nat_cache(nm_i, ni->ino);
330 if (e) {
331 if (fsync_done && ni->nid == ni->ino)
332 set_nat_flag(e, HAS_FSYNCED_INODE, true);
333 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
334 }
335 up_write(&nm_i->nat_tree_lock);
336 }
337
338 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
339 {
340 struct f2fs_nm_info *nm_i = NM_I(sbi);
341 int nr = nr_shrink;
342
343 if (!down_write_trylock(&nm_i->nat_tree_lock))
344 return 0;
345
346 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
347 struct nat_entry *ne;
348 ne = list_first_entry(&nm_i->nat_entries,
349 struct nat_entry, list);
350 __del_from_nat_cache(nm_i, ne);
351 nr_shrink--;
352 }
353 up_write(&nm_i->nat_tree_lock);
354 return nr - nr_shrink;
355 }
356
357 /*
358 * This function always returns success
359 */
360 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
361 {
362 struct f2fs_nm_info *nm_i = NM_I(sbi);
363 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
364 struct f2fs_journal *journal = curseg->journal;
365 nid_t start_nid = START_NID(nid);
366 struct f2fs_nat_block *nat_blk;
367 struct page *page = NULL;
368 struct f2fs_nat_entry ne;
369 struct nat_entry *e;
370 int i;
371
372 ni->nid = nid;
373
374 /* Check nat cache */
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e) {
378 ni->ino = nat_get_ino(e);
379 ni->blk_addr = nat_get_blkaddr(e);
380 ni->version = nat_get_version(e);
381 up_read(&nm_i->nat_tree_lock);
382 return;
383 }
384
385 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
386
387 /* Check current segment summary */
388 down_read(&curseg->journal_rwsem);
389 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
390 if (i >= 0) {
391 ne = nat_in_journal(journal, i);
392 node_info_from_raw_nat(ni, &ne);
393 }
394 up_read(&curseg->journal_rwsem);
395 if (i >= 0)
396 goto cache;
397
398 /* Fill node_info from nat page */
399 page = get_current_nat_page(sbi, start_nid);
400 nat_blk = (struct f2fs_nat_block *)page_address(page);
401 ne = nat_blk->entries[nid - start_nid];
402 node_info_from_raw_nat(ni, &ne);
403 f2fs_put_page(page, 1);
404 cache:
405 up_read(&nm_i->nat_tree_lock);
406 /* cache nat entry */
407 down_write(&nm_i->nat_tree_lock);
408 cache_nat_entry(sbi, nid, &ne);
409 up_write(&nm_i->nat_tree_lock);
410 }
411
412 /*
413 * readahead MAX_RA_NODE number of node pages.
414 */
415 static void ra_node_pages(struct page *parent, int start, int n)
416 {
417 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
418 struct blk_plug plug;
419 int i, end;
420 nid_t nid;
421
422 blk_start_plug(&plug);
423
424 /* Then, try readahead for siblings of the desired node */
425 end = start + n;
426 end = min(end, NIDS_PER_BLOCK);
427 for (i = start; i < end; i++) {
428 nid = get_nid(parent, i, false);
429 ra_node_page(sbi, nid);
430 }
431
432 blk_finish_plug(&plug);
433 }
434
435 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
436 {
437 const long direct_index = ADDRS_PER_INODE(dn->inode);
438 const long direct_blks = ADDRS_PER_BLOCK;
439 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
440 unsigned int skipped_unit = ADDRS_PER_BLOCK;
441 int cur_level = dn->cur_level;
442 int max_level = dn->max_level;
443 pgoff_t base = 0;
444
445 if (!dn->max_level)
446 return pgofs + 1;
447
448 while (max_level-- > cur_level)
449 skipped_unit *= NIDS_PER_BLOCK;
450
451 switch (dn->max_level) {
452 case 3:
453 base += 2 * indirect_blks;
454 case 2:
455 base += 2 * direct_blks;
456 case 1:
457 base += direct_index;
458 break;
459 default:
460 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
461 }
462
463 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
464 }
465
466 /*
467 * The maximum depth is four.
468 * Offset[0] will have raw inode offset.
469 */
470 static int get_node_path(struct inode *inode, long block,
471 int offset[4], unsigned int noffset[4])
472 {
473 const long direct_index = ADDRS_PER_INODE(inode);
474 const long direct_blks = ADDRS_PER_BLOCK;
475 const long dptrs_per_blk = NIDS_PER_BLOCK;
476 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
477 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
478 int n = 0;
479 int level = 0;
480
481 noffset[0] = 0;
482
483 if (block < direct_index) {
484 offset[n] = block;
485 goto got;
486 }
487 block -= direct_index;
488 if (block < direct_blks) {
489 offset[n++] = NODE_DIR1_BLOCK;
490 noffset[n] = 1;
491 offset[n] = block;
492 level = 1;
493 goto got;
494 }
495 block -= direct_blks;
496 if (block < direct_blks) {
497 offset[n++] = NODE_DIR2_BLOCK;
498 noffset[n] = 2;
499 offset[n] = block;
500 level = 1;
501 goto got;
502 }
503 block -= direct_blks;
504 if (block < indirect_blks) {
505 offset[n++] = NODE_IND1_BLOCK;
506 noffset[n] = 3;
507 offset[n++] = block / direct_blks;
508 noffset[n] = 4 + offset[n - 1];
509 offset[n] = block % direct_blks;
510 level = 2;
511 goto got;
512 }
513 block -= indirect_blks;
514 if (block < indirect_blks) {
515 offset[n++] = NODE_IND2_BLOCK;
516 noffset[n] = 4 + dptrs_per_blk;
517 offset[n++] = block / direct_blks;
518 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
519 offset[n] = block % direct_blks;
520 level = 2;
521 goto got;
522 }
523 block -= indirect_blks;
524 if (block < dindirect_blks) {
525 offset[n++] = NODE_DIND_BLOCK;
526 noffset[n] = 5 + (dptrs_per_blk * 2);
527 offset[n++] = block / indirect_blks;
528 noffset[n] = 6 + (dptrs_per_blk * 2) +
529 offset[n - 1] * (dptrs_per_blk + 1);
530 offset[n++] = (block / direct_blks) % dptrs_per_blk;
531 noffset[n] = 7 + (dptrs_per_blk * 2) +
532 offset[n - 2] * (dptrs_per_blk + 1) +
533 offset[n - 1];
534 offset[n] = block % direct_blks;
535 level = 3;
536 goto got;
537 } else {
538 BUG();
539 }
540 got:
541 return level;
542 }
543
544 /*
545 * Caller should call f2fs_put_dnode(dn).
546 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
547 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
548 * In the case of RDONLY_NODE, we don't need to care about mutex.
549 */
550 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
551 {
552 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
553 struct page *npage[4];
554 struct page *parent = NULL;
555 int offset[4];
556 unsigned int noffset[4];
557 nid_t nids[4];
558 int level, i = 0;
559 int err = 0;
560
561 level = get_node_path(dn->inode, index, offset, noffset);
562
563 nids[0] = dn->inode->i_ino;
564 npage[0] = dn->inode_page;
565
566 if (!npage[0]) {
567 npage[0] = get_node_page(sbi, nids[0]);
568 if (IS_ERR(npage[0]))
569 return PTR_ERR(npage[0]);
570 }
571
572 /* if inline_data is set, should not report any block indices */
573 if (f2fs_has_inline_data(dn->inode) && index) {
574 err = -ENOENT;
575 f2fs_put_page(npage[0], 1);
576 goto release_out;
577 }
578
579 parent = npage[0];
580 if (level != 0)
581 nids[1] = get_nid(parent, offset[0], true);
582 dn->inode_page = npage[0];
583 dn->inode_page_locked = true;
584
585 /* get indirect or direct nodes */
586 for (i = 1; i <= level; i++) {
587 bool done = false;
588
589 if (!nids[i] && mode == ALLOC_NODE) {
590 /* alloc new node */
591 if (!alloc_nid(sbi, &(nids[i]))) {
592 err = -ENOSPC;
593 goto release_pages;
594 }
595
596 dn->nid = nids[i];
597 npage[i] = new_node_page(dn, noffset[i], NULL);
598 if (IS_ERR(npage[i])) {
599 alloc_nid_failed(sbi, nids[i]);
600 err = PTR_ERR(npage[i]);
601 goto release_pages;
602 }
603
604 set_nid(parent, offset[i - 1], nids[i], i == 1);
605 alloc_nid_done(sbi, nids[i]);
606 done = true;
607 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
608 npage[i] = get_node_page_ra(parent, offset[i - 1]);
609 if (IS_ERR(npage[i])) {
610 err = PTR_ERR(npage[i]);
611 goto release_pages;
612 }
613 done = true;
614 }
615 if (i == 1) {
616 dn->inode_page_locked = false;
617 unlock_page(parent);
618 } else {
619 f2fs_put_page(parent, 1);
620 }
621
622 if (!done) {
623 npage[i] = get_node_page(sbi, nids[i]);
624 if (IS_ERR(npage[i])) {
625 err = PTR_ERR(npage[i]);
626 f2fs_put_page(npage[0], 0);
627 goto release_out;
628 }
629 }
630 if (i < level) {
631 parent = npage[i];
632 nids[i + 1] = get_nid(parent, offset[i], false);
633 }
634 }
635 dn->nid = nids[level];
636 dn->ofs_in_node = offset[level];
637 dn->node_page = npage[level];
638 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
639 return 0;
640
641 release_pages:
642 f2fs_put_page(parent, 1);
643 if (i > 1)
644 f2fs_put_page(npage[0], 0);
645 release_out:
646 dn->inode_page = NULL;
647 dn->node_page = NULL;
648 if (err == -ENOENT) {
649 dn->cur_level = i;
650 dn->max_level = level;
651 dn->ofs_in_node = offset[level];
652 }
653 return err;
654 }
655
656 static void truncate_node(struct dnode_of_data *dn)
657 {
658 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
659 struct node_info ni;
660
661 get_node_info(sbi, dn->nid, &ni);
662 if (dn->inode->i_blocks == 0) {
663 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
664 goto invalidate;
665 }
666 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
667
668 /* Deallocate node address */
669 invalidate_blocks(sbi, ni.blk_addr);
670 dec_valid_node_count(sbi, dn->inode);
671 set_node_addr(sbi, &ni, NULL_ADDR, false);
672
673 if (dn->nid == dn->inode->i_ino) {
674 remove_orphan_inode(sbi, dn->nid);
675 dec_valid_inode_count(sbi);
676 f2fs_inode_synced(dn->inode);
677 }
678 invalidate:
679 clear_node_page_dirty(dn->node_page);
680 set_sbi_flag(sbi, SBI_IS_DIRTY);
681
682 f2fs_put_page(dn->node_page, 1);
683
684 invalidate_mapping_pages(NODE_MAPPING(sbi),
685 dn->node_page->index, dn->node_page->index);
686
687 dn->node_page = NULL;
688 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
689 }
690
691 static int truncate_dnode(struct dnode_of_data *dn)
692 {
693 struct page *page;
694
695 if (dn->nid == 0)
696 return 1;
697
698 /* get direct node */
699 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
700 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
701 return 1;
702 else if (IS_ERR(page))
703 return PTR_ERR(page);
704
705 /* Make dnode_of_data for parameter */
706 dn->node_page = page;
707 dn->ofs_in_node = 0;
708 truncate_data_blocks(dn);
709 truncate_node(dn);
710 return 1;
711 }
712
713 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
714 int ofs, int depth)
715 {
716 struct dnode_of_data rdn = *dn;
717 struct page *page;
718 struct f2fs_node *rn;
719 nid_t child_nid;
720 unsigned int child_nofs;
721 int freed = 0;
722 int i, ret;
723
724 if (dn->nid == 0)
725 return NIDS_PER_BLOCK + 1;
726
727 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
728
729 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
730 if (IS_ERR(page)) {
731 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
732 return PTR_ERR(page);
733 }
734
735 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
736
737 rn = F2FS_NODE(page);
738 if (depth < 3) {
739 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
740 child_nid = le32_to_cpu(rn->in.nid[i]);
741 if (child_nid == 0)
742 continue;
743 rdn.nid = child_nid;
744 ret = truncate_dnode(&rdn);
745 if (ret < 0)
746 goto out_err;
747 if (set_nid(page, i, 0, false))
748 dn->node_changed = true;
749 }
750 } else {
751 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
752 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
753 child_nid = le32_to_cpu(rn->in.nid[i]);
754 if (child_nid == 0) {
755 child_nofs += NIDS_PER_BLOCK + 1;
756 continue;
757 }
758 rdn.nid = child_nid;
759 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
760 if (ret == (NIDS_PER_BLOCK + 1)) {
761 if (set_nid(page, i, 0, false))
762 dn->node_changed = true;
763 child_nofs += ret;
764 } else if (ret < 0 && ret != -ENOENT) {
765 goto out_err;
766 }
767 }
768 freed = child_nofs;
769 }
770
771 if (!ofs) {
772 /* remove current indirect node */
773 dn->node_page = page;
774 truncate_node(dn);
775 freed++;
776 } else {
777 f2fs_put_page(page, 1);
778 }
779 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
780 return freed;
781
782 out_err:
783 f2fs_put_page(page, 1);
784 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
785 return ret;
786 }
787
788 static int truncate_partial_nodes(struct dnode_of_data *dn,
789 struct f2fs_inode *ri, int *offset, int depth)
790 {
791 struct page *pages[2];
792 nid_t nid[3];
793 nid_t child_nid;
794 int err = 0;
795 int i;
796 int idx = depth - 2;
797
798 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
799 if (!nid[0])
800 return 0;
801
802 /* get indirect nodes in the path */
803 for (i = 0; i < idx + 1; i++) {
804 /* reference count'll be increased */
805 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
806 if (IS_ERR(pages[i])) {
807 err = PTR_ERR(pages[i]);
808 idx = i - 1;
809 goto fail;
810 }
811 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
812 }
813
814 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
815
816 /* free direct nodes linked to a partial indirect node */
817 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
818 child_nid = get_nid(pages[idx], i, false);
819 if (!child_nid)
820 continue;
821 dn->nid = child_nid;
822 err = truncate_dnode(dn);
823 if (err < 0)
824 goto fail;
825 if (set_nid(pages[idx], i, 0, false))
826 dn->node_changed = true;
827 }
828
829 if (offset[idx + 1] == 0) {
830 dn->node_page = pages[idx];
831 dn->nid = nid[idx];
832 truncate_node(dn);
833 } else {
834 f2fs_put_page(pages[idx], 1);
835 }
836 offset[idx]++;
837 offset[idx + 1] = 0;
838 idx--;
839 fail:
840 for (i = idx; i >= 0; i--)
841 f2fs_put_page(pages[i], 1);
842
843 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
844
845 return err;
846 }
847
848 /*
849 * All the block addresses of data and nodes should be nullified.
850 */
851 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
852 {
853 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
854 int err = 0, cont = 1;
855 int level, offset[4], noffset[4];
856 unsigned int nofs = 0;
857 struct f2fs_inode *ri;
858 struct dnode_of_data dn;
859 struct page *page;
860
861 trace_f2fs_truncate_inode_blocks_enter(inode, from);
862
863 level = get_node_path(inode, from, offset, noffset);
864
865 page = get_node_page(sbi, inode->i_ino);
866 if (IS_ERR(page)) {
867 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
868 return PTR_ERR(page);
869 }
870
871 set_new_dnode(&dn, inode, page, NULL, 0);
872 unlock_page(page);
873
874 ri = F2FS_INODE(page);
875 switch (level) {
876 case 0:
877 case 1:
878 nofs = noffset[1];
879 break;
880 case 2:
881 nofs = noffset[1];
882 if (!offset[level - 1])
883 goto skip_partial;
884 err = truncate_partial_nodes(&dn, ri, offset, level);
885 if (err < 0 && err != -ENOENT)
886 goto fail;
887 nofs += 1 + NIDS_PER_BLOCK;
888 break;
889 case 3:
890 nofs = 5 + 2 * NIDS_PER_BLOCK;
891 if (!offset[level - 1])
892 goto skip_partial;
893 err = truncate_partial_nodes(&dn, ri, offset, level);
894 if (err < 0 && err != -ENOENT)
895 goto fail;
896 break;
897 default:
898 BUG();
899 }
900
901 skip_partial:
902 while (cont) {
903 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
904 switch (offset[0]) {
905 case NODE_DIR1_BLOCK:
906 case NODE_DIR2_BLOCK:
907 err = truncate_dnode(&dn);
908 break;
909
910 case NODE_IND1_BLOCK:
911 case NODE_IND2_BLOCK:
912 err = truncate_nodes(&dn, nofs, offset[1], 2);
913 break;
914
915 case NODE_DIND_BLOCK:
916 err = truncate_nodes(&dn, nofs, offset[1], 3);
917 cont = 0;
918 break;
919
920 default:
921 BUG();
922 }
923 if (err < 0 && err != -ENOENT)
924 goto fail;
925 if (offset[1] == 0 &&
926 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
927 lock_page(page);
928 BUG_ON(page->mapping != NODE_MAPPING(sbi));
929 f2fs_wait_on_page_writeback(page, NODE, true);
930 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
931 set_page_dirty(page);
932 unlock_page(page);
933 }
934 offset[1] = 0;
935 offset[0]++;
936 nofs += err;
937 }
938 fail:
939 f2fs_put_page(page, 0);
940 trace_f2fs_truncate_inode_blocks_exit(inode, err);
941 return err > 0 ? 0 : err;
942 }
943
944 int truncate_xattr_node(struct inode *inode, struct page *page)
945 {
946 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
947 nid_t nid = F2FS_I(inode)->i_xattr_nid;
948 struct dnode_of_data dn;
949 struct page *npage;
950
951 if (!nid)
952 return 0;
953
954 npage = get_node_page(sbi, nid);
955 if (IS_ERR(npage))
956 return PTR_ERR(npage);
957
958 f2fs_i_xnid_write(inode, 0);
959
960 /* need to do checkpoint during fsync */
961 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
962
963 set_new_dnode(&dn, inode, page, npage, nid);
964
965 if (page)
966 dn.inode_page_locked = true;
967 truncate_node(&dn);
968 return 0;
969 }
970
971 /*
972 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
973 * f2fs_unlock_op().
974 */
975 int remove_inode_page(struct inode *inode)
976 {
977 struct dnode_of_data dn;
978 int err;
979
980 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
981 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
982 if (err)
983 return err;
984
985 err = truncate_xattr_node(inode, dn.inode_page);
986 if (err) {
987 f2fs_put_dnode(&dn);
988 return err;
989 }
990
991 /* remove potential inline_data blocks */
992 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
993 S_ISLNK(inode->i_mode))
994 truncate_data_blocks_range(&dn, 1);
995
996 /* 0 is possible, after f2fs_new_inode() has failed */
997 f2fs_bug_on(F2FS_I_SB(inode),
998 inode->i_blocks != 0 && inode->i_blocks != 1);
999
1000 /* will put inode & node pages */
1001 truncate_node(&dn);
1002 return 0;
1003 }
1004
1005 struct page *new_inode_page(struct inode *inode)
1006 {
1007 struct dnode_of_data dn;
1008
1009 /* allocate inode page for new inode */
1010 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1011
1012 /* caller should f2fs_put_page(page, 1); */
1013 return new_node_page(&dn, 0, NULL);
1014 }
1015
1016 struct page *new_node_page(struct dnode_of_data *dn,
1017 unsigned int ofs, struct page *ipage)
1018 {
1019 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1020 struct node_info old_ni, new_ni;
1021 struct page *page;
1022 int err;
1023
1024 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1025 return ERR_PTR(-EPERM);
1026
1027 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1028 if (!page)
1029 return ERR_PTR(-ENOMEM);
1030
1031 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1032 err = -ENOSPC;
1033 goto fail;
1034 }
1035
1036 get_node_info(sbi, dn->nid, &old_ni);
1037
1038 /* Reinitialize old_ni with new node page */
1039 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1040 new_ni = old_ni;
1041 new_ni.ino = dn->inode->i_ino;
1042 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1043
1044 f2fs_wait_on_page_writeback(page, NODE, true);
1045 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1046 set_cold_node(dn->inode, page);
1047 if (!PageUptodate(page))
1048 SetPageUptodate(page);
1049 if (set_page_dirty(page))
1050 dn->node_changed = true;
1051
1052 if (f2fs_has_xattr_block(ofs))
1053 f2fs_i_xnid_write(dn->inode, dn->nid);
1054
1055 if (ofs == 0)
1056 inc_valid_inode_count(sbi);
1057 return page;
1058
1059 fail:
1060 clear_node_page_dirty(page);
1061 f2fs_put_page(page, 1);
1062 return ERR_PTR(err);
1063 }
1064
1065 /*
1066 * Caller should do after getting the following values.
1067 * 0: f2fs_put_page(page, 0)
1068 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1069 */
1070 static int read_node_page(struct page *page, int op_flags)
1071 {
1072 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1073 struct node_info ni;
1074 struct f2fs_io_info fio = {
1075 .sbi = sbi,
1076 .type = NODE,
1077 .op = REQ_OP_READ,
1078 .op_flags = op_flags,
1079 .page = page,
1080 .encrypted_page = NULL,
1081 };
1082
1083 if (PageUptodate(page))
1084 return LOCKED_PAGE;
1085
1086 get_node_info(sbi, page->index, &ni);
1087
1088 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1089 ClearPageUptodate(page);
1090 return -ENOENT;
1091 }
1092
1093 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1094 return f2fs_submit_page_bio(&fio);
1095 }
1096
1097 /*
1098 * Readahead a node page
1099 */
1100 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1101 {
1102 struct page *apage;
1103 int err;
1104
1105 if (!nid)
1106 return;
1107 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1108
1109 rcu_read_lock();
1110 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1111 rcu_read_unlock();
1112 if (apage)
1113 return;
1114
1115 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1116 if (!apage)
1117 return;
1118
1119 err = read_node_page(apage, REQ_RAHEAD);
1120 f2fs_put_page(apage, err ? 1 : 0);
1121 }
1122
1123 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1124 struct page *parent, int start)
1125 {
1126 struct page *page;
1127 int err;
1128
1129 if (!nid)
1130 return ERR_PTR(-ENOENT);
1131 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1132 repeat:
1133 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1134 if (!page)
1135 return ERR_PTR(-ENOMEM);
1136
1137 err = read_node_page(page, READ_SYNC);
1138 if (err < 0) {
1139 f2fs_put_page(page, 1);
1140 return ERR_PTR(err);
1141 } else if (err == LOCKED_PAGE) {
1142 goto page_hit;
1143 }
1144
1145 if (parent)
1146 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1147
1148 lock_page(page);
1149
1150 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1151 f2fs_put_page(page, 1);
1152 goto repeat;
1153 }
1154
1155 if (unlikely(!PageUptodate(page)))
1156 goto out_err;
1157 page_hit:
1158 if(unlikely(nid != nid_of_node(page))) {
1159 f2fs_bug_on(sbi, 1);
1160 ClearPageUptodate(page);
1161 out_err:
1162 f2fs_put_page(page, 1);
1163 return ERR_PTR(-EIO);
1164 }
1165 return page;
1166 }
1167
1168 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1169 {
1170 return __get_node_page(sbi, nid, NULL, 0);
1171 }
1172
1173 struct page *get_node_page_ra(struct page *parent, int start)
1174 {
1175 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1176 nid_t nid = get_nid(parent, start, false);
1177
1178 return __get_node_page(sbi, nid, parent, start);
1179 }
1180
1181 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1182 {
1183 struct inode *inode;
1184 struct page *page;
1185 int ret;
1186
1187 /* should flush inline_data before evict_inode */
1188 inode = ilookup(sbi->sb, ino);
1189 if (!inode)
1190 return;
1191
1192 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1193 if (!page)
1194 goto iput_out;
1195
1196 if (!PageUptodate(page))
1197 goto page_out;
1198
1199 if (!PageDirty(page))
1200 goto page_out;
1201
1202 if (!clear_page_dirty_for_io(page))
1203 goto page_out;
1204
1205 ret = f2fs_write_inline_data(inode, page);
1206 inode_dec_dirty_pages(inode);
1207 if (ret)
1208 set_page_dirty(page);
1209 page_out:
1210 f2fs_put_page(page, 1);
1211 iput_out:
1212 iput(inode);
1213 }
1214
1215 void move_node_page(struct page *node_page, int gc_type)
1216 {
1217 if (gc_type == FG_GC) {
1218 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1219 struct writeback_control wbc = {
1220 .sync_mode = WB_SYNC_ALL,
1221 .nr_to_write = 1,
1222 .for_reclaim = 0,
1223 };
1224
1225 set_page_dirty(node_page);
1226 f2fs_wait_on_page_writeback(node_page, NODE, true);
1227
1228 f2fs_bug_on(sbi, PageWriteback(node_page));
1229 if (!clear_page_dirty_for_io(node_page))
1230 goto out_page;
1231
1232 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1233 unlock_page(node_page);
1234 goto release_page;
1235 } else {
1236 /* set page dirty and write it */
1237 if (!PageWriteback(node_page))
1238 set_page_dirty(node_page);
1239 }
1240 out_page:
1241 unlock_page(node_page);
1242 release_page:
1243 f2fs_put_page(node_page, 0);
1244 }
1245
1246 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1247 {
1248 pgoff_t index, end;
1249 struct pagevec pvec;
1250 struct page *last_page = NULL;
1251
1252 pagevec_init(&pvec, 0);
1253 index = 0;
1254 end = ULONG_MAX;
1255
1256 while (index <= end) {
1257 int i, nr_pages;
1258 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1259 PAGECACHE_TAG_DIRTY,
1260 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1261 if (nr_pages == 0)
1262 break;
1263
1264 for (i = 0; i < nr_pages; i++) {
1265 struct page *page = pvec.pages[i];
1266
1267 if (unlikely(f2fs_cp_error(sbi))) {
1268 f2fs_put_page(last_page, 0);
1269 pagevec_release(&pvec);
1270 return ERR_PTR(-EIO);
1271 }
1272
1273 if (!IS_DNODE(page) || !is_cold_node(page))
1274 continue;
1275 if (ino_of_node(page) != ino)
1276 continue;
1277
1278 lock_page(page);
1279
1280 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1281 continue_unlock:
1282 unlock_page(page);
1283 continue;
1284 }
1285 if (ino_of_node(page) != ino)
1286 goto continue_unlock;
1287
1288 if (!PageDirty(page)) {
1289 /* someone wrote it for us */
1290 goto continue_unlock;
1291 }
1292
1293 if (last_page)
1294 f2fs_put_page(last_page, 0);
1295
1296 get_page(page);
1297 last_page = page;
1298 unlock_page(page);
1299 }
1300 pagevec_release(&pvec);
1301 cond_resched();
1302 }
1303 return last_page;
1304 }
1305
1306 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1307 struct writeback_control *wbc, bool atomic)
1308 {
1309 pgoff_t index, end;
1310 struct pagevec pvec;
1311 int ret = 0;
1312 struct page *last_page = NULL;
1313 bool marked = false;
1314 nid_t ino = inode->i_ino;
1315
1316 if (atomic) {
1317 last_page = last_fsync_dnode(sbi, ino);
1318 if (IS_ERR_OR_NULL(last_page))
1319 return PTR_ERR_OR_ZERO(last_page);
1320 }
1321 retry:
1322 pagevec_init(&pvec, 0);
1323 index = 0;
1324 end = ULONG_MAX;
1325
1326 while (index <= end) {
1327 int i, nr_pages;
1328 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1329 PAGECACHE_TAG_DIRTY,
1330 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1331 if (nr_pages == 0)
1332 break;
1333
1334 for (i = 0; i < nr_pages; i++) {
1335 struct page *page = pvec.pages[i];
1336
1337 if (unlikely(f2fs_cp_error(sbi))) {
1338 f2fs_put_page(last_page, 0);
1339 pagevec_release(&pvec);
1340 return -EIO;
1341 }
1342
1343 if (!IS_DNODE(page) || !is_cold_node(page))
1344 continue;
1345 if (ino_of_node(page) != ino)
1346 continue;
1347
1348 lock_page(page);
1349
1350 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1351 continue_unlock:
1352 unlock_page(page);
1353 continue;
1354 }
1355 if (ino_of_node(page) != ino)
1356 goto continue_unlock;
1357
1358 if (!PageDirty(page) && page != last_page) {
1359 /* someone wrote it for us */
1360 goto continue_unlock;
1361 }
1362
1363 f2fs_wait_on_page_writeback(page, NODE, true);
1364 BUG_ON(PageWriteback(page));
1365
1366 if (!atomic || page == last_page) {
1367 set_fsync_mark(page, 1);
1368 if (IS_INODE(page)) {
1369 if (is_inode_flag_set(inode,
1370 FI_DIRTY_INODE))
1371 update_inode(inode, page);
1372 set_dentry_mark(page,
1373 need_dentry_mark(sbi, ino));
1374 }
1375 /* may be written by other thread */
1376 if (!PageDirty(page))
1377 set_page_dirty(page);
1378 }
1379
1380 if (!clear_page_dirty_for_io(page))
1381 goto continue_unlock;
1382
1383 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1384 if (ret) {
1385 unlock_page(page);
1386 f2fs_put_page(last_page, 0);
1387 break;
1388 }
1389 if (page == last_page) {
1390 f2fs_put_page(page, 0);
1391 marked = true;
1392 break;
1393 }
1394 }
1395 pagevec_release(&pvec);
1396 cond_resched();
1397
1398 if (ret || marked)
1399 break;
1400 }
1401 if (!ret && atomic && !marked) {
1402 f2fs_msg(sbi->sb, KERN_DEBUG,
1403 "Retry to write fsync mark: ino=%u, idx=%lx",
1404 ino, last_page->index);
1405 lock_page(last_page);
1406 set_page_dirty(last_page);
1407 unlock_page(last_page);
1408 goto retry;
1409 }
1410 return ret ? -EIO: 0;
1411 }
1412
1413 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1414 {
1415 pgoff_t index, end;
1416 struct pagevec pvec;
1417 int step = 0;
1418 int nwritten = 0;
1419
1420 pagevec_init(&pvec, 0);
1421
1422 next_step:
1423 index = 0;
1424 end = ULONG_MAX;
1425
1426 while (index <= end) {
1427 int i, nr_pages;
1428 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1429 PAGECACHE_TAG_DIRTY,
1430 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1431 if (nr_pages == 0)
1432 break;
1433
1434 for (i = 0; i < nr_pages; i++) {
1435 struct page *page = pvec.pages[i];
1436
1437 if (unlikely(f2fs_cp_error(sbi))) {
1438 pagevec_release(&pvec);
1439 return -EIO;
1440 }
1441
1442 /*
1443 * flushing sequence with step:
1444 * 0. indirect nodes
1445 * 1. dentry dnodes
1446 * 2. file dnodes
1447 */
1448 if (step == 0 && IS_DNODE(page))
1449 continue;
1450 if (step == 1 && (!IS_DNODE(page) ||
1451 is_cold_node(page)))
1452 continue;
1453 if (step == 2 && (!IS_DNODE(page) ||
1454 !is_cold_node(page)))
1455 continue;
1456 lock_node:
1457 if (!trylock_page(page))
1458 continue;
1459
1460 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1461 continue_unlock:
1462 unlock_page(page);
1463 continue;
1464 }
1465
1466 if (!PageDirty(page)) {
1467 /* someone wrote it for us */
1468 goto continue_unlock;
1469 }
1470
1471 /* flush inline_data */
1472 if (is_inline_node(page)) {
1473 clear_inline_node(page);
1474 unlock_page(page);
1475 flush_inline_data(sbi, ino_of_node(page));
1476 goto lock_node;
1477 }
1478
1479 f2fs_wait_on_page_writeback(page, NODE, true);
1480
1481 BUG_ON(PageWriteback(page));
1482 if (!clear_page_dirty_for_io(page))
1483 goto continue_unlock;
1484
1485 set_fsync_mark(page, 0);
1486 set_dentry_mark(page, 0);
1487
1488 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1489 unlock_page(page);
1490
1491 if (--wbc->nr_to_write == 0)
1492 break;
1493 }
1494 pagevec_release(&pvec);
1495 cond_resched();
1496
1497 if (wbc->nr_to_write == 0) {
1498 step = 2;
1499 break;
1500 }
1501 }
1502
1503 if (step < 2) {
1504 step++;
1505 goto next_step;
1506 }
1507 return nwritten;
1508 }
1509
1510 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1511 {
1512 pgoff_t index = 0, end = ULONG_MAX;
1513 struct pagevec pvec;
1514 int ret2 = 0, ret = 0;
1515
1516 pagevec_init(&pvec, 0);
1517
1518 while (index <= end) {
1519 int i, nr_pages;
1520 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1521 PAGECACHE_TAG_WRITEBACK,
1522 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1523 if (nr_pages == 0)
1524 break;
1525
1526 for (i = 0; i < nr_pages; i++) {
1527 struct page *page = pvec.pages[i];
1528
1529 /* until radix tree lookup accepts end_index */
1530 if (unlikely(page->index > end))
1531 continue;
1532
1533 if (ino && ino_of_node(page) == ino) {
1534 f2fs_wait_on_page_writeback(page, NODE, true);
1535 if (TestClearPageError(page))
1536 ret = -EIO;
1537 }
1538 }
1539 pagevec_release(&pvec);
1540 cond_resched();
1541 }
1542
1543 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1544 ret2 = -ENOSPC;
1545 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1546 ret2 = -EIO;
1547 if (!ret)
1548 ret = ret2;
1549 return ret;
1550 }
1551
1552 static int f2fs_write_node_page(struct page *page,
1553 struct writeback_control *wbc)
1554 {
1555 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1556 nid_t nid;
1557 struct node_info ni;
1558 struct f2fs_io_info fio = {
1559 .sbi = sbi,
1560 .type = NODE,
1561 .op = REQ_OP_WRITE,
1562 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1563 .page = page,
1564 .encrypted_page = NULL,
1565 };
1566
1567 trace_f2fs_writepage(page, NODE);
1568
1569 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1570 goto redirty_out;
1571 if (unlikely(f2fs_cp_error(sbi)))
1572 goto redirty_out;
1573
1574 /* get old block addr of this node page */
1575 nid = nid_of_node(page);
1576 f2fs_bug_on(sbi, page->index != nid);
1577
1578 if (wbc->for_reclaim) {
1579 if (!down_read_trylock(&sbi->node_write))
1580 goto redirty_out;
1581 } else {
1582 down_read(&sbi->node_write);
1583 }
1584
1585 get_node_info(sbi, nid, &ni);
1586
1587 /* This page is already truncated */
1588 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1589 ClearPageUptodate(page);
1590 dec_page_count(sbi, F2FS_DIRTY_NODES);
1591 up_read(&sbi->node_write);
1592 unlock_page(page);
1593 return 0;
1594 }
1595
1596 set_page_writeback(page);
1597 fio.old_blkaddr = ni.blk_addr;
1598 write_node_page(nid, &fio);
1599 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1600 dec_page_count(sbi, F2FS_DIRTY_NODES);
1601 up_read(&sbi->node_write);
1602
1603 if (wbc->for_reclaim)
1604 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1605
1606 unlock_page(page);
1607
1608 if (unlikely(f2fs_cp_error(sbi)))
1609 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1610
1611 return 0;
1612
1613 redirty_out:
1614 redirty_page_for_writepage(wbc, page);
1615 return AOP_WRITEPAGE_ACTIVATE;
1616 }
1617
1618 static int f2fs_write_node_pages(struct address_space *mapping,
1619 struct writeback_control *wbc)
1620 {
1621 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1622 struct blk_plug plug;
1623 long diff;
1624
1625 /* balancing f2fs's metadata in background */
1626 f2fs_balance_fs_bg(sbi);
1627
1628 /* collect a number of dirty node pages and write together */
1629 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1630 goto skip_write;
1631
1632 trace_f2fs_writepages(mapping->host, wbc, NODE);
1633
1634 diff = nr_pages_to_write(sbi, NODE, wbc);
1635 wbc->sync_mode = WB_SYNC_NONE;
1636 blk_start_plug(&plug);
1637 sync_node_pages(sbi, wbc);
1638 blk_finish_plug(&plug);
1639 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1640 return 0;
1641
1642 skip_write:
1643 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1644 trace_f2fs_writepages(mapping->host, wbc, NODE);
1645 return 0;
1646 }
1647
1648 static int f2fs_set_node_page_dirty(struct page *page)
1649 {
1650 trace_f2fs_set_page_dirty(page, NODE);
1651
1652 if (!PageUptodate(page))
1653 SetPageUptodate(page);
1654 if (!PageDirty(page)) {
1655 f2fs_set_page_dirty_nobuffers(page);
1656 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1657 SetPagePrivate(page);
1658 f2fs_trace_pid(page);
1659 return 1;
1660 }
1661 return 0;
1662 }
1663
1664 /*
1665 * Structure of the f2fs node operations
1666 */
1667 const struct address_space_operations f2fs_node_aops = {
1668 .writepage = f2fs_write_node_page,
1669 .writepages = f2fs_write_node_pages,
1670 .set_page_dirty = f2fs_set_node_page_dirty,
1671 .invalidatepage = f2fs_invalidate_page,
1672 .releasepage = f2fs_release_page,
1673 };
1674
1675 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1676 nid_t n)
1677 {
1678 return radix_tree_lookup(&nm_i->free_nid_root, n);
1679 }
1680
1681 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1682 struct free_nid *i)
1683 {
1684 list_del(&i->list);
1685 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1686 }
1687
1688 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1689 {
1690 struct f2fs_nm_info *nm_i = NM_I(sbi);
1691 struct free_nid *i;
1692 struct nat_entry *ne;
1693
1694 if (!available_free_memory(sbi, FREE_NIDS))
1695 return -1;
1696
1697 /* 0 nid should not be used */
1698 if (unlikely(nid == 0))
1699 return 0;
1700
1701 if (build) {
1702 /* do not add allocated nids */
1703 ne = __lookup_nat_cache(nm_i, nid);
1704 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1705 nat_get_blkaddr(ne) != NULL_ADDR))
1706 return 0;
1707 }
1708
1709 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1710 i->nid = nid;
1711 i->state = NID_NEW;
1712
1713 if (radix_tree_preload(GFP_NOFS)) {
1714 kmem_cache_free(free_nid_slab, i);
1715 return 0;
1716 }
1717
1718 spin_lock(&nm_i->free_nid_list_lock);
1719 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1720 spin_unlock(&nm_i->free_nid_list_lock);
1721 radix_tree_preload_end();
1722 kmem_cache_free(free_nid_slab, i);
1723 return 0;
1724 }
1725 list_add_tail(&i->list, &nm_i->free_nid_list);
1726 nm_i->fcnt++;
1727 spin_unlock(&nm_i->free_nid_list_lock);
1728 radix_tree_preload_end();
1729 return 1;
1730 }
1731
1732 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1733 {
1734 struct free_nid *i;
1735 bool need_free = false;
1736
1737 spin_lock(&nm_i->free_nid_list_lock);
1738 i = __lookup_free_nid_list(nm_i, nid);
1739 if (i && i->state == NID_NEW) {
1740 __del_from_free_nid_list(nm_i, i);
1741 nm_i->fcnt--;
1742 need_free = true;
1743 }
1744 spin_unlock(&nm_i->free_nid_list_lock);
1745
1746 if (need_free)
1747 kmem_cache_free(free_nid_slab, i);
1748 }
1749
1750 static void scan_nat_page(struct f2fs_sb_info *sbi,
1751 struct page *nat_page, nid_t start_nid)
1752 {
1753 struct f2fs_nm_info *nm_i = NM_I(sbi);
1754 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1755 block_t blk_addr;
1756 int i;
1757
1758 i = start_nid % NAT_ENTRY_PER_BLOCK;
1759
1760 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1761
1762 if (unlikely(start_nid >= nm_i->max_nid))
1763 break;
1764
1765 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1766 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1767 if (blk_addr == NULL_ADDR) {
1768 if (add_free_nid(sbi, start_nid, true) < 0)
1769 break;
1770 }
1771 }
1772 }
1773
1774 void build_free_nids(struct f2fs_sb_info *sbi)
1775 {
1776 struct f2fs_nm_info *nm_i = NM_I(sbi);
1777 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1778 struct f2fs_journal *journal = curseg->journal;
1779 int i = 0;
1780 nid_t nid = nm_i->next_scan_nid;
1781
1782 /* Enough entries */
1783 if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1784 return;
1785
1786 /* readahead nat pages to be scanned */
1787 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1788 META_NAT, true);
1789
1790 down_read(&nm_i->nat_tree_lock);
1791
1792 while (1) {
1793 struct page *page = get_current_nat_page(sbi, nid);
1794
1795 scan_nat_page(sbi, page, nid);
1796 f2fs_put_page(page, 1);
1797
1798 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1799 if (unlikely(nid >= nm_i->max_nid))
1800 nid = 0;
1801
1802 if (++i >= FREE_NID_PAGES)
1803 break;
1804 }
1805
1806 /* go to the next free nat pages to find free nids abundantly */
1807 nm_i->next_scan_nid = nid;
1808
1809 /* find free nids from current sum_pages */
1810 down_read(&curseg->journal_rwsem);
1811 for (i = 0; i < nats_in_cursum(journal); i++) {
1812 block_t addr;
1813
1814 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1815 nid = le32_to_cpu(nid_in_journal(journal, i));
1816 if (addr == NULL_ADDR)
1817 add_free_nid(sbi, nid, true);
1818 else
1819 remove_free_nid(nm_i, nid);
1820 }
1821 up_read(&curseg->journal_rwsem);
1822 up_read(&nm_i->nat_tree_lock);
1823
1824 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1825 nm_i->ra_nid_pages, META_NAT, false);
1826 }
1827
1828 /*
1829 * If this function returns success, caller can obtain a new nid
1830 * from second parameter of this function.
1831 * The returned nid could be used ino as well as nid when inode is created.
1832 */
1833 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1834 {
1835 struct f2fs_nm_info *nm_i = NM_I(sbi);
1836 struct free_nid *i = NULL;
1837 retry:
1838 #ifdef CONFIG_F2FS_FAULT_INJECTION
1839 if (time_to_inject(FAULT_ALLOC_NID))
1840 return false;
1841 #endif
1842 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1843 return false;
1844
1845 spin_lock(&nm_i->free_nid_list_lock);
1846
1847 /* We should not use stale free nids created by build_free_nids */
1848 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1849 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1850 list_for_each_entry(i, &nm_i->free_nid_list, list)
1851 if (i->state == NID_NEW)
1852 break;
1853
1854 f2fs_bug_on(sbi, i->state != NID_NEW);
1855 *nid = i->nid;
1856 i->state = NID_ALLOC;
1857 nm_i->fcnt--;
1858 spin_unlock(&nm_i->free_nid_list_lock);
1859 return true;
1860 }
1861 spin_unlock(&nm_i->free_nid_list_lock);
1862
1863 /* Let's scan nat pages and its caches to get free nids */
1864 mutex_lock(&nm_i->build_lock);
1865 build_free_nids(sbi);
1866 mutex_unlock(&nm_i->build_lock);
1867 goto retry;
1868 }
1869
1870 /*
1871 * alloc_nid() should be called prior to this function.
1872 */
1873 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1874 {
1875 struct f2fs_nm_info *nm_i = NM_I(sbi);
1876 struct free_nid *i;
1877
1878 spin_lock(&nm_i->free_nid_list_lock);
1879 i = __lookup_free_nid_list(nm_i, nid);
1880 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1881 __del_from_free_nid_list(nm_i, i);
1882 spin_unlock(&nm_i->free_nid_list_lock);
1883
1884 kmem_cache_free(free_nid_slab, i);
1885 }
1886
1887 /*
1888 * alloc_nid() should be called prior to this function.
1889 */
1890 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1891 {
1892 struct f2fs_nm_info *nm_i = NM_I(sbi);
1893 struct free_nid *i;
1894 bool need_free = false;
1895
1896 if (!nid)
1897 return;
1898
1899 spin_lock(&nm_i->free_nid_list_lock);
1900 i = __lookup_free_nid_list(nm_i, nid);
1901 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1902 if (!available_free_memory(sbi, FREE_NIDS)) {
1903 __del_from_free_nid_list(nm_i, i);
1904 need_free = true;
1905 } else {
1906 i->state = NID_NEW;
1907 nm_i->fcnt++;
1908 }
1909 spin_unlock(&nm_i->free_nid_list_lock);
1910
1911 if (need_free)
1912 kmem_cache_free(free_nid_slab, i);
1913 }
1914
1915 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1916 {
1917 struct f2fs_nm_info *nm_i = NM_I(sbi);
1918 struct free_nid *i, *next;
1919 int nr = nr_shrink;
1920
1921 if (nm_i->fcnt <= MAX_FREE_NIDS)
1922 return 0;
1923
1924 if (!mutex_trylock(&nm_i->build_lock))
1925 return 0;
1926
1927 spin_lock(&nm_i->free_nid_list_lock);
1928 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1929 if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1930 break;
1931 if (i->state == NID_ALLOC)
1932 continue;
1933 __del_from_free_nid_list(nm_i, i);
1934 kmem_cache_free(free_nid_slab, i);
1935 nm_i->fcnt--;
1936 nr_shrink--;
1937 }
1938 spin_unlock(&nm_i->free_nid_list_lock);
1939 mutex_unlock(&nm_i->build_lock);
1940
1941 return nr - nr_shrink;
1942 }
1943
1944 void recover_inline_xattr(struct inode *inode, struct page *page)
1945 {
1946 void *src_addr, *dst_addr;
1947 size_t inline_size;
1948 struct page *ipage;
1949 struct f2fs_inode *ri;
1950
1951 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1952 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1953
1954 ri = F2FS_INODE(page);
1955 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1956 clear_inode_flag(inode, FI_INLINE_XATTR);
1957 goto update_inode;
1958 }
1959
1960 dst_addr = inline_xattr_addr(ipage);
1961 src_addr = inline_xattr_addr(page);
1962 inline_size = inline_xattr_size(inode);
1963
1964 f2fs_wait_on_page_writeback(ipage, NODE, true);
1965 memcpy(dst_addr, src_addr, inline_size);
1966 update_inode:
1967 update_inode(inode, ipage);
1968 f2fs_put_page(ipage, 1);
1969 }
1970
1971 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1972 {
1973 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1974 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1975 nid_t new_xnid = nid_of_node(page);
1976 struct node_info ni;
1977
1978 /* 1: invalidate the previous xattr nid */
1979 if (!prev_xnid)
1980 goto recover_xnid;
1981
1982 /* Deallocate node address */
1983 get_node_info(sbi, prev_xnid, &ni);
1984 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1985 invalidate_blocks(sbi, ni.blk_addr);
1986 dec_valid_node_count(sbi, inode);
1987 set_node_addr(sbi, &ni, NULL_ADDR, false);
1988
1989 recover_xnid:
1990 /* 2: allocate new xattr nid */
1991 if (unlikely(!inc_valid_node_count(sbi, inode)))
1992 f2fs_bug_on(sbi, 1);
1993
1994 remove_free_nid(NM_I(sbi), new_xnid);
1995 get_node_info(sbi, new_xnid, &ni);
1996 ni.ino = inode->i_ino;
1997 set_node_addr(sbi, &ni, NEW_ADDR, false);
1998 f2fs_i_xnid_write(inode, new_xnid);
1999
2000 /* 3: update xattr blkaddr */
2001 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2002 set_node_addr(sbi, &ni, blkaddr, false);
2003 }
2004
2005 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2006 {
2007 struct f2fs_inode *src, *dst;
2008 nid_t ino = ino_of_node(page);
2009 struct node_info old_ni, new_ni;
2010 struct page *ipage;
2011
2012 get_node_info(sbi, ino, &old_ni);
2013
2014 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2015 return -EINVAL;
2016
2017 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2018 if (!ipage)
2019 return -ENOMEM;
2020
2021 /* Should not use this inode from free nid list */
2022 remove_free_nid(NM_I(sbi), ino);
2023
2024 if (!PageUptodate(ipage))
2025 SetPageUptodate(ipage);
2026 fill_node_footer(ipage, ino, ino, 0, true);
2027
2028 src = F2FS_INODE(page);
2029 dst = F2FS_INODE(ipage);
2030
2031 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2032 dst->i_size = 0;
2033 dst->i_blocks = cpu_to_le64(1);
2034 dst->i_links = cpu_to_le32(1);
2035 dst->i_xattr_nid = 0;
2036 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2037
2038 new_ni = old_ni;
2039 new_ni.ino = ino;
2040
2041 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2042 WARN_ON(1);
2043 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2044 inc_valid_inode_count(sbi);
2045 set_page_dirty(ipage);
2046 f2fs_put_page(ipage, 1);
2047 return 0;
2048 }
2049
2050 int restore_node_summary(struct f2fs_sb_info *sbi,
2051 unsigned int segno, struct f2fs_summary_block *sum)
2052 {
2053 struct f2fs_node *rn;
2054 struct f2fs_summary *sum_entry;
2055 block_t addr;
2056 int bio_blocks = MAX_BIO_BLOCKS(sbi);
2057 int i, idx, last_offset, nrpages;
2058
2059 /* scan the node segment */
2060 last_offset = sbi->blocks_per_seg;
2061 addr = START_BLOCK(sbi, segno);
2062 sum_entry = &sum->entries[0];
2063
2064 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2065 nrpages = min(last_offset - i, bio_blocks);
2066
2067 /* readahead node pages */
2068 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2069
2070 for (idx = addr; idx < addr + nrpages; idx++) {
2071 struct page *page = get_tmp_page(sbi, idx);
2072
2073 rn = F2FS_NODE(page);
2074 sum_entry->nid = rn->footer.nid;
2075 sum_entry->version = 0;
2076 sum_entry->ofs_in_node = 0;
2077 sum_entry++;
2078 f2fs_put_page(page, 1);
2079 }
2080
2081 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2082 addr + nrpages);
2083 }
2084 return 0;
2085 }
2086
2087 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2088 {
2089 struct f2fs_nm_info *nm_i = NM_I(sbi);
2090 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2091 struct f2fs_journal *journal = curseg->journal;
2092 int i;
2093
2094 down_write(&curseg->journal_rwsem);
2095 for (i = 0; i < nats_in_cursum(journal); i++) {
2096 struct nat_entry *ne;
2097 struct f2fs_nat_entry raw_ne;
2098 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2099
2100 raw_ne = nat_in_journal(journal, i);
2101
2102 ne = __lookup_nat_cache(nm_i, nid);
2103 if (!ne) {
2104 ne = grab_nat_entry(nm_i, nid);
2105 node_info_from_raw_nat(&ne->ni, &raw_ne);
2106 }
2107 __set_nat_cache_dirty(nm_i, ne);
2108 }
2109 update_nats_in_cursum(journal, -i);
2110 up_write(&curseg->journal_rwsem);
2111 }
2112
2113 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2114 struct list_head *head, int max)
2115 {
2116 struct nat_entry_set *cur;
2117
2118 if (nes->entry_cnt >= max)
2119 goto add_out;
2120
2121 list_for_each_entry(cur, head, set_list) {
2122 if (cur->entry_cnt >= nes->entry_cnt) {
2123 list_add(&nes->set_list, cur->set_list.prev);
2124 return;
2125 }
2126 }
2127 add_out:
2128 list_add_tail(&nes->set_list, head);
2129 }
2130
2131 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2132 struct nat_entry_set *set)
2133 {
2134 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2135 struct f2fs_journal *journal = curseg->journal;
2136 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2137 bool to_journal = true;
2138 struct f2fs_nat_block *nat_blk;
2139 struct nat_entry *ne, *cur;
2140 struct page *page = NULL;
2141
2142 /*
2143 * there are two steps to flush nat entries:
2144 * #1, flush nat entries to journal in current hot data summary block.
2145 * #2, flush nat entries to nat page.
2146 */
2147 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2148 to_journal = false;
2149
2150 if (to_journal) {
2151 down_write(&curseg->journal_rwsem);
2152 } else {
2153 page = get_next_nat_page(sbi, start_nid);
2154 nat_blk = page_address(page);
2155 f2fs_bug_on(sbi, !nat_blk);
2156 }
2157
2158 /* flush dirty nats in nat entry set */
2159 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2160 struct f2fs_nat_entry *raw_ne;
2161 nid_t nid = nat_get_nid(ne);
2162 int offset;
2163
2164 if (nat_get_blkaddr(ne) == NEW_ADDR)
2165 continue;
2166
2167 if (to_journal) {
2168 offset = lookup_journal_in_cursum(journal,
2169 NAT_JOURNAL, nid, 1);
2170 f2fs_bug_on(sbi, offset < 0);
2171 raw_ne = &nat_in_journal(journal, offset);
2172 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2173 } else {
2174 raw_ne = &nat_blk->entries[nid - start_nid];
2175 }
2176 raw_nat_from_node_info(raw_ne, &ne->ni);
2177 nat_reset_flag(ne);
2178 __clear_nat_cache_dirty(NM_I(sbi), ne);
2179 if (nat_get_blkaddr(ne) == NULL_ADDR)
2180 add_free_nid(sbi, nid, false);
2181 }
2182
2183 if (to_journal)
2184 up_write(&curseg->journal_rwsem);
2185 else
2186 f2fs_put_page(page, 1);
2187
2188 f2fs_bug_on(sbi, set->entry_cnt);
2189
2190 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2191 kmem_cache_free(nat_entry_set_slab, set);
2192 }
2193
2194 /*
2195 * This function is called during the checkpointing process.
2196 */
2197 void flush_nat_entries(struct f2fs_sb_info *sbi)
2198 {
2199 struct f2fs_nm_info *nm_i = NM_I(sbi);
2200 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2201 struct f2fs_journal *journal = curseg->journal;
2202 struct nat_entry_set *setvec[SETVEC_SIZE];
2203 struct nat_entry_set *set, *tmp;
2204 unsigned int found;
2205 nid_t set_idx = 0;
2206 LIST_HEAD(sets);
2207
2208 if (!nm_i->dirty_nat_cnt)
2209 return;
2210
2211 down_write(&nm_i->nat_tree_lock);
2212
2213 /*
2214 * if there are no enough space in journal to store dirty nat
2215 * entries, remove all entries from journal and merge them
2216 * into nat entry set.
2217 */
2218 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2219 remove_nats_in_journal(sbi);
2220
2221 while ((found = __gang_lookup_nat_set(nm_i,
2222 set_idx, SETVEC_SIZE, setvec))) {
2223 unsigned idx;
2224 set_idx = setvec[found - 1]->set + 1;
2225 for (idx = 0; idx < found; idx++)
2226 __adjust_nat_entry_set(setvec[idx], &sets,
2227 MAX_NAT_JENTRIES(journal));
2228 }
2229
2230 /* flush dirty nats in nat entry set */
2231 list_for_each_entry_safe(set, tmp, &sets, set_list)
2232 __flush_nat_entry_set(sbi, set);
2233
2234 up_write(&nm_i->nat_tree_lock);
2235
2236 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2237 }
2238
2239 static int init_node_manager(struct f2fs_sb_info *sbi)
2240 {
2241 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2242 struct f2fs_nm_info *nm_i = NM_I(sbi);
2243 unsigned char *version_bitmap;
2244 unsigned int nat_segs, nat_blocks;
2245
2246 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2247
2248 /* segment_count_nat includes pair segment so divide to 2. */
2249 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2250 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2251
2252 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2253
2254 /* not used nids: 0, node, meta, (and root counted as valid node) */
2255 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2256 nm_i->fcnt = 0;
2257 nm_i->nat_cnt = 0;
2258 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2259 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2260 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2261
2262 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2263 INIT_LIST_HEAD(&nm_i->free_nid_list);
2264 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2265 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2266 INIT_LIST_HEAD(&nm_i->nat_entries);
2267
2268 mutex_init(&nm_i->build_lock);
2269 spin_lock_init(&nm_i->free_nid_list_lock);
2270 init_rwsem(&nm_i->nat_tree_lock);
2271
2272 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2273 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2274 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2275 if (!version_bitmap)
2276 return -EFAULT;
2277
2278 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2279 GFP_KERNEL);
2280 if (!nm_i->nat_bitmap)
2281 return -ENOMEM;
2282 return 0;
2283 }
2284
2285 int build_node_manager(struct f2fs_sb_info *sbi)
2286 {
2287 int err;
2288
2289 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2290 if (!sbi->nm_info)
2291 return -ENOMEM;
2292
2293 err = init_node_manager(sbi);
2294 if (err)
2295 return err;
2296
2297 build_free_nids(sbi);
2298 return 0;
2299 }
2300
2301 void destroy_node_manager(struct f2fs_sb_info *sbi)
2302 {
2303 struct f2fs_nm_info *nm_i = NM_I(sbi);
2304 struct free_nid *i, *next_i;
2305 struct nat_entry *natvec[NATVEC_SIZE];
2306 struct nat_entry_set *setvec[SETVEC_SIZE];
2307 nid_t nid = 0;
2308 unsigned int found;
2309
2310 if (!nm_i)
2311 return;
2312
2313 /* destroy free nid list */
2314 spin_lock(&nm_i->free_nid_list_lock);
2315 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2316 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2317 __del_from_free_nid_list(nm_i, i);
2318 nm_i->fcnt--;
2319 spin_unlock(&nm_i->free_nid_list_lock);
2320 kmem_cache_free(free_nid_slab, i);
2321 spin_lock(&nm_i->free_nid_list_lock);
2322 }
2323 f2fs_bug_on(sbi, nm_i->fcnt);
2324 spin_unlock(&nm_i->free_nid_list_lock);
2325
2326 /* destroy nat cache */
2327 down_write(&nm_i->nat_tree_lock);
2328 while ((found = __gang_lookup_nat_cache(nm_i,
2329 nid, NATVEC_SIZE, natvec))) {
2330 unsigned idx;
2331
2332 nid = nat_get_nid(natvec[found - 1]) + 1;
2333 for (idx = 0; idx < found; idx++)
2334 __del_from_nat_cache(nm_i, natvec[idx]);
2335 }
2336 f2fs_bug_on(sbi, nm_i->nat_cnt);
2337
2338 /* destroy nat set cache */
2339 nid = 0;
2340 while ((found = __gang_lookup_nat_set(nm_i,
2341 nid, SETVEC_SIZE, setvec))) {
2342 unsigned idx;
2343
2344 nid = setvec[found - 1]->set + 1;
2345 for (idx = 0; idx < found; idx++) {
2346 /* entry_cnt is not zero, when cp_error was occurred */
2347 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2348 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2349 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2350 }
2351 }
2352 up_write(&nm_i->nat_tree_lock);
2353
2354 kfree(nm_i->nat_bitmap);
2355 sbi->nm_info = NULL;
2356 kfree(nm_i);
2357 }
2358
2359 int __init create_node_manager_caches(void)
2360 {
2361 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2362 sizeof(struct nat_entry));
2363 if (!nat_entry_slab)
2364 goto fail;
2365
2366 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2367 sizeof(struct free_nid));
2368 if (!free_nid_slab)
2369 goto destroy_nat_entry;
2370
2371 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2372 sizeof(struct nat_entry_set));
2373 if (!nat_entry_set_slab)
2374 goto destroy_free_nid;
2375 return 0;
2376
2377 destroy_free_nid:
2378 kmem_cache_destroy(free_nid_slab);
2379 destroy_nat_entry:
2380 kmem_cache_destroy(nat_entry_slab);
2381 fail:
2382 return -ENOMEM;
2383 }
2384
2385 void destroy_node_manager_caches(void)
2386 {
2387 kmem_cache_destroy(nat_entry_set_slab);
2388 kmem_cache_destroy(free_nid_slab);
2389 kmem_cache_destroy(nat_entry_slab);
2390 }
This page took 0.084632 seconds and 5 git commands to generate.